Zentralblatt MATH
Publications of (and about) Paul Erdös
 
Zbl.No:  273.41012
Autor:  Erdös, Paul;  Reddy, A.R.
Title:  A note on rational approximation. (In English)
Source:  Period. Math. Hung. 6, 241-244 (1975).
Review:  Let \lambda0,n \equiv infp  in  \pin |{1 \over f(x)}-{1 \over p(x)} |Loo [0, oo), where \pin denots the class of all polynomials of degree at most n. Then the authors prove the following. i) There is a sequence {g(n) } oon = 0 and an entire function f of infinite order so that for infinitely many n, \lambda0,n  \leq  l/g(n). (ii) Let f(z) =  sum ook = 0akzk, a0 > 0, ak  \geq  0, (k  \geq  1) be an entire function of finite lower order \beta. Then for each \epsilon  > 0, 
limn  >  oo inf (\lambda0,n)1/n  \leq  \exp ({-1 \over (\beta+\epsilon)(e+1)} ).
Reviewer:  A.R.Reddy
Classif.:  * 41A20 Approximation by rational functions 
                   41A50 Best approximation 
                   41A25 Degree of approximation, etc. 
© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag