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Abstract. New continuous group transforms, together with their discretization over a lat-
tice of any density and admissible symmetry, are defined for a general compact simple Lie
groups of rank 2 ≤ n < ∞. Rank 1 transforms are known. Rank 2 exposition of C- and
S-transforms is in the literature. The E-transforms appear here for the first time.
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1 Introduction

In the talk [1] three types of transforms, called C-, S-, and E-transforms, are introduced for
each compact simple Lie group G. Number of variables in the transforms equals the rank of G.
Generalization from simple to semisimple Lie groups is straightforward but we disregard it here.

The transforms are defined on a finite region F of a real n-dimensional Euclidean space Rn,
more precisely F is a simplex often called the fundamental region of G. The transforms are
introduced simultaneously as continuous ones on F , and also as discrete transforms on a lattice
grid FM ⊂ F of any density fixed by a positive integer M . Respectively the three transforms are
multidimensional generalizations of the cosine transform, the sine transform and the common
Fourier transform using exponential functions.

A practical motivation for studying the group transforms introduced here, comes from the
abundance of multidimensional digital data which need to be processed according to diverse
criteria. In particular, continuous extension of discrete transforms, using C-functions, appears
to be rather simple and advantageous way to interpolate digital data. It was noticed as a property
of C-transforms based on G = SU(2) and SU(2)×SU(2), in [2], although a crucial step toward
that was made already in [3, 4]. There is every reason to expect that the same is true about the
S- and E-transforms. Moreover, the general approach described here allows one to treat not
only the data in 2 or 3 dimensions, but in any dimension n < ∞ using any of the semisimple
Lie groups of rank n.

General discrete C-transforms are the content of [5]. Their applications are in [6, 7, 8, 9].
In [10, 11] one finds an explicit description of the continuous and discrete C-transforms for the
four semisimple Lie groups of rank 2. For other applications see [2, 12] and [13, 14, 15]. Let us
also point out a forthcoming review of a C-functions [16].

The S-transform for rank 2 groups are the content of [17].
The E-transforms are not found in the literature sofar [18].
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2 General discrete and continuous transforms in n dimensions

There is an underlying compact semisimple Lie group G implied in the considerations here.
Let Φ denote the new expansion functions of either type, C or S, or E. Within each family
the functions are orthogonal when integrated over F . The following relations are called the
continuous transform and its inversion:

f(x) =
∑

λ

fλΦλ(x), fλ =
∫

F
f(x)Φλ(x) dx (1)

assuming a suitable normalization of the expansion functions. Here x ∈ Rn stands for n con-
tinuous variables, λ ∈ P+ is a point of an n dimensional lattice P , which is taken to be in
the ‘positive chamber’ P+ of P whenever it is convenient. The finite region F ⊂ Rn is the
fundamental region of the appropriate Weyl group for C- and S-transform, and it is a pair of
adjacent copies of F in case of the E-transform. Overbar denotes complex conjugation.

Note that Φ in (1) could be the irreducible character of G. Practical advantage of any of the
three families of functions here is in that they are much simpler than the irreducible characters.

Discretization of the transform (1) and its inversion, namely

f(xk) =
∑

λ∈SM

fλΦλ(xk), fλ =
∑

xk∈FM

f(xk)Φλ(xk), (2)

require two modifications of the continuous case. Firstly the continuous variables x need to be
replaced by a suitable grid FM of discrete points in F . Secondly, over the finite set FM of points
only a finite number of functions Φλ, given by λ ∈ SM , can be pairwise orthogonal and thus
participate in the expansion (2). Density of the points in FM is fixed by a positive integer M .

In order to define the transform (1), one needs to choose the group G (for simplicity of
formulation here, G is supposed to be simple), and to define the appropriate set of orthogonal
and distinct expansion functions.

In order to define the discrete transform (2), one needs as well to choose the sets FM and SM .
For a fixed value of M , the set FM is unique, while SM is not. However there is always a unique
lowest set SM ; we assume that one to be always chosen.

3 Preliminaries

Standard Lie theory provides description of the following objects for any compact simple Lie
group G of rank 1 ≤ n < ∞:

maximal torus T ; the root system and its subset of simple roots {α1, . . . , αn}; finite Weyl
group W of G; the weight lattice P and its dual P̂ in the real Euclidean space Rn of
dimension n; the bases {ω1, . . . , ωn} and {ω̂1, . . . , ω̂n} of P and P̂ respectively; the Weyl
group orbit Wλ of λ ∈ P ; the size |Wλ| of Wλ; the fundamental region F for W action
on T ; finite W -invariant subgroup AM ⊂ T generated by the elements of order M in T .

A description of the points xs ∈ FM = AM ∩ F is given next

FM =

{
xs =

n∑
k=1

sk

M
ω̂k

∣∣∣ sk ∈ Z≥0; M = s0 +
n∑

m=1

qmsm

}
, (3)

where the coefficients qm are given in the highest root ξ of G:

ξ =
n∑

m=1

qmαm.
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To find the points of FM , it suffices to find all the non-negative integers {s0, s1, . . . , sn} that add
up to M according to (3). It is an easy computing task. In the case of E-functions one has to
take into account that F e consists of two copies of F .

More theoretically, points of FM are representatives of conjugacy classes of elements of
an Abelian subgroup A ⊂ T of the maximal torus T , which is generated by all elements of
order M in T . Thus one has FM = A ∩ F .

4 Definition of C-functions

A review of properties of C-functions denoted here Cλ(t) is in the forthcoming paper [16]

Cλ(t) :=
∑

λ′∈Wλ

e2πi〈λ′|t〉, λ ∈ P+ ⊂ Rn, t ∈ Rn. (4)

Here 〈λ′ | t〉 denotes the scalar product in Rn. The number of summands is finite, it is equal to
the size of the Weyl group orbit of λ.

Among the useful properties of C-functions, note the complete decomposition of products

Cλ(t)Cλ′(t) = Cλ+λ′(t) + Cµ(t) + · · · .

The functions are continuous and have all derivatives continuous in Rn. They are W -invariant
and have interesting symmetry properties [10, 11] with respect to affine W . In particular, they
are symmetric with respect to reflection in the sides of F of maximal dimension, i.e. n−1. Hence
their normal derivative at the boundary is zero.

One has the continuous orthogonality of C-functions,

(Cλ, Cµ) =
∫

F
Cλ(t)Cµ(t)dt ∼ δλµ, (5)

and the discrete orthogonality of C-functions,∑
t∈A∩F

|Wt|Cλ(t)Cµ(t) ∼ δλµ,

where the integer |Wt| is the size of the W -orbit of t. The lattice points λ, µ ∈ P+ are sub-
jects to additional restriction assuring that Cλ(t), Cµ(t) belong to a finite set of the functions
denoted SM . The Abelian W -invariant group A can be built as the group generated by repre-
sentatives of the conjugacy classes of elements of given order M < ∞ in the Lie group. For the
rank 2 cases, see [10, 11].

5 Definition of S-functions

Comparing with (4), we have

Sλ(t) :=
∑

λ′∈Wλ

(−1)l(λ,λ′)e2πi〈λ′|t〉, λ ∈ P++ ⊂ Rn, t ∈ Rn. (6)

Here l(λ, λ′) is the minimal number of elementary reflections from W needed to transform λ
into λ′; P++ denotes the interior of the positive chamber P+ of the weight lattice P . The
S-functions are continuous and antisymmetric with respect to reflection in the sides of F of
maximal dimension, i.e. n− 1. Hence their value at the boundary is zero.
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A product of an even number of S-functions decomposes into the sum of C-functions where
coefficients are positive and negative integers. A product of C- and S-functions decomposes into
the sum of S-functions:

Sλ(t)Sλ′(t) = Cλ+λ′(t)− Cµ(t) + · · · , (7)
Cλ(t)Sλ′(t) = Sλ+λ′(t) + Sµ(t) + · · · . (8)

See some examples in [17].
Continuous orthogonality of S-functions formally coincides with that for C-functions. The

only difference is in the fact that λ ∈ P++ rather than in P+.

(Sλ, Sµ) =
∫

F
Sλ(t)Sµ(t)dt ∼ δλµ. (9)

Discrete orthogonality of S-functions happens to be on the same grids in F as in the case of
C-functions. Since the W -orbit of all the points in the interior P++ of the positive chamber P+

is the same,∑
t∈A∩F

Sλ(t)Sµ(t) ∼ δλµ.

As before, one needs to assume that λ and µ belong to the lowest finite set, denoted SM , of
dominant weights of pairwise orthogonal functions over the grid fixed by the positive integer M .
For that some additional restrictions on λ and µ need to be imposed.

6 Definition of E-functions

In order to define the E-functions in a way analogous to the C- and S-functions, one needs
to replace the Weyl group W by its even subgroup W e ⊂ W and correspondingly enlarge its
fundamental region F e.

Let r be any simple reflection from the Weyl group. Then

F e := F ∪ rF,

where F e is the fundamental region for W e.
For λ ∈ P ,

Eλ(t) :=
∑

λ′∈W e
λ

e2πi〈λ′,t〉. (10)

Since Eλ(t) depends on W eλ, not on λ, we can suppose λ ∈ P+e = P+ ∪ rP+. One verifies
directly that

Cλ =
{

Eλ + Erλ if λ 6= rλ,
Eλ if λ = rλ,

Sλ =
{

Eλ − Erλ if λ 6= rλ,
0 if λ = rλ.

(11)

Continuous orthogonality of E-functions involves integration over F e:

(Eλ, Eµ) =
∫

F e

Eλ(t)Eµ(t)dt ∼ δλµ. (12)

Discrete orthogonality of E-functions can be introduced in a similar way as for the C- and
S-functions, using the same grid of points on F e.
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Figure 1. 3-D and contour graphs of E(2,1) and Er(2,1) for Lie group C2. The light color square is the
fundamental region F e of C2.

Let A ⊂ T̂ be a finite subgroup which is W e-invariant. Again a convenient and versatile set
up would be to take the group generated by representatives of conjugacy classes of elements of
a fixed order M in the Lie group. The intersection of A with F e is a finite set of points

A ∩ F e = {ze
1, z

e
2, . . . , z

e
m}, oe

j = |W eze
j |.

Since Eλ, Eµ are W e-invariant, we have

m∑
j=1

oe
jEλ(ze

j )Eµ(ze
j ) ∼ δλµ.

As in the previous cases, only a finite set of E-functions can be pairwise orthogonal and
distinct on a finite grid of points given by fixed value of M . Therefore some additional restrictions
on λ, µ need to be imposed.

Some two dimensional examples can be found in the forthcoming [18]. Fig. 1 shows an
example of E(2,1) and Er(2,1) for Lie group C2.
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