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Abstract. Thermalization in highly excited quantum many-body system does not necessa-
rily mean a complete memory loss of the way the system was formed. This effect may
pave a way for a quantum computing, with a large number of qubits n ' 100–1000, far
beyond the quantum chaos border. One of the manifestations of such a thermalized non-
equilibrated matter is revealed by a strong asymmetry around 90◦ c.m. of evaporating proton
yield in the Bi(γ,p) photonuclear reaction. The effect is described in terms of anomalously
slow cross symmetry phase relaxation in highly excited quantum many-body systems with
exponentially large Hilbert space dimensions. In the above reaction this phase relaxation is
about eight orders of magnitude slower than energy relaxation (thermalization).
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1 Introduction

Independent-particle modes in interacting many-body systems result from a mean-field appro-
ximation and are at the center of many theoretical considerations. In the case of a quantum
information device this independent-particle basis can be considered as the basis spanned by the
individual qubits, the “computational basis”. At high excitation energy, the interaction between
the particles results in a rapid mixing of the independent particle states [1, 2, 3, 4]. This mixing
leads to the formation of complicated many-body configurations. Each of these individually
ergodic (independent of the initial conditions) many-body states is characterized by sharing the
energy between many particles of the system. The characteristic time for the formation of such
thermalized many-body states is given by the inverse spreading width, τth = ~/Γspr [3, 4]. The
quantity Γspr also characterizes the width of the distribution of the expansion coefficients of the
many-body eigenstates over a noninteracting mean-field basis [1, 2, 3, 4].

There is another way to interpret spreading width if there exists a classical analog to the
system. Then it is given by the width of the energy distribution of trajectories determined by
the Hamiltonian with interaction, measured in terms of the independent particle Hamiltonian.
This distribution also provides a description of semiclassical wave functions [5] around which
the actual wave functions have Gaussian fluctuations [6].
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The question now arises whether phase relations and/or correlations between these indivi-
dually ergodic, spatially extended, many-body states in the superposition may still preserve a
memory of the way the system was excited. This question is of fundamental importance for
the study of relaxation phenomena in nuclear, atomic, molecular and mesoscopic many-body
systems, and for many-qubit quantum computation. In particular, we recently proposed [7]
that, if phase relaxation is slower than energy relaxation, this can extend the time for quantum
computing beyond the so called “quantum-chaos border” [8, 9].

To answer this question from first principles is presently not possible due to computational
limitations. Indeed, in order to solve the full quantum many-body problem one would require
a many-qubit quantum computer. Therefore, the only currently available resort to search for
possible manifestations of long phase relaxation is the experiment, and a careful data analysis.
Nuclear systems are an ideal testing ground to study many-body systems, since nuclear interac-
tions are so strong that external perturbations can often be neglected. In particular, the analysis
in [7, 10] of the data displaying forward peaking in angular distributions of evaporation protons
from heavy nuclei in nucleon-induced reactions indicates that phase relaxation times can be up
to five orders of magnitude longer than energy relaxation times.

In this paper we analyze another reaction that indicates the formation of thermalized non-
equilibrated matter. This new form of matter was introduced by one of us [11, 12]. Again this
is revealed by a strong asymmetry around 90◦ c.m. of the evaporating proton yield, but now
in the Bi(γ,p) photonuclear reaction [13]. The experiment indicates that in this case the effect
is even more pronounced. We shall see that here the phase relaxation is about eight orders of
magnitude slower than thermalization, making the possibility of quantum computation beyond
the quantum chaos border an even more attractive concept.

The present work is a step toward a more realistic situation because the entrance channel is
given by electro-magnetic interaction. This is more similar to loading mechanisms in proposed
quantum computers.

The present work does not suggest to use photonuclear reactions as a practical experimental
setup for universal quantum computation. Indeed, one can not perform a universal set of gates
for the considered photonuclear reaction. However the proposed analysis does demonstrate that
phase relaxation can be much longer than thermalization which, in turn, illustrates the main
idea of quantum computing far beyond the quantum chaos border.

2 Experimental manifestation of thermalized non-equilibrated
matter in Bi(γ,p) evaporation process

We analyze the proton yield of the Bi(γ,p) photonuclear reaction produced by 24-MeV brems-
strahlung. In Fig. 1 we present an angle-integrated photo-proton spectrum scaled with the
outgoing proton energy ε times the cross section σinv(ε) of the inverse process of the capture
of the proton with energy ε by the residual nucleus. This ε-dependent inverse cross section is
determined by the penetrability of the Coulomb and centrifugal barriers and was taken from [14]
for a nuclear radius of 1.5× 10−13A1/3 cm, where A is the nuclear mass number.

One can see that, for ε ≤ 8 MeV, the scaled spectrum has an exponential shape with a slope
of 0.55 MeV. This is characteristic for the decay of thermalized compound nucleus with a “tem-
perature” T = 0.55 MeV of the residual nucleus. We evaluate the average excitation energy of
the compound nucleus to be Ē∗ = 14 MeV, i.e. slightly above the center of the giant resonance
peak at 13.5 MeV [15]. For ε = 4 MeV, the average excitation energy of the residual nucleus
is Ē∗

res = 6.3 MeV. The average number of excitons (particles plus holes) [16] in the residual
nucleus is n̄ = (2gĒ∗

res)
1/2 ' 14, where g = A/13 MeV−1 is the level density of independent

particle states. The standard deviation of n is about (n̄/2)1/2 ' 2.6. Therefore, the energy per
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Figure 1. Scaled experimental angle-integrated
spectrum (in arbitrary units) of protons of
the Bi(γ,p) photonuclear reaction produced by
24 MeV bremsstrahlung [13]. The line is expo-
nential fit of the scaled spectrum for ε ≤ 8 MeV
with the slope (nuclear “temperature”) of 0.55
MeV (see text).
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Figure 2. Experimental proton angular distri-
butions (in arbitrary units) from the Bi(γ,p) pho-
tonuclear reaction for ε = 2–8 MeV [13]. The
curve is a fit to the experimental data (see text).

exciton in the residual nucleus, i.e. the nuclear “temperature”, is T = 0.38–0.55 MeV. This is
consistent with the fit in Fig. 1 for ε ≤ 8 MeV with T = 0.55 MeV. Similarly we find that the
temperature of the Bi compound nucleus with the excitation energy 14 MeV is 0.57–0.78 MeV
which is roughly consistent with the fit in Fig. 1. This implies thermalization of both compound
and residual nuclei [14].

In Fig. 2 we present experimental proton angular distributions from the Bi(γ,p) photonuclear
reaction for ε = 2–8 MeV [13]. One can see that, in spite of a complete energy relaxation in the
thermalized compound nucleus, the angular distributions are strongly asymmetric about 90◦,
i.e. memory of the direction of the incident γ-ray beam is clearly retained.

3 Determination of the cross symmetry phase relaxation width

In order to identify anomalously slow phase relaxation behind the forward peaking of the eva-
porating protons we make use of a standard formula for double differential cross section in γ-ray
induced reactions [17]:

σ(θ) = (λ2/8π)(2I + 1)−1
∑

SJ1π1

αL1p;α′l′1s′(E)∗SJ2π2

αL2p;α′l′2s′(E)

(L1 1 − 1 1|L1 1 l1 0)(L2 1 − 1 1|L2 1 l2 0)∆(l1, p)∆(l2, p)

[(2J1 + 1)(2J2 + 1)]1/2iL2−L1+l1−l2(−1)s′−I−L+L1−L2+1W (J1L1J2L2; IL)
Z(l1L1l2L2; 1 L)Z(l′1J1l

′
2J2; s′ L)PL(θ), (1)

where the sum is over L1, L2, l1, l2, J1, J2, π1, π2, l′1, l′2, s′, p and L. Here λ is the wave length of
the electromagnetic radiation, E the total energy of the system, I the spin of the target nucleus,
and α, α′ are microstates of the reaction partners in the entrance and exit channels, accordingly.
J1, J2 are the total spins of the compound nucleus, π1, π2 its parities, L1, L2 the total angular
momenta of multipoles, l1, l2 the orbital momenta in the entrance and l′1, l′2 in the exit channel,
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and s′ is the channel spin in the exit channel. The symbol p is defined to have the value 0
for magnetic radiation and 1 for electric radiation. For p = 0, ∆(l1(2), p) = δl1(2),L1(2)

and, for
p = 1, ∆(l1(2), p) = δl1(2),L1(2)±1. In equation (1), (·|·) denote the Clebsch–Gordan coefficients,
W are the Racah coefficients defined in [18], and the Z coefficients are defined in [19]. S-matrix
elements are in a mixed representation in which the entrance channel states are in the multipole
representation, and the exit channel states are in the channel spin representation.

In what follows we use a symplified form of equation (1). We neglect the proton spin in the
exit channel so that the spin of the residual nucleus, I ′, is equal to the exit channel spin. We
neglect the target spin in the entrance channel, I = 0. Therefore, J1(2) = L1(2). We take into
account the proton orbital angular momenta l′1,2 ≤ 2 only since, for l′1,2 ≥ 3, evaporating protons
are significantly sub-barrier due to the centrifugal and Coulomb barriers. We consider electric
dipole (L1,2 = 1) and quadrupole (L1,2 = 2) radiation only. As a result, equation (1) takes the
form

σ(θ) = (λ2/8π)
∑

SL1

αL1;α′l′1
(E)∗SL2

αL2;α′l′2
(E)

(L1 1 − 1 1|L1 1 l1 0)(L2 1 − 1 1|L2 1 l2 0)δl1,L1±1δl2,L2±1

iL2−L1+l1−l2(−1)I′+1Z(l1L1l2L2; 1 L)Z(l′1L1l
′
2L2; I ′ L)PL(θ), (2)

where the sum is taken over L1, L2, l1, l2, l′1, l′2, I ′ and L. In equation (2), the states with
different total spins, L1 6= L2, correspond to opposite parities. For L1 = L2 (L1 6= L2), the sum
in equation (2) includes the terms with even (odd) values of |l′1 − l′2| only.

The key element in a description of the asymmetry of the evaporating protons is a correlation
between fluctuating S-matrix elements with different total spins L1 6= L2 (L1 = 1 and L2 = 2
or L1 = 2 and L2 = 1) and parities [11, 12]:

〈SL1

αL1;α′l′1
(E)∗SL2

αL2;α′l′2
(E)〉 =

[
〈|SL1

αL1;α′l′1
(E)|2〉〈|SL2

αL2;α′l′2
(E)|2〉

]1/2

(1 + β/Γcn)
, (3)

where the brackets 〈·〉 stand for ensemble averaging which is equivalent to the energy (E) ave-
raging under the ergodicity condition. The physical meaning of the spin and parity off-diagonal
(“cross symmetry”) phase relaxation width β, introduced in [20, 11, 12], is the characteristic
inverse time over which the interference between the states with different total spins and parities
does not vanish upon the energy averaging and therefore the memory of the direction of the
initial beam is preserved [11, 12]. If this phase memory time τph = ~/β is about as long or
longer than the average life time ~/Γcn of the compound nucleus then the evaporating protons
are emitted asymmetrically about 90◦ c.m., i.e. the memory about the direction of the initial
beam is retained. However, if the phase memory time is much shorter than the average life time
of the compound nucleus then the spin and parity off-diagonal correlations vanish, memory on
the direction of the initial beam is lost leading to the conventional Bohr picture of compound
nucleus with the symmetric about 90◦ c.m. angular distributions. Therefore, deviation of the
angular distributions of the evaporating particles from the symmetry around 90◦ c.m. indicates
that β is smaller or comparable to Γcn.

For the orbital momentum off-diagonal correlation between S-matrix elements with the same
total spins and parities we have [11, 12]

〈SL
αL;α′l′1

(E)∗SL
αL;α′l′2

(E)〉 = [〈|SL
αL;α′l′1

(E)|2〉〈|SL
αL;α′l′2

(E)|2〉]1/2. (4)

Both the equations (3) and (4) reflect a strong correlation between the partial width ampli-
tudes and, as a result, between S-matrix elements with different orbital momenta (l′1 6= l′2) of
evaporating protons referred to [11, 12] as the continuum correlation. Note that such a strong
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correlation between reduced width amplitudes corresponding to the same total spin and parity
values but different orbital momenta was experimentally revealed for a number of compound
nuclei in the regime of isolated resonances [21].

The statistical model [14] yields

〈|SL
αL;α′l′(E)|2〉 = TL

α TL
α′l′/

∑
α′l′

TL
α′l′ . (5)

Here, TL
α ≡ TL are the entrance channel transmission coefficients for the formation of the

compound nucleus with the total spins L = 1 and L = 2 due to the absorption of electric dipole
and quadrupole radiation, accordingly. The exit channel transmission coefficients are assumed
to be independent of the compound nucleus spin L and the spin of the residual nucleus I ′ [14],
TL

α′l′ ≡ T l′ .
We use equations (2), (3), (4) and (5) for the analysis the experimental angular distribu-

tions in Fig. 2. We find that, upon energy averaging and summation over microstates of the
residual nucleus, apart from the overall normalization constant, a shape of the angular distri-
butions depends on the four parameters: A = TL=2/TL=1, B = T l′=1/T l′=0, C = T l′=2/T l′=0,
and β/Γcn.

From the fit of the experimental angular distributions in Fig. 2 we obtain: A = 0.082,
B = 0.47, C = 0.37 and β/Γcn = 0.11. The compound nucleus’ decay width Γcn for Bi with
an excitation energy of 14 MeV can be estimated from the systematics in Fig. 7 of [22], which
provides a good description of the experimentally determined Γcn for a wide range of mass
numbers. From this estimation we obtain Γcn ' 0.1 eV what yields in turn β ' 0.01 eV. At
the same time, the standard nuclear physics estimate for the spreading width of Bi nucleus with
the excitation energy 14 MeV is about 2 MeV (see Fig. 2.1 in [23]). This is close to another
estimate of Γspr as a width of a dipole giant resonance [3], which is about 4.5 MeV for Bi [15].
It corresponds to an exponentially large effective dimension of Hilbert space given by Neff '
Γspr/D ' 1016, where D ' 10−16 MeV is the average level spacing of the Bi compound nucleus
with the excitation energy 14 MeV. Note that the total spin and parity off-diagonal S-matrix
correlations for evaporation processes were justified in [12] in the limit Neff →∞. For the cross
symmetry phase relaxation time much longer than the energy relaxation time, the formalism also
leads to (i) quantum-classical transition [24, 25], stable coherent rotation [26, 27, 28], Schrödinger
cat states [29, 30] in complex collisions in the regime of strongly overlapping resonances of the
intermediate system, and (ii) spontaneous correlations, non-equilibrium phase transitions [31]
and anomalous sensitivity in finite highly excited many-body systems [32].

It should be noted that while we have been able to determine an anomalously small value
of β from the data analysis, its theoretical evaluation is currently an open problem. Therefore
more theoretical insight is needed for a deeper understanding of the effect of anomalously slow
cross symmetry phase relaxation in highly excited quantum many-body systems.

4 An illustration of the idea of quantum computing far
beyond the quantum chaos boarder

The idea of quantum computing on a time scale τph = ~/β ' 6×10−14 sec., which is much longer
than the thermalization time ~/Γspr ' 3× 10−22 sec., can be illustrated as follows [7]. Consider
the Bi(γ,p) compound nucleus reaction to be the quantum protocol. The single-particle basis is
the quantum register. The entrance channel represents the loading process. The measurement
of the angular distribution of the yield of evaporating protons plays the role of the readout. In
accordance with the standard criterion [8, 9], a quantum computer melts down at t ≥ ~/Γspr.
If so, then any information about specific features of the loaded state (entrance channel) is lost
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while the protocol is executed. Yet, as was shown in the previous section, our “read out” (the
angular distribution of evaporation protons) shows that our “protocol” yields non-trivial results
eight orders of magnitude later than the time scale ~/Γspr ' 3 × 10−22 sec. for the onset of
quantum chaos in our “quantum computer”. These results depend on the “loading”, i.e. the
direction of the incident beam.

In order to demonstrate that the obtained phase memory time τph = ~/β ' 6 × 10−14 sec.
is indeed a very long time scale of the system we note that during this time a nucleon at the
Fermi energy crosses the Bi compound nucleus about 108 times. Yet, this phase memory time is
still about eight orders of magnitude shorter than the Heisenberg time ~/D ' 10−5 sec., where
D ' 10−16 MeV is the average level spacing of the Bi compound nucleus at an excitation energy
of 14 MeV.

Clearly, the spectrum of the Bi compound nucleus in the above considered reaction is not
resolved since Γcn/D ' 109, i.e. resonances of the compound nucleus are strongly overlapping.
Therefore, all exponentially large information hidden in the Hilbert space is not available. Ho-
wever we have demonstrated that useful information, such as the phase relaxation time, still
can be obtained even though the quantum protocol time is about nine orders of magnitude
shorter than the Heisenberg time for our “quantum computer”. This is in accord with a similar
observation in [9].

5 Conclusions

We have demonstrated that thermalization in highly excited quantum many-body system does
not necessarily mean a complete loss of memory of the way the system was formed. Manifestation
of such a thermalized non-equilibrated matter has been revealed from the analysis of a strong
asymmetry around 90◦ c.m. of the evaporating proton yield in the Bi(γ,p) photonuclear reaction.
We have shown that thermalized non-equilibrated matter can exist for time spans of ∼ 6 ×
10−14 sec., which is eight orders of magnitude longer than thermalization time in this example.
This indicates that long lived transient states can exist in many-body systems with exponentially
large dimensions of Hilbert space. If a quantum computer with a large number of qubits n ' 100–
1000 can be brought into such a state, this may provide a solution for the scaling problem which
is one of the central challenges of quantum information [33].
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