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Abstract. A novel perturbative treatment of the time evolution operator of a quantum
system is applied to the model describing a Raman-driven trapped ion in order to obtain
a suitable ‘effective model’. It is shown that the associated effective Hamiltonian describes
the system dynamics up to a certain transformation which may be interpreted as a ‘dyna-
mical dressing’ of the effective model.
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1 Introduction

Over the last few years more and more attention has been addressed to the analysis of physi-
cal nano-systems in order to realize intriguing applications, for instance in the field of quan-
tum computation, and to investigate fundamental aspects of quantum mechanics. One of the
most promising physical contexts is that of laser-driven trapped ions (for a review see, for in-
stance [1, 2]).

An electromagnetic (e.m.) trap is a device which generates a suitable e.m. field confining
a charged particle in a finite region of space. In particular, a Paul trap exploits an inhomoge-
neous and time-dependent e.m. field which forces a charged particle to move approximately as
a harmonic oscillator. The equilibrium point coincides with the center of the trap [3]. There-
fore, a trapped ion is describable as a compound system made of a three-dimensional quantum
harmonic oscillator (representing the motion of the ion center of mass inside the trap) and
a few-level system (associated with the internal atomic state, i.e. with the ‘relevant electronic
levels’ of the ion). Through the action of suitable driving laser fields, it is possible to coherently
manipulate this system with a high degree of accuracy. In particular, the possibility of inducing
couplings between the atomic degrees of freedom and the ion center of mass motion has been
experimentally demonstrated in a very wide variety of settings [1, 2, 3].

In many experimental situations, only two atomic states are effectively involved in the dyna-
mics of a ion trap. In fact, such two states are the only two effectively coupled by the laser fields
driving the ion. Such effective couplings, for technical reasons, are usually realized through
a third atomic level. Precisely, the two effective atomic levels – say |1〉 and |2〉 – are non-
resonantly coupled to a third level – the auxiliary level |3〉 – and the respective two ‘amounts of
off-resonance’ (i.e. the two detunings, that is the differences between the atomic Bohr frequencies
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and the corresponding laser frequencies) are chosen to be equal [4]. The idea behind such a cou-
pling scheme – the ‘Raman scheme’ – is that direct transitions from (and to) level |3〉 to (and
from) the other two levels are forbidden by the energy conservation, while two-photon processes
bringing from (and to) level |1〉 to (and from) level |2〉, through the auxiliary level |3〉, are possi-
ble, and this realizes an effective coupling |1〉 � |2〉. We will show that such a reasoning is correct
within a certain approximation which will be clarified in the following (see Sections 4 and 5).

In the present paper, we analyze the Raman coupling schemes realized by laser-driven trapped
ions deducing, by means of a rigorous perturbative approach, the expressions of the relevant
effective couplings. To this aim, we exploit a recently introduced perturbative method based on a
suitable decomposition of the time evolution operator associated with a quantum Hamiltonian [5]
(for the case of a time-independent Hamiltonian, see also [6, 7, 8]). In particular, we investigate
the problem of determining the effective Hamiltonian – i.e. the Hamiltonian describing the
effective couplings – in the case where two or more Raman coupling schemes are simultaneously
active, so providing a rigorous proof of the additivity of the effective couplings.

We will show, moreover, that in the special case of a single Raman coupling our result
coincides with the result previously obtained by means of a time-independent perturbative app-
roach [9].

The paper is organized as follows. In Section 2, we describe the general form of the Hamilto-
nian associated with a trapped ion Raman scheme. In Section 3, we introduce the perturbative
method which is the main tool of the paper. We apply this method in Section 4, where we ana-
lyze the dynamics of a double Λ Raman scheme. Finally, in Section 5, some conclusive remarks
are drawn.

2 The physical system

The general form of the quantum Hamiltonian of a trapped three-level ion addressed by a set
of laser beams coupling the atomic level |3〉 with the other two levels (with suitable ion-laser
detunings) is the following:

H(t) = H0 + HB + HR(t), (1)

where

H0 =
∑

l=1,2,3

~ωlσ̂ll, HB = ~ν
∑

α=x,y,z

â†αâα,

HR(t) =
(
~Ω̂13(t) σ̂13 + h.c.

)
+

(
~Ω̂23(t)σ̂23 + h.c.

)
, (2)

with σ̂lm ≡ |l〉 〈m|, l, m = 1, 2, 3, {|l〉}3
l=1 being the considered three atomic levels and {~ωl}3

l=1

the corresponding energies (ωl 6= ωr, for l 6= r); {âα : α = x, y, z} are the annihilation operators
associated with the center of mass harmonic motion along the axes x, y, z, namely,

âx =
(µν

2~

)1/2
(

x̂ +
i

µν
p̂x

)
, . . . , âz =

(µν

2~

)1/2
(

ẑ +
i

µν
p̂z

)
, (3)

which, of course, satisfy the well known bosonic commutation relations
[
âα, âβ

]
=

[
â†α, â†β

]
= 0,[

âα, â†β
]

= δαβ , for all α, β = x, y, z. Without loss of generality, the three harmonic oscillator
frequencies have been taken to be equal: νx = νy = νz ≡ ν > 0; thus, we deal with a spherically
symmetric trap.

We have denoted by t 7→ Ω̂j3(t), j = 1, 2, operator-valued functions acting in the bosonic
Hilbert space (i.e. the Hilbert space associated with the vibrational degrees of freedom); their
specific structure is determined by the specific laser configuration. For instance, for a single
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‘Λ Raman coupling’ – involving two laser beams with complex strengths (proportional to the
laser amplitudes and to the atomic dipole operators, and including the laser phases), wave vectors
and frequencies g13, ~k13, ω13 and g23, ~k23, ω23, respectively – with the lasers in a ‘travelling wave
configuration’, we have:

Ω̂13(t) = ~g13 e−i(~k13·~r−ω13t), Ω̂23(t) = ~g23 e−i(~k23·~r−ω23t), (4)

where the laser frequencies are fixed in such a way that the two couplings share the same
ion-laser detuning

∆ ≡ ω3 − ω1 − ω13 = ω3 − ω2 − ω23 6= 0,

in order to allow the typical ‘two-photon processes’ |1〉 � |2〉 of the Raman scheme. In (4) the
vector operator ~r := (x̂, ŷ, ẑ) is the ion center of mass position operator and its presence in the
interaction Hamiltonian HR(t) is responsible for the interaction between atomic and vibrational
degrees of freedom. The link between this operator and the annihilation and creation operators
stems from relations (3). With regard to the coefficients g13 and g23 appearing in the definition of
the operators Ω̂13(t) and Ω̂23(t) respectively, we recall that they are given by gj3 := −~−1 ~dj3 · ~Ej3,
where ~Ej3 is the complex amplitude (i.e. including information about the initial phase of the
field) of the laser field tuned near the |j〉 → |3〉 Bohr frequency, while ~dj3 is the atomic dipole
operator matrix element involving the atomic states |j〉 and |3〉.

A relevant feature of the laser configuration specified by relations (4) is that, in this particular
case, the Hamiltonian H(t) can be transformed, by passing to a suitable rotating frame (i.e. by
switching to an ad hoc interaction picture), into a time-independent Hamiltonian, which can be
then treated by means of a time-independent perturbative approach, see [9].

However, more complicated laser configurations are possible and useful for various applica-
tions, and, in general, one cannot find a simple rotating frame where the Hamiltonian of the
system becomes time-independent. Therefore, it will be convenient to apply a time-dependent
perturbative approach.

3 The time-dependent perturbative approach

In order to study the class of dynamical problems associated with a quantum Hamiltonian of the
form (1), one can fruitfully exploit a time-dependent perturbative method based on a suitable
decomposition of the evolution operator [5] which is a generalization of the classical Magnus
expansion [10].

Consider a quantum system whose Hamiltonian is made of two components, the unperturbed
energy operator H0, and a perturbation H�(λ; t), in general time-dependent:

H(λ; t) = H0 + H�(λ; t).

We assume that λ 7→ H�(λ; t) is an analytic function of the (real) perturbative parameter λ
(H�(0; t) = 0).

Introducing the evolution operator generated by the unperturbed component H0 – namely,
U0 := e−

i
~ H0t – and the the evolution operator T (λ; t) associated with the interaction picture

Hamiltonian H̃(λ; t) := U0(t)†H�(λ; t) U0(t), it is possible to factorize the total evolution opera-
tor U(λ; t) of the system as

U(λ; t) = U0(t) T (λ; t). (5)
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We can now consider the following exact decomposition of the interaction picture evolution
operator T (λ; t) as a product of unitary operators:

T (λ; t) = exp (−i Z(λ; t)) exp
(
−i

∫ t

0
C(λ; t) dt

)
exp (i Z(λ)) , (6)

where Z(λ; t), C(λ; t), Z(λ) are selfadjoint operators and

Z(λ) ≡ Z(λ; 0), Z(0; t) = C(0; t) = 0, ∀ t.

It is worth noting that no time-ordering operator is present in (6). Moreover, observe that in
the special case where Z(λ; t) = 0, ∀ t, we have the Magnus expansion, provided that C(λ; t) is
regarded as the time derivative of the Magnus unitary operator generator, see [10]; but, as we
will see below, decomposition (6) is actually a generalization of the Magnus expansion.

3.1 Imposing a gauge condition

It can be shown that the operators C(λ; t) and Z(λ; t) are not uniquely determined in decom-
position (6): in fact, there are infinite possible solutions, namely, solutions compatible with the
general form of such decomposition. A unique solution can be singled out by imposing an addi-
tional ‘gauge condition’. A typical example is the case where the interaction picture Hamiltonian
H̃(λ; t) is a almost periodic1 operator-valued function of time, in particular, an operator-valued
trigonometric polynomial with respect to the time variable. In this case, a remarkable gauge is
fixed by the following tern of conditions (see [5]):

1) C(λ; t) = C(λ; 0) ≡ C(λ), ∀ t;

2) the function t 7→ Z(λ; t) satisfies:

lim
t→∞

t−1Z(λ; t) = 0;

3) the mean value of the function t 7→ Z(λ; t) is zero, namely:

lim
τ→∞

1
τ

∫ τ

0
Z(λ; t) dt = 0.

As it will be seen in Section 4, this is precisely the case occurring in our applications, due to
the fact that the operators Ω̂13(t), Ω̂23(t) are indeed trigonometric polynomials:

Ω̂j3(t) =
κ̄j∑

κ=1

Ω̂κ
j3 eiωκ

j t, κ̄j ∈ N,
{
ω1

j , . . . , ω
κ̄j

j

}
⊂ R, j = 1, 2,

where
{
Ω̂1

j , . . . , Ω̂
κ̄j

j

}2

j=1
are operators acting on the bosonic degrees of freedom; see, for instance,

relations (4).

3.2 Determination of C(λ; t) and Z(λ; t) up to a gauge condition

Using the formula – reported, for instance, in [12] – for the derivative of the exponential of an
operator-valued function t 7→ F (t), i.e.

d
dt

eF = eF

∫ 1

0

(
e−sF Ḟ esF

)
ds =

∫ 1

0

(
esF Ḟ e−sF

)
ds eF ,

1A standard reference on almost periodic functions is [11].
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we can write the Schrödinger equation for the interaction picture evolution operator as

H̃(λ; t)T (λ; t) = i~ Ṫ (λ; t) = ~e−iZ(λ;t)

∫ 1

0

(
eisZ(λ;t)Ż(λ; t)e−isZ(λ;t)

)
ds e−i

∫ t
0 C(λ;t) dteiZ(λ)

+ ~e−iZ(λ;t)

∫ 1

0

(
e−is

∫ t
0 C(λ;t) dtC(λ; t)eis

∫ t
0 C(λ;t) dt

)
ds e−i

∫ t
0 C(λ;t) dteiZ(λ). (7)

Applying to each member of equation (7) the operator eiZ(λ;t) on the left and the operator
e−iZ(λ)ei

∫ t
0 C(λ;t) dt on the right, we get the following equation relating the operators C(λ; t) and

Z(λ; t) with the interaction picture Hamiltonian:

Adexp(iZ(λ;t))H̃(λ; t) = ~
∫ 1

0

(
Adexp(isZ(λ;t))Ż(λ; t) + Adexp(−is

∫ t
0 C(λ;t) dt)C(λ; t)

)
ds. (8)

We recall that, given linear operators X (invertible) and Y , AdXY := XY X−1. If the operator X

is of the form X = eX , we can use the well known relation

Adexp(X)Y = exp(adX)Y =
∞∑

m=0

1
m!

adm
XY, (9)

with adm
X denoting the m-th power (ad0

X ≡ Id) of the adjoint super-operator adX defined by
adX Y := [X, Y ]. Applying formula (9) to equation (8), and performing the integrals, we obtain:

∞∑
m=0

im

m!
adm

Ẑ(λ;t)
H̃(λ; t) = ~

∞∑
m=0

im

(m + 1)!
adm

Ẑ(λ;t)
Ż(λ; t)

+ ~
∞∑

m=0

(−i)m

(m + 1)!
adm∫ t

0 C(λ;t) dt
C(λ; t). (10)

Next, using the Taylor expansions of the operator-valued functions λ 7→ H̃(λ; t), λ 7→ Z(λ; t)
and λ 7→ C(λ; t) (recall that H̃(0; t) = Z(0; t) = C(0; t) = 0), i.e.

H̃(λ; t) =
∞∑

n=1

λnH̃n(t), Z(λ; t) =
∞∑

n=1

λnZn(t), C(λ; t) =
∞∑

n=1

λnCn(t), (11)

from formula (10) we can determine (in a non-unique way) – order by order with respect to the
perturbative parameter λ – the operators {Zn(t)}∞1 and {Cn(t)}∞1 .

3.3 Solution corresponding to conditions 1)–3)

As anticipated, decomposition (6) – or, equivalently, equation (10) – admits infinite solutions.
Therefore, it is necessary to impose a gauge condition in order to obtain a specific solution. For
instance, as already mentioned, the condition Z(λ; t) = 0, ∀ t, allows to obtain a precise solution,
that is the well known Magnus expansion.

In the following, we will use, instead, the gauge fixed by the tern of conditions 1)–3). With
these conditions, one can single out a unique solution for the operators C(λ; t) and Z(λ; t);
precisely, we get an infinite set of equations that can be solved recursively, order by order, for
obtaining the operators {Cn(t) = Cn(0) =: Cn}∞n=1 and {Zn(t)}∞n=1 that appear in the power
expansions (11), up to an arbitrary order N ; specifically, it turns out that

1st order:

C1 = lim
τ→∞

1
τ

∫ τ

0
~−1H̃1(t) dt,
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Z1(t) =
∫ t

0
~−1H̃1(t) dt − C1t− lim

τ→∞

1
τ

∫ τ

0

(∫ t

0

(
~−1H̃1(t)− C1

)
dt

)
dt; (12)

2nd order:

C2 = lim
τ→∞

1
τ

∫ τ

0

(
i

2
adZ1(t)

(
~−1H̃1(t) + C1

)
+ ~−1H̃2(t)

)
dt,

Z2(t) =
∫ t

0

(
i

2
adZ1(t)

(
~−1H̃1(t) + C1

)
+ ~−1H̃2(t)

)
dt− C2t

− lim
τ→∞

1
τ

∫ τ

0

(∫ t

0

(
i

2
adZ1(t)

(
~−1H̃1(t) + C1

)
+ ~−1H̃2(t)− C2

)
dt

)
dt; (13)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Notice that the operators C1, Z1(t), C2, Z2(t), . . . are indeed selfadjoint, coherently with our
previous assumption.

As already mentioned, a typical case occurring in applications (and, in particular, in the
application considered in the present paper) is the case where the coefficients of the perturbative
expansion of the interaction picture Hamiltonian are operator-valued trigonometric polynomials
with respect to the time variable (hence, almost periodic functions of time). In this case, the
gauge fixed by conditions 1)–3) is such that the functions {t 7→ Zn(t)}∞n=1 are zero-mean-valued
trigonometric polynomials; as a consequence, all the ‘secular terms’ are concentrated in the
component of the perturbative decomposition of the evolution operator which is generated by
the operators {Cn}∞n=1, i.e. in the one-parameter group of unitary operators {exp(−iC(λ)t)}t∈R.

3.4 N -th order truncation of the perturbative decomposition (6)

Once that the operators C1, Z1(t), . . . have been obtained recursively up to a certain perturbative
order N ≥ 1, one can write the following N -th order approximation of the interaction picture
evolution operator:

T (λ; t) ≈ exp
(
−iZ(N)(λ; t)

)
exp

(
−iC(N)(λ)t

)
exp

(
iZ(N)(λ)

)
, (14)

with

C(N)(λ) :=
N∑

n=1

λnCn and Z(N)(λ; t) :=
N∑

n=1

λnZn(t).

We stress that the N -th order truncation (14) preserves the fundamental unitary nature of the
interaction picture evolution operator T (λ; t).

From formula (14) we find that the overall evolution operator of the system admits the
following N -th order approximation (recall relation (5)):

U(λ; t) ≈ U0(t) exp
(
−iZ(N)(λ; t)

)
exp

(
−iC(N)(λ) t

)
exp

(
iZ(N)(λ)

)
= exp

(
− iZ̆(N)(λ; t)

)
U0(t) exp

(
−iC(N)(λ)t

)
exp

(
iZ(N)(λ)

)
, (15)

where Z̆(N)(λ; t) = U0(t)Z(N)(λ; t)U0(t)†. From relation (15) it follows that

U(λ; t) ≈ exp
(
− iZ̆(N)(λ; t)

)
U (N)

eff (λ; t) exp
(
iZ(N)(λ)

)
,

where U (N)

eff (λ; t) = U0(t) exp (−iC(N)(λ)t) can be regarded as the evolution operator associated
with the effective Hamiltonian

H (N)

eff (λ; t) = H0 + ~C̆(N)(λ; t) with C̆(N)(λ; t) := e−
i
~ H0tC(N)(λ)e

i
~ H0t.
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Thus, at the N -th perturbative order, N ≥ 1, the total evolution of the system can be
decomposed into a ‘dynamical dressing’ – i.e. the passage to a generalized interaction picture
generated by the time-dependent transformation exp

(
− iZ̆(N)(λ; t)

)
, see [5] – and the evolution

generated by an effective Hamiltonian H (N)

eff (λ; t) having the fundamental property that the
corresponding interaction picture Hamiltonian, with respect to the reference Hamiltonian H0 –
namely, C(N)(λ) – is time-independent.

4 Raman schemes: effective coupling

The perturbative approach described in the preceding section turns out to be a powerful tool for
studying Raman schemes and for deducing the ‘effective couplings’ |1〉 � |2〉. For the sake of
definiteness, we consider the situation where two Raman setups are simultaneously present. This
case contains that of a single Raman coupling as a special case2. Therefore, a direct comparison
of the behaviors associated with one or two Raman schemes can be given. It is worth noting
that the results obtained for two Raman schemes may be immediately generalized to the case
of several Raman couplings. Therefore, the situation under scrutiny allows to illustrate all the
relevant conceptually remarkable aspects without introducing any cumbersome notation.

The Schrödinger picture Hamiltonian describing two simultaneously active Raman schemes
is given by equations (1) and (2), now taking

Ω̂j3(t) = gj3e
−i(~kj3·~r−ωj3t) + g′j3e

−i(~k′
j3·~r−ω′

j3t), j = 1, 2,

where gj3, ωj3, ~kj3, with j = 1, 2, are the coupling constants, frequencies and wave vectors
associated with the first couple of Raman lasers, and g′j3, ω′

j3, ~k′j3 the analogous quantities for
the second Raman scheme. We can assume that gj3 6= 0 (and, of course, ωj3 6= 0, ~kj3 6= 0),
j = 1, 2, so that the special case of a single Raman coupling is recovered for g′j3 = 0. As already
mentioned, the operator ~r is the ion center of mass position operator.

In order to generate ‘two-photon processes’ involving levels |1〉 and |2〉 (which is the main
feature of the Raman coupling), the ion-laser detunings are fixed in such a way that

(ω3 − ω1)− ω13 = (ω3 − ω2)− ω23 ≡ ∆ 6= 0,

(ω3 − ω1)− ω′
13 = (ω3 − ω2)− ω′

23 ≡ ∆′ 6= 0.

In the following, we will consider the regime where ∆ 6= ∆′; hence, the special case of a single
Raman coupling is recovered only for g′j3 = 0, j = 1, 2. We can also assume, without loss of
generality, that |∆| ≥ |∆′|, for g′j3 6= 0 (and, of course, ω′

j3 6= 0, ~k′j3 6= 0), j = 1, 2.
We will further suppose that the following high detuning conditions are satisfied:

|∆| � |g13|, |g23|, ν, (|∆| ≥) |∆′| � |g′13|, |g′23|. (16)

Passing to the interaction picture with respect to the reference Hamiltonian H0, the Schrö-
dinger picture Hamiltonian H(t) is transformed into the interaction picture Hamiltonian

H̃(t) = HB + H̃R(t),

where

H̃R(t) =
(
~Ω̂̃13(t)σ̂13 + h.c.

)
+

(
~Ω̂̃23(t)σ̂23 + h.c.

)
,

2In Section 2, we have mentioned that the case of a single Raman scheme can be exceptionally treated by
a time-independent perturbative method.
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Ω̂̃j3(t) = gj3e
−i(~kj3·~r+∆t) + g′j3e

−i(~k′
j3·~r+∆′t), j = 1, 2.

At this point, in order to put in evidence the ‘natural perturbative parameter’ of this model, it
will be convenient to introduce the dimensionless (interaction picture) Hamiltonian H(λ; t) by
setting:

(~∆)−1H̃(t) =: H(λ; t)

= λ
∑

α=x,y,z

κâ†αâα + λ
∑

j=1,2

(
κj3e

−i(~kj3·~r+∆t)σ̂j3 + κ′
j3e

−i(~k′
j3·~r+∆′t)σ̂j3 + h.c.

)
,

where λ is the dimensionless (real) perturbative parameter defined by

λ :=
g

∆
, g ≡ max{ν, |g13|, |g23|, |g′13|, |g′23|},

and κ ≡ ν/g, κj3 ≡ gj3/g, κ′
j3 ≡ g′j3/g, j = 1, 2.

We notice explicitly that 0 < κ ≤ 1, |κj3| ≤ 1, |κ′
j3| ≤ 1, j = 1, 2, and, due to conditions (16),

we have that |λ| � 1; hence, λ is indeed a ‘good perturbative parameter’ (compare with the
time-independent perturbative approach used in [9] for the single Raman coupling).

Next, applying formulae (12) and (13) to the interaction picture Hamiltonian ~∆ H(λ; t), we
easily find the following expressions for the operators C1, C2 (which, as we have seen, determine
the second order effective Hamiltonian):

λ C1 = ~−1HB = ν
∑

α=x,y,z

â†αâα, (17)

λ2C2 = ω̆1σ̂11 + ω̆2σ̂22 + ω̆3σ̂33 +
((

g12e
−i~k12·~r + g′12e

−i~k′
12·~r

)
σ̂12 + h.c.

)
, (18)

where we have set

ω̆j := −|gj3|2

∆
−
|g′j3|2

∆′ , j = 1, 2, ω̆3 :=
|g13|2 + |g23|2

∆
+
|g′13|2 + |g′23|2

∆′ ,

and

g12 :=
g13g32

∆
, g′12 :=

g′13g
′
32

∆′ , ~k12 := ~k13 − ~k23, ~k′12 := ~k′13 − ~k′23, (19)

with g3j ≡ g∗j3, g′3j ≡ g′∗j3, j = 1, 2.
Now, according to what we have shown in Subsection 3.4, the complete temporal evolution of

the Raman-driven trapped ion, evaluated within the second order in the perturbative parameter,
can be written as

U(λ, t) ≈ e−
i
~ H0t exp(−iZ(2)(λ; t))e−i(λC1+λ2C2)t exp(iZ(2)(λ))

= exp(−iZ̆(2)(λ; t))e−
i
~ H0te−i(λC1+λ2C2)t exp(iZ(2)(λ)), (20)

where Z̆(2)(λ; t) := e−
i
~ H0tZ(2)(λ; t)e

i
~ H0t is an operator-valued function of time, which, as a con-

sequence of of conditions 1)–3), is a zero-mean-valued trigonometric polynomial, hence contains
only ‘oscillatory terms’; its explicit form, however, is not relevant for the purposes of the present
paper and will be omitted.

Thus, as relation (20) shows, up to the ‘dynamical dressing’ generated by the time-dependent
unitary transformation exp(−iZ̆(λ; t)) ≈ exp(−iZ̆(2)(λ; t)), the temporal evolution of the system
is described, at the second perturbative order, by the evolution operator e−

i
~ H0te−i(λC1+λ2C2)t.

Such an evolution operator may be regarded as a Schrödinger picture evolutor factorized into the
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the unperturbed evolution e−
i
~ H0t and the interaction picture evolution e−i(λ C1+λ2C2)t, which

is the one-parameter group of unitary operators generated by the time-independent ‘interaction
picture Hamiltonian’ λ C1 + λ2C2.

The corresponding Schrödinger picture Hamiltonian is then given by

H (2)

eff (t) := H0 + e−
i
~ H0t

(
λ C1 + λ2C2

)
e

i
~ H0t,

and – as it is easily checked using formulae (17) and (18) – it can be decomposed by means of the
complementary orthogonal projectors P̂12 ≡ σ̂11 + σ̂22 and σ̂33 (P̂12 + σ̂33 = Id, [P̂12, σ̂33] = 0):

H (2)

eff (t) = H (2)

eff (t)P̂12 + H (2)

eff (t)σ̂33, [H (2)

eff (t), P̂12] = [H (2)

eff (t), σ̂33] = 0,

where

H (2)

eff (t)P̂12 = ~ν
∑

α=x,y,z

â†αâαP̂12 + ~(ω1 + ω̆1)σ̂11 + ~(ω2 + ω̆2)σ̂22

+
((

~g12e
−i(~k12·~r−ω12t) + ~g′12e

−i(~k′
12·~r−ω′

12t)
)

σ̂12 + h.c.
)

, (21)

H (2)

eff (t)σ̂33 = ~ν
∑

α=x,y,z

â†αâασ̂33 + ~(ω3 + ω̆3)σ̂33,

with the effective frequencies ω12, ω′
12 defined by

ω12 := ω2 − ω1 = ω13 − ω23, ω′
12 := ω′

2 − ω′
1 = ω′

13 − ω′
23. (22)

The result found has a simple and transparent interpretation. In fact, the effective Hamil-
tonian H (2)

eff (t) is the sum of two completely decoupled Hamiltonians, ‘living’ respectively in the
ranges of the orthogonal projectors P̂12 and σ̂33. It is worth noting the remarkable fact that the
Hamiltonian H (2)

eff (t) P̂12 can be regarded as the standard Hamiltonian of a trapped two-level ion
in interaction with a couple of laser fields characterized, respectively, by the following effective
parameters: g12, ~k12, ω12 and g′12, ~k′12, ω′

12 (see formulae (19) and (22)).

5 Conclusions

We can eventually draw the following conclusions:
• the quantum Hamiltonian describing the physical system of a trapped three-level ion in

interaction with a set of laser beams generating Raman couplings can be successfully
treated by means of a suitable time-dependent perturbative approach;

• the result of this treatment, in the special case of a single Raman coupling, coincides with
the result obtainable by means of a time-independent perturbative approach, see [9];

• at the second perturbative order (hence, with a high degree of accuracy), the dynamics
of the system is given, up to a ‘dynamical dressing’, by the dynamics associated with
an effective Hamiltonian describing two decoupled subsystems: an effective laser-driven
trapped two-level ion and a simple harmonic oscillator; this result shows also the additivity
of the effective couplings: indeed, the effective Hamiltonian associated with a certain set
of Raman couplings is characterized by a coupling term which is the sum of the single
effective couplings (see formula (21));

• although a detailed analysis of this point is beyond the aim of the present paper, it is
worth mentioning the fact that the behavior of certain experimentally observable quanti-
ties, in correspondence to certain initial conditions of the system, is rather well reproduced
by the effective dynamics only – i.e. neglecting the effect of the dynamical dressing – as
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a consequence of the temporal coarse-graining introduced by the experimental apparatus
(which has, unavoidably, a fixed temporal resolution); nevertheless, due to the presence of
the dynamical dressing, in addition to the standard Rabi oscillations between the effective
levels |1〉 and |2〉, also fast transitions coupling these two levels with the auxiliary level |3〉
take place; then, if the auxiliary level is an excited level with non-negligible decay rate to-
wards (at least one of the) levels |1〉 and |2〉, the fast transitions to the auxiliary level, com-
posed with decays, gradually injects decoherence into the effective coherent cycle involving
levels |1〉 and |2〉 (see [9]), result which is actually in agreement both with experimental
observations [13, 14] and with numerical simulations on the basis of a phenomenological
master equation [15].

A detailed study of the experimentally observable implications of the dynamical dressing,
especially with regard to the decoherence effects, is still work in progress [16], and it seems to
raise very intriguing issues both on the theoretical and on the experimental side.
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