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Abstract. We study Macdonald polynomials from a basic hypergeometric series point of
view. In particular, we show that the Pieri formula for Macdonald polynomials and its
recently discovered inverse, a recursion formula for Macdonald polynomials, both represent
multivariable extensions of the terminating very-well-poised 6φ5 summation formula. We
derive several new related identities including multivariate extensions of Jackson’s very-
well-poised 8φ7 summation. Motivated by our basic hypergeometric analysis, we propose an
extension of Macdonald polynomials to Macdonald symmetric functions indexed by parti-
tions with complex parts. These appear to possess nice properties.
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1 Introduction

The objective of this paper is to study some aspects of An−1 Macdonald polynomials (which
are a family of symmetric multivariable orthogonal polynomials associated with the irreducible
reduced root system An−1, introduced by I.G. Macdonald [32] in the 1980’s), with a particular
emphasis on their connection to (multivariable) basic hypergeometric series.

Macdonald polynomials of type A are indexed by integer partitions, and form a basis of
the algebra of symmetric functions with rational coefficients in two parameters q and t. They
generalize many classical bases of this algebra, including monomial, elementary, Schur, Hall–
Littlewood, and Jack symmetric functions. These particular cases correspond to various spe-
cializations of the indeterminates q and t. In terms of basic hypergeometric series, the Macdon-
ald polynomials correspond to a multivariable generalization of the continuous q-ultraspherical
polynomials, see [25].

A principal tool for studying q-orthogonal polynomials (see e.g. [18]) is the theory of basic
hypergeometric series (cf. [12]), rich of identities, having applications in different areas such
as combinatorics, number theory, statistics, and physics (cf. [1]). Hypergeometric and basic
hypergeometric series undoubtedly play a prominent role in special functions, see [2]. Even in
one variable, they are still an object of active research. A notable recent advance includes elliptic
(or modular) hypergeometric series (surveyed in [12, Ch. 11] and [52]) which is a one-parameter
generalization of basic hypergeometric series, first introduced by Frenkel and Turaev [11] in
a study related to statistical mechanics.

A convenient tool (suggested here) for further developing the theory of multivariable q-
orthogonal polynomials is the theory of multivariable basic hypergeometric series associated with
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root systems (or, equivalently, with Lie algebras). Basic hypergeometric series associated with the
root system An−1 (or equivalently, associated with the unitary group U(n)) have their origin in
the work of the three mathematical physicists Holman, Biedenharn, and Louck, starting in 1976,
see [16, 17]. Their work was done in the context of the quantum theory of angular momentum,
using methods relying on the representation theory of the unitary group U(n). Subsequently,
extensive investigations in the theory of multiple basic hypergeometric series associated to the
root system An−1 have been carried out by R.A. Gustafson, S.C. Milne, and later various other
researchers. As result, many of the classical formulae for basic hypergeometric series from [12]
have already been generalized to the setting of An−1 series (see Subsection 3.2 for some selected
results).

An important result that connects An−1 basic hypergeometric series with Macdonald poly-
nomials is Kajihara and Noumi’s [22] explicit construction of raising operators of row type for
Macdonald polynomials. Their construction utilized An−1 terminating 1φ0 and 2φ1 summations
previously obtained by Milne [40] (which, however, were derived independently in [22] using
Macdonald’s q-difference operator).

In this paper we reveal yet more connections of An−1 basic hypergeometric series with Mac-
donald polynomials. On the other hand, we also understand the present work as a contribution
towards the development of a theory of multivariable very-well-poised basic hypergeometric
series involving Macdonald polynomials of type A.

Various identities for multiple basic hypergeometric series of Macdonald polynomial argument
have been derived by Macdonald [33, p. 374, Eq. (4)], Kaneko [23, 24], Baker and Forrester [3],
and Warnaar [54]. These authors in fact derived multivariable analogues of many of the classical
summation and transformation formulae for basic hypergeometric series. As a matter of fact,
none of these multivariate identities reduce to summations or transformations for very-well-
poised basic hypergeometric series in the univariate case. There are thus several other classical
basic hypergeometric identities for which higher-dimensional extensions involving Macdonald
polynomials of type A have not yet been explicitly determined. In this paper we partly remedy
this picture by explicitly pointing out several “Macdonald polynomial analogues” of very-well-
poised identities. Although some of these identities (such as the Pieri formula) are not new,
their “very-well-poised context” appears so far to have kept unnoticed (at least, not explicitly
mentioned in literature).

The present work makes some further ties between Macdonald polynomials and multiple
basic hypergeometric series associated to An−1 apparent. In our investigations, we utilize some
recent results from [31] and application of multidimensional inverse relations as main ingredients.
Since the present paper can be regarded as a sequel to [31], it is appropriate to give a brief
survey here describing those results of [31] which are relevant for this paper. This concerns,
in particular, the derivation of a rather general explicit multidimensional matrix inverse [31,
Th. 2.6]. The combination of a special case of this matrix inverse with the Pieri formula for
Macdonald polynomials yielded a new recursion formula for Macdonald polynomials [31, Th. 4.1].
This formula, the main result of [31] – subsequently also derived by Lassalle [30] by alternative
means, namely by functional equations – represents a recursion for the Macdonald polyno-
mials Qλ on the row length of the indexing partition λ. More precisely, it expands a Macdonald
polynomial of row length n + 1 into products of one row and n row Macdonald polynomials
with explicitly determined coefficients (that are rational functions in q and t). The formula
is an (n + 1)-variable extension of Jing and Józefiak’s [20] well-known two-variable result and,
as such, the Macdonald polynomial extension of the celebrated Jacobi–Trudi identity for Schur
functions [33, p. 41, Eq. (3.4)].

In this paper we use special instances of the multidimensional matrix inverse of [31, Th. 2.6]
and specific summation theorems for multivariable basic hypergeometric series to deduce several
new identities for multivariable basic hypergeometric series. These turn out to play a special
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role (or, in some cases, we believe may be useful) when considering identities involving princi-
pally specialized Macdonald polynomials. In particular, we establish various new multivariable
extensions of the terminating very-well-poised 8φ7 summation theorem, and of (terminating
and nonterminating) very-well-poised 6φ5 summations. In one case, we provide (only) a con-
jectural multivariable terminating very-well-poised 8φ7 summation, see Conjecture 4.5, which
nevertheless we strongly believe to be true.

We further identify the Pieri formula for Macdonald polynomials and its inverse, the recur-
sion formula for Macdonald polynomials, as two different multivariable generalizations of the
terminating very-well-poised 6φ5 summation. More precisely, this interpretation comes from
the explicit structure the two formulae have after application of analytically continued principal
specialization (coined “hypergeometric specialization” in the present context) to both sides of
the respective identities.

Motivated by the basic hypergeometric analysis, we use the recursion formula to define An−1

Macdonald polynomials for “complex partitions”, no longer indexed by sequences of non-increa-
sing nonnegative integers but by arbitrary finite sequences of complex numbers. These An−1

Macdonald symmetric functions are identified as certain multivariable nonterminating basic
hypergeometric series which appear to satisfy some nice properties. We only show a few of them
here, in this point our exposition is mainly intended to hint towards specific new objects that
we feel deserve future (more thorough and rigorous) study.

Our paper is organized as follows: In Section 2 we recollect some facts on symmetric functions,
and, in particular, An−1 Macdonald polynomials. We conclude this section by stating the Pieri
and the recursion formula, both playing crucial roles in the paper. In Section 3 we review some
material on basic hypergeometric series in one and several variables, hereby explicitly listing
several of the summations we need. In Section 4 we derive several identities of a new type that
can be characterized by containing specific determinants in the summand. Section 5 is devoted
to the hypergeometric specialization of identities involving An−1 Macdonald polynomials. Sec-
tion 6 contains a brief discussion on more basic hypergeometric identities involving Macdonald
polynomials. In Section 7 we consider Macdonald symmetric functions indexed by partitions
with complex parts. Finally, the Appendix contains the multidimensional matrix inverse of [31],
together with a number of useful corollaries.

2 Preliminaries on An−1 Macdonald polynomials

Standard references for Macdonald polynomials are [32], [33, Ch. 6], and [34]. In the following,
we recollect some facts we need.

Let X = {x1, x2, x3, . . .} be an infinite set of indeterminates and S the algebra of symmetric
functions of X with coefficients in Q. There are several standard algebraic bases of S. Among
these there are the power sum symmetric functions, defined by pk(X) =

∑
i≥1

xk
i , for integer k ≥ 1.

Two other standard algebraic bases are the elementary and complete symmetric functions ek(X)
and hk(X), which are defined, for integer k ≥ 0, by their generating functions∏

i≥1

(1 + uxi) =
∑
k≥0

uk ek(X),
∏
i≥1

1
1− uxi

=
∑
k≥0

uk hk(X).

A partition λ = (λ1, λ2, . . . ) is a weakly decreasing (finite or infinite) sequence of nonnegative
integers, with a finite number of positive integers, called parts. The number of positive parts
is called the length of λ and denoted l(λ). If l(λ) = n, we often suppress any zeros appearing
in the (sequential) representation of λ and write λ = (λ1, . . . , λn). For any integer i ≥ 1,
mi(λ) = card{j : λj = i} is the multiplicity of i in λ. Clearly l(λ) =

∑
i≥1

mi(λ). We shall also
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write λ = (1m1 , 2m2 , 3m3 , . . .) (where the parts now appear in increasing order). We set

zλ =
∏
i≥1

imi(λ)mi(λ)!.

For any partition λ, the symmetric functions eλ, hλ and pλ are defined by

fλ =
l(λ)∏
i=1

fλi
=
∏
i≥1

(fi)mi(λ), (2.1)

where fi stands for ei, hi, or pi, respectively. (Here and in the following we sometimes omit
writing out the argument X of the function, for brevity, assuming there is no confusion.)
These eλ, hλ, and pλ now each form a linear (vector space) basis of S. Another classical basis is
formed by the monomial symmetric functions mλ, defined as the sum of all distinct monomials
whose exponent is a permutation of λ.

For any two indeterminates a, q, we define the q-shifted factorial as

(a; q)∞ =
∏
j≥0

(1− aqj), and (a; q)k =
(a; q)∞

(aqk; q)∞
, (2.2)

for arbitrary k (usually an integer). Sometimes we rather consider expressions involving the
q-shifted factorials in (2.2) in an analytic (holomorphic) sense. In such a case, a, q are complex
numbers, usually with |q| < 1 (ensuring that the infinite product in (2.2) converges, a restriction
not needed when k is an integer and (a; q)k is indeed a finite product) and k can be any complex
number. We also shall make frequent use of the condensed notation

(a1, . . . , am; q)k = (a1; q)k · · · (am; q)k, (2.3)

for arbitrary k and nonnegative integer m.
Let Q(q, t) be the algebra of rational functions in the two indeterminates q, t, and Sym =

S ⊗Q(q, t) the algebra of symmetric functions with coefficients in Q(q, t).
For any k ≥ 0, the modified complete symmetric function gk(X; q, t) is defined by the gene-

rating function

∏
i≥1

(tuxi; q)∞
(uxi; q)∞

=
∑
k≥0

ukgk(X; q, t). (2.4)

It is often written in plethystic notation [29, p. 223], that is

gk(X; q, t) = hk

[
1− t

1− q
X

]
.

The symmetric functions gk(q, t) form an algebraic basis of Sym. Their explicit expansion
in terms of power sums and monomial symmetric functions has been given by Macdonald [33,
pp. 311 and 314] and in terms of other classical bases by Lassalle [29, Sec. 10, p. 237]. The
functions gλ(q, t), defined as in (2.1) and (2.4), form a linear basis of Sym.

We are ready to define the Macdonald polynomials Pλ(X; q, t). On one hand, they are of the
form (recalling that mλ denotes a monomial symmetric function)

Pλ(q, t) = mλ+ a linear combination of the mµ for µ preceding λ in lexicographical order.
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Furthermore, they form an orthogonal basis of Sym with respect to the scalar product 〈 , 〉q,t

defined by

〈pλ, pµ〉q,t = δλµ zλ

l(λ)∏
i=1

1− qλi

1− tλi
.

Although these two conditions already overdetermine the symmetric functions Pλ(X; q, t), the
latter can be shown to exist (and are moreover unique), see [33, p. 322].

Let Qλ(q, t) denote the dual basis of Pλ(q, t) for this scalar product. These are also called
Macdonald polynomials, they differ from the latter only by a rational function of q and t. More
precisely, one has

Qλ(X; q, t) = bλ(q, t) Pλ(X; q, t), (2.5)

with bλ(q, t) = 〈Pλ(q, t), Pλ(q, t)〉q,t
−1 specified as follows (see [33, p. 339, Eq. (6.19)] and [23,

Prop. 3.2]):

bλ(q, t) =
∏

1≤i≤j≤l(λ)

(qλi−λj tj−i+1; q)λj−λj+1

(qλi−λj+1tj−i; q)λj−λj+1

=
∏

1≤i≤j≤l(λ)

(qtj−i; q)λi−λj
(tj−i+1; q)λi−λj+1

(tj−i+1; q)λi−λj
(qtj−i; q)λi−λj+1

=
n∏

i=1

(tn+1−i; q)λi

(qtn−i; q)λi

∏
1≤i<j≤n

(qtj−i, tj−i; q)λi−λj

(tj−i+1, qtj−i−1; q)λi−λj

, (2.6)

for any n ≥ l(λ). (It is easy to check that the latter expression indeed does not depend on n.)
The Macdonald polynomials factor nicely under “principal specialization” [33, p. 343, Exam-

ple 5],

Pλ(1, t, . . . , tN−1; q, t) = t
∑

i(i−1)λi
∏

1≤i<j≤N

(tj−i+1; q)λi−λj

(tj−i; q)λi−λj

. (2.7)

A similar formula holds for principally specialized Qλ, by combining (2.5), (2.6), and (2.7).
We mention two particular useful facts that hold in the case of a finite set of variables

X = {x1, . . . , xn} (see [33, p. 323, Eq. (4.10), and p. 325, Eq. (4.17)]):

Pλ(x1, . . . , xn; q, t) = 0, if l(λ) > n, (2.8)

and

P(λ1,λ2,...,λn)(x1, . . . , xn; q, t) = (x1 . . . xn)λnP(λ1−λn,λ2−λn,...,λn−1−λn,0)(x1, . . . , xn; q, t). (2.9)

There exists [33, p. 327] an automorphism ωq,t = ωt,q
−1 of Sym such that

ωq,t(Qλ(q, t)) = Pλ′(t, q), ωq,t(gk(q, t)) = ek, (2.10)

with λ′ the partition conjugate to λ, whose parts are given by mk(λ′) = λk−λk+1. In particular
[33, p. 329, Eq. (5.5)], the Macdonald polynomials associated with a row or a column partition
are given by

P1k(q, t) = ek, Q1k(q, t) =
(t; t)k

(q; t)k
ek,

P(k)(q, t) =
(q; q)k

(t; q)k
gk(q, t), Q(k)(q, t) = gk(q, t). (2.11)

The parameters q, t being kept fixed, we shall often write Pµ or Qµ for Pµ(q, t) or Qµ(q, t).
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2.1 Pieri formula

Let u1, . . . , un be n indeterminates and N the set of nonnegative integers. For θ = (θ1, . . . , θn) ∈
Nn let |θ| =

n∑
i=1

θi and define

d
(q,t)
θ1,...,θn

(u1, . . . , un) =
n∏

k=1

(t, q|θ|+1uk; q)θk

(q, q|θ|tuk; q)θk

∏
1≤i<j≤n

(tui/uj , q
−θj+1ui/tuj ; q)θi

(qui/uj , q−θjui/uj ; q)θi

.

The Macdonald polynomials satisfy a Pieri formula which generalizes the classical Pieri for-
mula for Schur functions [33, p. 73, Eq. (5.16)]. This generalization was obtained by Macdo-
nald [33, p. 331], and independently by Koornwinder [25].

Most of the time this Pieri formula is stated in combinatorial terms (as a sum over “horizontal
strips”). In [31, Th. 3.1] it was formulated in “analytic” terms:

Theorem 2.1. Let λ = (λ1, . . . , λn) be an arbitrary partition with length ≤ n and λn+1 ∈ N.
Let ui = qλi−λn+1tn−i, for 1 ≤ i ≤ n. We have

Q(λ1,...,λn) Q(λn+1) =
∑
θ∈Nn

d
(q,t)
θ1,...,θn

(u1, . . . , un) Q(λ1+θ1,...,λn+θn,λn+1−|θ|).

The Pieri formula defines an infinite transition matrix. Indeed, let Sym(n + 1) denote the
algebra of symmetric polynomials in n + 1 independent variables with coefficients in Q(q, t).
Then [33, p. 313] the Macdonald polynomials {Qλ, l(λ) ≤ n + 1} form a basis of Sym(n + 1),
and so do the products {QµQ(m), l(µ) ≤ n, m ≥ 0}.

2.2 A recursion formula

Again, let u1, . . . , un be n indeterminates. For θ = (θ1, . . . , θn) ∈ Nn define

c
(q,t)
θ1,...,θn

(u1, . . . , un) =
n∏

i=1

tθi
(q/t, quk; q)θi

(q, qtui; q)θi

∏
1≤i<j≤n

(qui/tuj , q
−θj tui/uj ; q)θi

(qui/uj , q−θjui/uj ; q)θi

× 1∏
1≤i<j≤n

(qθiui − qθjuj)
det

1≤i,j≤n

[(
qθiui

)n−j

(
1− tj−1 1− qθitui

1− qθiui

n∏
s=1

us − qθiui

tus − qθiui

)]
.

The following recursion formula for Macdonald polynomials was proved in [31, Th. 4.1] by
inverting the Pieri formula in Theorem 2.1 utilizing a special case of the multidimensional matrix
inverse in Corollary A.4.

Theorem 2.2. Let λ = (λ1, . . . , λn+1) be an arbitrary partition with length ≤ n + 1. Let
ui = qλi−λn+1tn−i, for 1 ≤ i ≤ n. We have

Q(λ1,...,λn+1) =
∑
θ∈Nn

c
(q,t)
θ1,...,θn

(u1, . . . , un) Q(λn+1−|θ|) Q(λ1+θ1,...,λn+θn).

In the case n = 1, i.e. for partitions of length two, Theorem 2.2 reads

Q(λ1,λ2) =
∑
θ∈N

c
(q,t)
θ (u) Q(λ2−θ) Q(λ1+θ),

with u = qλ1−λ2 and

c
(q,t)
θ (u) = tθ

(q/t, qu; q)θ

(q, qtu; q)θ

(
1− (1− tqθu)

(1− qθu)
(u− qθu)
(tu− qθu)

)
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= tθ
(q/t, qu; q)θ

(q, qtu; q)θ

(t− 1)
(t− qθ)

(1− q2θu)
(1− qθu)

= tθ
(1/t, u; q)θ

(q, qtu; q)θ

(1− q2θu)
(1− u)

.

This special case is due to Jing and Józefiak [20]. On the other hand, in the case n = 2, i.e. for
partitions of length three, Theorem 2.2 reduces to a formula stated by Lassalle [28].

Application of the automorphism ωq,t to Theorem 2.2, while taking into account (2.10), gives
the following equivalent result (cf. [31, Th. 4.2]).

Theorem 2.3. Let λ = (1m1 , 2m2 , . . . , (n + 1)mn+1) be an arbitrary partition consisting of parts

at most equal to n + 1. Def ine ui = qn−it

n∑
j=i

mj

, for 1 ≤ i ≤ n + 1 . We have

Pλ =
∑
θ∈Nn

c
(t,q)
θ1,...,θn

(u1, . . . , un) emn+1−|θ| P(1m1+θ1−θ2 ,...,(n−1)mn−1+θn−1−θn ,nmn+mn+1+θn ).

3 Basic hypergeometric series

3.1 Classical (one-dimensional) basic hypergeometric series

First we recall some standard notations for q-series and basic hypergeometric series (see Gasper
and Rahman’s text [12], for a standard reference). In the following we shall consider q a (fixed)
complex parameter with 0 < |q| < 1. Further, for a complex parameter a, we use the definition
of the q-shifted factorial as given in (2.2) and (2.3), for any complex number k.

The basic hypergeometric rφr−1 series with upper parameters a1, . . . , ar, lower parameters
b1, . . . , br−1, base q, and argument z is defined as follows:

rφr−1

[
a1, a2, . . . , ar

b1, b2, . . . , br−1
; q, z

]
=

∞∑
k=0

(a1, a2, . . . , ar; q)k

(q, b1, . . . , br−1; q)k
zk.

An rφr−1 series terminates if one of its upper parameters is of the form q−m with m =
0, 1, 2, . . . , because

(q−m; q)k = 0, k = m + 1,m + 2, . . . .

The rφr−1 series, if it does not terminate, converges absolutely for |z| < 1.
In our computations throughout this paper, we make frequent use of some elementary iden-

tities for q-shifted factorials, listed in [12, Appendix I]. We list a few important summation
theorems from [12, Appendix II], for quick reference.

We start with the (nonterminating) q-binomial theorem (cf. [12, Eq. (II.2)])

1φ0

[
a
−; q, z

]
=

(az; q)∞
(z; q)∞

, |z| < 1, (3.1)

an identity first discovered by Cauchy [8] in 1843.
Further, we have the q-Gauß summation (cf. [12, Eq. (II.8)]),

2φ1

[
a, b
c

; q,
c

ab

]
=

(c/a, c/b; q)∞
(c, c/ab; q)∞

, |c/ab| < 1, (3.2)

which is due to Heine [15].
An identity of fundamental importance is the terminating 6φ5 summation theorem (cf. [12,

Eq. (II.21)])

6φ5

[
a, q

√
a,−q

√
a, b, c, q−m

√
a,−

√
a, aq/b, aq/c, aq1+m ; q,

aq1+m

bc

]
=

(aq, aq/bc; q)m

(aq/b, aq/c; q)m
. (3.3)
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This identity can be extended (by analytic continuation) to Rogers’ [47] nonterminating 6φ5

summation theorem (cf. [12, Eq. (II.20)])

6φ5

[
a, q

√
a,−q

√
a, b, c, d√

a,−
√

a, aq/b, aq/c, aq/d
; q,

aq

bcd

]
=

(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

, (3.4)

where |aq/bcd| < 1. Clearly, (3.4) reduces to (3.3) for d = q−m.
The series in (3.3) and (3.4) both are examples of so-called “very-well-poised” series. Another

example is Jackson’s [19] terminating very-well-poised 8φ7 summation (cf. [12, Eq. (II.22)]),

8φ7

[
a, q

√
a,−q

√
a, b, c, d, a2q1+n/bcd, q−n

√
a,−

√
a, aq/b, aq/c, aq/d, bcdq−n/a, aq1+n ; q, q

]
=

(aq, aq/bc, aq/bd, aq/cd; q)n

(aq/b, aq/c, aq/d, aq/bcd; q)n
,(3.5)

which contains (3.4) as a special case (n → ∞). (The series in (3.5) is even “balanced” but
we do not need this notion here.) Jackson’s summation (3.5) stands on the top of the classical
hierarchy of summation theorems for very-well-poised basic hypergeometric series.

An rφr−1 series is well-poised if the parameters satisfy the relations

qa1 = a2b1 = a3b2 = · · · = arbr−1.

It is very-well-poised if, in addition, a2 = q
√

a1, a3 = −q
√

a1. Note that

(q
√

a1,−q
√

a1; q)k

(
√

a1,−
√

a1; q)k
=

1− a1q
2k

1− a1
(3.6)

appears as a factor in the summand of a very-well-poised series. The parameter a1 is usually
referred to as the special parameter of such a series, and we call (3.6) the very-well-poised term
of the series.

3.2 An−1 basic hypergeometric series

For convenience, we employ here (and elsewhere) the notation |k| = k1 + · · · + kn, where k =
(k1, . . . , kn). We recall the following fundamental result from [35, Th. 1.49].

Proposition 3.1 (Milne). Let a1, . . . , an, and u1, . . . , un be indeterminate, let M be a non-
negative integer. Then∑

k1,...,kn≥0
|k|=M

∏
1≤i<j≤n

uiq
ki − ujq

kj

ui − uj

n∏
i,j=1

(ajui/uj ; q)ki

(qui/uj ; q)ki

=
(a1a2 . . . an; q)M

(q; q)M
. (3.7)

The n = 2 case of (3.7) is equivalent to (3.3). Proposition 3.1 played an important role
in Milne’s elementary derivation of the Macdonald identities for the affine Lie algebra A

(1)
n .

It further serves as a starting point in Milne’s approach to An−1 or U(n) series, see [41]. Its
original proof made use of a particular q-difference equation, and induction. An even simpler
inductive proof of Proposition 3.1 was recently discovered by Rosengren [48, Sec. 2] (see also
[12, Sec. 11.7]).

An immediate consequence of Proposition 3.1 is the following n-dimensional extension of
(3.1), first given in [35, Th. 1.47].

Proposition 3.2 ((Milne) An An−1 nonterminating q-binomial theorem). Let a1, . . . , an,
z, and u1, . . . , un be indeterminate. Then

∞∑
k1,...,kn=0

∏
1≤i<j≤n

uiq
ki − ujq

kj

ui − uj

n∏
i,j=1

(ajui/uj ; q)ki

(qui/uj ; q)ki

· z|k| =
(a1 . . . anz; q)∞

(z; q)∞
,

provided |z| < 1.
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Clearly, Proposition 3.2 follows from Proposition 3.1 by multiplying both sides of (3.7) by zM

and summing over all M ≥ 0. The right-hand side is then simplified using (3.1).
In the above cases, we have∏

1≤i<j≤n

uiq
ki − ujq

kj

ui − uj
(3.8)

appearing as a factor of the summand. Since we may associate (3.8) with the product side of
the Weyl denominator formula for the root system An−1 (see e.g. D. Stanton [53]), we call such
a series An−1 basic hypergeometric series. Note that often in the literature these n-dimensional
series are called An series instead of An−1 series.

Note that on the left-hand side of (3.10), e.g., we have, in addition to (3.8),

n∏
i=1

1− auiq
ki+|k|

1− aui
(3.9)

appearing as a factor in the summand of the series. It is easy to see that the n = 1 case of (3.9)
essentially reduces to (3.6). We call the product of (3.8) and (3.9) the very-well-poised term of
the multiple series. To clarify the special appearance of the very-well-poised term (even in the
one-dimensional case), it is useful to view the series in one higher dimension. In particular, we
can write∏

1≤i<j≤n

uiq
ki − ujq

kj

ui − uj

n∏
i=1

1− auiq
ki+|k|

1− aui
= q|k|

∏
1≤i<j≤n+1

uiq
ki − ujq

kj

ui − uj
,

where un+1 = 1/a and kn+1 = −|k|. Indeed, some An−1 basic hypergeometric series identities are
sometimes better viewed as identities associated to the affine root system Ãn (or, equivalently,
the special unitary group SU(n + 1)).

Multidimensional basic hypergeometric series associated with the root system An−1 (or equi-
valently, associated with the unitary group U(n)) have their origin in the work of the three
mathematical physicists Holman, Biedenharn, and Louck, see [16, 17]. Their work was done
in the context of the quantum theory of angular momentum, using methods relying on the
representation theory of the unitary group U(n). Subsequently, extensive investigations in the
theory of multiple basic hypergeometric series associated with the root system An−1 have been
carried out by R.A. Gustafson, S.C. Milne, and several other researchers. As result, many of
the classical formulae for basic hypergeometric series from [12] have already been generalized to
the setting of An−1 series, see e.g. the references [5, 10, 13, 14, 35, 36, 38, 39, 40, 42, 43, 49].

An immediate consequence of Proposition 3.1 is the following extension of (3.3), a result first
obtained in [36, Th. 1.38].

Proposition 3.3 ((Milne) An An−1 terminating 6φ5 summation). Let a, b, c1, . . . , cn,
and u1, . . . , un be indeterminate, let M be a nonnegative integer. Then

∑
k1,...,kn≥0

|k|≤M

∏
1≤i<j≤n

uiq
ki − ujq

kj

ui − uj

n∏
i=1

1− auiq
ki+|k|

1− aui

n∏
i=1

(aui; q)|k|
(auiq/ci; q)|k|

×
n∏

i,j=1

(cjui/uj ; q)ki

(qui/uj ; q)ki

n∏
i=1

(bui; q)ki

(auiq1+M ; q)ki

·
(q−M ; q)|k|
(aq/b; q)|k|

(
aq1+M

bc1 · · · cn

)|k|

=
(aq/bc1 · · · cn; q)M

(aq/b; q)M

n∏
i=1

(auiq; q)M

(auiq/ci; q)M
. (3.10)
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Proof (see e.g. [4]). To derive Proposition 3.3 from Proposition 3.1, just replace n by n + 1
in (3.7), and replace kn+1 by M − |k|, so that in the resulting sum the summation index ranges
over the n-tetrahedron 0 ≤ |k| ≤ M . Finally, suitably relabel parameters to obtain (3.10). �

Proposition 3.3 can be extended by analytic continuation to the following multivariable gene-
ralization of (3.4), a result first obtained in [36, Th. 1.44].

Proposition 3.4 ((Milne) An An−1 nonterminating 6φ5 summation). Let a, b, c1, . . . , cn,
d, and u1, . . . , un be indeterminate. Then∑

k1,...,kn≥0

∏
1≤i<j≤n

uiq
ki − ujq

kj

ui − uj

n∏
i=1

1− auiq
ki+|k|

1− aui

n∏
i=1

(aui; q)|k|
(auiq/ci; q)|k|

×
n∏

i,j=1

(cjui/uj ; q)ki

(qui/uj ; q)ki

n∏
i=1

(bui; q)ki

(auiq/d; q)ki

·
(d; q)|k|

(aq/b; q)|k|

(
aq

bc1 · · · cnd

)|k|
=

(aq/bc1 · · · cn, aq/bd; q)∞
(aq/b, aq/bc1 · · · cnd; q)∞

n∏
i=1

(auiq, auiq/cid; q)∞
(auiq/ci, auiq/d; q)∞

, (3.11)

provided |aq/bc1 · · · cnd| < 1.

Clearly, Proposition 3.4 reduces to Proposition 3.3 for d = q−M .

Proof. Both sides of (3.11) are analytic in 1/d in a domain D around the origin. Now, if
1/d = qM the formula holds due to Proposition 3.3, for all M = 0, 1, 2, . . . . Since the infinite
sequence qM has an accumulation point, namely 0, in the domain of analyticity of 1/d, we
can apply the identity theorem to deduce that (3.11) is true for all 1/d throughout D. By
analytic continuation the identity holds for all 1/d in its region of convergence, i.e. in the disc
|1/d| < |bc1 · · · cn/aq|. �

We will need the following identity from [40, Th. 7.6] which can be obtained from Propo-
sition 3.4 by letting b 7→ aq/c, followed by a → 0, and the subsequent substitutions ci 7→ ai,
i = 1, . . . , n, and d 7→ b. It represents a multivariable generalization of the q-Gauß summation
in (3.2).

Proposition 3.5 ((Milne) An An−1 nonterminating 2φ1 summation). Let a1, . . . , an, b,
c, and u1, . . . , un be indeterminate. Then∑

k1,...,kn≥0

∏
1≤i<j≤n

uiq
ki − ujq

kj

ui − uj

n∏
i,j=1

(ajui/uj ; q)ki

(qui/uj ; q)ki

·
(b; q)|k|
(c; q)|k|

(
c

a1 · · · anb

)|k|
=

(c/a1 · · · an, c/b; q)∞
(c, c/a1 · · · anb; q)∞

,

provided |c/a1 · · · anb| < 1.

The following identity in Proposition 3.6 is even more general than Propositions 3.3 and 3.4.
It was first obtained in [37, Th. 6.17]. A simple inductive proof of Proposition 3.6 was recently
discovered by Rosengren [48, Sec. 5] (see also [12, Sec. 11.7]).

Proposition 3.6 ((Milne) An An−1 terminating 8φ7 summation). Let a, b, c1, . . . , cn, d,
and u1, . . . , un be indeterminate, let M be a nonnegative integer. Then∑

k1,...,kn≥0
|k|≤M

∏
1≤i<j≤n

uiq
ki − ujq

kj

ui − uj

n∏
i=1

1− auiq
ki+|k|

1− aui

n∏
i=1

(aui; q)|k|
(auiq/ci; q)|k|

n∏
i,j=1

(cjui/uj ; q)ki

(qui/uj ; q)ki



Macdonald Polynomials and Multivariable Series 11

×
n∏

i=1

(bui, a
2uiq

1+M/bc1 · · · cnd; q)ki

(auiq/d, auiq1+M ; q)ki

·
(d, q−M ; q)|k|

(aq/b, bc1 · · · cndq−M/a; q)|k|
q|k|

=
(aq/bd, aq/bc1 · · · cn; q)M

(aq/b, aq/bc1 · · · cnd; q)M

n∏
i=1

(auiq, auiq/cid; q)M

(auiq/ci, auiq/d; q)M
.

For convenience, we also list the following identity which is not of An−1 but of Cn type. It
was derived in [10, Th. 4.1], and, independently, in [42, Th. 6.13].

Proposition 3.7 ((Denis–Gustafson; Milne–Lilly) A Cn terminating 8φ7 summation).
Let a, b, c, d and u1, . . . , un be indeterminate, let m1, . . . ,mn be nonnegative integers. Then

∑
0≤ki≤mi

i=1,...,n

∏
1≤i<j≤n

uiq
ki − ujq

kj

ui − uj

∏
1≤i≤j≤n

1− auiujq
ki+kj

1− auiuj

n∏
i,j=1

(q−mjui/uj , auiuj ; q)ki

(auiujq1+mj , qui/uj ; q)ki

×
n∏

i=1

(bui, cui, dui, a
2uiq

1+|m|/bcd; q)ki

(auiq/b, auiq/c, auiq/d, bcduiq−|m|/a; q)ki

· q|k|

=
∏

1≤i<j≤n

(auiujq; q)−1
mi+mj

n∏
i,j=1

(auiujq; q)mi

×
(aq/bc, aq/bd, aq/cd; q)|m|

n∏
i=1

(auiq/b, auiq/c, auiq/d, aq1+|m|−mi/bcdui; q)mi

.

4 Multivariable basic hypergeometric series of a new type

Here we derive several new summations for multivariable basic hypergeometric series of a new
type. Their special feature is that the series involve specific determinants in the summand. The
first result is obtained from the An−1 8φ7 summation in Proposition 3.6, combined with the
multivariable matrix inverse in Corollary A.4.

Theorem 4.1 (A multivariable terminating 8φ7 summation). Let b, d, t0, t1, . . . , tn,
u1, . . . , un be indeterminate, let M be a nonnegative integer. Then

∑
k1,...,kn≥0

|k|≤M

n∏
i,j=1

(qui/tiuj ; q)ki

(qui/uj ; q)ki

∏
1≤i<j≤n

(tjui/uj ; q)ki−kj

(qui/tiuj ; q)ki−kj

∏
1≤i<j≤n

1
ui − uj

× det
1≤i,j≤n

[
(uiq

ki)n−j

(
1− tj−n−1

i

1− t0uiq
ki

1− t0uiqki/ti

n∏
s=1

uiq
ki − us

uiqki/ti − us

)]

×
(d, q−M ; q)|k|

(bdq−M/t0, t0q/bt1 · · · tn; q)|k|

n∏
i=1

(t0uiq/ti, bui, t
2
0uiq

1+M/bdt1 · · · tn; q)ki

(t0uiq, t0uiq/dti, t0uiq1+M/ti; q)ki

×
n∏

i=1

(dq−M/t0ui; q)|k|−ki

(dtiq−M/t0ui; q)|k|−ki

· q
|k|+

n∑
i=1

(1−i)ki
n∏

i=1

t
(i−1)ki+

n∑
j=i+1

kj

i

=
(t0q/b, t0q/bdt1 · · · tn; q)M

(t0q/bd, t0q/bt1 · · · tn; q)M

n∏
i=1

(t0uiq/ti, t0uiq/d; q)M

(t0uiq, t0uiq/dti; q)M
. (4.1)
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Proof. We apply multidimensional inverse relations. We have (A.4b) by the a 7→ t0q
|l|, ci 7→ ti,

d 7→ dq|l|, ui 7→ uiq
li , i = 1, . . . , n, and M 7→ M − |l| case of Proposition 3.6, where

bk =
∏

1≤i<j≤n

(uiq
ki − ujq

kj )
n∏

i,j=1

(tjui/uj ; q)ki−kj

(qui/uj ; q)ki−kj

n∏
i=1

(t0uiq; q)ki+|k|

(t0uiq/ti; q)ki+|k|

×
n∏

i=1

(bui, t
2
0uiq

1+M/bdt1 · · · tn; q)ki

(t0uiq/d, t0uiq1+M ; q)ki

·
(d, q−M ; q)|k|

(t0q/b, bdt1 · · · tnq−M/t0; q)|k|
q|k|

and

al =
(t0q/bd, t0q/bt1 · · · tn; q)M

(t0q/b, t0q/bdt1 · · · tn; q)M

n∏
i=1

(t0uiq, t0uiq/dti; q)M

(t0uiq/ti, t0uiq/d; q)M

×
∏

1≤i<j≤n

(uiq
li − ujq

lj )
n∏

i,j=1

(tjui/uj ; q)li−lj

(qui/uj ; q)li−lj

n∏
i=1

(dq−M/t0ui; q)|l|−li

(dtiq−M/t0ui; q)|l|−li

×
n∏

i=1

(bui, t
2
0uiq

1+M/bdt1 · · · tn; q)li

(t0uiq/dti, t0uiq1+M/ti; q)li

·
(d, q−M ; q)|l|

(t0q/bt1 · · · tn, bdq−M/t0; q)|l|
q|l|

n∏
i=1

t−li
i ,

and gkl as in (A.9b). Therefore, we must have (A.4a) with the above sequences al and bk, and
fmk as in (A.9a). After the substitutions t0 7→ t0q

−|k|, d 7→ dq−|k|, ui 7→ uiq
−ki , mi 7→ mi + ki,

i = 1, . . . , n, M 7→ M + |k|, simplifications and subsequent relabelling (mi 7→ ki, i = 1, . . . , n),
we obtain (4.1). �

The following identity is obtained from Theorem 4.1 by a polynomial argument.

Corollary 4.2 (A multivariable terminating 8φ7 summation). Let a, b, c, d, and u1, . . . , un

be indeterminate, let m1, . . . ,mn be nonnegative integers. Then

∑
0≤ki≤mi
i=1,...,n

n∏
i,j=1

(q1−miui/uj ; q)ki

(qui/uj ; q)ki

∏
1≤i<j≤n

(qmjui/uj ; q)ki−kj

(q1−miui/uj ; q)ki−kj

∏
1≤i<j≤n

1
ui − uj

× det
1≤i,j≤n

[
(uiq

ki)n−j

(
1− q(j−n−1)mi

1− auiq
ki+|m|

1− auiqki+|m|−mi

n∏
s=1

uiq
ki − us

uiqki−mi − us

)]

×
(c, d; q)|k|

(bcdq−|m|/a, aq/b; q)|k|

n∏
i=1

(auiq
1+|m|−mi , bui, a

2uiq
1+|m|/bcd; q)ki

(auiq1+|m|, auiq1+|m|−mi/c, auiq1+|m|−mi/d; q)ki

×
n∏

i=1

(cdq−|m|/aui; q)|k|−ki

(cdqmi−|m|/aui; q)|k|−ki

· q|k|+
∑n

i=1

(
(1−i)ki+ni[(i−1)ki+

∑n
j=i+1 kj ]

)
=

(aq/bc, aq/bd; q)|m|

(aq/b, aq/bcd; q)|m|

n∏
i=1

(auiq
1+|m|−mi , auiq

1+|m|−mi/cd; q)mi

(auiq1+|m|−mi/c, auiq1+|m|−mi/d; q)mi

. (4.2)

Proof. First we write the right hand-side of (4.1) as quotient of infinite products using (2.2).
Then by the t0 = aq|m| and ti = qmi , i = 1, . . . , n, case of Theorem 3.6 it follows that the
identity (4.2) holds for c = q−M . By clearing out denominators in (4.2), we get a polynomial
equation in c, which is true for q−M , M = 0, 1, . . . , and thus obtain an identity in c. �

The following multivariable nonterminating 6φ5 summation is obtained by letting M →∞ in
Theorem 4.1 (while appealing to Tannery’s theorem (cf. [7]) for justification of taking term-wise
limits).
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Corollary 4.3 (A multivariable nonterminating 6φ5 summation). Let b, d, t0, t1, . . . , tn,
and u1, . . . , un be indeterminate. Then∑

k1,...,kn≥0

n∏
i,j=1

(qui/tiuj ; q)ki

(qui/uj ; q)ki

∏
1≤i<j≤n

(tjui/uj ; q)ki−kj

(qui/tiuj ; q)ki−kj

∏
1≤i<j≤n

1
ui − uj

× det
1≤i,j≤n

[
(uiq

ki)n−j

(
1− tj−n−1

i

1− t0uiq
ki

1− t0uiqki/ti

n∏
s=1

uiq
ki − us

uiqki/ti − us

)]
q

n∑
i=1

(1−i)ki

×
n∏

i=1

(t0uiq/ti, bui; q)ki

(t0uiq, t0uiq/dti; q)ki

t
iki−

i∑
j=1

kj

i ·
(d; q)|k|

(t0q/bt1 · · · tn; q)|k|

(
t0q

bd

)|k|
=

(t0q/b, t0q/bdt1 · · · tn; q)∞
(t0q/bd, t0q/bt1 · · · tn; q)∞

n∏
i=1

(t0uiq/ti, t0uiq/d; q)∞
(t0uiq, t0uiq/dti; q)∞

,

provided |t0q/bd| < 1.

The following identity is obtained from Corollary 4.3 by letting d → q−M .

Corollary 4.4 (A multivariable terminating 6φ5 summation). Let b, t0, t1, . . . , tn, and
u1, . . . , un be indeterminate, let M be a nonnegative integer. Then∑

k1,...,kn≥0
|k|≤M

n∏
i,j=1

(qui/tiuj ; q)ki

(qui/uj ; q)ki

∏
1≤i<j≤n

(tjui/uj ; q)ki−kj

(qui/tiuj ; q)ki−kj

∏
1≤i<j≤n

1
ui − uj

× det
1≤i,j≤n

[
(uiq

ki)n−j

(
1− tj−n−1

i

1− t0uiq
ki

1− t0uiqki/ti

n∏
s=1

uiq
ki − us

uiqki/ti − us

)]
q

n∑
i=1

(1−i)ki

×
n∏

i=1

(t0uiq/ti, bui; q)ki

(t0uiq, t0uiq1+M/ti; q)ki

t
iki−

i∑
j=1

kj

i ·
(q−M ; q)|k|

(t0q/bt1 · · · tn; q)|k|

(
t0q

1+M

b

)|k|
=

(t0q/b; q)M

(t0q/bt1 · · · tn; q)M

n∏
i=1

(t0uiq/ti; q)M

(t0uiq; q)M
.

Another multivariable terminating 6φ5 summation theorem is obtained from Corollary 4.3 by
letting ti → qmi , i = 1, . . . , n. We do not state it explicitly.

The last result in this section is, at this moment, only conjectural (which we however verified
numerically by computer). We provide a heuristic (but not completely correct) derivation using
the Cn 8φ7 summation in Proposition 3.7 combined with the multivariable matrix inverse in
Corollary A.6.

Conjecture 4.5 (A multivariable terminating 8φ7 summation). Let a, b, c, d, and
u1, . . . , un be indeterminate, let m1,m2, . . . ,mn be nonnegative integers. Then

∑
0≤ki≤mi
i=1,...,n

n∏
i,j=1

(q1−miui/uj , auiujq
1+|m|−mi ; q)ki

(qmjui/uj ; q)ki−kj

(qui/uj , auiujq1+|m|; q)ki
(qui/uj ; q)ki−kj

∏
1≤i<j≤n

uiq
ki − ujq

kj

ui − uj

×
∏

1≤i<j≤n

(auiujq
|m|; q)ki+kj

(auiujq1+|m|−mi−mj ; q)ki+kj

· q
|k|+(n−1)

n∑
i=1

miki

×
∏

1≤i<j≤n

(ui − uj)−1(1− q−|m|/auiuj)−1
n∏

i=1

(ui + q−|m|/aui)−1
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× det
1≤i,j≤n

[
(uiq

ki + q−ki−mi/aui)n+1−j − (uiq
ki−mi + q−ki+mi−|m|/aui)n+1−j

×
n∏

s=1

(uiq
ki − us)(1− q−ki−|m|/auius)

(uiqki−mi − us)(1− q−ki+mi−|m|/auius)

]

×
n∏

i=1

(bui, cui, dui, a
2uiq

1+|m|/bcd; q)ki

(auiq1+|m|−mi/b, auiq1+|m|−mi/c, auiq1+|m|−mi/d, bcduiq−mi/a; q)ki

=
∏

1≤i<j≤n

(auiujq
1+|m|−mi−mj ; q)−1

mi+mj

n∏
i,j=1

(auiujq
1+|m|−mi ; q)mi

×
(aq/bc, aq/bd, aq/cd; q)|m|

n∏
i=1

(auiq1+|m|−mi/b, auiq1+|m|−mi/c, auiq1+|m|−mi/d, aq/bcdui; q)mi

. (4.3)

Heuristic derivation of Conjecture 4.5. We apply multidimensional inverse relations. We
have (A.4b) by the ui 7→ uiq

li , Mi 7→ Mi − li, i = 1, . . . , n, case of Proposition 3.7, where

bk =
∏

1≤i<j≤n

uiq
ki − ujq

kj

ui − uj

∏
1≤i≤j≤n

1− auiujq
ki+kj

1− auiuj

n∏
i,j=1

(uiq
−Mj/uj ; q)ki−kj

(auiuj ; q)ki+kj

(qui/uj ; q)ki−kj
(auiujq1+Mi ; q)ki+kj

×
n∏

i=1

(bui, cui, dui, a
2uiq

1+|M|/bcd; q)ki

(auiq/b, auiq/c, auiq/d, bcduiq−|M|/a; q)ki

· q|k|

and

al =
∏

1≤i<j≤n

(auiujq
1+li+lj ; q)−1

Mi+Mj

n∏
i,j=1

(auiujq
1+li+lj ; q)Mi

×
(aq/bc, aq/bd, aq/cd; q)|M|

n∏
i=1

(auiq1+li/b, auiq1+li/c, auiq1+li/d, aq1+|M|−Mi−li/bcdui; q)Mi

×
∏

1≤i<j≤n

uiq
li − ujq

lj

ui − uj

∏
1≤i≤j≤n

1− auiujq
li+lj

1− auiuj

n∏
i,j=1

(uiq
−Mj/uj ; q)li−lj

(auiuj ; q)li+lj

(qui/uj ; q)li−lj
(auiujq1+Mi ; q)li+lj

×
n∏

i=1

(bui, cui, dui, a
2uiq

1+|M|/bcd; q)li

(auiq/b, auiq/c, auiq/d, bcduiq−|M|/a; q)li

· q|l|,

and gkl as in (A.10b) with ti 7→ q−Mi , i = 1, . . . , n.
If we now consider (A.4a) with the above sequences al and bk, and fmk as in (A.10a) with

ti 7→ q−Mi , i = 1, . . . , n, but do everywhere the replacements Mi 7→ −Mi, i = 1, . . . , n (the
latter would require justification), we obtain, after the substitutions a 7→ aq|m|, ui 7→ uiq

−ki ,
mi 7→ mi + ki, i = 1, . . . , n, simplifications and subsequent relabelling (mi 7→ ki, Mi 7→ mi,
i = 1, . . . , n), the identity in (4.3). �

We hope that Conjecture 4.5 (assuming its correctness) will be useful in establishing explicit
formulae related to Bn, Cn or Dn Macdonald polynomials.

5 Hypergeometric specialization
of An−1 Macdonald polynomials

We show here that the Pieri formula, Theorem 2.1, and the (equivalent) recursion formula,
Theorem 2.2, both can be viewed as multidimensional generalizations of the terminating very-
well-poised 6φ5 summation (3.3). This, together with the knowledge that the 6φ5 summation
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has a nonterminating extension, see (3.4), eventually leads us in Section 7 to extend the family
of Macdonald polynomials, indexed by partitions, to Macdonald symmetric functions, indexed
by n-tuples of complex numbers.

Following Macdonald [33, p. 338], we consider for an indeterminate u the homomorphism
εu,t : Sym → Q(q, t), defined by

εu,t(pr) =
1− ur

1− tr
, (5.1)

for each integer r ≥ 1. In particular, if u is replaced by tn one has

εtn,t(pr) =
1− tnr

1− tr
= pr(1, t, . . . , tn−1),

and hence for any f ∈ Sym

εtn,t(f) = f(1, t, . . . , tn−1),

the “principal specialization” of f . (Another notation for the principal specialization is u0(f) [33,
p. 331], while in terms of plethystic notation it reads as f [1−tn

1−t ]; more generally, εu,t(f) = f [1−u
1−t ],

relating to (5.1).) Since (recall (2.7))

εtn,tPλ(X; q, t) = t

n∑
i=1

(i−1)λi ∏
1≤i<j≤n

(tj−i+1; q)λi−λj

(tj−i; q)λi−λj

, (5.2)

we have (see [33, p. 338, Eq. (6.17)])

εu,tPλ(X; q, t) = t

n∑
i=1

(i−1)λi
n∏

i=1

(ut1−i; q)λi

(tn+1−i; q)λi

∏
1≤i<j≤n

(tj−i+1; q)λi−λj

(tj−i; q)λi−λj

, (5.3)

where n ≥ l(λ). (We can take any such n. The homomorphism εu,t in fact does not depend on n.)
This follows from (5.2) by a simple polynomial argument. Both sides of (5.3) are polynomials
in u (with coefficients in Q(q, t)) which agree for infinitely many values of u, namely whenever
u = tn for any n ≥ l(λ), hence are identically equal.

Combining (2.5), (2.6) and (5.3), we have

εu,tQλ(X; q, t) = bλ(q, t) εu,tPλ(X; q, t)

=
n∏

i=1

(tn+1−i; q)λi

(qtn−i; q)λi

∏
1≤i<j≤n

(qtj−i, tj−i; q)λi−λj

(tj−i+1, qtj−i−1; q)λi−λj

× t

n∑
i=1

(i−1)λi
n∏

i=1

(ut1−i; q)λi

(tn+1−i; q)λi

∏
1≤i<j≤n

(tj−i+1; q)λi−λj

(tj−i; q)λi−λj

= t

n∑
i=1

(i−1)λi
n∏

i=1

(ut1−i; q)λi

(qtn−i; q)λi

∏
1≤i<j≤n

(qtj−i; q)λi−λj

(qtj−i−1; q)λi−λj

, (5.4)

where n ≥ l(λ).
In view of the explicit evaluations (5.3) and (5.4), it is clear how useful the application of the

homomorphism εu,t is when applied to identities involving Macdonald polynomials, in particular
for deriving multivariate formulae of hypergeometric type. In this respect (when being applied
to Macdonald polynomials), we may consider εu,t as a “hypergeometric specialization” (which
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is slightly misleading as εu,t is actually not a specialization homomorphism for u 6= tn; it can be
regarded as an analytic continued specialization homomorphism though).

We mention that by applying εu,t to the set Y in the Cauchy formula [33, p. 324, Eq. (4.2)],∑
λ

Pλ(X; q, t)Qλ(Y ; q, t) =
∏
i,j

(txiyj ; q)∞
(xiyj ; q)∞

,

Macdonald [33, p. 374, Eq. (4)] obtained a q-binomial theorem for multiple series of Macdonald
polynomial argument. This identity became in fact the starting point in the development of
a whole theory of identities for series of (classical An−1) Macdonald polynomial argument, see
Kaneko [23, 24], Baker and Forrester [3], and Warnaar [54].

5.1 Hypergeometric specialization of the Pieri formula

We apply εu,t to both sides of the Pieri formula in Theorem 2.1, utilizing (5.4). On the left-hand
side we obtain

εu,tQ(λ1,...,λn) εu,tQ(λn+1) = t

n∑
i=1

(i−1)λi
n∏

i=1

(ut1−i; q)λi

(qtn−i; q)λi

×
∏

1≤i<j≤n

(qtj−i; q)λi−λj

(qtj−i−1; q)λi−λj

·
(u; q)λn+1

(q; q)λn+1

. (5.5)

Since

εu,tQ(λ1+θ1,...,λn+θn,λn+1−|θ|) = t

( n∑
i=1

(i−1)(λi+θi)
)
+n(λn+1−|θ|)

×
n∏

i=1

(ut1−i; q)λi+θi

(qtn+1−i; q)λi+θi

·
(ut−n; q)λn+1−|θ|

(q; q)λn+1−|θ|

×
∏

1≤i<j≤n

(qtj−i; q)λi+θi−λj−θj

(qtj−i−1; q)λi+θi−λj−θj

n∏
i=1

(qtn+1−i; q)λi+θi−λn+1+|θ|

(qtn−i; q)λi+θi−λn+1+|θ|
,

we obtain on the right-hand side

∑
θ∈Nn

n∏
i=1

(t, q|θ|+1+λi−λn+1tn−i; q)θi

(q, q|θ|+λi−λn+1t1+n−i; q)θi

×
∏

1≤i<j≤n

(qλi−λj tj−i+1, q−θj+1+λi−λj tj−i−1; q)θi

(q1+λi−λj tj−i, q−θj+λi−λj tj−i; q)θi

· εu,tQ(λ1+θ1,...,λn+θn,λn+1−|θ|)

= t

n+1∑
i=1

(i−1)λi (ut−n; q)λn+1

(q; q)λn+1

n∏
i=1

(ut1−i; q)λi

(qtn+1−i; q)λi

(qtn+1−i; q)λi−λn+1

(qtn−i; q)λi−λn+1

∏
1≤i<j≤n

(qtj−i; q)λi−λj

(qtj−i−1; q)λi−λj

×
∑

θ1,...,θn≥0

∏
1≤i<j≤n

(1− qλi−λj+θi−θj tj−i)
(1− qλi−λj tj−i)

n∏
i=1

(1− qλi−λn+1+θi+|θ|tn+1−i)
(1− qλi−λn+1tn+1−i)

×
n∏

i,j=1

(qλi−λj tj−i+1; q)θi

(q1+λi−λj tj−i; q)θi

n∏
i=1

(qλi−λn+1tn+1−i; q)|θ|
(q1+λi−λn+1tn−i; q)|θ|

×
n∏

i=1

(qλiut1−i; q)θi

(q1+λitn+1−i; q)θi

·
(q−λn+1 ; q)|θ|

(q1−λn+1tn/u; q)|θ|

( q

u

)|θ|
q

n∑
i=1

(i−1)θi

. (5.6)
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If we equate the right-hand side expressions in (5.6) and (5.5), divide both sides by

t

n+1∑
i=1

(i−1)λi (ut−n; q)λn+1

(q; q)λn+1

n∏
i=1

(ut1−i; q)λi

(qtn+1−i; q)λi

(qtn+1−i; q)λi−λn+1

(qtn−i; q)λi−λn+1

∏
1≤i<j≤n

(qtj−i; q)λi−λj

(qtj−i−1; q)λi−λj

and simplify, while rewriting the right-hand side using

(u; q)λn+1

(ut−n; q)λn+1

n∏
i=1

(q−λiti−n−1; q)λn+1

(q−λiti−n; q)λn+1

=
(q1−λn+1/u; q)λn+1

(q1−λn+1tn/u; q)λn+1

n∏
i=1

(q1+λi−λn+1tn+1−i; q)λn+1

(q1+λi−λn+1tn−i; q)λn+1

,

we obtain the following result:

∑
θ1,...,θn≥0
|θ|≤λn+1

∏
1≤i<j≤n

(qλi+θit−i − qλj+θj t−j)
(qλit−i − qλj t−j)

n∏
i=1

(1− qλi−λn+1+θi+|θ|tn+1−i)
(1− qλi−λn+1tn+1−i)

×
n∏

i,j=1

(qλi−λj tj−i+1; q)θi

(q1+λi−λj tj−i; q)θi

n∏
i=1

(qλi−λn+1tn+1−i; q)|θ|
(q1+λi−λn+1tn−i; q)|θ|

×
n∏

i=1

(qλiut1−i; q)θi

(q1+λitn+1−i; q)θi

·
(q−λn+1 ; q)|θ|

(q1−λn+1tn/u; q)|θ|

( q

u

)|θ|
=

(q1−λn+1/u; q)λn+1

(q1−λn+1tn/u; q)λn+1

n∏
i=1

(q1+λi−λn+1tn+1−i; q)λn+1

(q1+λi−λn+1tn−i; q)λn+1

.

Now, this identity (which is equivalent to the classical terminating 6φ5 summation when n = 1)
is simply the special case of Milne’s An−1 terminating 6φ5 summation in Proposition 3.3, where
a 7→ t, b 7→ qλn+1ut1−n, ci 7→ t, ui 7→ qλi−λn+1tn−i (1 ≤ i ≤ n), and M 7→ λn+1. In particular,
observe that the n + 1 indeterminates a, c1, . . . , cn all are substituted by t.

5.2 Hypergeometric specialization of the recursion formula

We apply εu,t to both sides of the recursion formula in Theorem 2.2, utilizing (5.4). On the
left-hand side we obtain

εu,tQ(λ1,...,λn+1) = t

n+1∑
i=1

(i−1)λi
n+1∏
i=1

(ut1−i; q)λi

(qtn+1−i; q)λi

∏
1≤i<j≤n+1

(qtj−i; q)λi−λj

(qtj−i−1; q)λi−λj

. (5.7)

Since

εu,tQ(λn+1−|θ|) εu,tQ(λ1+θ1,...,λn+θn) =
(u; q)λn+1−|θ|

(q; q)λn+1−|θ|
· t

n∑
i=1

(i−1)(λi+θi)

×
n∏

i=1

(ut1−i; q)λi+θi

(qtn−i; q)λi+θi

∏
1≤i<j≤n

(qtj−i; q)λi+θi−λj−θj

(qtj−i−1; q)λi+θi−λj−θj

,

we obtain on the right-hand side

∑
θ∈Nn

n∏
i=1

tθi
(q/t, q1+λi−λn+1tn−i; q)θi

(q, q1+λi−λn+1t1+n−i; q)θi

∏
1≤i<j≤n

(q1+λi−λj tj−i−1, q−θj+λi−λj tj−i+1; q)θi

(q1+λi−λj tj−i, q−θj+λi−λj tj−i; q)θi

×
∏

1≤i<j≤n

1
(qλi−λn+1+θitn−i − qλj−λn+1+θj tn−j)

det
1≤i,j≤n

[
(qλi−λn+1+θitn−i)n−j
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×

(
1− tj−1 1− qλi−λn+1+θitn−i+1

1− qλi−λn+1+θitn−i

n∏
s=1

qλs−λn+1tn−s − qλi−λn+1+θitn−i

qλs−λn+1tn−s+1 − qλi−λn+1+θitn−i

)]
× εu,tQ(λn+1−|θ|) εu,tQ(λ1+θ1,...,λn+θn)

= t

n∑
i=1

(i−1)λi (u; q)λn+1

(q; q)λn+1

n∏
i=1

(ut1−i; q)λi

(qtn−i; q)λi

∏
1≤i<j≤n

(qtj−i; q)λi−λj

(qtj−i−1; q)λi−λj

×
∑
θ∈Nn

n∏
i,j=1

(q1+λi−λj tj−i−1; q)θi

(q1+λi−λj tj−i; q)θi

∏
1≤i<j≤n

(qλi−λj tj−i+1; q)θi−θj

(q1+λi−λj tj−i−1; q)θi−θj

×
∏

1≤i<j≤n

1
(qλi−λn+1tn−i − qλj−λn+1tn−j)

det
1≤i,j≤n

[
(qλi−λn+1+θitn−i)n−j

×

(
1− tj−1 1− qλi−λn+1+θitn−i+1

1− qλi−λn+1+θitn−i

n∏
s=1

qλs−λn+1tn−s − qλi−λn+1+θitn−i

qλs−λn+1tn−s+1 − qλi−λn+1+θitn−i

)]
(5.8)

×
n∏

i=1

(q1+λi−λn+1tn−i, qλiut1−i; q)θi

(q1+λi−λn+1t1+n−i, q1+λitn−i; q)θi

·
(q−λn+1 ; q)|θ|

(q1−λn+1/u; q)|θ|

(
qt

u

)|θ|
q

n∑
i=1

(1−i)θi

t

n∑
i=1

2(i−1)θi

.

If we equate the right-hand side expressions in (5.8) and (5.7), divide both sides by

t

n∑
i=1

(i−1)λi (u; q)λn+1

(q; q)λn+1

n∏
i=1

(ut1−i; q)λi

(qtn−i; q)λi

∏
1≤i<j≤n

(qtj−i; q)λi−λj

(qtj−i−1; q)λi−λj

and simplify, while rewriting the right-hand side using

tnλn+1
(ut−n; q)λn+1

(u; q)λn+1

n∏
i=1

(qtn−i; q)λi
(qtn+1−i; q)λi−λn+1

(qtn+1−i; q)λi
(qtn−i; q)λi−λn+1

=
(q1−λn+1tn/u; q)λn+1

(q1−λn+1/u; q)λn+1

n∏
i=1

(q1+λi−λn+1tn−i; q)λn+1

(q1+λi−λn+1tn+1−i; q)λn+1

,

we obtain the following result:

∑
θ∈Nn

n∏
i,j=1

(q1+λi−λj tj−i−1; q)θi

(q1+λi−λj tj−i; q)θi

∏
1≤i<j≤n

(qλi−λj tj−i+1; q)θi−θj

(q1+λi−λj tj−i−1; q)θi−θj

∏
1≤i<j≤n

1
(qλit−i − qλj t−j)

× det
1≤i,j≤n

[
(qλi+θit−i)n−j

(
1− tj−1 1− qλi−λn+1+θitn−i+1

1− qλi−λn+1+θitn−i

n∏
s=1

qλst−s − qλi+θit−i

qλst1−s − qλi+θit−i

)]

×
n∏

i=1

(q1+λi−λn+1tn−i, qλiut1−i; q)θi

(q1+λi−λn+1t1+n−i, q1+λitn−i; q)θi

·
(q−λn+1 ; q)|θ|

(q1−λn+1/u; q)|θ|

(
qt

u

)|θ|
q

n∑
i=1

(1−i)θi

t

n∑
i=1

2(i−1)θi

=
(q1−λn+1tn/u; q)λn+1

(q1−λn+1/u; q)λn+1

n∏
i=1

(q1+λi−λn+1tn−i; q)λn+1

(q1+λi−λn+1tn+1−i; q)λn+1

. (5.9)

Now, this identity (which is equivalent to the classical terminating 6φ5 summation when n = 1)
is simply the special case of the multivariable terminating 6φ5 summation in Corollary 4.4, where
a 7→ t, b 7→ qλn+1ut1−n, ci 7→ t, ui 7→ qλi−λn+1tn−i (1 ≤ i ≤ n), and M 7→ λn+1. In particular,
observe that the n + 1 indeterminates a, c1, . . . , cn all are substituted by t.



Macdonald Polynomials and Multivariable Series 19

6 More basic hypergeometric identities
involving Macdonald polynomials

In the previous section we showed that the Pieri formula and the recursion formula, see Theo-
rems 2.1 and 2.2, both constitute (two different) multivariable terminating 6φ5 summations
which involve An−1 Macdonald polynomials. While nonterminating series are considered in
Section 7, one can ask whether other important basic hypergeometric identities can be extended
to the multivariate setting involving An−1 Macdonald polynomials. Concerning multivariate
extensions of identities for non-very-well-poised basic hypergeometric series, we refer to the
work of Kaneko [23, 24], Baker and Forrester [3], and Warnaar [54], where several identities
are established that involve Macdonald polynomials playing the role of the argument of the
respective series. In the very-well-poised case, which is investigated here, the An−1 Macdonald
polynomials play the role of q-shifted factorials (to which they would reduce after principal
specialization).

The main difference is the dimension of the series; in the An−1 setting the very-well-poised
structure is implicit from taking the step n 7→ n + 1 to one higher dimension (see e.g. the proof
of Proposition 3.3). Whereas for n = 1 the An−1 Macdonald polynomials are simply monomials,
in the n = 2 case they are, in view of

P(λ1,λ2)(x1, x2; q, t) = (x1x2)λ2P(λ1−λ2,0)(x1, x2; q, t)

= (x1x2)λ2
(q; q)λ1−λ2

(t; q)λ1−λ2

gλ1−λ2(x1, x2; q, t)

(where we have used (2.9) and (2.11)), (multiples of the) continuous q-ultraspherical polyno-
mials gm. The latter are specific 2φ1 series, see (7.1), which when principally specialized simplify
to ratios of q-shifted factorials by virtue of the Chu–Vandermonde summation theorem, the
terminating special case of the q-Gauß summation in (3.2).

We mention that for the nonreduced irreducible root system BCn very-well-poised basic
hypergeometric series identities involving Okounkov’s [44] Macdonald interpolation polynomials
or the more general Koornwinder–Macdonald polynomials (both which are of BCn type) have
been established by Rains, see [45, Sec. 4] and [46, Sec. 4]. (The An−1 identities investigated
here appear to be essentially different from related BCn identities found by Rains.)

One first question that arises is whether Jackson’s terminating very-well-poised 8φ7 summa-
tion (3.5) can be extended to the multivariate setting involving An−1 Macdonald polynomials.
The answer is affirmative. Consider the Pieri formula in Theorem 2.1. It reads as

Q(λ1,...,λn) Q(λn+1) =
∑
θ∈Nn

d
(q,t)
θ1,...,θn

(u1, . . . , un) Q(λ1+θ1,...,λn+θn,λn+1−|θ|), (6.1)

with coefficients dθ1,...,θn(u1, . . . , un) defined in Subsection 2.1. We already know that equa-
tion (6.1), as it stands, represents a multivariable terminating very-well-poised 6φ5 summation.
The “trick” now is to restrict the set X to n variables, i.e. to take |X| = n. Due to property (2.8)
the Macdonald polynomials appearing in the sum all vanish unless |θ| = λn+1. We thus obtain

Q(λ1,...,λn) Q(λn+1) =
∑

θ∈Nn,|θ|=λn+1

d
(q,t)
θ1,...,θn

(u1, . . . , un) Q(λ1+θ1,...,λn+θn), (6.2)

under the assumption X = {x1, . . . , xn}. It turns out that when εu,t is applied to both sides
of the identity in (6.2) (in Section 5 we coined this as “hypergeometric specialization”), its
n = 2 case reduces to a variant of Jackson’s 8φ7 summation (3.5). In fact, if we replace n by
n + 1 in (6.2), and substitute θn+1 by λn+2 − (θ1 + · · ·+ θn), we obtain an identity which, after
application of εu,t, is essentially equivalent to Milne’s An−1 extension of Jackson’s 8φ7 summation
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in Proposition 3.6. Therefore, we regard (6.2) as a multivariable extension of Jackson’s very-
well-poised 8φ7 summation.

On the other hand, we were (so far) not able to deduce a multivariable 8φ7 summation directly
from the (nonspecialized) recursion formula in Theorem 2.2.

It would be interesting to find a multivariable extension of Bailey’s terminating very-well-
poised 10φ9 transformation formula (cf. [12, Eq. (III.28)]) involving An−1 Macdonald polyno-
mials.

7 Macdonald symmetric functions indexed by partitions
with complex parts

In this section we shall assume |q| < 1. We use the recursion in Theorem 2.2 now to define
Macdonald symmetric functions Qλ when λ = (λ1, . . . , λn) is any sequence of complex numbers.
One difficulty is to properly define the one row case. (Another issue is convergence, since we
will be considering nonterminating sums.)

Kadell [21] used the classical definition of a Schur function in terms of a ratio of alternants
to extend Schur functions to partitions with complex parts. (Independently, Danilov and Ko-
shevoy [9] define “continuous Schur functions” by a multidimensional integral, with respect to
a Lebesgue measure in Rn(n−1)/2, over all points of a particular polytope, and show by an induc-
tive argument that these functions generalize the ratio of alternants formula for Schur functions.
In fact, Danilov and Koshevoy’s continuous Schur functions correspond exactly to Kadell’s Schur
functions indexed by partitions with real parts.) We want to stress that our proposed extension
of Macdonald polynomials to complex parts (see below) does not reduce to Kadell’s extension
of Schur functions when q = t.

We shall begin with a finite number of variables, say X = {x0, x1, . . . , xr}. (For convenience,
we start to label X with 0 here). First, consider m to be a nonnegative integer. By appealing
to the q-binomial theorem in (3.1) it follows from taking coefficients of um in the generating
function in (2.4) that the one row Macdonald polynomials Q(m)(X; q, t) = gm(X; q, t) can be
written in the following explicit form:

gm =
∑

k0,...,kr≥0

k0+···+kr=m

r∏
i=0

(t; q)ki

(q; q)ki

xki
i

=
∑

k1,...,kr≥0

0≤k1+···+kr≤m

(t; q)m−(k1+···+kr)

(q; q)m−(k1+···+kr)
x

m−(k1+···+kr)
0

r∏
i=1

(t; q)ki

(q; q)ki

xki
i .

Although we do not need it here, we mention that for r = 1 and x0x1 = 1, the gm reduce to the
continuous q-ultraspherical polynomials of degree m in the argument (x0 + x1)/2, considered in
[12, Ex. 1.29].

We rewrite the above expression yet further, using the short notation |k| = k1 + · · ·+kr, and
obtain the following explicit form:

gm =
(t; q)m

(q; q)m
xm

0

∑
k1,...,kr≥0

0≤|k|≤m

(q−m; q)|k|
(q1−m/t; q)|k|

r∏
i=1

(t; q)ki

(q; q)ki

(
qxi

tx0

)ki

. (7.1)

Using the definition

(a; q)c =
(a; q)∞

(aqc; q)∞
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(recall |q| < 1) for any complex number c, we propose the following definition for a one row
complex Macdonald function1:

Q(c) = gc =
(tx0; q)c

(q; q)c

(q/tx0; q)−c

(q/t; q)−c

∑
k1,...,kr≥0

(q−c; q)|k|
(q1−c/t; q)|k|

r∏
i=1

(t; q)ki

(q; q)ki

(
qxi

tx0

)ki

, (7.2)

which converges (if the series does not terminate) for |qxi/tx0| < 1 (1 ≤ i ≤ r).
We emphasize that (7.2) is not an analytic continuation of (7.1). In fact, (7.2) is neither

analytic in c, nor in qc (in any domain around the origin). Another problem is that gc is not
symmetric in all the xi (0 ≤ i ≤ r) but only in the last r of the xi (1 ≤ i ≤ r). Indeed, already
for r = 1, the 2φ1 transformation gc(x0, x1) = gc(x1, x0) turns out to be false if c is not an
integer.

There are other possibilities to extend gm to complex numbers. By our definition (7.2), if c
is not a nonnegative integer and q = t (the Schur function case), then we get gc = ∞, which is
different from Kadell’s [21, Eq. (2.1)] s(c)(x0) = xc

0 = ec ln(x0). On the other hand, if we would
have defined gc by (7.1) (for complex m = c; relaxing the restriction |k| ≤ m of summation),
our definition would have also not matched Kadell’s in the q = t case since after letting q = t we
would be left with a product of geometric series on the right-hand side. However, our particular
choice of (7.2) is motivated by some nice properties, among which are (7.5) and (7.6).

Since gc(x0, x1, . . . , xr, 0) = gc(x0, x1, . . . , xr), we may let r →∞ (compare to [33, p. 41]). In
the following, we relax the restriction of X being finite. Thus, we allow r ∈ N ∪∞.

Having provided a definition of Q(c) for any complex number c, it is now straightforward
to extend Theorem 2.2 to Macdonald functions indexed by sequences of complex numbers. Let
λ = (λ1, . . . , λn+1) be an arbitrary sequence of complex numbers. We do not require n+1 ≤ |X|.
For any 1 ≤ i ≤ n + 1 define ui = qλi−λn+1tn−i. Then Qλ(X; q, t) is defined recursively by (7.2)
and

Q(λ1,...,λn+1) =
∑
θ∈Nn

c
(q,t)
θ1,...,θn

(u1, . . . , un) Q(λn+1−|θ|) Q(λ1+θ1,...,λn+θn), (7.3)

where c
(q,t)
θ1,...,θn

(u1, . . . , un) is the same as in Subsection 2.2.
While the (finite) recursion in Theorem 2.2 was proved by inverting the known Pieri formula

for Macdonald polynomials indexed by partitions, (7.3) now defines Macdonald functions in
the general case. The expansion in (7.3) is in general infinite and converges (when it does
not terminate) for |q|, |qxi/tx0| < 1 (i ≥ 1). As a matter of formal manipulations (using
multidimensional inverse relations), the equivalence of Theorems 2.2 and 2.1 (Pieri formula) for
these Macdonald functions of complex parts is immediate.

We do not know whether the complex Qλ form a family of orthogonal functions, nor whether
they are eigenfunctions of the Macdonald operator (or some reasonable extension of this opera-
tor). These questions, among others, wait for investigation. What at all makes these extended
objects interesting, then? In fact, it turns out that for these “complex Macdonald functions”
a generalization of (at least) one of the so-called Macdonald (ex-)conjectures holds; in particular,
they satisfy an explicit evaluation formula.

Observe that we have departed from the algebra of symmetric functions in X = {x0, x1, . . . }.
We are working in another algebra. It is necessary to provide some details.

It is convenient to make the following definitions. For a complex number c, introduce the
following complex “q, t-powers” of x:

x[c] = x[c;q,t] =
(tx; q)c

(t; q)c

(q/tx; q)−c

(q/t; q)−c
. (7.4)

1We call these new objects functions as they are not anymore polynomials. However, note that the term
Macdonald functions is also used to denote other objects, namely modified Bessel functions of the second kind [55].
(The latter have nothing to do with algebraist I.G. Macdonald who introduced the Pλ(X; q, t).)
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Note that if k is an integer then x[k] = xk. More generally, x[c+k] = x[c]xk.
Next, using “q, t-powers”, extend the definition of power sums to complex numbers c:

pc(x0, x1, . . . ) =
∑
i≥0

x
[c]
i .

(We will actually only need the one-variable case pc(x0) = x
[c]
0 here.) As usual, this definition

may be extended to multiindices, p(c1,...,cn) = pc1 · · · pcn .
Let C denote the set of complex numbers. The algebra we are considering is (algebraically)

generated by the uncountably infinite set of products

{pc(x0) ps(x1, x2, . . . )| c ∈ C, s ∈ N− 0}

with coefficients in C((q, t)). Note that the above set of products is not an algebraic basis as we
do not have algebraic independence (e.g., (pc1ps1)(pc2ps2) = (pc1ps2)(pc2ps1)). We denote this
algebra by Ŝym.

There is a Ŝym-extension of the homomorphism εu,t, defined in [33, p. 338, Eq. (6.16)], which
acts nicely on Qλ. For an indeterminate u, define a homomorphism ε̂u,t : Ŝym → C((q, t)) by

ε̂ut,t

[
pc(x0)ps(x1, x2, . . . )

]
= u[c] 1− us

1− ts

for each complex number c and positive integer s. In particular, if u is replaced by tr, we have

ε̂tr+1,t

[
pc(x0)ps(x1, x2, . . . )

]
= (tr)[c]

1− trs

1− ts
= pc(tr)ps(tr−1, . . . , t, 1)

and hence for any f ∈ Ŝym

ε̂tr+1,t(f) = f(tr, tr−1, . . . , t, 1).

(Compare this to the usual εtr+1,t(f) = f(tr, tr−1, . . . , t, 1), for any f ∈ Sym.)
We now have the evaluation formula

ε̂u,tQ(λ1,...,λn) =
n∏

i=1

(u; q)λi

(qtn−i; q)λi

(q/u; q)−λi

(qti−1/u; q)−λi

∏
1≤i<j≤n

(qtj−i; q)λi−λj

(qtj−i−1; q)λi−λj

, (7.5)

where λi ∈ C. We will present a pure basic hypergeometric proof (which reduces to a new proof
of the usual analytic continued principal specialization formula for Qλ if λ is a partition).

We proceed by induction on n. For n = 1 we first consider ε̂tr+1,tQ(c) with Q(c) given in
(7.2). By the ai 7→ t, ui 7→ ui, i = 1, . . . , n, b 7→ q−c, and c 7→ q1−c/t case of Proposition 3.5, we
see that

ε̂tr+1,tQ(c) =
(tr+1; q)c

(q; q)c

(q/tr+1; q)−c

(q/t; q)−c

∑
k1,...,kr≥0

(q−c; q)|k|
(q1−c/t; q)|k|

r∏
i=1

(t; q)ki

(q; q)ki

(
qt−1−i

)ki

=
(tr+1; q)c

(q; q)c

(q/tr+1; q)−c

(q/t; q)−c

(q1−c/tr+1, q/t; q)∞
(q1−c/t, q/tr+1; q)∞

=
(tr+1; q)c

(q; q)c
,

which is exactly the u = tr+1 case of the right-hand side of (7.5) for n = 1. Since this holds for
r = 0, 1, 2, . . . , by analytic continuation we may replace tr+1 by u, which establishes the n = 1
case of (7.5). For the inductive step, we assume (7.5) for partitions λ with l(λ) ≤ n. Apply ε̂u,t
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to both sides of the recursion formula (7.3) and use the inductive hypothesis to simplify the
summand. We are done if we can show that the sum evaluates to

n+1∏
i=1

(u; q)λi

(qtn+1−i; q)λi

(q/u; q)−λi

(qti−1/u; q)−λi

∏
1≤i<j≤n+1

(qtj−i; q)λi−λj

(qtj−i−1; q)λi−λj

.

This, however, follows by an application of the multivariable 6φ5 summation in Corollary 4.3
(after performing the substitutions a 7→ t, b 7→ qλn+1ut1−n, ci 7→ t, ui 7→ qλi−λn+1tn−i, 1 ≤ i ≤ n,
and M 7→ λn+1; compare with equation (5.9)). �

There is a well-known duality formula for Macdonald polynomials (cf. [33, p. 332, Eq. (6.6)]),

Qλ(qµtδ)
Qλ(tδ)

=
Qµ(qλtδ)
Qµ(tδ)

,

for partitions λ and µ of length ≤ n, where

Qλ(qµtδ) = Qλ(qµ1tn−1, qµ2tn−2, . . . , qµn).

We do not know (at present) whether this relation still holds for arbitrary complex sequences
λ1, λ2, . . . , and µ1, µ2, . . . . However, it does hold if the length of the partitions is one. Namely,
if λ = (c), µ = (d) are one row complex partitions, we have

Q(c)(qdt, 1)
Q(c)(t, 1)

=
(q; q)c

(t2; q)c

(tx0; q)c

(q; q)c

(q/tx0; q)−c

(q/t; q)−c

∑
k≥0

(q−c, t; q)k

(q1−c/t, q; q)k

(
q1−d

t2

)k

=
(tx0; q)c

(t2; q)c

(q/tx0; q)−c

(q/t; q)−c
2φ1

[
q−c, t
q1−c/t

; q, q1−d/t2
]

.

The duality is now an immediate consequence of the iterate of Heine’s transformation [12,
Eq. (III.2)],

2φ1

[
a, b
c

; q, z
]

=
(c/b, bz; q)∞

(c, z; q)∞
2φ1

[
abz/c, b

bz
; q,

c

b

]
,

valid for max(|z|, |c/b|) < 1.
To prevent possible misconception, we note that the well-known property valid for Macdonald

polynomials indexed by partitions, Qλ(x1, . . . , xr) = 0 if l(λ) > r (see (2.5) and (2.8)), does not
hold in the general complex case. For instance, if X = {x} contains only one variable, then

Q(λ1,...,λn)(x) =
n∏

i=1

(tx; q)λi

(qtn−i; q)λi

(q/tx; q)−λi

(qti−2; q)−λi

∏
1≤i<j≤n

(qtj−i; q)λi−λj

(qtj−i−1; q)λi−λj

, (7.6)

where λi ∈ C. This formula (which can be proved by induction, similar to the above proof
of (7.5)) is indeed independent from the representation of λ, i.e. we may choose (λ1, . . . , λn) =
(λ1, . . . , λn, 0, . . . , 0), adding an arbitrary number of zeros at the end of sequence. It is clear
from (7.6) that if λ is a usual integer partition, then

Q(λ1,...,λn)(x) =
(t; q)λ1

(q; q)λ1

xλ1 δλ20 . . . δλn0

(where we were using (7.4) and x[k] = xk for integer k).
In this section, we extended the Macdonald polynomials Qλ to arbitrary sequences λ =

(λ1, . . . , λn) of complex numbers. To give such an extension for Pλ one may simply invoke
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Qλ = bλPλ, see (2.5), with the known explicit expression of bλ = bλ(q, t), extended to complex
sequences λ. (This does not mean that we necessarily assume bλ = 〈Qλ, Qλ〉q,t beforehand.
Nevertheless, the latter equality should conjecturally still hold, for some suitable Ŝym-extension
of the inner product 〈 , 〉q,t.) To utilize Theorem 2.3 to define Pλ in the complex case does
not make sense since the indexing partitions are given there in the form λ = (1m1 , 2m2 , . . . ,
(n + 1)mn+1), and the multiplicities mi have no meaning for partitions with complex parts.
(Already for compositions λ one would run into trouble here.)

Again, we do not yet know whether the Macdonald functions for partitions with complex
parts form a family of orthogonal functions. They very well may be orthogonal, possibly with
respect to a Ŝym variant of the inner product in [33, p. 372, Eq. (9.10)]. In view of (7.5)
and (7.6), some nice properties do exist, which provides some evidence that these new objects
merit further investigation.

A A multidimensional matrix inverse

Here we state the multidimensional matrix inverse of [31, Th. 2.6], which happens to be so
crucial for the results in this paper, and work out some special cases we need which we give as
corollaries.

Let Z be the set of integers and n some positive integer. For multi-integers m,k ∈ Zn, we
write m ≥ k for mi ≥ ki, for i = 1, . . . , n.

We say that an infinite n-dimensional matrix F = (fmk)m,k∈Zn is lower-triangular if fmk = 0
unless m ≥ k. When all fkk 6= 0, there exists a unique lower-triangular matrix G = (gmk)m,k∈Zn ,
called the inverse of F , such that the following orthogonality relation holds:∑

m≥k

fmkgkl = δml, for all m, l ∈ Zn. (A.1)

Clearly, as F and G are both lower-triangular, F must then also be the inverse of G and the
dual relation,∑

m≥k

gmkfkl = δml, for all m, l ∈ Zn, (A.2)

must hold at the same time. Therefore, if F and G are infinite lower-triangular n-dimensional
matrices and one of the relations (A.1) or (A.2) hold, we say that F and G are inverses of each
other, or simply that F and G are mutually inverse.

It is immediate from the orthogonality relations (A.1) and (A.2) that if F and G are mutually
inverse, the following two equations (a.k.a. “inverse relations”):∑

k∈Zn

fmkak = bm, for all m, (A.3a)

and ∑
l∈Zn

gklbl = ak, for all k (A.3b)

are equivalent, provided both sides terminate or converge.
Similarly, the following two equations, where one sums over the first (instead of the second)

multi-index of the respective matrices, are equivalent:∑
m∈Zn

fmkam = bk, for all k, (A.4a)
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and ∑
k∈Zn

gklbk = al, for all l, (A.4b)

again, provided both sides terminate or converge.
The inverse relations (A.3) or (A.4) are useful tools for proving identities. For instance,

if (A.4b) holds for the infinite lower-triangular matrix (gmk)m,k∈Zn and infinite sequences
(bk)k∈Zn and (al)l∈Zn , then (assuming one knows F , the inverse of G), the equation (A.4a)
must automatically hold (subject to convergence). It is exactly this form of inverse relations
which is being utilized in this paper.

The following matrix inversion was derived in [31, Th. 2.6].

Proposition A.1. Let b be an indeterminate and ai(k), ci(k) (k ∈ Z, 1 ≤ i ≤ n) be arbi-
trary sequences of indeterminates. Then the infinite lower-triangular n-dimensional matrices
(fmk)m,k∈Zn and (gkl)k,l∈Zn are inverses of each other where

fmk =
n∏

i=1

ci(ki)−1
∏

1≤i<j≤n

(
ci(ki)− cj(kj)

)−1

× det
1≤i,j≤n

[
ci(mi)n+1−j − ai(mi)n+1−j

(
ci(mi)− b/

n∏
s=1

cs(ks)
)

(
ai(mi)− b/

n∏
s=1

cs(ks)
) n∏

s=1

(
ci(mi)− cs(ks)

)(
ai(mi)− cs(ks)

)]

×
n∏

i=1

mi∏
yi=ki+1

[(ai(yi)− b/
n∏

j=1
cj(kj)

)
(
ci(yi)− b/

n∏
j=1

cj(kj)
) n∏

j=1

(
ai(yi)− cj(kj)

)(
ci(yi)− cj(kj)

) ], (A.5a)

and

gkl =
n∏

i=1

ki∏
yi=li+1

[(
ai(yi)− b/

n∏
j=1

cj(kj)
) n∏

j=1

(
ai(yi)− cj(kj)

)]
ki−1∏
yi=li

[(
ci(yi)− b/

n∏
j=1

cj(kj)
) n∏

j=1

(
ci(yi)− cj(kj)

)] . (A.5b)

Remark A.2. The above Proposition generalizes Krattenthaler’s matrix inverse [26] which is
obtained when n = 1. Note that for n = 1 the determinant in (A.5) reduces (after relabeling)
to

cm − am
(cm − b/ck)
(am − b/ck)

(cm − ck)
(am − ck)

= cm
(am − b/cm)
(am − b/ck)

(am − cm)
(am − ck)

and the matrix inverse in (A.5) (after relabeling) becomes

fmk =
(b− amcm)(am − cm)
(b− akck)(ak − ck)

m−1∏
y=k

(ay − b/ck)(ay − ck)

m∏
y=k+1

(cy − b/ck)(cy − ck)
, (A.6a)

gkl =

k∏
y=l+1

(ay − b/ck)(ay − ck)

k−1∏
y=l

(cy − b/ck)(cy − ck)
. (A.6b)
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It is not difficult to see that this matrix inverse is actually equivalent to its b →∞ special case:

fmk =

m−1∏
y=k

(ay − ck)

m∏
y=k+1

(cy − ck)
, (A.7a)

gkl =
(al − cl)
(ak − ck)

k∏
y=l+1

(ay − ck)

k−1∏
y=l

(cy − ck)
. (A.7b)

To recover (A.6) from (A.7), do the substitutions ay 7→ ay + b/ay, cy 7→ cy + b/cy, transfer some
simple factors from one matrix to the other, and simplify.

Other multidimensional generalizations of Krattenthaler’s matrix inverse were derived in [50,
Th. 3.1], [27], and [51].

In [31, Th. 2.3] a matrix inverse slightly different to Proposition A.1, but equivalent to the lat-
ter, was given, which contains a determinant in the entries of (gkl)k,l∈Zn instead of (fmk)m,k∈Zn .

In the following we list a special case of Proposition A.1 which is derived in a procedure analo-
gous to the derivation of (A.6) from (A.7). This result is itself a multidimensional generalization
of the matrix inverse in (A.6).

Corollary A.3. Let b be an indeterminate and ai(k), ci(k) (k ∈ Z, 1 ≤ i ≤ n) be arbi-
trary sequences of indeterminates. Then the infinite lower-triangular n-dimensional matrices
(fmk)m,k∈Zn and (gkl)k,l∈Zn are inverses of each other where

fmk =
n∏

i=1

ci(mi)n

ci(ki)n

(
ci(ki) + b/ci(ki)

)−1
∏

1≤i<j≤n

[(
1− b/ci(ki)cj(kj)

)(
ci(ki)− cj(kj)

)]−1

× det
1≤i,j≤n

[(
ci(mi) + b/ci(mi)

)n+1−j −
(
ai(mi) + b/ai(mi)

)n+1−j

×
n∏

s=1

(
1− b/ci(mi)cs(ks)

)(
ci(mi)− cs(ks)

)(
1− b/ai(mi)cs(ks)

)(
ai(mi)− cs(ks)

)]

×
n∏

i,j=1

mi∏
yi=ki+1

[(
ai(yi)− b/cj(kj)

)(
ai(yi)− cj(kj)

)(
ci(yi)− b/cj(kj)

)(
ci(yi)− cj(kj)

) ], (A.8a)

and

gkl =
n∏

i,j=1

ki∏
yi=li+1

[(
ai(yi)− b/cj(kj)

)(
ai(yi)− cj(kj)

)]
ki−1∏
yi=li

[(
ci(yi)− b/cj(kj)

)(
ci(yi)− cj(kj)

)] . (A.8b)

Proof. In Proposition A.1, first let b → ∞, then perform the substitutions ai(yi) 7→ ai(yi) +
b/ai(yi) and ci(yi) 7→ ci(yi) + b/ci(yi), for 1 ≤ i ≤ n. Finally, transfer some factors from one
matrix to the other. �

We give two important special cases of the above multidimensional matrix inverses explicitly
which involve the q-shifted factorials (a; q)k defined in (2.2). For n = 1 the matrix inversions in
Corollaries A.4 and A.6 both reduce to Bressoud’s [6] matrix inverse, which he directly extracted
from the terminating very-well-poised 6φ5 summation (3.3).
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Corollary A.4. Let t0, t1, . . . , tn and u1, . . . , un be indeterminates. Then the infinite lower-
triangular n-dimensional matrices (fmk)m,k∈Zn and (gkl)k,l∈Zn are inverses of each other where

fmk = q(n−1)(|k|−|m|)
n∏

i=1

t
n(mi−ki)
i

∏
1≤i<j≤n

(
uiq

ki − ujq
kj
)−1

× det
1≤i,j≤n

[(
uiq

mi
)n−j

(
1− tj−n−1

i

(
1− t0uiq

mi+|k|
)(

1− t0uiqmi+|k|/ti
) n∏

s=1

(
uiq

mi − usq
ks
)(

uiqmi/ti − usqks
))]

×
n∏

i=1

(t0uiq
1+ki+|k|/ti; q)mi−ki

(t0uiq1+ki+|k|; q)mi−ki

n∏
i,j=1

(q1+ki−kjui/tiuj ; q)mi−ki

(q1+ki−kjui/uj ; q)mi−ki

, (A.9a)

and

gkl =
n∏

i,j=1

(qui/uj ; q)ki−kj
(tjui/uj ; q)li−lj

(tjui/uj ; q)ki−kj
(qui/uj ; q)li−lj

×
n∏

i=1

(t0uiq
1+li+|k|/ti; q)ki−li

(t0uiqli+|k|; q)ki−li

n∏
i,j=1

(qli−lj tjui/uj ; q)ki−li

(q1+li−ljui/uj ; q)ki−li

. (A.9b)

Remark A.5. The ti = t, i = 0, 1, . . . , n case of Corollary A.4 is equivalent to Theorem 2.7
of [31].

Proof of Corollary A.4. We specialize Proposition A.1 by letting b 7→ t−1
0

n∏
j=1

uj , ai(yi) 7→

uiq
yi/ti, and ci(yi) 7→ uiq

yi , for 1 ≤ i ≤ n, and rewrite the expressions employing q-shifted

factorial notation. We finally multiply fmk by
n∏

i=1
(q/ti)n(ki−mi) and gkl by

n∏
i=1

(q/ti)n(li−ki). �

Corollary A.6. Let t0, t1, . . . , tn and u1, . . . , un be indeterminates. Then the infinite lower-
triangular n-dimensional matrices (fmk)m,k∈Zn and (gkl)k,l∈Zn are inverses of each other where

fmk =
n∏

i=1

t
n(mi−ki)
i (uiq

ki + q−ki/aui)−1
∏

1≤i<j≤n

[(
uiq

ki − ujq
kj
)(

1− q−ki−kj/auiuj

)]−1

× det
1≤i,j≤n

[(
uiq

mi + q−mi/aui

)n+1−j −
(
uiq

mi/ti + tiq
−mi/aui

)n+1−j

×
n∏

s=1

(
1− q−mi−ks/auius

)(
uiq

mi − usq
ks
)(

1− tiq−mi−ks/auius

)(
uiqmi/ti − usqks

)]

×
n∏

i,j=1

(q1+ki−kjui/tiuj , auiujq
1+ki+kj/ti; q)mi−ki

(q1+ki−kjui/uj , auiujq1+ki+kj ; q)mi−ki

, (A.10a)

and

gkl =
n∏

i,j=1

(qui/uj ; q)ki−kj
(auiujq/tj ; q)ki+kj

(tjui/uj ; q)li−lj (auiuj ; q)li+lj

(tjui/uj ; q)ki−kj
(auiuj ; q)ki+kj

(qui/uj ; q)li−lj (auiujq/tj ; q)li+lj

×
n∏

i,j=1

(qli−lj tjui/uj , auiujq
li+lj ; q)ki−li

(q1+li−ljui/uj , auiujqli+lj/tj ; q)ki−li

. (A.10b)
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Proof. We specialize Theorem A.3 by letting b 7→ 1/a, ai(yi) 7→ uiq
yi/ti, and ci(yi) 7→ uiq

yi ,
for 1 ≤ i ≤ n, and rewrite the expressions employing q-shifted factorial notation. We finally

multiply fmk by
n∏

i=1
(q/ti)n(ki−mi) and gkl by

n∏
i=1

(q/ti)n(li−ki). �
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