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1 Introduction

Let us start with a brief description of the standard set-up for studying the heat trace asymptotics
on a commutative space. Further details can be found in the monograph by Gilkey [25]. Let
M be a compact Riemannian manifold of dimension m, and let D be an operator of Laplace
type acting on the space of smooth sections of a vector bundle V over M . In a local basis any
Laplace type operator can be represented as

D = −(gµν∂µ∂ν + aσ∂σ + b),

where gµν is the inverse metric on M , and aσ and b are matrix-valued functions. There is
a unique connection ∇ = ∂ + ω on V and a unique endomorphism E of V such that

D = −(gµν∇µ∇ν + E). (1)

For a positive t the heat operator e−tD associated to D exists and is trace class. Let f be
a smooth smearing function on M . As t → +0 there is a full asymptotic expansion (called the
heat kernel expansion in physics literature)

Tr(fe−tD) '
∑
n=0

t(n−m)/2an(f,D). (2)

The heat kernel coefficients an(f,D) are locally computable, i.e. they can be expressed through
integrals of local invariants constructed from the symbol of D. If M has no boundary1, ∂M = ∅,

?This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of
Thomas P. Branson. The full collection is available at http://www.emis.de/journals/SIGMA/MGC2007.html

1The work by Tom Branson and Peter Gilkey [5] devoted to the heat trace asymptotics on manifolds with
boundary is perhaps the best known to physicists paper by Tom. This paper was, in a sense, the starting point of
my collaboration with Tom. In [42] I corrected a minor error of [5] made in the a4 coefficient for mixed boundary
conditions. The reaction of Tom and Peter was very friendly, and they invited me to join them and calculate the
next coefficient a5. We performed this calculation [6], though with some restrictions on the boundary conditions
(pure Dirichlet or Neumann), and on the manifold (domain in flat space or totally geodesic boundaries). The
restrictions on the manifold were removed by Klaus Kirsten [31]. Later, when Klaus joined the collaboration, it
became possible to do a5 for generic mixed boundary conditions [7].
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the odd-numbered coefficients vanish, a2k−1(f,D) = 0, while leading even-numbered coefficients
read

a0(f,D) = (4π)−m/2

∫
M

dmx
√

g trV (f), (3)

a2(f,D) = (4π)−m/2 1
6

∫
M

dmx
√

g trV (f(6E + R)) , (4)

a4(f,D) = (4π)−m/2 1
360

∫
M

dmx
√

g trV

(
f(60∇2E + 60RE + 180E2

+ 12∇2R + 5R2 − 2RµνR
µν + 2RµνρσRµνρσ + 30ΩµνΩµν)

)
. (5)

Here Ωµν = ∂µων − ∂νων + ωµων − ωνων is the bundle curvature, Rµνρσ, Rµν and R are the
Riemann curvature tensor, the Ricci tensor and the curvature scalar, respectively. Later on we
shall use these formulae to compare them to the noncommutative (NC) case.

The coefficients an carry a lot of important mathematical information about the bundle V
and the operator D. The Index is perhaps the most notable example. The significance of these
coefficients to physics is even greater. The coefficients an define the one-loop divergences in
quantum field theory, the quantum anomalies, some expansions of the effective action, etc. For
more information the interested reader may consult [24, 25, 32, 43, 45].

The aim of this paper is to show how and to which extent this scheme can be extended to
noncommutative spaces. To describe a noncommutative deformation of a given manifold M one
takes the algebra A of smooth functions on M and deforms it to an algebra AΘ, which will be
assumed associative but not commutative. Usually, such a deformation can be realized again
on smooth functions on M , but with the point-wise product replaced by a noncommutative
product.

This paper is organized as follows. In the next section we briefly discuss the spectral action
principle which is one of the most important application of heat kernel expansion on NC mani-
folds. Then we turn to the Moyal type NC products and describe corresponding heat trace
asymptotics in some detail. Other NC spaces are considered in Section 4. Section 5 contains
a couple of examples of the use of the heat kernel in renormalization and calculations of the
anomalies. Concluding remarks are given in the last section.

2 Application: spectral action principle

In noncommutative geometry [12] there is one specific application of the heat kernel expansion
which is related to the spectral action principle [8]. This action is constructed from the spectral
triple (A,H, /D) consisting of an algebra A acting on a Hilbert space H and of a Dirac operator /D
which describes fluctuating fields (e.g., /D may depend on a gauge connection). The spectral
action for these fluctuating fields is then defined as Tr(Φ( /D

2
/Λ2)), where Φ is a positive even

function, Λ is a mass scale parameter. For large Λ the spectral action can be expanded as

Tr(Φ( /D
2
/Λ2)) '

∑
k=0

Λm−kΦkak(1, /D
2),

where Φk are defined through the Laplace transform of Φ (see [35]). The Dirac operator squared
is a Laplace type operator. Therefore, the heat kernel expansion allows to evaluate the Λ
expansion of the spectral action. Note, that direct calculations of the spectral action without
use of the heat kernel are very cumbersome (though possible, cf. [17]). Some examples of spectral
actions will be briefly discussed below.
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3 Moyal spaces

The most popular example of a noncommutative associative product is the Moyal product (also
known as the Groenewold–Moyal or Moyal–Weyl product) which can be written as

(f ? g)(x) = exp
(

i

2
Θµν∂x

µ∂y
ν

)
f(x)g(y)|y=x, (6)

where Θ is a constant skew-symmetric matrix. As it stands, the product (6) is valid for smooth
functions, but by going to the Fourier transforms one can extend this definition to the case
when at least one of the functions is less smooth. The definition (6) assumes existence of
a global coordinate system on M at least in the NC directions. The properties of the heat kernel
expansion depend crucially on the compactness (or non-compactness) of these NC directions.

From the definition (6) it follows that

eikx ? f(x) = f(x + Θk/2)eikx, f(x) ? eikx = f(x−Θk/2)eikx.

A suitable generalization of the Laplace operator (1) for Moyal spaces which covers most of
the applications reads

D = −(gµν∇µ∇ν + E), ∇µ = ∂µ + ωµ, (7)
ωµ = L(λµ)−R(ρµ), (8)
E = L(l1) + R(r1) + L(l2)R(r2), (9)

where L and R are left and right Moyal multiplications, f1 ? f2 = L(f1)f2 = R(f2)f1. External
fields l1,2, r1,2, λµ and ρµ are supposed to be smooth and rapidly decaying at the infinity (if M
has non-compact dimensions). In this section (except for one Subsection 3.4) we assume that
the metric gµν is constant. One can add, if needed, more terms consisting of the multiplication
operators to the right hand sides of (8) and (9).

The smearing function in (2) should also be replaced by a product of Moyal multiplications,
so that we shall consider asymptotic properties of the expression

K(l, r,D) = Tr(L(l)R(r)e−tD).

Our general strategy of calculation of the heat kernel expansion is to isolate the free Laplacian
∆ = −gµν∂µ∂ν in D, keep e−t∆ and expand the rest of the exponential. When applying this
procedure, one has to evaluate the asymptotic expansion of the expressions like

T (l̄, r̄) := Tr(L(l̄)R(r̄)e−t∆), (10)

where l̄ and r̄ are some polynomials of the smearing functions, background connections λ and ρ,
the potential E and their derivatives. Note, that the corresponding expressions with only left
or only right Moyal multiplications, Tr(R(r̄)e−t∆) and Tr(L(l̄)e−t∆) do not depend on Θ, and,
therefore, the heat trace asymptotics for the operators with just one type of the multiplications
look as in the commutative case (see (3)–(5) above) up to replacing ordinary products by star
products [44, 21].

In generic case, i.e. when both l̄ and r̄ are present, in order to evaluate the trace in (10)
one has to sandwich the expression under the trace between two plane waves eikx and integrate
(or sum up, in the compact case) over the momenta k. It is convenient to make the Fourier
transform of l̄ and r̄. After performing some obvious integrations one gets (see [47] for details)

T (l̄, r̄) ∼ Σ
∫

dmkΣ
∫

dmq e−tk2
l̄−q r̄qe

−ik∧q, (11)

where the symbol Σ
∫

denotes an integral (resp., a sum) over the momenta for noncompact (resp.,
for compact) dimensions. l̄q and r̄q denote Fourier components of l̄ and r̄, and k∧q := kµΘµνkν .
We dropped an irrelevant overall factor in (11). Now we are ready to discuss the small t
asymptotic expansion of T (l̄, r̄). The result depends crucially on compactness of the manifold M .
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3.1 Moyal plane

Let us consider the Moyal plane Rm
Θ . The integral over k in (11) can be easily performed

yielding [47]

T (l̄, r̄) = (4πt)−m/2

∫
dmq l̄−q r̄q exp

(
− 1

4t
ΘµρΘν

ρqµqν

)
. (12)

If Θ ≡ 0 one can return in the equation above to the coordinate space. The resulting expression
is just a smeared heat kernel for the free Laplacian on the commutative plane. Therefore, we
simply confirm a correct value for a0(lr, ∆), see (3).

Let us assume that Θ is non-degenerate (which implies that m is even). Then the exponent
in (12) provides a suppression of contributions from large q. Therefore, to evaluate the behavior
of (12) at small t one has to expand l̄−q r̄q in Taylor series around q = 0 and then integrate
over q. One obtains the following expression [47]

T (l̄, r̄) = (det Θ)−1(l̄0r̄0 +O(t)). (13)

This expression is nothing else than the heat kernel expansion for the free Laplacian ∆. Com-
paring (13) to the the expansion (2) in the commutative case, one observes some important
differences. The expansion (13) (i) does not contain negative powers of t, (ii) is non-local, and
(iii) is divergent in the limit Θ → 0.

For applications it is important to know the asymptotic expansion on the unsmeared heat
trace Tr(e−tD). Such an expansion cannot be obtained by simply taking l = r = 1 in the expres-
sions above since constant functions on Rm are not Schwartz class. Moreover, Tr(e−tD) contains
a trivial volume divergence which must be regularized away by subtracting the (unsmeared)
heat trace of ∆. The methods described above are still applicable, and after some calculations
one obtains [47]

Tr(e−tD − e−t∆) '
∑
n=2

t(n−m)/2asub
n (D),

asub
n (D) = aL

n(D) + aR
n (D) + amix

n (D),

where the coefficients aL
n (respectively, aR

n ) depend on left (respectively, on right) fields only.
In terms of the fields appearing in (8), (9) two leading coefficients read

aL
2 (D) = (4π)−m/2

∫
dmx l1(x), (14)

aL
4 (D) = (4π)−m/2 1

12

∫
dmx (6l1 ? l1 + ΩL

µν ? ΩLµν), (15)

where ΩL
µν = ∂µλν−∂νλµ +λµ ?λν−λν ?λν . The coefficients aR

2 and aR
4 are obtained from (14)

and (15) by replacing (l1, λ,ΩL) with (r1, ρ, ΩR). (Note, that aL,R
0 = 0 due to the subtraction

of the free heat kernel). The coefficients aL and aR are called planar because of their similarity
to planar diagrams of quantum field theory.

Mixed coefficients amix
n vanish for n ≤ m. The first non-zero coefficient is

amix
m+2(D) =

(detΘ)−1

(2π)m

(∫
dmxl2(x)

∫
dmyr2(y) + 2

∫
dmxλµ(x)

∫
dmyρµ(y)

)
.

This coefficient is non-local and divergent in the limit Θ → 0, as expected.
If Θ is degenerate, there can be mixed non-local heat kernel coefficients amix

n for n ≤ m. For
the reasons explained below, this can lead to problems with the renormalizability [19].

Heat kernel expansion for non-minimal operators, such as appear in NC gauge theories, was
constructed in [39].
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3.2 NC torus

Let us now turn to the noncommutative torus Tm
Θ . This space was first constructed by Con-

nes [11]. The heat kernel expansion on Tm
Θ was analyzed in [23]. Below we give a brief overview

of the results. On Tm
Θ it is not that essential whether Θ is degenerate or not, but instead some

number theory aspects play an important role.
One can bring T (l̄, r̄) to the form

T (l̄, r̄) =
√

g(4πt)−m/2
∑

q∈Zm

∑
k∈Zm

l̄−q r̄qe
− |θq−2πk|2

4t , (16)

where g is determinant of a (constant) metric on Tm. Each term under the sum in (16) is
exponentially small at t → 0 unless θq − 2πk = 0 for some q and k. However, this “smallness”
can be overcompensated by an infinite number of terms in the sum. To understand better what
is going on, let us consider the case when Θ has a block-diagonal form

Θ =
⊕

θi∈2πQ
θi

(
0 1
−1 0

) ⊕
θj∈R\2πQ

θj

(
0 1
−1 0

)
, (17)

where we separated rational and irrational (relative to 2π) values of the NC parameter. To
avoid the overcompensations mentioned above we have to assume that irrational θj satisfy the
Diophantine condition, i.e. that there are two constants C > 0 and β ≥ 0 such that for all
nonzero q ∈ Z

inf
k∈Z

|θjq − 2πk| ≥ C

|q|1+β
.

Generic form of the Diophantine condition which does not rely on a particular block-diagonal
form (17) of Θ can be found in [23]. The Diophantine condition means that θj cannot be too
well approximated by rational numbers and controls behavior of the exponent in (16). If this
condition is violated, the asymptotics of the heat trace are unstable (see Appendix B of [23]),
and, therefore, this case is not considered here.

Next we define a trace (which is proportional to the Dixmier trace)

Sp(L(l)R(r)) =
√

g
∑
q∈Z

l−qrq,

where the set Z ⊂ Zm consists of all q such that (2π)−1Θq ∈ Zm. Then, one can demonstrate,
that

T (l̄, r̄) = Sp(L(l̄)R(r̄))

up to exponentially small terms in t. Moreover, in terms of this trace the heat kernel coefficients
look precisely as in the commutative case! In particular, all odd-numbered coefficients vanish,
and

a0(l, r,D) = (4π)−m/2Sp(L(l)R(r)),

a2(l, r,D) = (4π)−m/2Sp(L(l)R(r)E), (18)

a4(l, r,D) = (4π)−m/2 1
12

Sp(L(l)R(r)(6E2 + 2∇2E + Ω̂µνΩ̂µν)).

Here Ω̂µν = ∇µ∇ν −∇ν∇µ = L(ΩL
µν)−R(ΩR

µν).
Let us stress that all heat kernel coefficients are non-local.
By using the results described above one can calculate the spectral action for a U(1) gauge

field on T4
Θ [23]. Rather unexpectedly, all non-local terms disappear, and one gets the standard

action of NC QED.
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3.3 Finite-temperature manifolds

To describe finite temperature effects in quantum field theory one often uses the imaginary
time formalism where the Euclidean time variable is periodic with the period equal to the
inverse temperature. For this reason, one studies NC quantum field theory on R3 × S1. The
most interesting case is, of course, when a compact coordinate on S1 does not commute with
a non-compact coordinate. The heat kernel expansion for the operator (7) with ρ = λ = 0 was
considered in [40] assuming for simplicity that non-compact coordinates on R3 commute between
themselves. It was found that planar coefficients still have the same form as above, see (14)
and (15). In the mixed sector odd-numbered non-local coefficients appear. Even-numbered
mixed coefficients vanish in this case.

3.4 Isospectral deformation manifolds

Isospectral deformation [13, 14] is a way to define a Moyal-like star product on curved manifolds.
Suppose, we have several commuting isometries acting on a manifold. Then one can define a star
product which includes derivatives only with respect to the coordinates which correspond to the
isometries. One can do some spectral theory on such manifolds as well. In particular, one can
analyze the Dixmier traces [22], analyze the mixing between ultra violet and infra red scales
by the heat kernel methods [18], and calculate some of the heat kernel coefficients [23]. It
is interesting to note, that if the action of the isometries has fixed points, there are specific
contributions to the heat kernel expansion coming from these points or submanifolds.

One can define a Moyal-like star product also for a position dependent noncommutativity, but
then Θ must be degenerate [20]. The heat kernel expansion was analyzed on such manifolds [20]
by using the methods of covariant perturbation theory [4].

4 Other NC spaces

4.1 Noncommutativity and the standard model of elementary particles

Noncommutative geometry can provide an explanation of the spectrum of particles in the stan-
dard model. In the works devoted to this approach it is assumed that space-time is the product
of a four-dimensional manifold by a finite noncommutative space. The heat-kernel part of the
calculations of the spectral action is quite standard. Therefore, we do not go into details here.
It is worth noting that the coincidence with the observed properties of elementary particles is
remarkable. The interested reader may consult the paper [9] and references therein.

4.2 Field theories with an oscillator potential

To achieve renormalizability of φ4 theory on R4
Θ at all orders of perturbation theory one has to

modify the action by adding an oscillator potential term [29]

So.p. =
Ω2

2

∫
d4x(x̃µφ) ? (x̃µφ),

where x̃µ = 2(Θ)−1
µν xν , and Ω is a parameter. This term leads to an additional potential in D

which behaves as x2. In the presence of a potential which grows at infinity the heat kernel
expansion is modified essentially even in the commutative case. In the NC case, the heat kernel
expansion was constructed in [27, 28] and used to study an induced gauge field action (in the
spirit of the spectral action principle, see Section 2).
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4.3 Fuzzy spaces

Roughly speaking, fuzzy spaces are constructed by taking the harmonic expansion on a usual
compact space and truncating it at a certain level. This truncated set of the harmonics is not
closed under the usual point-wise product, and the most non-trivial part of this construction is
to introduce a new associative product on this set which tends to the usual product when the
truncation goes to infinity. For example, in the case of fuzzy S2 [34] this is done in the following
way. Let x̃a be coordinates on R3 subject to the restriction

∑3
a=1(x̃

a)2 = 1 (so that x̃a become
coordinates on S2). Any function on S2 can be expanded in a sum of homogeneous polynomials
of x̃a. By restricting the order of these polynomials to less than some number n one obtains
functions on a fuzzy version of S2. A suitable multiplication is obtained by identifying x̃a with
certain elements of the algebra of complex n× n matrices. The restriction to lowest harmonics
makes it hard to distinguish points on the two-sphere, so it becomes “fuzzy”.

From the point of view of the heat kernel expansion one property of the fuzzy spaces is
most important: the spaces of functions are finite dimensional. Consequently, the heat trace
Tr(e−tD) becomes a finite sum, and in the limit t → 0 no inverse powers of t may appear.
However, Sasakura [37, 38] has demonstrated numerically that the expansion (2) appears for
intermediate values of t. Correct heat kernel coefficients (3)–(5) were reproduced both for
f = 1 [37] and f 6= const [38] for a number of fuzzy spaces. Analytical understanding of this
fact is still missing.

4.4 Curved Moyal spaces

The most obvious way to model a curved Moyal space is to replace in (7) the constant met-
ric gµν by an operator L(gµν) with a metric gµν(x) which depends on NC coordinates. Spectral
properties of such operators in a two-dimensional case were analyzed in [46]. Though one can
define suitable Dirac and Laplace operators and formulate relations between them (e.g., a gene-
ralization of the Lichnerowicz formula), practical calculations of the heat kernel coefficients
become very cumbersome. The best one can do is to impose the conformal gauge condition
on the metric, gµν = e−2ρδµν , and calculate the coefficient a2 as power series expansion in the
conformal factor ρ(x). There seems to be no obvious relation of this coefficient to geometric
invariants. It could be that difficulties with analyzing spectral properties of operators on curved
Moyal spaces are related to known problems with formulation of a gravity theory on such spaces
(for a review, see [41]).

From the technical point of view, the difficulties with constructing the heat kernel expansion
in the case under consideration are caused by deformation of the leading symbol (the part with
the highest explicit derivatives) of the Laplacian. Similar problems appear in another version
of NC gravity which considers gµν which as a matrix in some internal space for each pair (µ, ν)
(see, [2]). Relevant operators become non-minimal (strictly speaking, they are not Laplacians
any more). Despite some recent progress [3], actual calculations of the heat trace asymptotics
for such operators remain a complicated task.

5 Application: renormalization and anomalies

To study one-loop effects in quantum field theory the background field method is frequently
used. One decomposes all fields φ in their background values ϕ and quantum fluctuations δφ,
φ = ϕ + δφ. Then one expands the classical action retaining the part which is quadratic in δφ
only. The result can usually be presented in the form

∫
dmx (δφ)D(δφ) where the operator D

depends on ϕ. A typical form of D in NC theories is given by (7). For example, in NC φ4

theory l1 ∼ r1 ∼ ϕ ? ϕ and l2 ∼ r2 ∼ ϕ. The one loop effective action is given formally by
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ln det(D), and, in the framework of the zeta function regularization [16, 30], its’ divergent part
is proportional to an unsmeared heat kernel coefficient

Wdiv = − 1
2s

am(D),

where s is a regularization parameter which should be taken 0 at the end of the calculations. The
divergences appearing in the limit s → 0 must be absorbed in redefinitions of the parameters in
classical action. To make this possible, am(D) should repeat the structure of the classical action.
(On a side note, let us remark that in the framework of the spectral action principle am, together
with other coefficients, defines the classical action, cf. Section 2). In the case of NC φ4 on R4

Θ

planar heat kernel coefficients aL
4 (D) and aR

4 (D) satisfy this requirement, and the corresponding
mixed coefficient vanishes, amix

4 (D) = 0. We can conclude that there are no problems with one-
loop renormalization of NC φ4 on the plane (see [47] for details and further references).

On the NC torus T4
Θ the situation is more subtle. By substituting the functional form of l1,2

and r1,2 given in the previous paragraph in (18) one obtains (for pure Diophantine Θ) non-
local divergent terms of the form

∫
ϕ ·

∫
ϕ ? ϕ ? ϕ and (

∫
ϕ2)2. By imposing anti-periodic

conditions on ϕ one can achieve
∫

ϕ = 0 and thus kill one type of the divergences. Next, to
achieve matching between one-loop divergences and the classical action we add a term (

∫
φ2)2

to the classical action. Fortunately, this procedure closes: the new term in the classical action
does not generate new types of the one-loop divergences. The renormalizability at this order is
restored [23].

As an example of applications of the heat kernel expansion to anomalies and anomalous
actions in NC theory let us consider calculations of an induced Chern–Simons action on T3

Θ [48].
The one-loop effective action for 3-dimensional Dirac fermions is defined by determinant of the
Dirac operator

/D = iγµ
(
∂µ + iL(AL

µ) + iR(AR
µ )

)
.

A peculiar feature of the approach we follow here is the presence of two U(1) gauge fields,
AL

µ and AR
µ , which are naturally coupled to two conserved currents [48]. It is known [1, 36, 15]

that the parity-violating part of the effective action (the parity anomaly) reads

W pv = i
π

2
η(0),

where the η-function is defined as a sum over the eigenvalues λn of the Dirac operator: η(s) =∑
λn>0(λn)−s −

∑
λn<0(−λn)−s. By repeating the arguments known from the commutative

case [1], one can show that variation of the eta invariant under small variations of the gauge
fields is

δη(0) = − 2√
π

a2(δ /D, /D
2).

In the zeta regularization, W pv = 1
2SCS, where SCS is the Chern–Simons action. Now, let us

suppose that Θ12 = −Θ21 ≡ θ, Θ13 = Θ23 = 0, and that θ/(2π) = P/Q is rational. Then, by
combining the formulae above with known heat kernel coefficients on NC torus (18) one obtains,
that the Chern–Simons action in this case consists of three terms SCS = SL

CS+SR
CS+Smix

CS , where
first two terms depend exclusively on AL or AR respectively and coincide with induced Chern–
Simons actions on the NC plane [10, 26]. The third, mixed, term reads

Smix
CS = − i

2π

∫
d3x

√
gεµνρ[AL

µ ]Q∂ν [AR
ρ ]Q.
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It depends on the parts [AL,R
µ ]Q of the gauge fields which are periodic in x1 and x2 with the

period (2π)/Q. Such fields remind us of solid state physics and correspond to a crystal consisting
of Q×Q fundamental domains.

More examples of applications of the heat kernel expansion to renormalization and anomalies
in NC theories, as well as comparison to the results obtained by other methods and further
references can be found in [18, 19, 20, 23, 27, 39, 40, 46, 47, 48].

6 Conclusions and open problems

As we have already seen, the heat kernel expansion on NC spaces looks much more complicated
than in the commutative case. The very structure of the expansion depends crucially on com-
pactness of the manifold and on whether Θµν is degenerate or not. In the compact case, the
number theory aspects play an important role. Nevertheless, the case of the Moyal product and
of flat noncommutative dimensions is understood quite well, though general analytic formulae
are not always available.

At the same time, very little is known about the case when the NC coordinates are curved
(i.e., when the Riemann metric depends on these coordinates). Even a proper generalization
of the Laplace operator is still missing. The same is true for a generic position dependent NC
parameter Θµν which leads to a star product of the Kontsevich type [33]. The problem seems to
be deeper than just a technical one. In these two cases, even classical actions, symmetries and the
structure of invariants, quantization rules are still to be determined. Note, that understanding
of the heat kernel expansion may in turn help to solve the problems mentioned above (e.g.,
through the spectral action principle).
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