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Abstract. A scheme is proposed which allows to obtain special q-oscillator models whose
characteristic feature consists in possessing two differing pairs of degenerate energy levels.
The method uses the model of two-parameter deformed q,p-oscillators and proceeds via
appropriately chosen particular relation between p and q. Different versions of quadratic
relations p = f(q) are utilized for the case which implies two degenerate pairs E1 = E2 and
E3 = E4. On the other hand, using one fixed quadratic relation, we obtain p-oscillators
with other cases of two pairs of (pairwise) degenerate energy levels.
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1 Introduction

The celebrated model of harmonic oscillator in quantum mechanics is distinguished as funda-
mental model applicable to a plenty of real physical systems. But, when applying the harmonic
oscillator for description of real systems, there is often a substantial discrepancy between theo-
retical results and experimental data. Therefore, to make description of a physical system more
successful, it is natural to explore modifications of the model. For this goal, several deformed
versions of the commutation relations of conventional harmonic oscillator have been proposed.
Probably, the simplest modified version of the oscillator is the model introduced in [1], namely
the Arik–Coon (AK) q-deformed oscillator. Subsequently, other types of deformed oscillators
have been also written out: q-oscillator of Biedenharn and Macfarlane (BM) [2, 3], the so-
called Tamm–Dancoff (TD) deformed oscillator [4, 5], the q,p-oscillators [6], and more general
models [7, 8, 9].

No doubt, various deformed oscillators, both known and new ones, deserve detailed study.
In our paper we analyze unusual degeneracy properties of energy levels of q,p-oscillators (for
real q, p) and obtain, on their base, certain q-deformed or p-deformed oscillators possessing the
property of simultaneous two degeneracies within two certain pairs of energy levels.

A “no-go” theorem is known in quantum mechanics stating that, in one dimension, the
discrete spectrum of any conventional quantum mechanical system with quadratic kinetic term
and nonsingular potential V (x) does not admit degeneracy of energy levels [10], see also [11]
for some examples going beyond the statement. However, there certainly exist more general,
than conventional, systems of quantum mechanics which possess such a property as degeneracy of
some energy levels, even in the absence of any obvious symmetry (we mean so-called “accidental”
degeneracy). Deformed oscillators (q-oscillators, q,p-oscillators) can supply large class of such
systems. As recently demonstrated in [12], the TD deformed oscillator is just such a special model
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which possesses “accidental” double degeneracy within a pair of energy levels, at appropriately
fixed value of q. Note that the TD oscillator is contained as a reduced q = p one-parameter case
in the two-parameter generalized family of q,p-oscillators. What concerns the q,p-oscillator, it
can be proven [13] that, for appropriate q and p, double degeneracy within the corresponding pair
of energy levels takes place. Moreover, starting from the two-parameter deformed oscillators,
a plenty of q-deformed or p-deformed oscillators can be derived which manifest the property,
completely analogous to the above mentioned accidental double degeneracy of the TD oscillator,
occurring at definite values of q or p.

The aim of our paper is to demonstrate the existence of special q-oscillator models possessing
two double degeneracies (occurring within two different pairs) of energy levels, namely to de-
scribe a procedure that allows to obtain such q-oscillator models from the two-parameter family
of q,p-oscillators. In most of the considered particular cases we also show graphically the shape
of the energy as function of the quantum number n at fixed deformation parameter(s).

The plan of the paper is the following. In Section 2 we recall necessary facts on the q,p-
oscillator and mention the property of TD oscillators to have double degeneracy. Other particular
examples of q-oscillators inferred using various functional dependencies p = f(q), are indicated
in Section 3 were different types (pairs) of degenerate energy levels are considered. In Section 4
we examine an interesting case of occurrence of two double degeneracies of particular pairs of
energy levels of q,p-oscillators for specially fixed values of q and p.

For each case of two double degeneracies, a graphical picture illustrating explicit dependence
of energy on the quantum number n is given. Last section is devoted to conclusions.

2 Necessary facts concerning q,p-oscillator

General two-parameter family of q,p-deformed oscillators is defined by the relations [6]

aa+ − qa+a = pN , aa+ − pa+a = qN , (1)
[N, a] = −a, [N, a+] = a+. (2)

From the two relations in (1) the main formulas (invariant under p ↔ q) do follow:

a+a = [[N ]]q,p, aa+ = [[N + 1]]q,p, [[X]]q,p ≡
qX − pX

q − p
. (3)

We take the Hamiltonian in the form analogous to usual quantum harmonic oscillator, i.e.,

H =
~ω

2
(aa+ + a+a). (4)

From now on, ~ω = 1 is put for simplicity. The q,p-analogue of the Fock space, with the vacuum
state |0〉 obeying a|0〉 = 0, is adopted. Then,

|n〉 =
(a+)n√
[[n]]q,p !

|0〉, N |n〉 = n|n〉 (5)

where [[n]]q,p! = [[n]]q,p[[n − 1]]q,p · · · [[2]]q,p[[1]]q,p, and the q,p-brackets are defined in (3). The
creation and annihilation operators act by the formulas

a|n〉 =
√

[[n]]q,p|n− 1〉, a+|n〉 =
√

[[n + 1]]q,p|n + 1〉. (6)

From (4)–(6), the spectrum H|n〉 = En|n〉 of the Hamiltonian reads:

En ≡ Eq,p(n) =
1
2

(
qn+1 − pn+1

q − p
+

qn − pn

q − p

)
=

1
2

(
n∑

r=0

qrpn−r +
n−1∑
s=0

qspn−1−s

)
. (7)
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At q → 1 and p → 1 one recovers the familiar result En = n + 1
2 as it should. Moreover, at

n = 0 we have En = 1
2 regardless of the values of q and p.

For real values of q and p belonging to the interval (0, 1], we study the issue of “accidental”
degeneracy of energy levels. The fact of double degeneracies of certain energy levels was first
revealed in the paper [12] where we examined the degeneracies of various pairs of energy levels
of TD type q-oscillator at the corresponding values of the parameter q. In [13], it is proved that
q,p-oscillators as well exhibit double degeneracy of energy levels. For instance, it is possible to
realize such degeneracy of energy levels as E2 = E3, or E0 = E4, or others. In that paper, we
dealt with real values of q and p belonging to the interval (0, 1].

Since our present paper is focused on the study of two double degeneracies of energy levels,
the easiest way to achieve this goal is to start with two-parameter q,p-oscillators and then reduce
them in a definite way to appropriate one-parameter q-oscillator or p-oscillator.

3 Two double (pairwise) degeneracies of energy levels

By exploiting the q-dependence of energy spectrum of various q-deformed oscillators we can
find that simultaneous degeneracy of more then one pair of energy levels is possible. In this
section, we develop a procedure for obtaining those special q- (or p-) oscillators which possess
the unusual property of two double degeneracies (within each of two pairs) of energy levels.

So, let us take the q,p-oscillators defined in (1)–(3) as our playground. In our whole treatment,
q and p attain real values from the interval (0, 1]. Obviously, the limit q → 1, p → 1 recovers
usual quantum oscillator.

It can be proved that the relation En−En+k = 0, with n and k being some fixed non-negative
integers, determines a continuous curve in the (q, p)-plane. The set of all such curves is naturally
divided into two sets (families):

1) n 6= 0, k ≥ 1 , 2) n = 0, k ≥ 2. (8)

The curves from the first family do not intersect with each other except for the two points (1, 0)
and (0, 1) which are nothing but the endpoints for each curve. The curves from the second family
have no common points; as k grows from 2 to infinity, their endpoints move along the both axes,
starting from the value (

√
5− 1)/2 at k = 2 and approaching at asymptotically large k to 1, on

each axis. Both the first and the second families in (8) share the property that the sequence of
curves which correspond to growing integer indices n + k and k respectively, have the tendency
of squeezing into the upper right corner given by the vertex (1, 1) and formed by the straight
lines q = 1, p = 1.

Now we go over to main point of our scheme: we shall apply different appropriate choices
of functional dependence p = f(q). This way, from general two-parameter q,p-oscillator we can
obtain various versions of one-parameter oscillator. The particular case studied in [12] is nothing
but the p = q reduction (TD oscillator), and in this paper we exploit other special dependencies
p = f(q) which can lead to the desired degeneracy properties. Besides, we often visualize the
explicit energy spectrum, with the occurring degeneracies, of those one-parameter oscillators
that are obtained by exploring a particular choice of p = f(q).

3.1 q-oscillator resulting from quadratic (parabolic) relation p = f(q)

(i) Let us take

p = α(q − β)2 + γ, (9)

where α, β, γ are the parameters of the curve. By inserting this in basic formulas for q,p-
oscillators, a particular one-parameter set of new deformed oscillators is obtained. The resulting
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Table 1. Values of the parameters in equation (12) corresponding to p = p0.

q1 q2 α β γ

p0 = 0.6 0.554400 0.900317 9.005207 0.727359 0.330613

q- (or p-) oscillators will possess the property of two double degeneracies of energy levels, if the
simultaneous degeneracy within each of, e.g., the following two pairs does occur:

E1 = E2, E3 = E4 (10)

(note that any other concrete two pairs of energy levels, except for E0 = E1, can be chosen).
In order that such two-fold double degeneracy (10) of energies would emerge, the curve

corresponding to relation (9) whose effect consists in reducing the q,p-oscillator to some one-
parameter q- or p-oscillator, should cross the curves E2−E1 = 0 and E4−E3 = 0 at the points
A(q1, p1) and B(q2, p2) respectively, where p1 = p2 = p0. Here, the coordinates q1 and q2 are
evaluated, at fixed p0, from solving the equations (10). Moreover, the curve (9) should contain
the point (1, 1) in order that p(1) = 1 since, obviously, each q- or p- oscillator at q → 1 and
p → 1 must turn into the usual harmonic oscillator.

Then, the following system of equations (recall, p1 = p2 = p0)

α(q1 − β)2 + γ = p1, α(q2 − β)2 + γ = p2, α(1− β)2 + γ = 1, (11)

is used for finding α, β, γ that specify the curve in (9). The solution of the system reads:

α =
1− p0

(1− q1)(1− q2)
, β =

q1 + q2

2
, γ = 1 +

(p0 − 1)
(1− q1)(1− q2)

(
1− q1 − q2

2

)2
. (12)

We put these α, β and γ in the parabolic relation (9) and get it completely specified. Then, by
inserting the inverted relation q = f−1(p) into the defining formulas (1)–(3) of q,p-oscillator we
derive a special p-oscillator such that at p = p0 the desired two-fold double degeneracy (i.e., the
simultaneous degeneracies (10) of two different pairs of energy levels) is guaranteed.

To illustrate the obtained pattern of degeneracies let us fix for example p = p0 = 0.6. Put
this value of p0 into equations in (10) and solve them for q1 and q2. As result, the numerical
values of q1 and q2 are at our disposal (we give them up to 6 digits). With these p0, q1 and q2

inserted in (12) we find α, β and γ; the entire set of values is placed in Table 1.
In Fig. 1 (left) the resulting picture of two-fold double degeneracy, see (10), is shown.
Note that the admissible values of p for the p-oscillator are such that p ∈ [pmin, 1] where pmin

is the minimal value of the function (9) whose image is the parabola. In case at hands,

pmin = γ = 0.330613.

It is of interest to visualize the behavior of energy En = E(n) as function of n for the so
obtained p-oscillator. Recall that the specified values q1, q2, α, β, γ are determined at the fixed
p0. Since a one-parameter deformed oscillator possesses, by construction, the desired property
of two double degeneracies occurring at the same p = p0, we should end up (not with the q-, but)
with the p-oscillator. Therefore, we invert the considered parabolic relation: taking q = f−1(p),
we substitute this in equation (7). Since the inverse f−1(p), given as

q = ±
√

p− γ

α
+ β, (13)

contains the “±” type ambiguity through pre-factor of square root (accordingly, we have right
or left branch of the parabola in Fig. 1 (left)), one should be careful when inserting this f−1(p)
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Figure 1. Left: Two double degeneracies of energy levels E1 = E2 and E3 = E4 occurring at the fixed
p ≡ p0 = 0.6. The parabolic curve p = f(q) is given by (9) with α, β and γ taken from Table 1 (q1, q2

are there, too). The parabola goes through the points (q1, 0.6), (q2, 0.6) and (1, 1) as it should. Right:
Energy spectrum Ep(n), at p = 0.6, given by the expression with “+” or “−” in (13) respectively for
n = 0, 1, 2 or n = 3, 4, 5, . . . (see main text). The two degeneracies E1 = E2 and E3 = E4 are evident.

Table 2. Values of the parameters in equation (14) corresponding to p = p0.

q1 q2 ã b̃ c̃

p0 = 0.6 0.554400 0.900317 −0.755814 28.020856 0.727359

into Eq,p(n) in (7): the two signs result in two expressions for the one-parameter Ep(n). Namely,
the “minus” square root enters the Ep(n) for n = 0, 1, 2, whereas the “plus” sign deter-
mines Ep(n) for the rest of levels n = 3, 4, 5, . . .. The resulting energy spectrum Ep(n), at
p = 0.6, with the occurring two degeneracies E1 = E2 and E3 = E4 is shown in Fig. 1 (right).

3.2 Hyperbolic/elliptic relations p = f(q) and the p-oscillators
possessing two double degeneracies

For completeness and also for comparison it is worth to consider, besides parabolic, the other
two cases of quadratic dependence of p on q: the hyperbolic and the elliptic ones.

(ii) Let us take

(p− ã)2 − b̃(q − c̃)2 = R2. (14)

For convenience, let R = 1 for what follows. Again we are able to design a p-oscillator possessing
two simultaneous double degeneracies. Fixing p in equations (10) as, say, p0 = 0.6 we solve
them to get q1 = 0.554400, q2 = 0.900317. Then we compose relevant system of three equations
analogous to (11), but now encoding the fact that the hyperbolic curve runs through the points
A(q1, p1), B(q2, p2), C(1, 1), where p1 = p2 = p0. Solving this system, we find the parameters ã,
b̃, c̃ in (14). The resulting set of numerical values is collected in Table 2.

With the obtained data we arrive at the picture shown in Fig. 2 (left). There, the two-fold
double degeneracy is manifest (now got due to hyperbolic relation p = f(q); it is the two branches
of hyperbola that again do the job). For clarity, the value p0 = 0.6 is also indicated.

The minimal admissible positive value pmin for the p-oscillator obtained by inserting q =
f−1(p) of this hyperbolic relation is found from

(pmin − ã)2 − b̃(Q− c̃)2 = 12,

where Q = q1+q2

2 ; for q1, q2 and ã, b̃, c̃ see Table 2. With these values, pmin = 0.244186.
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Table 3. Values of the parameters in equation (15) corresponding to p = p0 and ε = 0.1.

q1 q2 µ ν ρ

p0 = 0.6 0.554400 0.900317 0.727359 1.355234 0.294877
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Figure 2. Left: Same as on Fig. 1 (left), but now using hyperbolic relation (14) with ã, b̃ and c̃ given
in Table 2. As seen, the curve goes through the points (q1, 0.6), (q2, 0.6) and (1,1). Right: Same as on
the left panel, but here the elliptic relation (15) is used, with ε = 0.1 and µ, ν, ρ given in Table 3.

The points located below p = pmin can’t belong to the chosen curve and thus are not admitted
for the obtained p-oscillator; for those points (q, p) for which p < pmin, we have to construct
another one-parameter oscillator, using the relation p = f(q) compatible with fixed p0 and,
then, with the corresponding values q1, q2, ã, b̃, c̃.

(iii) Now let us take

(q − µ)2 + ε(p− ν)2 = ρ2, (15)

where µ, ν, ρ, ε (ε > 0 for this elliptic case) are the relevant parameters. By solving the system
of equations composed analogously to (11) these parameters are easily found and for p0 = 0.6
placed in Table 3.

The present case based on the elliptic relation p = f(q) in (15) is illustrated in Fig. 2 (right).
Our goal in this section was to construct special one-parameter deformed oscillators which

possess the property of two-fold double degeneracy of some two pairs of energy levels. Here,
the two pairs E1 = E2 and E3 = E4 where chosen, and we have succeeded to realize the goal.
Namely, starting from the two-parameter q,p-oscillators defined in (1)–(3), by imposing different
types of the quadratic relations p = f(q): parabolic, hyperbolic and elliptic, we have inferred the
corresponding versions of one-parameter p-deformed oscillators, all of them sharing the property
that simultaneously E1 = E2 and E3 = E4.

4 p-oscillators with other pairs of degenerate energy levels

The pairs E1 = E2 and E3 = E4 considered in the previous section, serve as typical examples
belonging to the first family in (8). In this section, we derive and explore one-parameter de-
formed oscillators with similar property of two-fold double degeneracy, but for another two pairs
of energy levels being specified. Moreover, we will distinguish the following two cases: (a) the
both pairs of energy levels belong to the second family in (8); (b) the two pairs are taken from
different families (i.e., mixed case).
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Table 4. Values of the parameters in equation (9) corresponding to p = p0 and equation (16).

q1 q2 α β γ

p0 = 0.4 0.264365 0.721012 2.923499 0.492688 0.247594
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Figure 3. Left: Intersection, at p0 = 0.4, of the curves E2 − E0 = 0 and E5 − E0 = 0 by the parabolic
curve (9) whose parameters α, β and γ are given in Table 4. Right: Simultaneous degeneracies, at p = 0.4,
of the levels E2 = E0 and E5 = E0 in the energy spectrum of the derived p-oscillator. Two formulas
for Ep(n), one for n = 0, 1, 2, the other for n = 3, 4, 5, . . . , realize the “±” dichotomy in (13).

4.1 p-oscillators from relation p = f(q): other pairs of energy levels

Here we construct, using only the parabolic relation (9) of p and q, the p-deformed oscillator
possessing two double degeneracies for the cases in which the both pairs of energy levels belong
to the first family in (8).

That is, following the same procedure as above, let us fix some two pairs (each one degenerate,
as we require) of energy levels from the second family in (8), say,

E2 − E0 = 0, E5 − E0 = 0. (16)

With some fixed p = p0, let it be p0 = 0.4, we solve the equations in (16) for q1, q2 and get:
q1 = 0.264365, q2 = 0.721012. Taking these into account, from the formulas (12) we find α, β
and γ which specify the parabolic curve (9), see Table 4 for the relevant set of data.

The resulting p-deformed oscillator does possess the prescribed pattern of degeneracies (16),
and in Fig. 3 (left) this is neatly seen. The shape of the related energy spectrum Ep(n) is
presented in Fig. (3) (right). Note the peculiar feature of non-monotonicity of the energy function
which is caused by the fact that, because of the “±” pre-factor of square root in (13), one should
use the two alternative expressions for Ep(n) when n = 0, 1, 2 or when n = 3, 4, 5, . . . .

Let us finally explore the mixed case. We use again the parabolic relation (9) of p and q, and
construct the p-deformed oscillator which possesses the two-fold double degeneracy for the case
when the two pairs belong to different families in (8). As a typical example let us take

E3 − E2 = 0, E4 − E0 = 0. (17)

Following the same procedure as above, having fixed p = p0 as, e.g., p0 = 0.4, we solve the
equations in (17) and obtain: q1 = 0.640778, q2 = 0.916515. Taking these into account, from
the formulas (12) we find α, β, γ (see Table 5), which completely specify the parabolic curve (9)
in this case.

As should, the resulting p-deformed oscillator acquires the prescribed pattern (17) of de-
generacies. In Fig. 4 (left) this pattern is clearly seen. The shape of the related energy spec-
trum Ep(n) is shown in Fig. 4 (right). Note again the peculiar feature of non-monotonicity of
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Table 5. Values of the parameters in equation (9) corresponding to p = p0 and equation (17).

q1 q2 α β γ

p0 = 0.4 0.640778 0.916515 20.006946 0.778648 0.019714
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Figure 4. Left: Intersection of the curves E4 − E0 = 0 and E3 − E2 = 0 by the parabolic curve (9),
at fixed p = p0 = 0.4 and with q1, q2, α, β and γ given in Table 5. Right: Energy spectrum at p = 0.4,
manifesting simultaneous degeneracies of the two pairs of energy levels E4 = E0 and E3 = E2.

the energy function caused by the fact that, because of the “±” pre-factor of square root in (13),
one should use the proper version of the two alternatives for Ep(n): one for n = 0, 1, 2, 3, the
other for n = 4, 5, . . . .

4.2 q-oscillator with two double degeneracies from linear relation of p and q

Above, we constructed one-parameter oscillators on the base of the two-parameter q,p-oscillator
by imposing specified quadratic relation p = f(q). It turns out however that two-fold double
degeneracy can be gained at the two-parameter level (q,p-deformed level) more simply, for two
definite (not arbitrary) pairs of energy levels. This is due to the fact that certain two curves
belonging to different families of En+k−En = 0 in (8) may merely intersect each other. Indeed,
this occurs if one curve is given by Ek − E0 = 0 from the second family in (8) with k being
high enough, and the other curve taken from the set En+l−En = 0, n 6= 0, with an appropriate
rather small n and l.

In such cases it may occur that the specified curves have simultaneously two different (mu-
tually p ↔ q symmetric) points of intersection. This implies the following: simultaneous degen-
eracies within two certain pairs of energy levels takes place at two distinct couples of fixed q, p
values.

The coordinates of the points where the curves E10 − E0 = 0 and E3 − E1 = 0 mutually
intersect are found from the equations

E10 = E0, E3 = E1. (18)

For the two intersection points (A) and (B) this yields:

(A) q1 = 0.567239, p1 = 0.823554; (B) q2 = 0.823554, p2 = 0.567239. (19)

Therefore, for either the pair (A) or the pair (B) in (19), the q,p-oscillator shows two double
degeneracies from (18). For more clearness we illustrate this fact graphically in Fig. 5 (left).
Besides, for obtaining one-parameter q-oscillator, it is now enough to take the relation p = f(q)
as linear function: p = αq+β, with α and β being such that the straight line passes through the
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Figure 5. Left: Intersection of the curves E10 − E0 = 0 and E3 − E1 = 0 at the points A(q1,p1) and
B(q2,p2), see (19) for numerical values, provides simultaneous degeneracies within the respective pairs of
energy levels. Right: The shape of energy spectrum En = Eq,p(n) of q,p-oscillator with q1, p1 or q2, p2

taken from (19). As seen, E0 = E10 and E1 = E3.

point (1, 1) and any one of the intersection points (A or B) of the considered curves, see Fig. 5
(left). The parameters α and β satisfy one of the two systems of equations{

αq1 + β = p1,
α + β = 1,

{
αq2 + β = p2,
α + β = 1,

so that the result is, respectively,

(A) ↔ α = 0.407722, β = 0.592278; (B) ↔ α = 2.452649, β = −1.452649. (20)

Substitution of the values from (19), either the first pair or the second, into the formula (7) for
the energy En = Eq,p(n) yields the actual shape of energy function, as shown in Fig. 5 (right).
Note the monotonicity of energy function of one-parameter deformed oscillator got from the
linear relation. If we exploit the relation p = αq + β with α and β of the case (A) in (20),
i.e. the line passing through (1, 1) and the point (A), we get the q-oscillator by excluding the
parameter p, or get the p-oscillator by excluding q where q = α−1(p − β). Though being on
equal footing, the two versions of one-parameter oscillator differ in the range of possible values
of q versus those of p: indeed, q ∈ (0, 1] for the q-oscillator whereas p ∈ [pmin, 1], pmin = β, for
the p-oscillator. The situation which arises if instead of (A) one uses the case (B) in (20), is
completely analogous to the previous case of (A): this follows from the symmetry q ↔ p.

5 Conclusions

By explicit treatment, we have confirmed that peculiarities of the energy spectrum of q-deformed
oscillator crucially depend on both the particular version of q-oscillator and, within each version,
on the specified value of deformation parameter. As it was shown in [12], the special TD (Tamm–
Dancoff) version of q-deformed oscillator admits the possibility of appearance, for proper q, of the
“accidental” double degeneracy within any one chosen pair of energy levels. In the present paper,
we have demonstrated how to obtain one-parameter p-deformed oscillators with the property
of simultaneous degeneracy within each of the two specified pairs of energy levels. Having
chosen two pairs of energy levels, in particular, those given in (10), we applied different cases of
quadratic relation p = f(q): parabolic, hyperbolic and elliptic ones, to the two-parametric q,p-
oscillator. On the other hand, with the specified parabolic dependence we treated and obtained
the cases of p-oscillator such that the pairs of energy levels (16) or (17) exhibit the two-fold
double degeneracy.
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We have also found that two double degeneracies can be achieved in the general two-parameter
case, without imposing any particular relation p = f(q), but only if the two pairs of energy levels
belong to some more special subset. The typical example, E0 = E10 and E1 = E3 in (18), has
been considered and shown to provide the intersection points A(q1, p1) and B(q2, p2) in the (q, p)
plane which lead, in the two-parameter case, to the desired two double (pairwise) degeneracies.
These same two degeneracies E0 = E10 and E1 = E3 do hold for some one-parameter reduction
in which the q-oscillator is drawn by imposing linear relation p = αq + β.

The obtained energy spectra are mainly given by non-monotonic function: as seen from
Fig. 1 (right), Fig. 3 (right), Fig. 4 (right), in each of these cases the energy function Ep = Ep(n)
consists of two distinct parts, and this is rooted in the “±” ambiguity of the inversion q = f−1(p),
see (13) for example. In contrast, the situation described in Section 4.2 results in the monotonic
energy function Ep(n) since there is no ambiguity in inverting the linear dependence: q = f−1(p).

It is worth to point out that in our paper we have in fact also encountered the case of three-
fold energy level degeneracy, see Fig. 3 (right), where the energies E0, E2 and E5 do coincide.
Clearly, the proposed approach to the deformed q,p-oscillators and their various one-parameter
reductions is suitable for exploration of the degeneracies of energy levels occurring in more
complicated patterns such as, e.g., three double (pairwise) degeneracies and others.

Let us make a remark concerning the “no-go” theorem mentioned in the Introduction. The
fact that q,p-oscillators, their special p = q case known as the TD oscillator, and the new
deformed oscillator models treated in this paper, really circumvent the theorem and exhibit
various patterns of “accidental” degeneracies, is well explained by more involved structure of
those quantum-mechanical systems where relevant features should appear: position dependent
mass, the potential being a function of both coordinate and momentum, etc. (see e.g., [7, 14, 15]).

It would be of interest to analyze possible peculiarities of applying, along the lines similar to
those in [16, 17, 18], the respective versions of q-Bose gas model based on the above constructed
novel, nonstandard q-oscillators, in order to examine their efficiency for description of the non-
Bose type features shown by the data on pion correlations collected in experiments on relativistic
heavy ion collisions. Certainly, other applications of the exotic deformed oscillators treated in
this paper are worth of detailed study.
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