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Abstract. The self-localized quasi-particle excitation of the electron-positron field (EPF) is
found for the first time in the framework of a standard form of the quantum electrodynamics.
This state is interpreted as the “physical” electron (positron) and it allows one to solve the
following problems: i) to express the “primary” charge e0 and the mass m0 of the “bare”
electron in terms of the observed values of e and m of the “physical” electron without
any infinite parameters and by essentially nonperturbative way; ii) to consider µ-meson as
another self-localized EPF state and to estimate the ratio mµ/m; iii) to prove that the self-
localized state is Lorentz-invariant and its energy spectrum corresponds to the relativistic
free particle with the observed mass m; iv) to show that the expansion in a power of the
observed charge e � 1 corresponds to the strong coupling expansion in a power of the
“primary” charge e−1

0 ∼ e when the interaction between the “physical” electron and the
transverse electromagnetic field is considered by means of the perturbation theory and all
terms of this series are free from the ultraviolet divergence.
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1 Introduction

It is no doubt at present that the Standard Model is the fundamental basis for the theory of the
electro-weak interaction [1]. It means that the quantum electrodynamics (QED) is actually the
part of the general gauge theory. Nevertheless, QED considered by itself as the isolated system
remains the most successful quantum field model that allows one to calculate the observed
characteristics of the electromagnetic processes with a unique accuracy (for example, [2, 3]).
It is well known that these calculations are based on the series of rules connected with the
perturbation theory in the observed charge e of the “physical” electron and the renormalization
property of QED. The latter one means that the “primary” parameters of the theory (the charge
e0 and the mass m0 of the “bare” electron) that are defined by the divergent integrals, can be
excluded from the observed values. However, even the creators of the present form of QED
were not satisfied because “the calculation rules of QED are badly adjusted with the logical
foundations of quantum mechanics and they cannot be considered as the satisfactory solution
of the difficulties” [4, § 81] and “it is simply a way to sweep the difficulties under the rug” [5].

There are a number motivations for calculation of the “bare” electron characteristics e0
and m0 in spite the fact that these values are unobserved. First of all it is the question whether
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the system of Maxwell and Dirac equations as the mathematical model for the quantum field
system is closed and self-consistent when considering the processes related to the interaction of
electrons, positrons and photons? In that sense QED in the existing form of renormalization
is an unclosed theory because it includes an additional, external dimensional parameter which
enables the regularization of integrals. The contradiction between the small value of the coupling
constant and its infinite calculated value shows a logical inconsistency of the perturbation theory
in QED, so called “Landau pole” [6, § 128]. It is very important to consider the renormalization
problem in the framework of the “logical principles of quantum mechanics” in order to develop
some new nonperturbative approach in the field theory in application to the real physical system
with completely defined Hamiltonian. At present nonperturbative methods are mainly studied
for quite abstract quantum field models with a strong interaction (for example, [7]). Such
methods may be especially interesting for the non-renormalized quantum field models.

It is also very essential that the dynamical description of the internal structure of the “phys-
ical” electron gives the fundamental possibility to consider µ-meson as an excited state of the
electron-positron field as it has been shown by Dirac [8].

The relation between the “primary” coupling constant e0 and the charge e is undetermined
in the present form of QED. Therefore it is possible that the value e0 is large in spite the ob-
served renormalized charge being small e � 1. Precisely this possibility (e0 > 1, but e � 1) is
investigated in the present paper in order to find a spectrum of the quasi-particle excitations in
QED without the perturbation theory. Our main goal is to find such a form of the renormaliza-
tion that would be logically consistent but the calculation possibilities of QED for the observed
values would be preserved.

It is important to stress that the canonical QED model is considered with a nonzero mass of
the “bare” electron m0 6= 0 and without the chiral symmetry. This approach is distinguished
essentially from the nonperturbative analysis of the strong coupling QED model with a zero
mass of the fermion field (for example, [9, 10] and citation therein). In the latter case the
observed particle mass appears as the result of spontaneous breaking of the chiral symmetry,
however, the cut-off momentum L is another undefined parameter in such theories.

The article is structured in the following way. In Section 2 it is shown for the first time that
the self-localized one-particle excitation can be found in the spectrum of QED Hamiltonian.
This state cannot be calculated by means of the perturbation theory as a power series of the
coupling constant e0. The stability of this state is conditioned by a localized charge distribution
of the electron-positron field coupled with a scalar component of the electromagnetic field.
The system of nonlinear equations for these spatially localized distributions is derived and its
numerical solution is obtained.

In Section 3 the self-localized excitation is interpreted as the “physical” electron with the
observed values of the charge e and mass m. It allowed us to express characteristics e0 and m0

of the “bare” electron that are actually the parameters of the initial Hamiltonian in terms of e
and m. It is shown that the relation between these values includes the singularity in the limit
of e → 0 and cannot be calculated by means of the perturbation theory. This result cannot be
also obtained in the framework of the “quenched QED” model based on the Schwinger–Dyson
equation [11] or on the variational approach [12] because the charge renormalization did not
take into account in this model.

The considered physical interpretation of the self-localized state leads also to an important
consequence. It is shown in Section 3 that there is another one-particle excitation of the electron-
positron field with the same charge and spin as for electron but with the larger mass. Following
Dirac [8] this excitation was considered as the “physical” µ-meson and the ratio m/mµ is cal-
culated. The calculated mass of µ-meson proved to be very close to its experimental value. It
is essential that unlike [8] the µ-meson mass is calculated without any additional parameters of
the model with the exception of e0 and m0.
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The localized charge distribution in the “physical” electron corresponds to the spontaneous
Lorentz symmetry breaking for the considered system. This phenomenon is typical for the
quantum field theories with the particle-field strong coupling (for example, the “polaron” prob-
lem [13, 14]). It is shown in Section 4 that reconstruction of this symmetry leads to the depen-
dence of energy of the excitation on its total momentum. It is essential that this dependence
corresponds exactly the relativistic kinematics of a free particle with the observed mass m.

It is shown in Section 5 that the strong coupling series in the initial QED Hamiltonian cor-
responds to the perturbation theory in terms of observed charge e ∼ e−1

0 � 1. However, all
high-order corrections of this perturbation theory is defined by the convergent integrals with-
out any additional cut-off parameters. The correspondence of these results with the standard
renormalization procedure when calculating the observed characteristics of the electromagnetic
processes is also discussed.

2 Self-localized state with zero momentum

It is well known that the spatially localized states are very important for a lot of quantum field
models. Let us remind the one-dimensional model for the scalar field with the Hamiltonian (for
example, [15]):

Ĥ =
∫
dx

1
2

{
π̂2 +

(
∂ϕ̂(x)
∂x

)2

+
1
2
λ

(
ϕ̂(x)2 − m2

λ

)2
}
,

with the field operators ϕ̂(x) and the corresponding momentum operators π̂.
This Hamiltonian has the eigenvector |ϕ〉 with the energy density localized in the vicinity

of an arbitrary point x0. With the zero total momentum of the system the energy density is
distributed as follows:

E(x) =
m4

2λ
cosh−4

[
m√
2
(x− x0)

]
, (1)

and corresponds to the finite total energy E0 = (2
√

2/3)(m3/λ). Lorentz-invariance of the
system leads to the relativistic dependence of the energy on the momentum of the localized
excitation [15].

It is important for the further discussion that the state (1) cannot be derived by means of the
perturbation theory based on the coupling constant λ connected with the nonlinear interaction.
One should separate the non zero classical component from the field operators ϕ(x) = 〈ϕ|ϕ̂|ϕ〉
averaged over the considered state even in the zeroth-order approximation. And the classical
function ϕ(x) is not reduced to the plane wave as in the zeroth-order perturbation theory. It is
satisfied to the nonlinear differential equation that is defined by the variation of the classical
functional.

The Fröhlich model for “polaron” problem gives another example [16]. This model corre-
sponds to the electron-phonon interaction in the ionic crystals and is described by the following
Hamiltonian:

Ĥ =
1
2
p̂2 +

∑
~k

a+
~k
a~k

+ 23/4

√
πα

Ω

∑
~k

1
k
(a~k

+ a+

−~k
)ei~k·~r.

In this case the spatially localized electron state (“polaron”) cannot be found also by means
of the perturbation theory in terms of the electron-phonon coupling constant α. The variational
wave function of the electron and the classical part of the phonon field u~k

= 〈a~k
〉 should be

calculated even in the zeroth-order approximation. The translational symmetry of the initial
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Hamiltonian leads to the dependence of the energy of this one-particle excitation on its total
momentum [14].

Let us now consider the nonperturbative analysis of the spectrum of the one-particle excita-
tions of the QED Hamiltonian that is defined by the following form (for example, [17]):

Ĥ =
∫
d~r :{ψ̂∗(~r)[~α(~p+ e0 ~̂A(~r)) + βm0]ψ̂(~r) + e0ϕ̂(~r)ρ̂(~r)− 1

2
(~∇ϕ̂(~r))2} : +

∑
~kλ

ω(~k)n̂~kλ
,

ρ̂(~r) =
1
2
[ψ̂∗(~r)ψ̂(~r)− ψ̂(~r)ψ̂∗(~r)]. (2)

We suppose here that the field operators are given in the Schrödinger representation, the
spinor components of the electron-positron operators being defined in the standard way [17]

ψ̂ν(~r) =
∑

s

∫
d~p

(2π)3/2
{a~psu~psνe

i~p~r + b+~psv−~p−sνe
−i~p~r},

ψ̂∗ν(~r) =
∑

s

∫
d~p

(2π)3/2
{a+

~psu
∗
~psνe

−i~p~r + b~psv
∗
−~p−sνe

i~p~r}.

In these formulas ~ = c = 1; the primary charge (−e0), e0 > 0 and m0 are considered as the
parameters of the model; the symbol :Ĥ : means the normal ordering of the operators excluding
the vacuum energy [4]; ~α, β are Dirac matrices; u~psν and v~psν are the components of the bispinors
corresponding to the solutions of Dirac equation for the free “bare” electron and positron with
the momentum ~p and spin s; a~ps(a+

~ps) and b~ps(b+~ps) are the annihilation (creation) operators for

the “bare” electrons and positrons in the corresponding states. The field operator ~̂A(~r) and the
operator of the photon number n̂~kλ

are related to the transversal electromagnetic field and their
explicit form will be written below.

This Hamiltonian corresponds to the Coulomb gauge [17], when the electron-positron field
interacts with the scalar field and with the transversal photons of the electromagnetic field. It
will be shown below that the reconstruction of the QED gauge symmetry connected with the
longitudinal field does not change the form of the considered one-particle excitation. In the
Coulomb gauge the operators of the scalar field

ϕ̂(~r) =
√

4π
∫
d~kϕ̂~k

ei
~k~r

can be excluded from the Hamiltonian [17]. For that purpose one should use the solution of the
operator equations of motion for ϕ̂~k

assuming that the “bare” electrons are point-like particles
and “self-action” is equivalent to the substitution of the initial mass for the renormalized one. As
a result the terms with scalar fields in the Hamiltonian are reduced to the Coulomb interaction
between the charged particles. However, this transformation of the Hamiltonian (2) can not be
used in this paper because only the dynamics of the mass renormalization is the subject under
investigation.

There is another problem connected with a negative sign of the term corresponding to the
self-energy of the scalar field. If the non-relativistic problems were considered then the operator
of the particle kinetic energy would be positively defined and the negative operator with the
square-law dependence on ϕ̂(~r) would lead to the “fall on the center” [18] as the energy minimum
would be reached at an infinitely large field amplitude. However, if the relativistic fermion field
is considered then the operator of the free particle energy (the first term in formula (2)) is
not positively defined. Besides, the states of the system with the negative energy are filled.
Therefore, the stable state of the system corresponds to the energy extremum(!) (the minimum
one for electron and the maximum one for positron excited states). It can be reached at the
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finite value of the field amplitude (see below). The same reasons enable one to successfully
use the states with indefinite metric [2] in QED although it leads to some difficulties in the
non-relativistic quantum mechanics.

According to our main assumption about the large value of the initial coupling constant e0
we are to realize the nonperturbative description of the excited state which is the nearest to the
vacuum state of the system. The basic method for the nonperturbative estimation of the energy
is the variational approach with some trial state vector |Φ1〉 for the approximate description
of the one-particle excitation. The qualitative properties of the self-consistent excitation in the
strong coupling limit [13] show that such trial vector should correspond to the general form
of the wave packet formed by the one-particle excitations of the “bare” electron-positron field.
Besides, the effect of polarization and the appearance of the electrostatic field ϕ(~r) should be
taken into account, so we consider |Φ1〉 to be the eigenvector for the operator of the scalar field.
Now, let us introduce the following trial vector depending on the set of variational classical
functions U~qs, V~qs, ϕ(~r) for the approximate description of the quasi-particle excited state of the
system:

|Φ1〉 ' |Φ(0)
1 (U~qs;V~qs;ϕ(~r))〉 =

∫
d~q{U~qsa

+
~qs + V~qsb

+
~qs}|0; 0;ϕ(~r)〉,

ϕ̂(~r)|0; 0;ϕ(~r)〉 = ϕ(~r)|0; 0;ϕ(~r)〉, a~qs|0; 0;ϕ(~r)〉 = b~qs|0; 0;ϕ(~r)〉 = 0. (3)

The ground state of the system is |Φ0〉 = |0; 0; 0〉, if we use the same notation. It corresponds
to the vacuum of both interacting fields.

Firstly, let us consider the excitation with the zero total momentum. Then the constructed
trial vector should satisfy the normalized conditions resulting from the definition of the total
momentum ~P and the observed charge e of the “physical” particle:

〈Φ(0)
1 | ~̂P |Φ(0)

1 〉 =
∑

s

d~q~q [|U~qs|2 + |V~qs|2] = ~P = 0,
∑

s

d~q [|Uqs|2 + |Vqs|2] = 1, (4)

〈Φ(0)
1 |Q̂|Φ(0)

1 〉 = e0
∑

s

d~q [|Vqs|2 − |Uqs|2] = e. (5)

The condition (4) requires that the functions Uqs and Vqs should depend on the modulus of the
vector ~q only. Besides, one should take into account that the trial vector |Φ(0)

1 〉 is not the accurate

eigenvector of the exact integrals of motion Q̂ and ~̂P as it represents the accurate eigenvector of
the Hamiltonian |Φ1〉 only approximately. Therefore, in the considered zero approximation the
conservation laws for momentum and charge can be satisfied only on average, and this leads to
the above written normalized conditions. Generally, equation (5) should not be considered as the
additional condition for the variational parameters but as the definition of the observed charge
of the “physical” particle at the given value of the initial charge of the “bare” particle. Therefore
the sign of the observed charge is not fixed a priori. Calculating the sequential approximations
to the exact state vector |Φ1〉 (see Section 4) should restore the accurate integral of motion as
well. An analogous problem appears in the “polaron” theory when the momentum conservation
law was taken into account for the case of the strong coupling (for example, [14, 19]).

The trial vector |Φ1〉 is actually the collective excitation of the system and in this respect the
variational approach differs greatly from the perturbation theory where the zero approximation
for a one-particle state is described by one of the following state vectors:

|Φ(PT )
1 e〉 = a+

~Ps
|0; 0; 0〉, |Φ1〉 ' |Φ(PT )

1 p〉 = b+~Ps
|0; 0; 0〉. (6)

These vectors do not depend on any parameters and are eigenvectors of the momentum and
charge operators. But they correspond to one-particle excitations determined by the charge e0 of
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the “bare” electron and the field ϕ(~r) = 0. We suppose that the introduction of the variational
parameters into the wave function of the zero approximation will enable us to take into account
the vacuum polarization.

It should be noticed that the another reason of inconsistency of the states (6) as the “physical”
electron states because of the low frequency photon field was considered recently in [20].

So, the following variational estimation for the energy E1(0) = E1 (~P = 0) of the state
corresponding to the “physical” quasi-particle excitation of the whole system is considered in
the strong coupling zero approximation:

E1(0) ' E
(0)
1 [Uqs;Vqs;ϕ(~r)] = 〈Φ(0)

1 |Ĥ|Φ(0)
1 〉, (7)

where the average is calculated with the full Hamiltonian (2) and the functions Uqs, Vqs, ϕ(~r)
are to be found as the solutions of variational equations

∂E
(0)
1 (Uqs;Vqs;ϕ(~r))

∂Uqs
=
∂E

(0)
1

∂Vqs
=
∂E

(0)
1

∂ϕ(~r)
= 0 (8)

with the additional conditions (4), (5).
It is quite natural, that the ground state energy is calculated in the framework of the consid-

ered approximation as follows:

E0 ' E
(0)
0 = 〈Φ0|Ĥ|Φ0〉 = 0.

Further discussion is needed in connection with the application of the variational princip-
le (7), (8) for estimating the energy of the excited state, because usually the variational principle
is used for estimating the ground state energy only. As far as we know it was first applied
in [21] for nonperturbative calculation of the excited states of the anharmonic oscillator with
an arbitrary value of anharmonicity. This approach was called the “principle of the minimal
sensitivity”. It was shown in our paper [22], that the application of the variational principle to
the excited states is actually the consequence of the fact that the set of eigenvalues for the full
Hamiltonian does not depend on the choice of the representation for eigenfunctions. As a result,
the operator method for solving Schrödinger equation was developed as the regular procedure for
calculating further corrections to the zero-order approximation. Later this method was applied
to a number of real physical systems and proved to be very effective when calculating the energy
spectrum in the wide range of the Hamiltonian parameters and quantum numbers ([23, 24, 25]
and the cited references).

The average value in equation (7) is calculated neglecting the classical components of the
vector field. They appear in the high-order corrections that are defined by the renormalized
charge e� 1 and can be considered by means of the canonical perturbation theory (Section 5).
It means that

〈Φ(0)
1 |ψ̂∗(~r)[~α ~̂A(~r)]ψ̂(~r)|Φ(0)

1 〉 = 0.

It should be noted that the possibility of constructing self-consistently the renormalized
QED at the non-zero vacuum value of the scalar field operator was considered before [26] but
the solution of the corresponding equations was not discussed.

Then the functional for determining the zero approximation for the energy of the one-particle
excitation is defined as follows:

E1(0) =
∫
d~r

∫
d~q

(2π)3/2

∫
d~q ′

(2π)3/2

∑
s,s′

∑
µ,ν

{U∗
q′s′u∗~q ′s′µ[(~α~q + βm0)µν + e0ϕ(~r)δµν ]Uqsu~qsν

− Vq′s′v∗~q ′s′µ[(~α~q + βm0)µν + e0ϕ(~r)δµν ]V ∗
qsv~qsν}ei(~q−~q ′)~r − 1

2

∫
d~r[~∇ϕ(~r)]2. (9)
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In order to vary the introduced functional let us define the spinor wave functions (not opera-
tors) which describe the coordinate representation for the electron and positron wave packets in
the state vector |Φ(0)

1 〉:

Ψν(~r) =
∫

d~q

(2π)3/2

∑
s

Uqsu~qsνe
i~q~r, Ψc

ν(~r) =
∫

d~q

(2π)3/2

∑
s

V ∗
qsv~qsνe

i~q~r. (10)

In particular, if the trial state vector is chosen in one of the forms (6) of the standard
perturbation theory, the wave functions (10) coincide with the plane wave solutions of the free
Dirac equation. For a general case the variation of the functional (9) by the scalar field leads to

E(0) =
∫
d~r{Ψ+(~r)

[
(−i~α~∇+ βm0) +

1
2
e0ϕ(~r)

]
Ψ(~r)

−Ψ+c(~r)
[
(−i~α~∇+ βm0) +

1
2
e0ϕ(~r)

]
Ψc(~r),∫

d~r [Ψ+(~r)Ψ(~r) + Ψ+c(~r ′)Ψc(~r ′)] = 1, (11)

ϕ(~r) =
e0
4π

∫
d~r ′

|~r − ~r ′|
[Ψ+(~r ′)Ψ(~r ′)−Ψ+c(~r ′)Ψc(~r ′)]. (12)

The main condition for the existence of the considered nonperturbative excitation in QED
is defined by the extremum of the functional (11) corresponding to a non-zero classical field.
The structure of this functional shows that such solutions of the variational equations could
appear only if the trial state vector simultaneously included the superposition of the electron
and positron wave packets. So, such solutions cannot be obtained by means of the perturbation
theory with the state vectors (6).

Equation (11) and the Fourier representation (3) for the trial vector clearly indicate that the
assumption concerning the localization of the functions Ψ(~r) near some point does not contradict
to the translational symmetry of the system because this point by itself can be situated at any
point of the full space with equal probability. The general analysis of the correlation between
the local breaking of the symmetry and the conservation of accurate integral of motion for the
arbitrary quantum system was considered in detail by Bogoluibov in his widely known paper
“On quasi-averages” [27]. A similar analysis of the problem in question will be given in Section 4.

Varying the functional (11) by the wave functions Ψ(~r) and Ψc(~r) taking into account
their normalization conditions leads to the equivalent Dirac equations describing the electron
(positron) motion in the field of potential ϕ(~r):

{(−i~α~∇+ βm0) + e0ϕ(~r)}Ψ(~r) = 0, {(−i~α~∇+ βm0) + e0ϕ(~r)}Ψc(~r) = 0. (13)

But it is important that in spite of the normalization condition (11) for the total state
vector (10) each of its components could be normalized differently∫

d~rΨ+(~r)Ψ(~r) =
1

1 + C
,

∫
d~rΨ+c(~r ′)Ψc(~r ′) =

C

1 + C
. (14)

The constant C is an arbitrary value up to now. It defines the ratio of two charge states
in the considered wave packet. As a result the self-consistent potential ϕ(~r) of the scalar field
depends on C because of the equation (12).

We should discuss the procedure of separating variables in more detail, because of the non-
linearity of the obtained system of equations for the wave functions and the self-consistent
potential. Since the considered physical system has no preferred vectors if ~P = 0, it is natural
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to regard the self-consistent potential as spherically symmetrical. Then the variable separation
for the Dirac equation is realized on the basis of the well known spherical bispinors [2]:

ΨjlM =
(

g(r)ΩjlM

if(r)Ωjl′M

)
.

Here ΩjlM are the spherical spinors [2] describing the spin and angular dependence of the
one-particle excitation wave functions; j, M are the total excitation momentum and its projec-
tion respectively, the orbital momentum eigenvalues are connected by the correlation l+ l′ = 2j.
It is natural to consider the state with the minimal energy as the most symmetrical one, cor-
responding to the values j = 1/2, M = ±1/2, l = 0; l′ = 1. This choice corresponds to the
condition according to which in the non-relativistic limit the “large” component of the bispinor
Ψ ∼ g corresponds to the electronic zone of the electron-positron field. Then the unknown
radial functions f , g satisfy the following system of the equations:

d(rg)
dr

− 1
r
(rg)− (m0 − e0ϕ(r))(rf) = 0,

d(rf)
dr

+
1
r
(rf)− (m0 + e0ϕ(r))(rg) = 0. (15)

The states with various projections of the total momentum should be equally populated
in order to be consistent with the assumption of the potential spherical symmetry with the
equation (12). So, the total wave function of the “electronic” component of the quasi-particle
excitation of the electron positron field is chosen in the following form:

Ψ =
1√
2
[Ψ1/2,0,1/2 + Ψ1/2,0,−1/2] =

(
g(r)χ+

0

if(r)χ+
1

)
,

χ+
l =

1√
2
[Ω1/2,l,1/2 + Ω1/2,l,−1/2], l = 0, 1. (16)

In its turn, the wave function Ψc is defined on the basis of the following bispinor:

Ψc
jlM =

(
−if1(r)ΩjlM

g1(r)Ωjl′M

)
. (17)

The radial wave functions f1, g1 in this case satisfy the following system of equations

d(rg1)
dr

+
1
r
(rg1)− (m0 + e0ϕ(r))(rf1) = 0,

d(rf1)
dr

− 1
r
(rf1)− (m0 − e0ϕ(r))(rg1) = 0. (18)

These equations correspond to the positronic branch of the electron-positron field with the
“large” component ∼ g1 in the non-relativistic limit.

It is important to note that the functions Ψ and Ψc satisfy the equations (13) that have the
same form. It imposes an additional condition of the orthogonality on them:

〈Ψc|Ψ〉 = 0. (19)

Taking into account this condition and also the requirement that the states with different
values of M should be equally populated one finds the “positronic” wave function

Ψc =
1√
2
[Ψc

1/2,0,1/2 −Ψc
1/2,0,−1/2] =

(
−if1(r)χ−0
g1(r)χ−1

)
,

χ−l =
1√
2
[Ω1/2,l,1/2 − Ω1/2,l,−1/2], l = 0, 1. (20)
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The equation for the self-consistent potential follows from the definition of ϕ(r) in for-
mula (12) taking into account the normalization of the spherical spinors [2]:

d2ϕ

dr2
+

2
r

dϕ

dr
= − e0

4π
[f2 + g2 − f2

1 − g2
1]. (21)

The boundary condition for the potential is equivalent to the normalization condition (5) and
defines the charge e of the “physical” electron (positron)

ϕ(r)|r→∞ =
e

4πr
=

e0
4πr

∫ ∞

0
r21dr1[f

2(r1) + g2(r1)− f2
1 (r1)− g2

1(r1)]. (22)

It is important to stress that the form of the functions given above is defined practically
uniquely by the imposed conditions. At the same time the obtained equations are consistent
with the symmetries defined by the physical properties of the system. The first symmetry is
quite evident and relates to the fact that the excitation energy does not depend on the choice
of the quantization axis of the total angular momentum.

Moreover, these equations satisfy the condition of the charge symmetry [2]. Indeed, by direct
substitution, one can check that one more pair of bispinors leads to the equations completely
coinciding with (15), (18)

Ψ̃jlM =
(
ig1(r)Ωjl′M

−f1(r)ΩjlM

)
, (23)

Ψ̃c
jlM =

(
−f(r)Ωjl′M

−ig(r)ΩjlM

)
. (24)

It means that these bispinors allow one to find another pair of the wave functions which are
orthogonal to each other and to the functions (16), (20) but include the same set of the radial
functions

Ψ̃ =
(

ig1(r)χ−1
−f1(r)χ−0

)
, Ψ̃c =

(
−f(r)χ+

1

−ig(r)χ+
0

)
. (25)

These functions differ from the set (16), (20) because they lead to a different sign of the
observed charge of the quasi-particle due to the boundary condition (22) and describe the “physi-
cal” positron.

The structure of the equation (13) shows that the considered variational method is consistent
with the gauge symmetry of the initial Hamiltonian. One can see that these equations are
invariant with respect to the following transformations:

~∇ ⇒ ~∇+ ie0 ~Al(~r),

Ψ(~r) ⇒ e−iβ(~r)Ψ(~r), ~∇β(~r) = e0 ~Al(~r),

with an arbitrary longitudinal potential ~Al(~r).
It means that the Hamiltonian (2) could be chosen in an arbitrary Lorentz gauge with the

classical components both for the scalar field ϕ(~r) and for the longitudinal field ~Al(~r) if the
following condition was fulfilled:

∆β(~r) = ρl(~r) = 0, ρl(~r) = Ψ+(~r)(~r · ~∇)Ψ(~r).

One can easily check that the condition ρl(~r) = 0 is fulfilled identically for the functions that
describes the quasi-particle above.

Let us now proceed to the solution of the variational equations. It follows from the qualitative
analysis that the important property of the trial state vector is the possibility to vary the relative
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contribution of the electronic and positronic components of the wave function. Therefore let us
introduce the variational parameter C in the following way:∫ ∞

0
r2dr[f2(r) + g2(r)] =

1
1 + C

,

∫ ∞

0
r2dr[f2

1 (r) + g2
1(r)] =

C

1 + C
.

The dimensionless variables and new functions can be introduced

x = rm0, E = εm0, e0ϕ(r) = m0φ(x),
e20
4π

= α0, u(x)
√
m0 = rg(r),

v(x)
√
m0 = rf(r), u1(x)

√
m0 = rg1(r), v1(x)

√
m0 = rf1(r). (26)

As a result the system of equations for describing the radial wave functions of the one-
particle excitation of the electron-positron field and the self-consistent potential of the vacuum
polarization can be obtained:

du

dx
− 1
x
u− (1− φ(x))v = 0,

dv

dx
+

1
x
v − (1 + φ(x))u = 0,

du1

dx
+

1
x
u1 − (1 + φ(x))v1 = 0,

dv1
dx

− 1
x
v1 − ( 1− φ(x))u1 = 0, (27)

φ(x) = α0

[∫ ∞

x
dy
ρ(y)
y

+
1
x

∫ x

0
dyρ(y)

]
, ρ(x) =

[
u2(x) + v2(x)− u2

1(x)− v2
1(x)

]
.

The mathematical structure of equations (27) is analogous to that of the self-consistent
equations for localized state of “polaron” in the strong coupling limit [14]. Therefore the same
approach can be used for the numerical solution of these nonlinear equations. It has been
developed and applied [28] for the “polaron” problem on the basis of the continuous analog of
Newton’s method.

Let us take into account that the system of equations (27) can be simplified because the
pairs of the functions u, v and u1, v1 are satisfied by the same equations and differ only by the
normalized condition. Therefore they can be represented by means of one pair of functions if
special notations are used:

u =

√
1

1 + C
u0, v =

√
1

1 + C
v0, u1 =

√
C

1 + C
v0, v1 =

√
C

1 + C
u0,∫ ∞

0
dx[u2

0(x) + v2
0(x)] = 1, ρ0(x) = u2

0(x) + v2
0(x),

du0

dx
− 1
x
u0 − (1− φ(x))v0 = 0,

dv0
dx

+
1
x
v0 − (1 + φ(x))u0 = 0,

φ(x) = α0
1− C

1 + C
φ0(x), φ0(x) =

∫ ∞

x
dy
ρ0(y)
y

+
1
x

∫ x

0
dyρ0(y). (28)

The energy of the system (11) can also be calculated by these functions:

E1(0) ≡ E(0) = m0
1− C

1 + C

[
T +

1
2
α0

1− C

1 + C
Π
]
,

T =
∫ ∞

0
dx[(u′0v0 − v′0u0)− 2

u0v0
x

+ (u2
0 − v2

0)], Π =
∫ ∞

0
dxφ0(u2

0 + v2
0). (29)

and equation (28) can be obtained when varying of the functional (29).
The required solutions are to be normalized and this condition defines the asymptotic be-

havior of the functions near the integration interval boundaries:

u0 ≈ Ax

[
1 +

1− φ2(0)
6

x2

]
, v0 ≈ A

1− φ(0)
3

x2, x→ 0,

u0 ≈ A1 exp(−x), v0 ≈ −A1 exp(−x), x→∞.
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Figure 1. Localized wave functions of the quasi-
particle excitation; x = r/r0 = 2|a0|r

re
, u0 =

ξxg(xr0), v0 = u0 = ξxf(xr0), ξ = 1
4 ( α

|a0|m )3/2.

Figure 2. Self-consistent potential of the exci-
tation; x = r/r0 = 2|a0|r

re
, φ0(x) = e

2|a0|mϕ(xr0).

The value

a = α0
1− C

1 + C
, (30)

is the free parameter of the equations (28) and it plays a role of the eigenvalue when the nontrivial
normalized solution exists.

The method for the numerical solution of the nonlinear self-consistent system of the equa-
tions (28) was described in detail in the paper [29]. Only the numerical results for the localized
wave functions and for the scalar potential are described in the present work. Certainly, the nu-
merical value for the parameter a depends on the accuracy of the finite-difference approximation
for the differential operators in the whole interval of integration. The value a was calculated
more accurately in comparison with [29]:

a = a0 ≈ −3.531. (31)

Fig. 1 shows the solutions u0, v0 for the electron and positron components of the excitation
that are localized in the domain with the linear size of ∼ m−1

0 . Fig. 2 represents the self-
consistent potential φ0 that provides stability of the system in this domain and corresponds to
the value a0. It gets over the Coulomb potential of the “physical” charge e for r > r0 = m−1

0 .
It is important that the characteristic size of this excitation r0 is the same order as the classical
radius of the electron re = α/m, namely r0 = re

2|a0| ≈ 0.15re (see below equation (38)).

3 Physical interpretation of the quasi-particle excitation
and estimation of the µ-meson mass

The stationary localized collective excitation of the electron-positron field described above is
of great interest by itself as the eigenvector of the well known QED Hamiltonian that cannot
be calculated by means of the perturbation theory and has not be considered before. But it
is also essential to find its physical interpretation because the only stable objects observed in
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the electrodynamic processes are electrons (positrons) and photons. Therefore it is natural to
suppose that this localized state describes the “physical” electron (positron) with the observed
charge e. The integral charge of the considered one-particle excitation is defined by the boundary
condition (22) and this supposition leads to:

e0
(1− C)
(1 + C)

= e. (32)

Taking into account the definition (30) one can found the following relation between the
“primary” coupling constant α0 = e20/4π and the observed value of the fine structure constant
α = e2/4π

α0 =
a2

0

α
≈ 1708.1. (33)

This formula defines the renormalization of the charge in the considered approximation
and shows self-consistency of the initial supposition that the interaction between the “pri-
mary” electron-positron and scalar fields is strong. Then the renormalization constant [2]
(α = Z(α)α0) is:

Z(0)(α) =
α2

a2
0

. (34)

It should be stressed once more that the large value of the “primary” coupling constant
α0 does not mean at all that the perturbation theory cannot be applied for the calculation of
the observed physical values. In connection with it let us remind that the “primary” coupling
constant in the existed form of QED tends to infinity (α0 → ∞) because of “Landau pole” [6,
§ 128]. Nevertheless, it can be excluded from the observed values by means of the renormalization
procedure. In our representation the large but finite value of α0 is important only for the
formation of the initial basis of the self-localized states but it is also excluded when calculating
the observed physical values in a power series of the “physical” coupling constant α ' α−1

0 � 1.
However, in this case one can avoid the divergent integrals when performing the renormalization
procedure (see below Section 5).

The QED Hamiltonian (2) is defined with e0 > 0 and the integral charge of the quasi-
particle e < 0 because of the conditions (30) and (31). It means that the considered excitation
corresponds to the “physical” electron. The excitation corresponding to the “physical” positron
is defined by the bispinors (23).

The change of the integral charge of the excitation is explained by the local intersection
of the electron and positron energy zones in the strong self-consistent scalar electromagnetic
field. The analogous states appear also in the strong Coulomb field of the nucleus with the
large charge Z > 137 when the gap between Dirac zones tends to zero and stabilization of the
electron states is achieved due to creation of the additional positrons (see, for example, [30]
and references therein). In our case the origin of the charge density of one sign is the source of
the strong scalar electromagnetic field that leads to coming together the electron and positron
levels. This field can be compensated by the extra value of the charge density of opposite sign.
More detailed qualitative analysis of the structure of the quasi-particle excitation was discussed
in the paper [31]. It is also interesting to note that the relation between the charges of the
“bare” and “physical” electrons has the same form as the equation for the electric and magnetic
charges in the theory of the Dirac monopole [32].

The eigenvalue a0 corresponds to minimum of the functional (29) with fixed functions u0,
v0, ϕ0 with respect to the parameter ξ = (1−C)/(1 +C) and can be expressed in terms of the
integrals T and Π that define kinetic and potential contributions in the total excitation energy

a0 = −T
Π
, (35)
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and the numerical value of the integral T can be calculated with the considered accuracy as

T ≈ 0.749. (36)

Then the total energy of the excitation with zero momentum is:

E(0) = −m0

α0

Ta0

2
= −m0α

T

2a0
> 0. (37)

This value defines the minimal energy of the one-particle excitation of the electron-positron
field and its positive sign corresponds to the “bottom” of the “physical” electron zone in the
renormalized QED. It is also consistent with the negative charge of this excitation [31]. It is
natural to consider this value as the rest-mass m of the “physical” electron and to find the mass
renormalization in QED:

E(0) = m ≡ me = −m0α
T

2a0
, m0 = me

2|a0|
α

≈ 1291.7me. (38)

This relation (E(0) � m0 ) shows that the primary mass of the “bare” electrons and
positron ∼ m0 is compensated by the binding energy of their charge distributions almost
completely. It is interesting that the characteristic size of the domain, where the considered
one-particle excitation is localized (∆r ≈ m−1

0 ), is the same order as the value of the electron
“radius” (re = α/m) in the classical model of Abraham–Lorentz [8].

In accordance with the formulas (33), (38) characteristics of the charge spatial distribution in
the “physical” electron depend on the observable QED parameters α and m only. Such internal
structure of the electron does not contradict to the well known results (for example, [33]) that
maintain that the observed characteristics of the electron cannot depend on any dimensional
parameter with the exception of m (see below the discussion in Section 5). Actually the local
charge distribution in QED arises as well in the framework of the perturbation theory when
considering the physical interpretation of the renormalization of charge (for example, [2]).

As it was shown by Dirac [8], investigation of the “physical” electron with the distributed
charge is of great interest because it gives the possibility to interpret the “physical” µ-meson as
the excited state of such system. In order to describe the dynamics of such excitation Dirac in-
troduced the hypothetical elastic parameter that is absent in QED. However, the variational ap-
proach considered in the present paper allows one to analyze the one-particle excitation differed
from the “physical” electron without inclusion of any additional parameters.

Let us choose the trial state vector in the same form as it is given by formulas (3), (7),
but with the wave functions that are orthogonal to the “physical” electron state vector. These
functions are satisfied to the system of the self-consistent equations in the form (11)–(14), but
with the nonzero eigenvalues E1 6= E2 for both components of the “primary” electron-positron
field:

{(−i~α~∇+ βm0) + e0ϕµ(~r)− E1}Ψµ(~r) = 0,

{(−i~α~∇+ βm0) + e0ϕµ(~r)− E2}Ψc
µ(~r) = 0,

ϕµ(~r) =
e0
4π

∫
d~r ′

|~r − ~r ′|
[Ψ+

µ (~r ′)Ψµ(~r ′)−Ψ+c
µ (~r ′)Ψc

µ(~r ′)],∫
d~r [Ψ+

µ (~r)Ψµ(~r) + Ψ+c
µ (~r ′)Ψc

µ(~r ′)] = 1,
∫
d~r [Ψ+

µ (~r)Ψ(~r) + Ψ+c
µ (~r ′)Ψc(~r ′)] = 0,∫

d~rΨ+
µ (~r)Ψµ(~r) =

1
1 + C

,

∫
d~rΨ+c

µ (~r ′)Ψc
µ(~r ′) =

C

1 + C
. (39)
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In this case the energy that defines the observed mass of the “physical” µ-meson can be
calculated as

Eµ(~P = 0) = mµ = E1 − E2.

The parameters C, e0, m0 in equations (38) should be the same as was defined by equa-
tions (32)–(38) because the observed charges of the “physical” electron and µ-meson coincide.
Besides, the same bispinors (16)–(24) as for electron should be used when separating variables
in equation (39). However, the radial functions for both components of the “primary” electron-
positron field that form the “physical” µ-meson should correspond to the different eigenvalues.

If the dimensionless variables (26) have been used the following system of equations is ob-
tained:

duµ

dx
− 1
x
uµ − (1 + ε1 − φµ(x))vµ = 0,

dvµ

dx
+

1
x
vµ − (1− ε1 + φµ(x))uµ = 0,

du1µ

dx
+

1
x
u1µ − (1− ε2 + φµ(x))v1µ = 0,

dv1µ

dx
− 1
x
v1µ − (1 + ε2 − φµ(x))u1µ = 0, (40)

φµ(x) = α0

[∫ ∞

x
dy
ρµ(y)
y

+
1
x

∫ x

0
dyρµ(y)

]
, ρ(x) =

[
u2

µ(x) + v2
µ(x)− u2

1µ(x)− v2
1µ(x)

]
.

If the solution of the nonlinear problem (40) with the eigenvalues ε1,2 and the orthogonality
and normalization conditions is found, the observed mass of µ-meson is defined by the following
formula:

mµ = m0(Iµ − I1µ),

Iµ =
∫ ∞

0
dx

{
u′µvµ − u′µvµ − 2

uµvµ

x
+ (u2

µ − v2
µ) +

1
2
a0φµ(u2

µ + v2
µ)
}
,

where integral I1µ is expressed by the functions u1µ, v1µ with the same formula as the integral Iµ
by the functions uµ, vµ; the parameter a0 is defined by equation (35).

Equation (37) for the observed mass of the electron can be written in the same form

me = m0
1− C

1 + C
I0,

where integral I0 is expressed by the functions u0, v0 from equations (27).
Calculation of the excited states for the nonlinear equations (40) with the self-consistent

potential proved to be a quite difficult numerical problem. In the present paper this solution
was calculated on the basis of the “adiabatic” approximation for the potential. It means that
the potential was fixed in the same form as in equations (27): φµ ≈ φ0. In this case the functions
uµ, vµ coincide with u0, v0 but the functions u1µ, v1µ correspond to the first excited state in
the Dirac equations (27). Then the relation (32) and the definitions of the integrals I lead to
the following formulas:

1− C

1 + C
=

e

e0
� 1, I0 ≈ Iµ,

and the observed electron-µ-meson mass ratio can be calculated as:

mµ

me
≈ 1− C

1 + C

Iµ − I1µ

2Iµ
=
|a0|
2α

Iµ − I1µ

Iµ
≈ 242.2

Iµ − I1µ

Iµ
.

The calculated values for the integrals are the following Iµ ≈ 0.95, I1µ ≈ 0.25 and the mass
ratio is estimated as

mµ

me
≈ 194.
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This number can be compared with the experimental value (mµ/me)E ≈ 206 and the result
obtained by Dirac [8]: (mµ/me)D ≈ 54. Thus, the physical interpretation of the QED one-
particle excitations leads to a quite good estimation for the observed mass of µ-meson. It can
be improved if the completely self-consistent solution is found for equations (40).

It may seem that interpretation of the “physical” µ-meson as the excited state of the “bare”
electron-positron and electromagnetic fields contradicts to the experimentally observed conser-
vation of the muon (not electrical) charge in the electromagnetic processes. However, let us
remind that this state is the collective(!) excitation of the whole system with the scalar elec-
tromagnetic field ϕµ not equal to the field ϕ for the “physical” electron self-localized state.
In accordance with the formula (3) it means that the both states are defined by the coher-
ent states corresponding to different field amplitudes. Therefore the transition between these
states is defined by the overlapping integral between the corresponding coherent states of the
electromagnetic field. If one uses the standard definition of such states [2] this integral can be
represented in the following form

I = exp

[
−4π

∫
d~k

ωk
| ~E(~k)− ~Eµ(~k)|2

]
. (41)

Here ~E(~k), ~Eµ(~k) are the Fourier components of the corresponding electric field strengths,
for example:

~E(~k) = − 1
(2π)3

∫
d~r~∇ϕ(~r)ei~k·~r.

With utilisation of the dimensionless variables (26) the integral (41) can be written as

I = e−α0Λ, Λ =
∫ ∞

0
tdt[Φ(t)− Φµ(t)]2,

Φ(t) =
∫ ∞

0
xdxφ′(x) sin(tx), Φµ(t) =

∫ ∞

0
xdxφ′µ(x) sin(tx). (42)

Parameter Λ ∼ 1 is defined by the converged integrals because of the asymptotic behavior of
both functions φ(x), φµ(x) when x→∞ and x→ 0. The overlapping integral (42) permits one
to estimate the electromagnetic lifetime of µ-meson as

τ el
µ ∼ m−1

0 I−1 ∼ 10300[sec].

This value ensures the conservation of the muon charge in the electromagnetic processes be-
cause it is essentially bigger than the total µ-meson lifetime conditioned by the weak interaction.

4 Lorentz invariance of the self-localized state
with nonzero momentum

In the previous sections the resting quasi-particle with a non-trivial self-consistent charge dis-
tribution, the finite energy E(0) and a zero total momentum ~P = 0 was considered in the
framework of a nonperturbative QED.

The obtained solution allows one to imagine the internal structure of the resting “physical”
electron (positron) as a strongly coupled state of charge distributions of the opposite sign. The
large values of integral charges of these distributions compensate each other almost completely
and their heavy masses are “absorbed” by the binding energy. Actually the energy ±E(0)
defines the boundaries of the renormalized electron and positron zones resulting from the strong
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polarization of the electron-positron field when the excitation appears. But this excitation could
be interpreted as the “physical” electron (positron) if the sequence of the levels in every zone
determined by the vector ~P 6= 0 were described by the Lorentz invariant relativistic energy
spectrum ±E(~P ) of real particles, that is

E(~P ) =
√
P 2 + E2(0) =

√
P 2 +m2. (43)

It is worth saying, that the problem of studying of the dynamics of the self-localized excitation
should be solved for any system with a strong interaction between quantum fields in order to
calculate its effective mass. For example, a similar problem for Pekar “polaron” [13] in the ionic
crystal was considered in [14, 19, 34, 35] and in a lot of more recent works. It is essential that
because of the non-linear coupling between the particle and a self-consistent field the energy
dispersion E(~P ) for the quasi-particle proves to be very complicated. As the result, its dynamics
in the crystal is similar to the motion of the point “physical” particle only at a small enough
total momentum.

However, in the case of QED the problem is formulated in a fundamentally different way.
There is currently no doubt that the dynamics of the “physical” excitation should be described
by the formula (43) for any(!) values of the momentum ~P because of the Lorentz invariance
of the Hamiltonian. It means that the considered nonperturbative approach for describing the
internal structure of the “physical” electron should lead to the energy dispersion law (43) for
the entire range of the momentum ~P .

The rigorous method of taking into account the translational symmetry in the strong coupling
theory for the “polaron” problem was elaborated in the works of Bogoliubov [14] and Gross [19].
Let us remind that this method was based on the introduction of the collective variable ~R
conjugated to the total momentum operator ~̂P . The canonical character of the transformation
caused by three new variables Ri was provided by the same number of additional conditions
imposed on the other variables of the system. In the “polaron” problem the quantum field
interacting with the particle contributes to the total momentum of the system. It allows one
to impose these conditions on the canonical field variables [14, 19] and the concrete form of
the variable transformation is based mainly on the permutation relations for the boson field
operators.

The considered problem has some specific features in comparison with the “polaron” problem.
Firstly, the formation of the one-particle wave packet is the multi-particle effect because this
packet includes all initial states of electron-positron field as the fermion field. Secondly, its self-
localization is provided by the polarization potential of the scalar field that does not contribute
to the total momentum of the system. Therefore, we use a different approach in order to
select the collective coordinate ~R. Let us return to the configuration representation in the
Hamiltonian (2), where QED is considered to be the totality of N (N → ∞) point electrons
interacting with the quantum electromagnetic field in the Coulomb gauge [17]:

Ĥ =
N∑

a=1

{~αa[~̂pa + e0 ~̂A(~ra)] + βam0 + e0ϕ̂(~ra)} −
1
2

∫
d~r(~∇ϕ̂(~r))2 +

∑
~kλ

ω(~k)n̂~kλ
,

ω(~k) = k, n̂~kλ
= c+~kλ

c~kλ
, λ = 1, 2,

~̂A(~r) =
∑
~kλ

1√
2kΩ

~e(λ)[c~kλ
ei

~k~r + c+~kλ
e−i~k~r]. (44)

Here Ω is the normalized volume; c+~kλ
(c~kλ

) are the operators of the creation (annihilation) of

quanta of a transversal electromagnetic field, the quantum having the wave vector ~k, polariza-
tion ~e(λ) and energy ω(~k) = k. The sign of the interaction operators differs from the standard
one because the parameter e0 is introduced as a positive quantity.
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As it was stated above the zero approximation of nonperturbative QED is defined only by
a strong interaction of electrons with the scalar field, where the interaction with the transversal
field is to be taken into account later in the framework of the standard perturbation theory. So,
the conservation of the total momentum in the processes with transversal electromagnetic field
will be provided automatically [2]. Therefore, while describing the quasi-particle excitation we
should consider the conservation of the total momentum only for the system of electrons. In
the considered representation it is defined by the sum of the momentum operators of individual
particles

~̂P =
N∑

a=1

~̂pa, ~̂P |Φ1(~P )〉 = ~P |Φ1(~P )〉.

It means that in the configuration space the variable ~R conjugated to the total momentum
is simply a coordinate of the center of mass of the electron-positron system and the desired
transformation to new variables is as follows:

~ra = ~R+ ~ρa, ~R =
1
N

N∑
a=1

~ra,
N∑

a=1

~ρa = 0, ~pa = −i~∇a = − i

N
~∇R + ~p ′a,

~̂P = −i~∇R, ~p ′a = −i~∇ρa +
i

N

N∑
b=1

~∇ρb
,

N∑
a=1

~p ′a = 0.

The Hamiltonian (44) with new variables has of the following form

Ĥ =
N∑

a=1

{
~αa

[
− i

N
~∇R + ~̂p ′a + e0 ~̂A(~ρa + ~R)

]
+ βam0 + e0ϕ̂(~ρa)

}
− 1

2

∫
d~r(~∇ϕ̂(~r))2 +

∑
~kλ

ω(~k)n̂~kλ
. (45)

It should be noted that the matrix elements of an arbitrary operator in a new configuration
representation are to be calculated by integration over the coordinates both of the center of
mass and the relative variables. Let us introduce a special notation for this norm:

〈〈Φ1|M̂ |Φ2〉〉 =
∫
d~R
∏
a

d~ρaΦ∗
1(~R, {~ρa})M̂Φ2(~R, {~ρa}). (46)

The interaction between the “physical” electron and the transversal electromagnetic field will
be taken into account by means of the perturbation theory (see below Section 5) and only the
scalar field is considered in the zeroth approximation. Let us denote by Ĥ0 that part of the
operator (45) which does not depend on the transversal electromagnetic field and describes the
internal structure of the “physical” particles in the zero approximation. In fact, the operator Ĥ0

does not depend on the coordinate ~R because of its commutativity with the operator of the total
momentum of the system of electrons. This also follows from the well known result [17] that in
the Coulomb gauge the scalar potential could be excluded from the Hamiltonian. As a result
the operator Ĥ0 depends only on the vector differences (~ra−~rb) = (~ρa−~ρb) and does not change
with the simultaneous translation of all the coordinates. As a consequence, the eigenfunctions
of the Hamiltonian Ĥ0 depend on the coordinate ~R in the same way as for a free particle:

Φ(~R, {~ρa}) =
1

(2π)3/2
ei

~P ~R|Φ1(~P , {~ρa})〉,

Ĥ0 → Ĥ0(~P ) =
N∑

a=1

{
~αa

[
1
N
~P + ~̂p ′a

]
+ βam0 + e0ϕ̂(~ρa)

}
− 1

2

∫
d~r(~∇ϕ̂(~r))2.
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Further calculations consist in returning to the field representation by the variables ~ρa in the
limit (N →∞) and in using the approximate trial wave packet |Φ1(~P )〉 similar to (3) but with
the coefficient functions depending on ~P . Thus, in the framework of non-perturbation QED the
orthogonal and normalized set of states for the one-particle excitation of the electron-positron
field is defined as follows:

|Φ(0)
1 (~P )〉 ' 1

(2π)3/2
ei

~P ~R

∫
d~q{U~qs(~P )a+

~qs + V~qs(~P )b+~qs}e
i~q·~ρ|0; 0;ϕ(~ρ)〉, ~r = ~R+ ~ρ, (47)

with the norm (46) and the coefficient functions U~qs(~P ), V~qs(~P ).
Using the coordinate representation for these functions

Ψν(~r, ~P ) =
∫

d~q

(2π)3/2

∑
s

U~qs(~P )u~qsνe
i~q~r, Ψc

ν(~r) =
∫

d~q

(2π)3/2

∑
s

V~qs(~P )v~qsνe
i~q~r, (48)

one can find the following functional for calculating the value E(~P ) corresponding to the energy
of one-particle excitation with an arbitrary momentum

E(~P ) =
∫
d~r
{

Ψ+(~r, ~P )
[
(~α~P − i~α~∇+ βm0) + e0

1
2
ϕ(~r, ~P )

]
Ψ(~r, ~P )

−Ψ+c(~r, ~P )
[
(−~α~P − i~α~∇+ βm0) + e0

1
2
ϕ(~r, ~P )

]}
Ψc(~r, ~P ),

ϕ(~r, ~P ) = e0

∫
d~r ′

|~r − ~r ′|
[Ψ+(~r ′, ~P )Ψ(~r ′, ~P )−Ψ+c(~r ′, ~P )Ψc(~r ′, ~P )],∫

d~r [Ψ+(~r, ~P )Ψ(~r, ~P ) + Ψ+c(~r ′, ~P )Ψc(~r ′, ~P )] = 1. (49)

It should be noted that the mean value of the operator Ĥ0(~P ) in the representation of the
second quantization was calculated by taking into account the expression

lim
N→∞

1
N

∑
~p

= 1,

that follows from a well known formula for the density of states when EPF is quantized within
the normalized volume Ω [2].

It was mentioned above, that there is quite a close analogy between the nonperturbative
description of QED and the theory of strong coupling in the “polaron” problem. Therefore, it
is of interest to compare the obtained functional (49) with the results of various methods of
including the translational motion in the “polaron” problem. The simplest one was used by
Landau and Pekar [35] who introduced the Lagrange multipliers in the form

J(~P ) = J(~P = 0) + (~P ~V ), (50)

with the functional J(~P = 0) referring to a resting “polaron” and the Lagrange multiplier Vi

denoting the components of the quasi-particle average velocity.
We can see that the obtained functional (49) has the same form as (50) if the relativistic

velocity of the excitation is determined by the formula

~V =
∫
d~r{Ψ+(~r, ~P )(~α)Ψ(~r, ~P ) + Ψ+c(~r, ~P )(~α)Ψc(~r, ~P )},

corresponding to the well known interpretation of Dirac matrices [2].
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Varying this functional by taking into account the normalized conditions leads to the following
equations for the wave functions

{(~α~P − i~α~∇+ βm0) + e0ϕ(~r, ~P )− E(~P )}Ψ(~r, ~P ) = 0,

{(~α~P + i~α~∇− βm0)− e0ϕ(~r, ~P )− E(~P )}Ψc(~r, ~P ) = 0. (51)

These equations show that unlike the “polaron” problem [14], the translational motion of
the quasi-particle determining the momentum ~P is related in our case to its internal movement
described by the coordinate ~r by means of spinor variables only. The physical reason for this
separation of variables is explained by the fact that in QED the self-localized state is formed by
the scalar field, and its interaction with the particle does not involve the momentum exchange. In
order to find the analytical energy spectrum E(~P ) the system of non-linear equations (51) should
be diagonalized with respect to to the spinor variables. The possibility of such diagonalization
seems to be a non-trivial requirement for the nonperturbative QED under consideration.

The solution of the equations (51) can be found on the basis of the states for which the
dependence on the vector ~q in the wave packet amplitudes U~q,s, V~q,s remains the same as it was in
the motionless “physical” electron. However, the relation between the spinor components of these
functions can be changed. But as the self-consistent scalar potential involves the summation over
all spinor components it does not depend on the momentum for the class of states in question:

ϕ(~r, ~P ) = ϕ(r)|~P=0. (52)

In the coordinate representation the transformation of the spinor components of the wave
functions satisfying the equations (51) takes place because of the dependence on the momentum.
The solution can be constructed by sorting out various linear combinations of the wave functions
Ψ(~r), Ψc(~r), Ψ̃(~r), Ψ̃c(~r) found in Section 2 for a resting electron. These functions correspond
to the degenerated states in the case of ~P = 0 but are mixed for a moving electron. It is found
that there is only one normalized linear combination satisfying all the necessary conditions of
self-consistency:

Ψ(~r, ~P ) = L(~P )Ψ(~r) +K(~P )Ψ̃c(~r), Ψc(~r, ~P ) = L1(~P )Ψc(~r) +K1(~P )Ψ̃(~r),

|L|2 + |K|2 = |L1|2 + |K1|2 = 1. (53)

The condition (52), according to which the potential does not depend on the momentum for
the excitation at the energy E(~P ), is fulfilled if the coefficients are related as

L1 = −K, K1 = L.

These relations are also consistent with equations (51) for wave functions.
This means that the “physical” electron moves in such a way that its states are transformed in

the phase space of the orthogonal wave functions (16)–(24) but the amplitudes of its “internal”
charge distributions are not changed. The analogous approach is considered for Lorentz invariant
transformation of the bispinors corresponding to the free particles in QED [37].

Substituting the superpositions (53) into equations (51) we use the following relations:

(~α~P )Ψ =

(
if(r)(~σ ~P )Ω1/2,1,M

g(r)(~σ ~P )Ω1/2,0,M

)
, (~α~P )Ψc =

(
g1(r)(~σ ~P )Ω1/2,1,M

−if1(r)(~σ ~P )Ω1/2,0,M

)
,

(−i~α~∇+ βm0 + e0ϕ)Ψ = E(0)
(

g(r)Ω1/2,0,M

if(r)Ω1/2,1,M

)
,

(−i~α~∇+ βm0 + e0ϕ)Ψc = −E(0)
(
−if1(r)Ω1/2,0,M

g1(r)Ω1/2,1,M

)
,

and similar formulas for the functions Ψ̃(~r), Ψ̃c(~r), σi are the Pauli matrices.
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For equations (51) to be fulfilled for any vector ~r it is necessary to set the coefficients of
spherical spinors equal to the same indexes l. The corresponding radial functions are proved to
be the same under these conditions, and the following system of equations for the spinors χ±0,1

is obtained

iL(~σ ~P )χ+
1 +K(E + E0)χ+

1 = 0, iK(~σ ~P )χ+
0 + L(E − E0)χ+

0 = 0,

L(~σ ~P )χ+
0 + iK(E + E0)χ+

0 = 0, K(~σ ~P )χ+
1 + iL(E − E0)χ+

1 = 0,

L1(~σ ~P )χ−1 − iK1(E − E0)χ−1 = 0, K1(~σ ~P )χ−0 − iL1(E + E0)χ−0 = 0,

iL1(~σ ~P )χ−1 −K1(E − E0)χ−1 = 0, iK1(~σ ~P )χ−0 − L1(E + E0)χ−0 = 0, (54)

where the notation E(0) ≡ E0 was used.
Spin variables in equations (54) are also separated. In order to show this one can use, for

example, the relation between the coefficients resulting from the 4th equation in (54) in the
first one of these equations:

χ+
1 = i

K(~σ ~P )χ+
1

L(E − E0)
.

As a result there exists a non-trivial solution of these equations for two branches of the energy
spectrum

Ee,p = ±
√
E2

0 + P 2, (55)

referring to the electron and positron zones, respectively [29]. The same expressions can be
obtained for all conjugated pairs of the equations in (54). The coefficients in the wave func-
tions (53) can be found taking into consideration the normalization condition:

Le = Ke
1 =

P√
P 2 + (Ee − E0)2

, Ke = −Le
1 =

Ee − E0√
P 2 + (Ee − E0)2

,

Lp = Kp
1 =

P√
P 2 + (Ee + E0)2

, Kp = −Lp
1 = − Ee + E0√

P 2 + (Ee + E0)2
. (56)

One can see that this set of coefficients coincides with the set of spinor components for
solving the Dirac equation for a free electron with the observed mass m = E0 [37]. Thus, the
results of this section show that the “internal” structure of the “physical” electron (positron)
considered in this paper is consistent with the energy dispersion (55) for a real free particle due
to the relativistic invariance of the Dirac equation.

For the interpretation of the wave packet (47) as the state vector for a “physical” particle it
is essential that it is the eigenvector of the total momentum of the electron-positron field in the
framework of the considered zeroth approximation. It means that the “physical” electrons with
different momenta form the set of orthogonal and normalized functions if the condition (46) is
taken into account:

〈〈Φ(0)
1 (~P1)|Φ(0)

1 (~P )〉〉 = δ(~P − ~P1).

5 Perturbation theory for QED
with the “physical” electron-positron field. Discussion

It is well known that the renormalizability is one of the most important features of QED and it
is confirmed by the coincidence of its results with the experimental data. Actually it means that
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the calculated characteristics of the real electromagnetic processes do not depend on the initial
parameters e0, m0 but only on the observed values of e and m. So, we should clearly show that
the effects of the nonperturbative QED refer to the internal structure of the “physical” electron
(positron) only. However, its interaction with real electromagnetic field should be defined by
the standard perturbation theory with the fine structure constant α� 1.

Besides, it should be demonstrated that the integrals which define the corrections to the zero
approximation in the perturbation theory with charge e ∼ e−1

0 are converged without introducing
any additional regularizating parameters including the cut-off momentum.

To solve these problems, it is necessary to consider the form of the perturbation theory which
uses the basis of states corresponding to the “physical” electron (positron) with various momen-
tum. Taking into account the results of the last section let us represent the QED Hamiltonian
(2) in the following form:

Ĥ = Ĥ0 + ĤI ,

Ĥ0 =
∫
d~r

{
: ψ̂∗(~r)[−i~α(~∇~R + ~∇~r) + βm0]ψ̂(~r) : +e0ϕ̂(~r) : ρ̂(~r) : −1

2
(~∇ϕ̂(~r))2

}
+
∑
~kλ

ω(~k)n̂~kλ
,

ĤI = e0

∫
d~r : ψ̂∗(~r)[~α ~̂A(~r + ~R)]ψ̂(~r) : .

The fact that the Hamiltonian depends on the coordinate ~R canonically conjugated to the
total momentum of the electron-positron field determines the spontaneous breaking of symmetry
of the system. This situation was discussed by Bogoliubov [27] for a lot of concrete physical
systems. However, the global symmetry of the system is reconstructed when the observed values
are averaged by the coordinate ~R in accordance with the norm (46).

In the previous sections the spectrum of the one-particle excitations of the electron-positron
field was calculated approximately in the leading order in a power series of α−1

0 . Let us now
consider the matrix elements of the perturbation operator HI that are defined by the transitions
between the states corresponding to the “physical” electrons (positrons) with the momenta ~P
and ~P1 and with emission (absorption) a quanta of the transversal electromagnetic field. It is
important that the vacuum state of the “physical” electron-field is also renormalized with respect
to to the “primary” vacuum of the “bare” particles. Actually this new vacuum is the wave
function of the collective quasi-particle states localized in the vicinity of various coordinates ~R.

Let us write the obvious form of the initial |i〉 and final |f〉 states of this process using the
definition (47) for the one-particle wave packet and the state vector of the free electromagnetic
field corresponding to N quanta with the wave vector ~k and polarization λ:

|i〉 = |Φ1(~P ),Φ1(0)N (i)
~k,λ
〉 =

1
(2π)3/2

ei
~P ~R

∫
d~q{U~q,s(~P )a+

~qs + V~q,s(~P )b+~qs}e
i~q·(~r−~R)

× 1
(2π)3/2

∫
d~q{U~q,s(0)a+

~qs + V~q,s(0)b+~qs}e
i~q·(~r−~R1)

(c+~k,λ
)
N

(i)
~k,λ√

N
(i)
~k,λ

!
|0; 0;ϕ(~r − ~R);ϕ(~r − ~R1)〉,

|f〉 = |Φ1(0),Φ1(~P1)N
(f)
~k,λ
〉 =

1
(2π)3/2

ei
~P1

~R1

∫
d~q{U~q,s(~P1)a+

~qs + V~q,s(~P1)b+~qs}e
i~q·(~r−~R1)

× 1
(2π)3/2

∫
d~q{U~q,s(0)a+

~qs + V~q,s(0)b+~qs}e
i~q·(~r−~R)

(c+~k,λ
)
N

(f)
~k,λ√

N
(f)
~k,λ

!
|0; 0;ϕ(~r − ~R);ϕ(~r − ~R1)〉.
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Let us calculate the matrix element of the operator ĤI for the transition of the “physical”
electron between the states with 4-momenta P = (~P ,E) and P1 = (~P1, E1) with the emission of
one quantum of the transversal electromagnetic field with k = (~k, ω). It is supposed that both
fermion and photon 4-momenta are out of the mass surface. In this case the matrix element
Mfi = Γ(P, k)δ(P −P1−k) defines the vertex function Γ(P, k) in the considered representation.
The norm (46) is used for calculation:

Mfi = 〈〈f |ĤI |i〉〉 =
e0√
2kΩ

∑
s,s′

∑
µ,ν

∫
d~r

∫
d~R

∫
d ~R1e

i(~P ·~R−~P1·~R1)e−i~k·~r

×
∫

d~q

(2π)3/2

∫
d~q ′

(2π)3/2

{[
U∗

~q ′,s′(~P1)U~q ′,s′(0)U∗
~q,s(0)U~q,s(~P )

− V ∗
~q ′,s′(~P1)V~q ′,s′(0)V ∗

~q,s(0)V~q,s(~P )
]

×
[
u∗~qsµ(~α~eλ)µ,νu~qsν + u∗~q ′s′µ(~α~eλ)µ,νu~q ′s′ν

]}
ei(~r−

~R)·~qei(~r−
~R1)·~q ′

.

If the coordinate representation (48) is used for the coefficient functions U~q,s, V~q,s, the result
is:

Mfi =
e0√
2kΩ

∫
d~r

∫
d~R

∫
d ~R1

{[
Ψ∗(~r − ~R, 0)(~α~eλ)Ψ(~r − ~R, ~P )Ψ∗(~r − ~R1, ~P1)Ψ(~r − ~R1, 0)

+ Ψ∗(~r − ~R, 0)Ψ(~r − ~R, ~P )Ψ∗(~r − ~R1, ~P1)(~α~eλ)Ψ(~r − ~R1, 0)
]

−
[
Ψc,∗(~r − ~R, 0)(~α~eλ)Ψc(~r − ~R, ~P )Ψc,∗(~r − ~R1, ~P1)Ψc(~r − ~R1, 0) (57)

+ Ψc,∗(~r − ~R, 0)Ψc(~r−~R, ~P )Ψc,∗(~r−~R1, ~P1)(~α~eλ)Ψc(~r−~R1, 0)
]}
ei(

~P ·~R−~P1·~R1)e−i~k~r.

Let us pass to the integration over the coordinate of the center of mass ~Rc = (~R+ ~R1)/2 and
relative coordinate ~R0 = (~R− ~R1) in equation (57) and introduce the following vectors:

~r1 = ~r − ~Rc −
1
2
~R0, ~r2 = ~r − ~Rc +

1
2
~R0.

Then the vertex function results in:

Mfi = Γ(P, k)δ(~P − ~P1 − ~k), P1 = P − k,

Γ(~P ,~k) =
e0√
2kΩ

∫
d~r2e

i ~P1·~r2

∫
d~r1e

−i ~P~r1
{
Ψ∗(r2, ~P1)(~α~eλ)Ψ(~r2, 0)Ψ∗(~r1, 0)Ψ(~r1, ~P )

+ Ψ∗(~r2, ~P1)Ψ(~r2, 0)Ψ∗(~r1, 0)(~α~eλ)Ψ(~r1, ~P )

−Ψc,∗(~r2, ~P1)(~α~eλ)Ψc(~r2, 0)Ψc,∗(~r1, 0)Ψc(~r1, ~P )

−Ψc,∗(~r2, ~P1)Ψc(~r2, 0)Ψc,∗(~r1, 0)(~α~eλ)Ψc(~r1, ~P )
}
. (58)

The linear combinations (53) and the wave functions Ψ, Ψc, Ψ̃, Ψ̃c from equations (16), (20),
(24), (25) for the resting “physical” electrons should be used in equation (58). Then one can
pass to the two-component spinors in the integrand and find the following formula:

Γ = i
e0√
2kΩ

∫
d~r1

∫
d~r2
{
ρ(~r1)ρ(~r2)(χ+∗

0 (~σ~eλ)χ+
0 )[K∗(~P1, E1)L(~P ,E)

− L∗(~P1, E1)K(~P ,E)]− ρ1(~r1)ρ1(~r2)(χ−∗0 (~σ~eλ)χ−0 )

× [K∗
1 (~P1, E1)L1(~P ,E)− L∗1(~P1, E1)K1(~P ,E)]

}
ei

~P1~r1e−i ~P~r,

where the functions L(~P ,E), K(~P ,E), L1(~P ,E), K1(~P ,E) are defined by equations (56) but
with the energy variable out of the mass surface E 6= E0. The charge densities are defined as
follows:

ρ(~r) = g2(r) + f2(r), ρ1(~r) = g2
1(r) + f2

1 (r).
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Accordingly to Section 2 the functions f , g and f1, g1, that describe the “physical” electron
internal structure, can be expressed over the universal function and are differed from each other
only by the normalization conditions

g(r) =
1

1 + C
m

3/2
0

u0(rm0)
r

, g1(r) =
C

1 + C
m

3/2
0

u0(rm0)
r

,

f(r) =
1

1 + C
m

3/2
0

v0(rm0)
ρ

, g1(r) =
C

1 + C
m

3/2
0

v0(rm0)
r

.

Besides, the spin and angular variables can be excluded by means of equations (53) for the
spinor functions of the “physical” electron. As for example,

K(~P )(~σ~eλ)χ+
0 =

iL(~P )
E + E0

(~σ~eλ)(~σ~eλ)χ+
0 =

iL(~P )
E + E0

(~P~eλ)χ+
0 .

Taking into account the normalization conditions for the spinors χ+,−
0 one can find:

Γ(P, k) =
e0√
2kΩ

(1− C)
(1 + C)

L(~P ,E)L(~P1, E1)

[
(~P~eλ)

E + E(0)
− (~P1~e

λ)
E1 + E(0)

]
F ∗(|~P − ~k|)F (|~P |)],

F (|~P |) ≡ F (α, |~P |/m) =
∫ ∞

0
dx[u2

0(x) + v2
0(x)]

sin |~P |x/m0

|~P |x/m0

=
∫ ∞

0
dx[u2

0(x) + v2
0(x)]

sinα|~P |x/2|a0|m
α|~P |x/2|a0|m

. (59)

If one use the relations e0(1 − C)/(1 + C) = e, (1 − C)/(1 + C) ∼ e−2
0 , E(0) = m and put

F (|~P |) = 1 the expression (59) will coincide completely with the analogous matrix element in
standard form of QED with the renormalized charge e and mass m of the electron [17]. It means
that the series for the observed characteristics of the “physical” electron in a reverse power of the
“primary” charge e−1

0 leads to the terms with the same structure as the standard perturbation
theory in a power of e.

However, equation (59) shows that behavior of the renormalized vertex function Γ(P, k) at
large arguments is defined by the Fourier transformation of the radial functions that describe
the charge distribution in the “physical” electron. Analysis of the asymptotic behavior of the
solutions of equations (28) shows that the form-factor F (|~P |) at large |~P | � m0 is described as
follows:

F (|~P |) ∼ L4
0

(|~P |2 + L2
0)2

, L0 = 2m0 = m
4|a0|
α

, (60)

and tends to zero rather quickly.
So, if the representation with the basis of states corresponding to the “physical” electrons was

used in the zeroth approximation then the cut-off momentum L0 ∼ 1 GeV appears naturally
and it has definite physical meaning. It means that in this representation the perturbation
theory in a power of the observed value of the fine structure constant α � 1 does not contain
the ultraviolet divergencies in the integrals.

It may seem at first sight that the finite value of the cut-off momentum is in the contradiction
with the experiment. It is well known that the comparison of the theoretical calculations in the
framework of the standard renormalized QED with the experimental data even in the low energy
range (for example, for anomalous magnetic moment) shows that no additional momentum
L . 107 GeV can be introduced in QED (for example, [33]). However, these results do not
maintain that the electron is the point-like object with the form-factor equal to unity in the
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entire range of the momentum because the form-factor of the electron appears due to the high
order corrections of the perturbation theory with any calculation scheme [2]. Actually it is
followed from these results that the electron cannot be considered as the composite system
including any parameter L, as for example, the hypothetical particle with a mass M ∼ L [33].

But the most essential feature of the present approach is the result that the cut-off momen-
tum L0 is not the additional parameter of the theory because it can be expressed only in terms
of the observed values of QED, namely α and m(!). The form factor of the “physical” electron
in this case can be considered as the result of the partial summation of high-order corrections
of usual perturbation series. Let us now show that the appearance of L0 at the intermediate
calculation stages may not contradict to the fact that it is not effect at the final results for the
observed physical values in the renormalised QED.

Really, let us consider a general structure of the non-renormalized form factor of the electron
as the function of the invariant parameters in the framework of QED with an arbitrary cut-off
momentum L and the non-renormalized values of α0, m0. For definiteness, let us write only its
scalar part:

F0(k) ≡ F0

(
α0;

k2

m2
0

;
m0

L

)
. (61)

Computation of this form factor by means of the perturbation theory with the standard
renormalization scheme is defined by the calculation of the vertex function [33] and corresponds
to the expansion of the function (61) as a power series in both coupling constant α0 and the
parameter m0/L:

F0(k) ≈ 1 + α0

[
F

(0)
01

(
0;
k2

m2
0

; 0
)

+
m0

L
F

(1)
01

(
0;
k2

m2
0

; 0
)

+ · · ·
]

+ α2
0

[
F

(0)
02

(
0;
k2

m2
0

; 0
)

+
m0

L
F

(1)
02

(
0;
k2

m2
0

; 0
)

+ · · ·
]

+ · · · . (62)

Let us remind that the QED renormalizability means that all coefficients of these series are
remained finite in the limit L → ∞ if the parameters α0, m0 are changed by their renormal-
ized values α, m. Then the theoretically calculated value of the form factor is defined by the
expansion in a power series of both α and an independent parameter ξ ∼ m/L:

Fth(k) ≈ 1 + αF̃
(0)
01

(
k2

m2

)
+ α2F̃

(0)
02

(
k2

m2

)
+ · · ·

+
m

L

[
αF̃

(1)
01

(
k2

m2

)
+ α2F̃

(1)
02

(
k2

m2

)
+ · · ·

]
+ · · · . (63)

The formal series that appear in the intermediate stages and define the relations between the
“primary” parameters of the theory α0, m0 and the observed value α, m can be represented as
follows:

α ≈ α0A1

(m0

L

)
+ α2

0A2

(m0

L

)
+ · · · = α0Z

(
α0,

m0

L

)
,

m ≈ m0

[
1 + α0B1

(m0

L

)
+ α2

0B2

(m0

L

)
+ · · ·

]
= α0Z1

(
α0,

m0

L

)
. (64)

Actually all coefficients of these series tend to infinity in the limit L → ∞ because of the
divergent integrals. Therefore the concrete values α0, m0 are indefinite if usual renormalization
scheme is used.

Analysis of [33] shows that in the result of the renormalization the additional terms contained
the parameter ξ in the expansion (63) are absent at least with an accuracy ∼ 10−10 corresponding



Quasi-Particle Excitation in QED 25

to L . 107 GeV. Analogous estimation is correct when calculating characteristics of other
electromagnetic processes in QED. It means that after passing to the limit L→∞ the formulas
of type of equation (63) give the practical algorithm for calculation of any observed values in
QED with very high accuracy. For that purpose the internal inconsistency of the theory that is
conditioned by indetermination of the series (64) becomes unessential.

We believe that the variational approach presented in the paper allows one to preserve the
computing possibilities of QED but to avoid its logical inconsistency. As it was shown above, in
this approach the “physical” electron characteristics are defined by the quasi-particle collective
excitation of the “primary” electron-positron field itself and are not conditioned by additional
parameters or bond with any hypothetical particle. Therefore the perturbation series that
define the corrections to the form factor conditioned by the interaction with the transverse
electromagnetic field are differed from equation (62) qualitatively. According to equation (59)
for the vertex function in this case the expansion parameter is the value α−1

0 ∼ α and the form
factor depends on the invariant parameters as follows:

F (k) ≡ F

(
α0;

k2

m2
;
m

m0

)
, α0 ∼ α−1, m0 ∼ m/α,

and the effective cut-off momentum for the divergent integrals is the value L0 ∼ m0 ∼ m/α.
Then the following series arises instead of the expansion (62):

F (k) ≈ 1 + α−1
0

[
F

(0)
1

(
0;
k2

m2
; 0
)

+
m

m0
F

(1)
1

(
0;
k2

m2
; 0
)

+ · · ·
]

+ α−2
0

[
F

(0)
2

(
0;
k2

m2
; 0
)

+
m

m0
F

(1)
2

(
0;
k2

m2
; 0
)

+ · · ·
]

+ · · · . (65)

In order to calculate the observed value for the form factor equation (65) should be completed
by the series that express the “primary” parameter α0, m0 over the observed values α, m. These
series have the following general form:

α ≈ α−1
0 [λ0 + α−1

0 λ1 + α−2
0 λ2 + · · · ] = α0Z̃(α0),

m ≈ m0α
−1
0 [µ0 + α−1

0 µ1 + α−2
0 µ2 + · · · ] = m0Z̃1(α0). (66)

According to equation (60) all coefficients in these series are finite and and do not depend on
additional parameters.

Substitution of equation (66) in equation (65) shows that the electron form factor calculated
by means of the considered approach contains only the finite values and does not depend on the
additional parameters as it should be in accordance with the analysis in [33]:

F̃th(k) ≈ 1 + αF̃
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1
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2
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0;
k2
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; 0
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.

The considered qualitative analysis of the “physical” electron form factor can be applied not
only for the interaction with the vacuum transversal electromagnetic field but also for any kind
of the external fields. It means, for example, that after renormalization with the self-localized
electron states the QED corrections for the “physical” electron bound in the Coulomb field of
the nucleus in the hydrogen-like atom should be described by the same formulas that can be
found with usual renormalization scheme [36].
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Actually it means that the considered form of QED that uses the basis of the self-localized
states and the perturbation theory on the parameter α−1

0 can lead to the same results for the
observed values as the renormalized series in the physical fine structure constant α. They are
differed only when calculating the connections between the primary and observed values of
α0 and α as well as m0 and m. However, the strict proof of the quantitative coincidence of
our results with known ones are connected with rather cumbersome calculations of high-order
corrections in a power of the parameter α−1

0 on the basis of the vertex function (59) and the
propagation function for the “physical” electron and should be considered separately.

In any case it is evident that for the practical purposes the previously existing calculation
scheme in QED is more efficient than one considered in the present paper. Therefore the proof
of the equivalence of the both forms of QED is important mostly from the point of the internal
self-consistency of QED. Nevertheless, the suggested approach may have the applied interest as
well because it allows one to consider other leptons as excitations of the “primary” electron-
positron field (see Section 3 for µ-meson). It is also may be essential for the constructive use of
the renormalization group in QED and for the nonperturbative analysis of other quantum field
models including non-renormalized ones.

6 Conclusions

Thus, in the present paper the self-localized quasi-particle excitation of the electron-positron
field is found for the first time in the framework of a standard form of the quantum electro-
dynamics. Existence of a new state in the spectrum of the well investigated Hamiltonian is of
great theoretical interest by itself.

Besides, the physical interpretation of the obtained solution as the “physical” electron has
been considered. It allowed one to find in the finite form the relation between the charge e0
and the mass m0 of the “bare” electron considered as the “primary” parameters of the theory
and observed values of the charge e0 and the mass m0 of the “physical” electron. The obtained
relations between these values (e0 ∼ e−1, m0 ∼ me−2) show that they cannot be calculated by
means of the standard perturbation theory.

The important consequence of the considered interpretation of the self-localized state is the
possibility to represent the Dirac idea and to consider µ-meson as an additional quasi-particle
excitation of the electron-positron field. It is shown that the calculated mass of µ-meson is very
closed to its experimental value.

It is also shown that the self-localized quasi-particle state does not contradict to the Lorentz-
invariance of the system and its binding energy can be considered as the observed mass of
this excitation. It permitted us to describe the interaction of the “physical” electron with
the transverse electromagnetic field and to show that it can considered on the basis of the
perturbation theory as the series in a power of the observed charge of electron e ∼ e−1

0 � 1. It
proved that the coefficients of these series are free from the ultraviolet divergence.

The internal structure of the “physical” electron considered as the collective excitation does
not depend on any additional parameters with the exception of α and m. It is described
by the finite functions without introduction of the cut-off momentum L. It is also discussed
quantitatively that an existence of such structure does not contradict to the experimental data
about the electron form factor.
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