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Abstract. We discuss hidden symmetries of M-theory, its feedback on the construction of
the M-theory effective action, and a response of the effective action when locality is pre-
served. In particular, the locality of special symmetries of the duality-symmetric linearized
gravity constraints the index structure of the dual to graviton field in the same manner as it
is required to separate the levels 0 and 1 generators subalgebra from the infinite-dimensional
hidden symmetry algebra of gravitational theory. This conclusion fails once matter fields are
taken into account and we give arguments for that. We end up outlining current problems
and development perspectives.
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1 Introduction

The hidden symmetry structure of M-theory is a subject of considerable interest during the
last decade. It is caused by lacking the complete dynamics of M-theory with non-perturbative
degrees of freedom, and by our believe that any progress in understanding the symmetry basis
of M-theory is helpful in searching for the underlying dynamical principle.

Substantial progress in this direction was recently achieved within the conjectured, at early
stages of the development, algebraic structure of M-theory. This structure is realized as the very-
extension of the hidden symmetry algebra of dimensionally reduced D = 11 supergravity [1].
Though many arguments in favor of the conjecture were subsequently found, this subject is
currently under debates. Nevertheless, seminal ideas of [1] stimulated the development of a new
special type of infinite-dimensional algebras, the so-called very-extended algebras [2], that was
resulted in recognizing the special rôle of Kac–Moody-type algebras in M-theory setting [3].

Another important consequence arising from the results of [1, 4] was the duality-symmetric
structure those of M-theory bosonic tensor fields which cast the bosonic subsector of D = 11
supergravity. Inclusion of their dual fields is strongly expected once we take non-perturbative
degrees of freedom into account. Their realizations may be different, a M5-brane [5, 6] is one of
them. Getting of M5-branes requires a sufficient modification of D = 11 supergravity action [7],
which becomes duality-symmetric with respect to the third and sixth rank tensor fields. The
corresponding generators can be found on the hidden symmetry algebra side [1].

With account of the above-mentioned points, the duality-symmetric D = 11 supergravity
action [7] can be considered as a good staring point in searching for the least action principle
of hidden constituents of M-theory which are encoded in the symmetry algebra. However, the
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construction of [7] has to be sufficiently extended with new fields. They would correspond to
infinitely many generators of the conjectured very-extended symmetry algebra. Steps on this
way are discussed in what follows in more detail.

At the same time we have to point out that the manifestly covariant Lagrangian approach
to duality-symmetric theories [8], which is in the focus of the paper, is not the only way to
construct the least action principle of M-theory. Other ways (see e.g. [9, 10]), which also exploit
the infinite-dimensional structure of the M-theory hidden symmetry algebra, are subjects of
recent reviews [3, 11]. The alternative least action principle mentioned there is based on a
sigma-model (propagating in one time-like direction, so a particle-type) action invariant under
an infinite-dimensional algebra transformations. Realization of this program is very attractive
(see [12]), however, some conceptual points should be recovered on the way. For instance, it
is a questionable point on the consistent coupling of a dynamical M5-brane and other brane
sources to such a sigma-model-type action with retaining the (special) symmetries of branes.
Other points of further development are the extension of the ‘dictionary’ between sigma-model
variables and space-time fields beyond low-levels (see [9, 11] for details) and the generalization of
the approach to the completely supersymmetric case1. Nonetheless, one may notice an apparent
advantage of the approach: the sigma-model-type action is based on the non-linear realization
of the hidden symmetry algebra, hence the feedback of the algebra structure on the sigma-model
dynamics is manifest on this way2.

The extension of the duality-symmetric D = 11 supergravity action [7], in its bosonic subsec-
tor, with the graviton dual field was proposed in [18]. Such an extension required introducing
non-locality. The non-locality of the proposed action, the symmetry structure and dynamics
were subjects of intensive discussion in our previous paper [19].

In this paper we extend the analysis of the duality-symmetric linearized gravity, made in [19],
and establish the restriction on the index structure of the graviton (or vielbein in the first order
approach) dual field

A[a,b1...bD−3] = 0,

which ensures the locality of the special symmetries (see [8]). Remarkably, the similar constraint,
but on the hidden symmetry algebra side, was found in [1, 4]. This constraint separates the
subalgebra of generators corresponding to the graviton and to the graviton dual field from the
rest of the infinite-dimensional algebra, which is the hidden symmetry algebra of gravitational
theory. On our side this constraint is required for retaining the locality of the model, and since
the vielbein and its dual partner are related to each other via the duality relation, the constraint
on the dual field removes the antisymmetric part of the originally unconstrained vielbein. Put
it differently, the locality of the linearized duality-symmetric gravity results in the constraint on
the vielbein which leads to the Fierz–Pauli-type linearized spin-2 theory.

We should warn the reader that the obtained result takes place for the pure duality-symmetric
linearized gravity. Once matter fields are included, the action of the model becomes non-local
and the off-shell locality cannot be kept anymore.

The organization of the paper is as follows. To fix ideas and to make the paper self-contained
we briefly review dualities of String Theory and their connection to the hidden symmetries

1It is worth mentioning that supersymmetry plays an important rôle in realising the hidden symmetry structure
(see also footnote 6 in the paper). However, the generalization of the discussed construction to the supersymmetric
case may cause a trouble. It would require the non-linear realization of super-algebras, which, in turn, may require
the (off-shell) formulation in superfields. However, the upper limit of the (on-shell) supergravity superfield
formulation does not exceed N = 4 supersymmetry, while D = 11 case requires N = 8.

2Let us also mention the sigma-model-type action of the duality-symmetric D = 11 supergravity [13] which
developed ideas of [14]. The extension of the construction of [13] to include M2 and M5 brane sources, as well
as the construction of the sigma-model-type action for the duality-symmetric type IIA supergravity were done
in [15, 16, 17].
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of M-theory (Section 2). Next, we discuss the algebraic structure of M-theory based on [1]
(Section 3), and its restriction to the gravity case (Section 4). In Section 5 we discuss the
realization of the duality-symmetric gravity [18] within the approach of [8], Section 6 contains
extended, in comparison to [19], analysis of the linearized theory. To make a contact to M-theory
we consider the duality-symmetric linearized gravity in presence of matter fields (Section 7). We
give arguments on the off-shell non-locality in the case, which is general and do not depend on
the nature of matter fields. Summing up of the results is made in Conclusions. The notation of
the paper can be found in Appendix.

2 String Theory dualities and hidden symmetries

Dualities and hidden symmetries of String Theory are closely related to each other. To realize
this relation we begin with the following cartoon of String Theory (Fig. 1).
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SO(32)
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Figure 1. The map of String Theory.

The left part of Fig. 1 is a cartoon of String Theory within the perturbative framework,
with six disjoint points of five different superstring theories in D = 10 space-time dimensions
and D = 11 N = 1 supergravity. When non-perturbative degrees of freedom are taken into
account it results in M-theory description of String Theory with the same six points, but jointing
together. In the bottom of Fig. 1 one finds an effective low-dimensional theory which follows
from M-theory after compactifying additional coordinates. Properties of the effective theory are
essentially depended on the geometry of internal manifold.

Compactifying M-theory, one arrives at M(oduli space)-theory, which depends on moduli,
i.e. some parameters of an effective theory arising upon the compactification. The moduli, but
rather transformations of the moduli under (hidden) symmetry groups, form the moduli space,
different points of which (points A and B on Fig. 1) correspond to different effective coupling
regimes. The effective coupling, say in the A-point, may become weak, so one can study the
effective theory perturbatively there. But A and B points of the Moduli space are related to
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each other via Duality, and it makes possible to predict the behavior of theory in the strong
coupling point B by studying the theory in the weak coupling point A.

There are three types of Dualities which connect points in the Moduli space. Annotating on
them we will tightly follow [20]. We get started with S-duality, the duality between strong and
weak coupling regimes of the same or different type theories. It widely applies for analysis of
non-perturbative effects due to Dp-branes, properties of which are collected in Fig. 2.

Dp-branes  ( (p+1) - dimensional objects)
of the original theory with coupling constant g

Solitonic objects
Couple to RR fields

Massive BPS states of type I and II  theories

Dp-branes  ( (p+1) - dimensional objects)
of the dual theory with coupling constant 1/g

Fundamental degrees of freedom
in  the dual formulation

Light (massless) states of the dual theory

1/g g

Figure 2. Properties of Dp-branes.

In what follows we will focus on maximally supersymmetric, i.e. type IIA/IIB String Theories.
Type IIB superstring theory is invariant under S-duality that, together with the invariance under
constant shifts of Ramond–Ramond (RR) fields, results in SL(2, R) symmetry of the theory
(which becomes SL(2, Z) after the quantization). On the type IIA side S-duality has a different
realization. A stack of n D0-branes with masses M ∼ n/g gets transformed into a smooth
spectrum of massless particles in the strong coupling constant limit g →∞. Such a process may
be interpreted as a decompactification of type IIA D = 10 string theory into a D = 11 theory
(see Fig. 3).

g ® ¥

A stack of n D0-branes with M~n/g The continuous spectrum of n D0-branes with M=0

Decompactifying limit from D=10 to D=11

KK compactification on R~g from D=11 to D=10

Figure 3. S-duality of type IIA String Theory and M-theory.

Once the latter point is accepted, the spectrum of type IIA n D0-branes naturally arises upon
the compactification of D = 11 theory on the circle of radius R ∼ g. Hence, the strong coupling
limit of type IIA theory is indeed a theory in D = 11, referred to as M-theory, and type IIA
String Theory is S-dual to M-theory.
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Another type of duality, Target-space duality (or T-duality), arises when a string is embedded
into a target space of the following configurationMD = MD−n×Tn, where Tn is a n-dimensional
internal torus under which a string is wrapped m times (see Fig. 4).

Figure 4. Wrapping of a string on an internal torus.

We are interested in the structure of T-duality group, which can be established as follows.
The metric tensor on a n-dimensional torus has the same number of degrees of freedom as that
of the following coset space

SL(n)
SO(n)

×R+.

Here R+ is the torus volume parameter. Since we are dealing with String Theory, there is
also a two-form gauge field B2, whose contribution into degrees of freedom on the torus is
Λ2Rn = n(n − 1)/2. The total contribution of the metric and of the two-form gauge field is
matched with the number of degrees of freedom carried by the following coset space

O(n, n)
O(n)×O(n)

.

The latter is the T-duality group.
What is worth mentioning here is the enhancement of the gravity internal degrees of freedom

global symmetry group, from SL(n) to O(n, n), due to the contribution of String Theory gauge
field B2. We will see in what follows that this statement is general.

We end up with U-duality, which unites the dualities mentioned in the above. To establish the
U-duality group, one should study both type IIA/IIB theories in different coupling regimes and
in MD = MD−n×Tn space-times. In type IIA picture we have SL(n) to O(n, n) enhancement
due to T-duality, and SL(n) to SL(n + 1) enlargement through the M-theory interpretation
(S-duality). These symmetries jointly generate the larger U-duality group. A convenient way to
establish the U-duality group comes as follows [20, 21].
SL(n) algebra corresponds to An−1 Dynkin diagram with n− 1 nodes (see Fig. 5).

...

Figure 5. An−1 Dynkin diagram.

The enlargement to O(n, n) corresponds to Dn Dynkin diagram with n nodes (Fig. 6), while the
enlargement to SL(n+ 1) algebra gets An diagram (with n nodes, Fig. 7).

...

Figure 6. Dn Dynkin diagram.
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...

Figure 7. An Dynkin diagram.

...

Figure 8. En+1 Dynkin diagram.

An entanglement of two diagrams, Fig. 6 and Fig. 7, is realized in En+1 diagram, Fig. 8 (with
n+ 1 nodes).
The latter group is the hidden symmetry global group of String Theory in MD = MD−n × Tn

target-space3.
A symmetry group of String Theory should also incorporate the symmetry groups of the low-

energy effective actions, viz. supergravities. SinceMD = MD−n×Tn target space configuration
can be interpreted as the toroidal reduction, (a subgroup of) En+1 should appear in the toroidally
reduced maximal supergravities. Normally the structure of En+1 is hidden and is recovered after
making additional steps like, for example, dualisation of fields.

An interpretation of En for n < 3 is subtle (as well as for high n, since E8 is the end of En

sequence of classical algebras), rather it is a unifying notation for global symmetry groups of
the moduli space in the reduced theories. Taking into account the relation of D = 11 N = 1
supergravity to type IIA supergravity via the reduction on a one-torus, the En sequence of
hidden symmetries can be assigned to the toroidally reduced D = 11 supergravity, and should
be incorporated into M-theory. The moduli space of the reduced M-theory in the low-energy
approximation is as in Fig. 9.
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Figure 9. M(oduli)-theory clock.

An amazing fact one can read off Fig. 9 is that when the reduction goes over three-dimensional
space-time down to dimensions two, one and zero, the En sequence of global symmetry algebras
still continues. When n > 8, the global symmetry algebras become Kac–Moody-type infinite-
dimensional algebras. It is absolutely unclear why “conspiracy” arises, unless it has presented in
the unreduced theory. Following this way, we arrive at the West’s conjecture on E11 as a hidden
symmetry algebra of M-theory [1].

3One may wonder why the entanglement of Fig. 6 and Fig. 7 is not realized in Dn+1 diagram? The answer is
that the reps. of Dn+1 are not sufficiently large to contain massive modes of strings. Another explanation comes
from the above-mentioned statement on the symmetry enhancement due to String Theory gauge field B2. The
solid node on the top of Fig. 8 precisely corresponds to the contribution of this field (see e.g. [22, 23]).
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3 The algebraic structure of E11

The conjecture by West [1] is very attractive since we have nothing hidden to search anymore.
In its turn, it has several non-trivial corollaries. We have noticed that upon the reduction
the symmetry groups get extended from finite-dimensional groups and algebras to infinite-
dimensional Kac–Moody-type algebras. Hence M-theory constructed this way contains infinitely
many massless fields. Some of them may be auxiliary fields, which do not carry dynamical
degrees of freedom. So we have to find the relation between fields corresponding to generators
of the Kac–Moody-type algebra and those of perturbative string spectrum4.

To make this matching one should know the generators of E11. Some of them are easily
determined from the E11 Dynkin diagram [1, 4].

12345678910

11

Deleting the node 11 results in A10 ∼ SL(11) algebra. It corresponds to the gravity sector
of D = 11 supergravity (the so-called gravity line) [4, 22]. In such a decomposition the simple
roots of E11 are those of A10 and α11 = x− λ3. Here x is orthogonal to the simple roots of A10,
and λ3 is one of the fundamental weights of A10.

Any root of E11 can be written as a combination of simple roots α =
10∑
i=1

niαi + lα11. The

integer l is called the level; it defines the number of times the simple root α11 appears in the
root decomposition. Our choice of the finite-dimensional subalgebra corresponds to considering
the adjoint reps. of E11 in terms of the reps. of A10.

The following basic facts (see e.g. [24]) are helpful to define the reps. of E11 at first three
levels: A−1

ij = λiλj , i, j = 1, . . . , 10 (for simply-laced algebras);

A−1
jk =

j(11− k)
11

, j ≥ k; A−1
jk = A−1

kj , k ≥ j;

α2 = 2, 0,−2,−4, . . . (for a Kac–Moody algebra with the symmetric Cartan matrix Aij). Sum-
ming up the above we get the following generators at levels 0, 1, 2 and 3 [4]

l = 0, Ka
b of A10; l = 1, R[abc];

l = 2, R[abcdef ]; l = 3, R[abcdefgh],i.

They correspond to graviton, a 3rd rank tensor field of D = 11 SUGRA, its 6th rank dual partner,
and the dual to graviton field. There also is another level 3 generator R[abcdefghi], which does not
occur in E11 since the dimension of a linear space corresponding to this generator (the so-called
multiplicity) is equal to zero.

The obtained generators form the following, non-closed, subalgebra [1] which is a part of E11

[Ka
b,K

c
d] = δc

bK
a
d − δa

dK
c
b, [Ka

b, R
cde] = δc

bR
ade + δd

bR
aec + δe

bR
acd ≡ 3δ[cb R

|a|de],

[Rabc, Rdef ] = 2Rabcdef , [Rabcdef , Rghi] = Rabcdefgh,i +Rabcdefig,h +Rabcdefhi,g, (3.1)

[Ka
b, R

c1...c6 ] = 6δ[c1b R|a|c2...c6], [Ka
b, R

c1...c8,d] = 8δ[c1b R|a|c2...c8],d + δd
bR

c1...c8,a.

4The infinite tail of string modes contains in general massive field. Therefore, the true matching between
fields of the Kac–Moody-type algebra and string modes can be made only after figuring out a mechanism of the
mass generation.
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One can continue constructing the generators5 (we recall that there are infinitely many genera-
tors of E11), but they will not be in such a transparent correspondence with fields anymore [26].
Nevertheless, we have got enough information to make an intermediate conclusion: The stan-
dard fields of D = 11 SUGRA (the graviton, the 3rd rank tensor field) have to be included
together with their duals. Hence, at low-energies, we deal with a duality-symmetric formulation
of M-theory.

This point is important in context of the effective dynamical description of M-theory. It is
a well-known fact that the construction of D = 11 supergravity action with a 6th rank tensor
field instead of the standard antisymmetric tensor gauge field runs into trouble [27, 28]. On the
other hand, the 6th rank tensor field is needed for coupling of the dynamical M5-brane [5, 6] to
D = 11 supergravity. The problem is only overcome within the duality-symmetric formulation
of D = 11 supergravity with 3rd and 6th rank tensor fields [7]. Therefore, the part of the
algebra (3.1) corresponding to tensor gauge fields fits very well the dynamics of M-theory with
“electric” M2 and “magnetic” M5 branes.

But we still have a question on introducing the gravity into the game. Though the action
of [7] has included the Einstein-Hilbert action, it is the incomplete action from the point of view
of E11. It has to be completed with the graviton dual field.

Another reason to include the graviton dual field into M-theory effective action was noticed
in [18]. There we pointed out that the direct way of getting the maximally duality-symmetric
type IIA supergravity action (see [13]) through the reduction of the duality-symmetric D = 11
supergravity action requires another starting point than the construction of [7]. Such a D = 11
supergravity formulation should be completely duality-symmetric in the bosonic fields that
requires the dualisation of gravity too.

Before doing anything on this way, let us make a comment on (3.1). One may notice that the
generator of (3.1), corresponding to the dual to graviton field, appears as an interplay between
two generators which correspond to M2 and M5 branes of M-theory. The way of R[abcdefgh],i

coming seems to be special, so it is natural to pose the following question: Does including the
graviton dual field an artifact of M-theory, or it does appear even in pure gravitational theory?

4 The hidden symmetry algebra of gravitational theory

Long ago it was realized that D = 4 gravity reduced to lower (D = 3, D = 2) dimensions pos-
sesses unexpected symmetries (the SL(2, R)s by Ehlers [29] and by Matzner–Misner [30]). Their
interplay leads to an infinite-dimensional group (the Geroch group [31]) which acts on the solu-
tions to the Einstein equation in the background with two commuting Killing vectors [32]. The
structure of the Geroch group was established in [33], where it was shown that the infinitesimal
form of the Geroch group corresponds to the affine Kac–Moody algebra SL(2, R)+.

The Ehlers SL(2, R) is established after dualisation of the Kaluza–Klein vector to a scalar
field upon the reduction from D = 4 to D = 3. This scalar (the axion) together with g33
component of the metric tensor (the dilaton) form SL(2, R)/SO(2) coset space. The Matzner–
Misner SL(2, R) arises upon the direct reduction from D = 4 to D = 2 and corresponds to the
global symmetry group of the internal two-torus (the moduli space group).

On account of the discussed SL(2, R)+ Geroch algebra of the reduced to D = 2 four-di-
mensional gravity and its subsequent extension to SL(2, R)++ upon the reduction to D = 1 [34]6,
one may expect the very-extended Kac–Moody-type algebra SL(2, R)+++ in the end. Following
the West’s proposal, this algebra should be the true symmetry algebra of D = 4 gravity. For

5By use of, e.g., SimpLie program (see [25]) to this end.
6Actually, this result is established for D=4 N=1 supergravity. The rôle of the local supersymmetry in forming

SL(2, R)++ is noteworthy (see [34]) for details).
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D-dimensional gravity this algebra becomes SL(D−2, R)+++. Since SL(2, R)+++ ∼ A+++
1 , the

hidden symmetry algebra (for D > 3) is A+++
D−3 .

As for E11 one may figure out the generators of A+++
D−3 classifying them w.r.t. reps. of the

gravity line. It corresponds to AD−1 ∼ SL(D) in the case (see the following Dynkin diagram of
A+++

D−3 ).

D-3 2 1

...

D

D-1 D-2

Clearly, we have AD−1 generators at level 0 (they are the generators of SL(D)), and the
generators R[a1...aD−3],b, R[a1...aD−3b] at l = 1. It is easy to recognize the generator corresponding
to the dual to graviton field, R[a1...aD−3],b, while the last generator does not enter the algebra
having the multiplicity zero.

From now on it becomes clear that the presence of the graviton dual field is not an artifact of
the E11 construction. The corresponding generator enters the symmetry algebra of any theory
which contains gravity. For instance, the following subalgebra of D = 11 pure gravity is included
in (3.1)

[Ka
b,K

c
d] = δc

bK
a
d − δa

dK
c
b, [Ka

b, R
c1...c8,d] = 8δ[c1b R|a|c2...c8],d + δd

bR
c1...c8,a, (4.1)

and this non-closed subalgebra is a part of the infinite-dimensional algebra A+++
8 . It is also

clear that as soon as the way of constructing the duality-symmetric gravity will be outlined
the generalization to the completely duality-symmetric D = 11 supergravity will be almost
straightforward.

Before proceeding further, let us make a remark on the index structure of generators of (4.1).
The symmetry properties of the gravity line generators Ka

b are not restricted, neither to be
completely symmetric nor to be completely antisymmetric. The graviton dual field generators
Ra1...aD−3,b are completely antisymmetric over the first D − 3 indices. However, if we impose
the following additional restriction on the index structure

R[a1...aD−3,b] = 0, (4.2)

the subalgebra (4.1) splits off the rest of A+++
8 and forms its closed part. Equation (4.2) is also

required to close the algebra (3.1).

5 Duality-symmetric formulation of gravity

We are turning now to the dynamical realization of the duality-symmetric M-theory at low-levels
of E11. It should include the graviton and its dual field, so we focus first on the construction of
the duality-symmetric gravitational theory action.

The following line of reasoning may be helpful in such a quest. The standard gravity action

S =
∫
dDx

√
|g|R

depends on the dynamical metric tensor field gmn = gnm. To include its dual field, we have to
add a new term to the action, which in general depends on the metric tensor, on the graviton
dual field G and its ‘field strength’ R = ∂G+ · · · , and possibly on some auxiliary fields ξi, which
are required for different reasons. It could be, for instance, the covariantization of the problem.
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The duality-symmetric action becomes

S =
∫
dDx

√
|g|R+ Ladd.(g,G,R, ξi), (5.1)

and its variation over the variables leads to the following set of equations of motion

Rmn − 1
2gmnR+

δLadd.

δgmn
= 0,

δLadd.

δG
= 0,

δLadd.

δξi
= 0. (5.2)

At first glance, equations (5.2) describe the extended, with respect to the original degrees of
freedom, dynamical system. However, we require a special form of the new term in (5.1) which,
on the one hand, does not spoil the original dynamics (the set of equations (5.2) is reduced
to the Einstein equation in the end), and on the other hand, it should contain some specific
relations, the duality relations between dual fields, on account of which it could be possible to
recover the original dynamics in terms of the dual field.

Another remark concerns the convenient choice of variables to simplify matching with gen-
erators of (4.1). We have noted that the generators Ka

b entering (4.1) have the unrestricted
index structure. Therefore, they do not correspond to the symmetric metric tensor. But they
are well fitted to vielbeins eam, whose index structure is also unrestricted. Moreover, if we treat
the upper index of the vielbein as that of an internal symmetry type, and dualize the vielbein
over the lower index, similar to a vector field, we precisely recover the dual field, Aa

[m1...mD−3],
corresponding to the generator R[a1...aD−3],b. Hence, it is convenient for our purposes to consider
gravity in the first order formulation.

Let us make the setting more precise considering the following set of equations

Σabc ·Rbc +
δ

δea

(
v · Fa[D−2] · ivFb[2]ηab

)
= 0, (5.3)

d(v · ivFa[2]) = 0, (5.4)

ivFa[D−2] · d(v · ivF [2]
a ) + ivFa[2] · d(v · F [D−2]

a ) = 0. (5.5)

Written in the differential forms notation (see Appendix), equations (5.3)–(5.5) are in exact
correspondence to equations (5.2). Equation (5.3) corresponds to the Einstein equation extended
with contribution of new additional term, Ladd.. This term depends on the vielbein ea as well
as on the vielbein dual field Aa[D−3] through the following generalized field strengths

Fa[2] = dea − ∗(dAa[D−3] + ∗G̃a[2]), (5.6)

Fa[D−2] = − ∗ Fa[2]. (5.7)

The exact definition of ∗G̃a[2] is not important for the present discussion, so we skip it for
a while. The rest is a one-form [8]

v =
da(x)√

−∂ma gmn ∂na
,

constructed out the auxiliary scalar field a(x). ηab is apparently reserved for the tangent space
Minkowski metric tensor.

One may notice that at least one particular solution to equations (5.3)–(5.5), Fa[2] = 0, re-
duces this system to the single Einstein equation. Moreover, this particular solution corresponds
to one of the first-order in derivatives duality relations between fields which effectively contain
the second order dynamical equations. Taking the external derivative of Fa[2] = 0 we obtain the
dynamics of gravity in terms of the dual field

d(∗dAa[D−3]) + · · · = 0, (5.8)
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while applying the derivative to the second duality relation, Fa[D−2] = 0, results in the following
form of the Einstein equation

Rmn − 1
2gmnR ≡ d(∗dea)− ∗J̃ [1]

a = 0. (5.9)

The exact expression of the “current” J̃ [1]
a has the following, convenient for further references,

form

J̃ [1]
a = (−)

D(D−5)
2 J [1]

a + ∗dS[D−2]
a , (5.10)

with

J [1]
a = ∗

[
ωbc(e) · dΣabc + (−)D−3 ωb

d(e) · ωdc(e) · Σabc

]
, (5.11)

and

S[D−2]
a = ∗(eb · ea)emc enb ∂[me

c
n].

Note that (5.11) involves the resolved connection

ωab(e) = 1
2e

c
[
emc e

na∂[me
b
n] − emc e

nb∂[me
a
n] − enaesb∂[nes]c

]
, (5.12)

which follows from the torsion free constraint

T a ≡ dea − ωa
b · eb = 0, (5.13)

as in the so-called “one and half” formalism (see [35]).
Equations (5.3)–(5.5) together with equation (5.13) can be derived from the first order ac-

tion [18, 19] (see Appendix for the notation)

S =
∫
MD

Rab · Σab + 1
2v · F

a[D−2] · ivFb[2]ηab. (5.14)

The first term of (5.14) is the standard Einstein–Hilbert–Palatini action and the second one is a
slightly generalized PST term [8]. The special structure of the latter is important to prove that
the duality relation Fa[2] = 0 is the general solution to equation (5.4) (see [19] in the case), and
that the scalar field a(x) is the auxiliary field. Indeed, on the mass-shell Fa[2] = 0, the equation
of motion of a(x), equation (5.5), is identically satisfied, and does not carry any additional
dynamical information.

Finally, G̃a[2] entering (5.6) is defined by d∗G̃a[2] = ∗J̃a[1]. The presence of G̃a[2] sacrifices the
locality of the action, and of the generalized field strengths (5.6), (5.7). However, the dual field
equation of motion (5.8) can be rewritten in the local form after the dual field redefinition [19].

6 Duality-symmetric gravity in the linearized approximation

There are numerous indications that the linearized gravity admits dualisation in the local form
(see e.g. [36, 37, 38, 39, 40, 41, 42, 43, 44, 45]), and solely in terms of the dual field. However,
the generalization of the construction to the non-linear case should be resulted in a duality-
symmetric theory. The reasons for that are as follows.

As for bosonic fields, the field dual to graviton has to be described by a second order, in
space-time derivatives, equation of motion. Its structure in a curved background is

2(dual field) + · · · = 0,
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where . . . corresponds to possible self-interactions and interactions with the background gravity
field. The box 2 is the d’Alembertian operator, and this operator is constructed out the space-
time derivatives and the background metric. The dual field dynamics within the full non-linear
self-consistent theory (which takes into account the backreaction of the graviton dynamics)
will contain the d’Alembertian with the dynamical (non-background) metric. Therefore, the
resulted theory will be a duality-symmetric theory which manages the dynamics of both fields,
the graviton and its dual partner.

Our previous consideration [19] of the duality-symmetric gravity linearization has indicated
that on-shell we encounter the local formulation. Here we would like to extend the analysis to
check the locality of the linearized duality-symmetric gravity off-shell.

Let us make a quick recap of the on-shell linearized formulation. We expand the vielbein
near the flat space

ea(x) = dXmua
m + Ea(x), (6.1)

with a constant matrix ua
m. The spin connection (5.12) linear in Ea(x) then becomes

ωab(e) ∼= 1
2dX

kuc
k

[
um

c u
na∂[mEb

n] − um
c u

nb∂[mEa
n] − unausb∂[nEs]c

]
+O(E2), (6.2)

that means

J [1]
a
∼= O(E2). (6.3)

Hence the latter expression does not enter the linearized equation of motion. Furthermore,

S[D−2]
a = ∗

(
dXkub

k · dX lula

)
um

c u
n
b ∂[mEc

n] +O(E2) ≡ S[D−2]
a +O(E2).

In effect, equation of motion (5.9) becomes

d(∗dEa − S[D−2]
a ) = 0, (6.4)

and it has the structure of the Bianchi identity d(· · · ) = 0 of the dual field strength. This
expression is apparently local, so the non-locality corresponding to a self-interacting part of the
non-linear action disappears in the linearized limit.

So far we discussed the linearized limit on-shell. Having the on-shell locality does not guar-
antee the locality off-shell. Let us check the locality of the linearized action and the action
symmetries.

The covariant action for the duality-symmetric gravity in the linearized limit is

S =
∫
MD

(
[Rab · Σab]lin. + 1

2v · F
m[D−2] · ivFn[2]ηmn

)
. (6.5)

The first term of (6.5) is the linearized Einstein–Hilbert–Palatini action and the second term is
the linearized version of the PST term of (5.14).

The generalized field strengths which enter (6.5) are defined by

F [D−2]
m ≡ F [D−2]

a ua
m =

(
dA[D−3]

a − (∗dEa − S[D−2]
a )

)
ua

m, F [2]
m = − ∗ F [D−2]

m , (6.6)

and there is no difference between flat and curved indices in the limit. Clearly, the linearized
action (6.5) does not contain non-local constituents, hence we encounter the locality at the level
of action. But what about the action symmetries?

The covariance of the model is guaranteed by the PST-like construction of the action, and
the local Lorentz transformations, which act on the tangent flat space indices, also become truly
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local (see [19] for details). The remainder is the special symmetries of the approach, the so-called
PST symmetries [8], to the analysis of which we are turning now.

Varying the action results in

δS =
∫
MD

(
δAm[D−3] +

δa√
−(∂a)2

ivFm[D−2]

)
ηmn · d(v · ivFn[2])

+
∫
MD

(
δEm +

δa√
−(∂a)2

ivFm[2]

)
ηmn · d(v · ivFn[D−2])

−
∫
MD

δSm[D−2]ηmn · v · ivFn[2]. (6.7)

The first two terms of (6.7) vanish under the following transformations of fields

δa(x) = 0, δEm = da · ϕm[0], δAm[D−3] = da · ϕm[D−4], (6.8)

δa(x) = Φ(x), δEm = − Φ√
−(∂a)2

ivFm[2], δAm[D−3] = − Φ√
−(∂a)2

ivFm[D−2] (6.9)

with local gauge parameters ϕm[0], ϕm[D−4], Φ. However, the third term of (6.7) does not
generally vanish under (6.8), (6.9).

Indeed, the variation of this term under (6.8) results in

δSm[D−2]ηmn · v · ivFn[2] ∼ vs∂kϕ
s[0](vmFm

klvl − vkFm
mlvl)− ∂sϕ

s[0]Fm
mlvl.

One may notice that this variation is equal to zero once

ua
mFa,[np] = ua

mF[a,np].

In its turn, (6.6) requires

ua
mFa,[n1...nD−2] = ua

mF[a,n1...nD−2],

that leads to

ua
mA[a,n1...nD−3] = 0. (6.10)

The invariance of the action under the second special symmetry (6.9) also imposes the con-
straint (6.10). Once this constraint is relaxed, the PST transformations of the dual field Am[D−3]

receive non-local corrections.
The encountered constraint on the dual field index structure corresponds, on the hidden sym-

metry algebra side, to equation (4.2). Recall, the latter is required to close the subalgebra (4.1).

7 Linearized gravity with matter fields and its dualisation

Having discussed the locality of the duality-symmetric linearized gravity action based on the
algebra (4.1), let us take a further step towards the dynamical realization of the M-theory
algebra (3.1).

To make a contact to M-theory we have to extend the action (6.5) at least with a three-form
field kinetic term7. Once this gauge field is taken into account, the expansion of the vielbein
(cf. (6.1)) gets modified to the following form

ea(x) = ẽa(x) + Ea(x), (7.1)

7The non-linear duality-symmetric action of M-theory based on (3.1) can be found in [18, 19].
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where ẽa(x) is the solution to the linearized Einstein equation with the 3-form field energy-
momentum tensor. Putting it differently, we have to expand over the curve background in the
case rather than over the flat space-time as it has been done before.

The difference between a curve space and the Minkowski flat space becomes clear once we
present (5.12) as

ωab(e) = 1
2e

cΩc
ab(e, ∂e),

so expanding the vielbein as in (7.1) we schematically get

ωab(e) ∼= 1
2 ẽ

cΩc
ab(ẽ, ∂E) + 1

2E
cΩc

ab(ẽ, ∂ẽ) +O(E2) + · · · .

Clearly, the latter expansion contains the part linear in the bare Ea which was absent in the
pure gravity case (see (6.2)). As a result, (6.3) gets modified with terms linear in Ea, and
equation (6.4) becomes (for D = 11)

d(∗dEa − S[9]
a ) = − ∗ J [1]

a . (7.2)

The r.h.s. of (7.2) cannot be transformed into a local curl. Put it differently, dualisation of
the linearized gravity with matter requires introducing non-locality. The “current” form ∗J̃ [1]

a

of (5.10) is closed but not exact in the case, so its “pre-current” form ∗G̃[2]
a (d ∗ G̃[2]

a = ∗J̃ [1]
a ) is

a non-local expression. Since the “pre-current” enters the duality relations (cf. (5.6), (5.7)) its
non-locality induces the non-locality of the action. Then, symmetries of the action also become
non-local, and (6.10) does not save the locality.

To make our consideration less formal let us reformulate things in more familiar fashion. We
will do that for D = 4 linearized gravity with matter; the generalization to a higher-dimensional
case is straightforward. The pure linearized gravity action is as follows

A =
∫

d4x ∂ahbcMabcijk∂ihjk. (7.3)

Here hab = hba is the linearized graviton field and

Mabcijk = (ηaiηbcηjk − ηaiηbjηci + 2ηakηbjηci − 2ηakηbcηij)symm.. (7.4)

We use the notation of [46]; the symmetry properties of (7.4) is apparent from (7.3).
Equation of motion which follows from (7.3) can be written in the following form

M̃abcijk∂a∂ihjk = 0, (7.5)

with M̃abcijk = ηaiηbcηjk−ηaiηbjηci+ηakηbjηci−ηakηbcηij−ηicηjkηab+ηakηcjηbi. Equation (7.5)
is the Bianchi identity of the dual to graviton field, Urs

|bc, which is defined by

εaprs∂pUrs
|bc = M̃abcijk∂ihjk. (7.6)

So, the dualisation is straightforward and does not violate the locality.
When the matter source is taken into account, equation (7.5) gets transformed into

M̃abcijk∂a∂ihjk = T bc. (7.7)

Here T bc is the energy-momentum tensor of matter fields. Its structure (see, e.g., [46, 47] for
details) is as follows

T bc ≡
[
∂cφA

(
∂L

∂(∂bφA)

)
− ηbcL

]
+ ∂aψ

abc,
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where ψabc = −ψbac is an arbitrary third rank tensor. Then, equation (7.7) becomes

∂a

(
M̃abcijk∂ihjk − ψabc

)
=
[
∂cφA

(
∂L

∂(∂bφA)

)
− ηbcL

]
, (7.8)

which is nothing but equation (7.2) written in terms of other variables. For a general Lagrangian
L(φA, ∂aφA) it is quite unexpectable that the r.h.s. of (7.8) can be presented as a local curl.

Moreover, it cannot be done anyway. If it were done it would be possible, due to a 3rd rank
tensor ψabc, to ‘neutralize’ the contribution of matter fields to the energy-momentum tensor.
Thus, the energy-momentum tensor could always be set to zero, and the dynamics of gravity
with matter fields would be the same as the dynamics of pure gravitational field. Presumably,
the latter is wrong that completes our arguments.

Therefore, the dualisation of the linearized gravity with matter fields cannot be generally
done in the local form. It does not depend on the nature of matter fields φA which would be
scalar, spinor, vector, tensor or spin-tensor fields.

8 Conclusions

We conclude with the following points. Dualities and hidden symmetries of String Theory are
closely related to each other. It has been shown that Dualities of String Theory require the
modification of String Theory to M-theory. The algebraic structure of M-theory is encoded in
hidden symmetries of the String Theory low-energy effective actions. Such an algebraic structure
may be realized dynamically in different ways. Here we have followed [8, 7, 18, 19].

An essential feature of [18, 19] is non-locality of the non-linear action and of the symmetries
of the approach. Here we have focused on the locality of the linearized duality-symmetric
gravity action8. We have observed that the requirement of locality of the linearized duality-
symmetric gravity leads to the constraint on the index structure of the dual field (see (6.10)).
The corresponding constraint was previously found on the hidden symmetry of M-theory [1, 4]
side. Note that this constraint has nothing to do with the action of the model (6.5) which is local,
as well as with the equations of motion which follow from the local action. We have observed
that this constraint ensures the locality of the special gauge transformations, equations (6.8),
(6.9), of the linearized duality-symmetric gravity action. It points at an interesting and quite
unexpected relation between the dynamical local symmetries of the action and properties of the
hidden symmetry algebra. Furthermore, since the vielbein and the dual field are related to each
other through the duality relations (6.6), the constraint (6.10) eliminates the antisymmetric
component of the vielbein E[m

n], hence leading to the Fierz–Pauli-type description of the spin-2
duality-symmetric linearized theory.

The encountered constraint, on the hidden symmetry algebra side, is responsible for closing
the subalgebra of the graviton and of the dual field generators. It leaves no room for other
fields corresponding to the Kac–Moody-type algebra, inclusion of which would be helpful, for
instance, in quantum description of the model. Recall that the amplitude of the spin-2 single-
particle exchange violates the Froissart bound, breaking Unitarity at high energies. Unitarity
can be restored but within the Regge poles theory, where the single-particle exchange is replaced
with the Reggeon exchange, with a bunch of infinitely many particles belonging to the Regge
trajectory. It is natural to query whether the fields of the Kac–Moody algebra has a similar
correspondence to the spin-2 field as in the Regge theory, but an answer is unclear for a while.

On the other hand, when the constraint is imposed, we have just a well-defined, from the
point of view of the locality, duality-symmetric theory, symmetries of which are the standard
for the approach and are well-defined too. If one would try to make the embedding of the

8The on-shell locality of the linearized gravity in dual variables is directly observed from (6.4), (7.5), (7.6).
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symmetries into an extended symmetry structure, one should introduce compensator fields,
which would ‘un-Higgs’ the system, thus restoring the large symmetry. Following this way, we
could notice that indeed some of the compensators would be the true Higgs fields responsible
for the generation of masses of other compensators.

Progress in these directions could be achieved on the way of establishing the correspondence
between string theory higher spin modes and those of the appropriate Kac–Moody algebra. An
interesting problem solution to which may help on this way is to relax the constraint on the dual
to the vielbein field, and to include other fields of the Kac–Moody hidden symmetry algebra
into the construction of the duality-symmetric action.

Finally, let us make a short remark on the sigma-model approach of [9, 10, 11, 12]. This
approach is based on the conjecture which claims that the full geometrical data of M-theory
(and D = 11 supergravity as its low-energy limit as well) can be mapped onto a geodesic
motion in the E10/K(E10) coset space. The established there ‘dictionary’ between parameters
of the coset space and M-theory fields works good up to the third level of E10 decomposition
with respect to SL(10) finite subalgebra. At the third level, where the dual to graviton field
appears, there is a mismatch between the dynamics of the coset space parameters and that
of D = 11 supergravity bosonic fields. Such a discrepancy may be resolved with taking into
account higher levels of E10 on both sides of the correspondence or with taking into account
a ‘gradient’ conjecture of [9]. The latter is equivalent to introducing the (spatial) non-locality
into the theory. We have encountered the non-locality in the duality-symmetric theory of gravity
with matter fields, so the question is how to realize the ‘gradient’ conjecture on our side.

A Notation and conventions

Our choice of the signature is the mostly minus. Letters from the middle of the Latin alphabet
are reserved for the curved indices, letters from the beginning are used for the indices in tangent
space. The Levi-Civita tensor εa1···aD is defined by

ε01...(D−1) = 1, ε01...(D−1) = (−)D−1,

that implies

εa1...aDεa1...aD = (−)D−1D!.

An n-form has the following coordinate representation

ω[n] =
1
n!
dxmn · · · dxm1ω[n]

m1...mn
,

and the exterior derivative acts from the right.
The Hodge star is defined by

∗
(
dxkn · · · dxk1

)
=

1
(D − n)!

αn√
|g|

dxmD−n · · · dxm1εm1...mD−n

k1...kD−n ,

with coefficients αn fixed to provide the universal identity ∗2 = 1.
The curvature of SO(1, D − 1) connection ωab is Rab = dωab − ωa

c · ωcb,

Σa1...an =
1

(D − n)!
εa1...aDe

an+1 · · · · · eaD

is a (D−n)-form constructed out of vielbeins ea. The wedge product between forms is supposed.
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[25] Bergshoeff E., Nutma T.A., De Baetselier I., E11 and the embedding tensor, arXiv:0705.1304.

[26] Kleinschmidt A., Schnakenburg I., West P.C., Very-extended Kac–Moody algebras and their interpretation
at low levels, Classical Quantum Gravity 21 (2004), 2493–2525, hep-th/0309198.

[27] Nicolai H., Townsend P.K., Nieuwenhuizen P., Comments on 11-dimensional supergravity, Lett. Nuovo
Cimento 30 (1981), 315–320.

[28] D’Auria R., Fre P., Geometric supergravity in d = 11 and its hidden supergroup, Nuclear Phys. B 201
(1982), 101–140, Erratum, Nuclear Phys. B 206 (1982), 496.
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