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Abstract. The Fano-Snowflake, a specific configuration associated with the smallest ring
of ternions R♦ (arXiv:0803.4436 and arXiv:0806.3153), admits an interesting partitioning
with respect to the Jacobson radical of R♦. The totality of 21 free cyclic submodules
generated by non-unimodular vectors of the free left R♦-module R3

♦ is shown to split into
three disjoint sets of cardinalities 9, 9 and 3 according as the number of Jacobson radical
entries in the generating vector is 2, 1 or 0, respectively. The corresponding “ternion-
induced” factorization of the lines of the Fano plane sitting in the middle of the Fano-
Snowflake is found to differ fundamentally from the natural one, i.e., from that with respect
to the Jacobson radical of the Galois field of two elements.
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Projective lattice geometries over unital associative rings R (see, e.g., [1] and references
therein) represent a very important generalization of classical (field) projective spaces, being
endowed with a number of remarkable features not exhibited by the latter. One of the most
striking differences is, for certain R, the existence of free cyclic submodules generated by non-
unimodular vectors of the free left R-module Rn+1, n ≥ 1. In a couple of recent papers [2, 3], an
in-depth analysis has been performed of such non-unimodular portions of the lattice geometries
when R is the ring of ternions, i.e., a ring isomorphic to that of upper triangular 2× 2 matrices
with entries from an arbitrary commutative field F . It has been found that for any n ≥ 2 these
non-unimodular free cyclic submodules of Rn can be associated with the lines of PG(n, F ), the
n-dimensional projective space over F sitting in the middle of such a non-unimodular world.
In the finite case, F = GF (q), basic combinatorial properties of such configurations have been
derived and illustrated in exhaustive detail for the simplest, n = q = 2 case – dubbed the Fano-
Snowflake geometry. In the present paper we shall have another look at the Fano-Snowflake
and show that this geometry admits an intriguing decomposition with respect to the Jacobson
radical of the ring in question.

To this end, we first collect the necessary background information from [2, 3]. We consider
an associative ring with unity 1 ( 6= 0), R, and denote the free left R-module on n+1 generators
over R by Rn+1. The set R(r1, r2, . . . , rn+1), defined as follows

R(r1, r2, . . . , rn+1) := {(αr1, αr2, . . . , αrn+1) | α ∈ R} ,

is a left cyclic submodule of Rn+1. Any such submodule is called free if the mapping α 7→
(αr1, αr2, . . . , αrn+1) is injective, i.e., if (αr1, αr2, . . . , αrn+1) are all distinct. Next, we shall call
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Table 1. Addition (left) and multiplication (right) in R♦.

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 6 7 5 4 2 3
2 2 6 0 4 3 7 1 5
3 3 7 4 0 2 6 5 1
4 4 5 3 2 0 1 7 6
5 5 4 7 6 1 0 3 2
6 6 2 1 5 7 3 0 4
7 7 3 5 1 6 2 4 0

× 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 1 3 7 5 6 4
3 0 3 5 3 6 5 6 0
4 0 4 4 0 4 0 0 4
5 0 5 3 3 0 5 6 6
6 0 6 6 0 6 0 0 6
7 0 7 7 0 7 0 0 7

a vector (r1, r2, . . . , rn+1) ∈ Rn+1 unimodular if there exist elements x1, x2, . . . , xn+1 in R such
that

r1x1 + r2x2 + · · ·+ rn+1xn+1 = 1.

It is a very well-known fact (see, e.g., [4, 5, 6, 7]) that if (r1, r2, . . . , rn+1) is unimodular, then
R(r1, r2, . . . , rn+1) is free; any such free cyclic submodule represents a point of the n-dimensional
projective space defined over R [5]. The converse statement, however, is not generally true.
That is, there exist rings which also give rise to free cyclic submodules featuring exclusively
non-unimodular vectors. The first case where this occurs is the smallest (non-commutative)
ring of ternions, R♦:

R♦ ≡
{(

a b
0 c

)
| a, b, c ∈ GF (2)

}
,

where the addition and multiplication is that of matrices over GF (2). From this definition it is
readily seen that the ring contains two maximal (two-sided) ideals,

I1 =
{(

0 b
0 c

)
| b, c ∈ GF (2)

}
and I2 =

{(
a b
0 0

)
| a, b ∈ GF (2)

}
,

which give rise to a non-trivial (two-sided) Jacobson radical J ,

J = I1 ∩ I2 =
{(

0 b
0 0

)
| b ∈ GF (2)

}
.

Since for our further purposes it will be more convenient to work with numbers than matrices,
we shall relabel the elements of R♦ as follows

0 ≡
(

0 0
0 0

)
, 1 ≡

(
1 0
0 1

)
, 2 ≡

(
1 1
0 1

)
, 3 ≡

(
1 1
0 0

)
,

4 ≡
(

0 0
0 1

)
, 5 ≡

(
1 0
0 0

)
, 6 ≡

(
0 1
0 0

)
, 7 ≡

(
0 1
0 1

)
.

In this compact notation the addition and multiplication in the ring reads as shown in Table 1.
The two maximal ideals now acquire the form

I1 := {0, 4, 6, 7} and I2 := {0, 3, 5, 6} ,

and the Jacobson radical reads,

J = I1 ∩ I2 = {0, 6} .
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There exist altogether 21 free cyclic submodules of R3
♦ which are generated by non-unimodular

vectors. Taking their complete list from [2] one sees that they can be separated into the following
three disjoint sets

R♦(6, 6, 7) = R♦(6, 6, 4)

= {(0, 0, 0), (6, 6, 7), (6, 6, 4), (6, 6, 0), (0, 0, 4), (6, 6, 6), (0, 0, 6), (0, 0, 7)} ,

R♦(6, 7, 6) = R♦(6, 4, 6)

= {(0, 0, 0), (6, 7, 6), (6, 4, 6), (6, 0, 6), (0, 4, 0), (6, 6, 6), (0, 6, 0), (0, 7, 0)} ,

R♦(7, 6, 6) = R♦(4, 6, 6)

= {(0, 0, 0), (7, 6, 6), (4, 6, 6), (0, 6, 6), (4, 0, 0), (6, 6, 6), (6, 0, 0), (7, 0, 0)} ,

R♦(0, 6, 7) = R♦(0, 6, 4)

= {(0, 0, 0), (0, 6, 7), (0, 6, 4), (0, 6, 0), (0, 0, 4), (0, 6, 6), (0, 0, 6), (0, 0, 7)} ,

R♦(0, 7, 6) = R♦(0, 4, 6)

= {(0, 0, 0), (0, 7, 6), (0, 4, 6), (0, 0, 6), (0, 4, 0), (0, 6, 6), (0, 6, 0), (0, 7, 0)} ,

R♦(6, 0, 7) = R♦(6, 0, 4)

= {(0, 0, 0), (6, 0, 7), (6, 0, 4), (6, 0, 0), (0, 0, 4), (6, 0, 6), (0, 0, 6), (0, 0, 7)} ,

R♦(7, 0, 6) = R♦(4, 0, 6)

= {(0, 0, 0), (7, 0, 6), (4, 0, 6), (0, 0, 6), (4, 0, 0), (6, 0, 6), (6, 0, 0), (7, 0, 0)} ,

R♦(6, 7, 0) = R♦(6, 4, 0)

= {(0, 0, 0), (6, 7, 0), (6, 4, 0), (6, 0, 0), (0, 4, 0), (6, 6, 0), (0, 6, 0), (0, 7, 0)} ,

R♦(7, 6, 0) = R♦(4, 6, 0)

= {(0, 0, 0), (7, 6, 0), (4, 6, 0), (0, 6, 0), (4, 0, 0), (6, 6, 0), (6, 0, 0), (7, 0, 0)} ,

R♦(4, 6, 7) = R♦(7, 6, 4)

= {(0, 0, 0), (4, 6, 7), (7, 6, 4), (6, 6, 0), (4, 0, 4), (0, 6, 6), (6, 0, 6), (7, 0, 7)} ,

R♦(4, 7, 6) = R♦(7, 4, 6)
= {(0, 0, 0), (4, 7, 6), (7, 4, 6), (6, 0, 6), (4, 4, 0), (0, 6, 6), (6, 6, 0), (7, 7, 0)} ,

R♦(6, 4, 7) = R♦(6, 7, 4)

= {(0, 0, 0), (6, 4, 7), (6, 7, 4), (6, 6, 0), (0, 4, 4), (6, 0, 6), (0, 6, 6), (0, 7, 7)} ,

R♦(4, 4, 6) = R♦(7, 7, 6)

= {(0, 0, 0), (4, 4, 6), (7, 7, 6), (6, 6, 6), (4, 4, 0), (0, 0, 6), (6, 6, 0), (7, 7, 0)} ,

R♦(4, 6, 4) = R♦(7, 6, 7)

= {(0, 0, 0), (4, 6, 4), (7, 6, 7), (6, 6, 6), (4, 0, 4), (0, 6, 0), (6, 0, 6), (7, 0, 7)} ,

R♦(6, 4, 4) = R♦(6, 7, 7)

= {(0, 0, 0), (6, 4, 4), (6, 7, 7), (6, 6, 6), (0, 4, 4), (6, 0, 0), (0, 6, 6), (0, 7, 7)} ,

R♦(0, 4, 7) = R♦(0, 7, 4)
= {(0, 0, 0), (0, 4, 7), (0, 7, 4), (0, 6, 0), (0, 4, 4), (0, 0, 6), (0, 6, 6), (0, 7, 7)} ,

R♦(4, 0, 7) = R♦(7, 0, 4)

= {(0, 0, 0), (4, 0, 7), (7, 0, 4), (6, 0, 0), (4, 0, 4), (0, 0, 6), (6, 0, 6), (7, 0, 7)} ,

R♦(4, 7, 0) = R♦(7, 4, 0)

= {(0, 0, 0), (4, 7, 0), (7, 4, 0), (6, 0, 0), (4, 4, 0), (0, 6, 0), (6, 6, 0), (7, 7, 0)} ,
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Figure 1. The Fano-Snowflake – a diagrammatic illustration of a very intricate relation between the 21
free left cyclic submodules generated by non-unimodular vectors of R3

♦. Each circle represents a vector
of R3

♦ (in fact, of I3
1 ), its size being roughly proportional to the number of submodules passing through

the given vector. As the (0, 0, 0) triple is not shown, each submodule is represented by seven circles
(three big, two medium-sized and two small) lying on a common polygonal path. The small circles stand
for the vectors generating the submodules. The big circles represent the vectors with all three entries
from J ; these vectors correspond to the points of the Fano plane. In the middle “branch” there are two
medium-size circles in front of the big one; in order to avoid a too crowded appearance of the figure, these
and the associated six small circles are not given the corresponding vector labels. The seven colors were
chosen in such a way to also make the lines of the Fano plane, i.e., the intersections of the submodules
with J3, readily discernible. See [2] and/or [3] for more details.

R♦(4, 4, 7) = R♦(7, 7, 4)

= {(0, 0, 0), (4, 4, 7), (7, 7, 4), (6, 6, 0), (4, 4, 4), (0, 0, 6), (6, 6, 6), (7, 7, 7)} ,

R♦(4, 7, 4) = R♦(7, 4, 7)

= {(0, 0, 0), (4, 7, 4), (7, 4, 7), (6, 0, 6), (4, 4, 4), (0, 6, 0), (6, 6, 6), (7, 7, 7)} ,

R♦(7, 4, 4) = R♦(4, 7, 7)

= {(0, 0, 0), (7, 4, 4), (4, 7, 7), (0, 6, 6), (4, 4, 4), (6, 0, 0), (6, 6, 6), (7, 7, 7)} ,

according as the number of Jacobson radical entries in the generating vector(s) is two, one or
zero, respectively. Employing the picture of the Fano-Snowflake given in [2] (reproduced, for
convenience, in Fig. 1), the structure of and relation between the three sets can be represented
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Figure 2. An illustration of the 9 – 9 – 3 decomposition of the set of free cyclic submodules comprising
the Fano-Snowflake with respect to the Jacobson radical of R♦ according as the number of radical entries
in the submodule’s generating vector(s) is two (top), one (middle) or zero (bottom), respectively.

diagrammatically as shown in Fig. 2. As each submodule corresponds to a single line of the
associated core Fano plane, the decomposition of the Fano-Snowflake induces an intriguing
factorization of the lines of the plane itself. This is depicted in Fig. 3, bottom panel, and it is
seen to fundamentally differ from the corresponding partitioning of the Fano plane with respect
to the Jacobson radical of its ground field GF (2)({0}), namely

GF (2)(1, 0, 0) = {(0, 0, 0), (1, 0, 0)} , GF (2)(0, 1, 0) = {(0, 0, 0), (0, 1, 0)} ,

GF (2)(0, 0, 1) = {(0, 0, 0), (0, 0, 1)} , GF (2)(1, 1, 0) = {(0, 0, 0), (1, 1, 0)} ,
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Figure 3. A comparison of the “ternion-induced” 6 – 7 – 3 factorization of the lines of the Fano plane
(bottom) with the ordinary 3 – 3 – 1 one (top). Note a principal qualitative difference between the two
factorizations, since the three sets (factors) are pairwise disjoint in the latter case but not in the former
one.

GF (2)(1, 0, 1) = {(0, 0, 0), (1, 0, 1)} , GF (2)(0, 1, 1) = {(0, 0, 0), (0, 1, 1)} ,

GF (2)(1, 1, 1) = {(0, 0, 0), (1, 1, 1)} ,

as displayed in Fig. 3, top panel.
The origin of the factorization of the Fano plane when related to its ground field GF (2) is

easy to understand: the number of the Jacobson radical entries (i.e., only zeros in this case) in
the coordinates of a line (and, by duality, of a point as well) has a clear meaning with respect to
the triangle of base points of the coordinate system. Something similar holds obviously for the
factorization of the Fano-Snowflake with respect to its ternionic coordinates, but passing to the
embedded Fano plane this link seems to be lost or substantially distorted. Fig. 2 illustrates this
fact quite nicely: in the top figure the maximum number of polygonal paths pass through the
three corners/vertices of the basic triangle, in the middle figure this property is enjoyed by the
points on each side of the triangle which are not vertices, whereas in the bottom figure all the
branches share the single point which is out of the reference triangle. It is the intersections of
the branches/polygonal paths with the core Fano plane which behave “strangely” and give rise
to the fundamental difference between the two factorizations of the Fano plane shown in Fig 3.

The observations above clearly demonstrate that there is more to the algebraic structure
of the Fano plane than meets the eye. The plane when considered on its own is found to
“reveal” quite different aspects compared with the case when embedded into a more general,
non-unimodular projective lattice setting. This difference is likely to get more pronounced, and
more intricate as well, as we pass to higher order rings giving rise to more complex forms of Fano-
Snowflakes. A key question is to find out whether the Snowflakes’ decomposition patterns and
their induced factorizations of the lines of the core Fano planes remain qualitatively the same as
in the ternionic case; our preliminary analysis of such structures over a particular class of non-
commutative rings of order sixteen and having twelve zero-divisors indicates that this might be
so. Another line of exploration worth pursuing is to stay with ternions but focus on higher-order
(q > 2) and/or higher-dimensional (n > 2) “Snowflake” geometries and their core projective
planes and/or spaces. Finding, however, a general construction principle for these remarkable
geometrical structures with respect to the properties of defining rings currently seems to be –
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already for the simplest q = 2 case – a truly difficult, yet extremely challenging task due to the
“ubiquity” of the Fano plane in various mathematical and physical contexts (see, e.g., [8]).
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