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Abstract. In this paper we extend our correlation functions to the open/closed case. This
gives rise to actions of an open/closed version of the Sullivan PROP as well as an action
of the relevant moduli space. There are several unexpected structures and conditions that
arise in this extension which are forced upon us by considering the open sector. For string
topology type operations, one cannot just consider graphs, but has to take punctures into
account and one has to restrict the underlying Frobenius algebras. In the moduli space, one
first has to pass to a smaller moduli space which is closed under open/closed duality and
then consider covers in order to account for the punctures.
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1 Introduction

There has been a lot of interest in studying open/closed theories from physics and mathematics.
In physics this goes back to boundary CFTs and D-branes with an extensive literature. In
mathematics motivation come from open/closed string topology, Gromov–Witten invariants
and TQFT again with a virtual onslaught of ideas. Sources relevant to our constructions are
[3, 18, 19, 20]. In this spirit, there have been many interesting forays into the subject of
open/closed operations [21, 4, 1, 5, 2].

Our point of view comes from the geometry provided in [11, 7] and the operations on
Hochschild complexes defined in [8] via correlations functions. In this paper, we extend these
correlation functions to the open/closed case. This leads to a dg-action of a Sullivan-type PROP
yielding string topology type operations and a cell level moduli space action on Hochschild com-
plexes. There are several surprising details and conditions which to our knowledge have not
been fully discussed previously. These obstacles make the passage from the closed case to the
open/closed case far from being evident.

The first is that – unlike the closed case – in the open/closed case, the role of punctures cannot
be suppressed, as they can arise as the result of an open gluing. These punctures contribute new
factors to the correlators. Another consequence of the presence of punctures is that in the moduli
space case the underlying ribbon graph needs extra decorations marking possible punctures and
one cannot define the string topology type operations just by looking at open/closed graphs of
Sullivan type. One has to know the puncture structure inside the complementary regions as well.

?This paper is a contribution to the Proceedings of the XVIIIth International Colloquium on Integrable Sys-
tems and Quantum Symmetries (June 18–20, 2009, Prague, Czech Republic). The full collection is available at
http://www.emis.de/journals/SIGMA/ISQS2009.html

mailto:rkaufman@math.purdue.edu
http://www.math.purdue.edu/~rkaufman/
http://dx.doi.org/10.3842/SIGMA.2010.036
http://www.emis.de/journals/SIGMA/ISQS2009.html


2 R.M. Kaufmann

Secondly we need a compatibility equation for the dg-PROP to operate, which is satisfied
if the coefficient modules of the Hochschild complexes have a geometric origin. A further
unexpected detail is that the moduli space is not the first moduli space one would choose. For
each moduli space one has to pick out a subspace that satisfies open/closed duality and then
consider covers or rather spaces which are stratified by covers of the usual moduli spaces. These
are brane labelled open/closed moduli spaces c/oMs,β

g,δ1,...,δn
of bordered surfaces with punctures

on the boundary and clusters of marked points on the interior.
The main results are

Theorem 1. There is an open/closed colored β brane labelled c/o dg-PROP cell model of the

open/closed colored brane labelled topolgical quasi PROP (see Appendix A.7) S̃ull
c/o

which acts in
a brane labelled open/closed colored dg-PROP fashion on the brane labelled Hochschild complexes
for a β-Frobenius algebra which satisfies the Euler condition (E); see Definition 4.5.

This theorem defines open/closed string topology type actions for compact manifolds that
are simply connected.

Theorem 2. There is an operadic cell model associated to the β-brane labelled open/closed mo-
duli spaces c/oMs,β

g,δ1,...,δn
which acts on β-labelled Hochschild co-chains via operadic correlation

functions with values in a β-labelled Hom operad.

The actions in both cases are made possible by a discrete version of the c/o action.

Theorem 3. For a basic B-Frobenius algebra the c/o structure of discretely weighted arc-graphs
acts on he collection of complexes B(β) and the isomorphic Hochschild complexes via the corre-
lation functions Y defined by equations (4) and (5).

The restriction basic B-Frobenius algebras is simply of expository nature. We can deal
with general systems of B-Frobenius algebras. For this we would introduce a new propagator
formalism which we will do elsewhere as not to put even more technical structures into this
exposition.

We begin by reviewing the relevant structures from [11] in Section 2. We then go on to
construct the relevant spaces which carry the topological structures. The first of these is taken
from [11] and is concerned with graphs on windowed surfaces. We define a generalization and
a restriction of this structure. The restriction is the space that yields moduli spaces of curves
with marked points and tangent vectors, while the extension is used to define the open/closed
Sullivan PROP. We also briefly discuss the moduli space c/oMs,β

g,δ1,...,δn
which provides the chain

models for the moduli space action. In all these cases, we associate a chain complex to these
spaces where each basis element, or cell, is indexed by a graph of arcs on the given windowed
surface.

In Section 3, we review the open/closed gluing operations in the geometrical setting. The
algebraic counterpart is given by brane labelled bar complexes of brane labelled systems of
Frobenius algebras which we introduce in Section 4.

The correlators in the discrete case are given in Section 5. This is the technical heart of
the paper and yields Theorem 3. Given a graph on a windowed surface which has a discrete
weighting on its edges or arc there is a universal formula for a correlation function. This extends
our formula of [8] to the open/closed case. In Section 6 we given the details of the PROPic version
of the actions, which lead to open/closed string topology operations. The section culminates
in Theorem 1. In Section 7 we give the details on our moduli space actions and the proof of
Theorem 2. We close the main part of the paper with an outlook. In an appendix, we recall the
rather technical definition of a brane labelled c/o structure and the other operadic and PROPic
structures we use.
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2 Review of the KP-model for open/closed strings

We recall the main features of the KP-model for open/closed string interactions via foliations [11].
The interactions are given by surfaces with boundary and punctures together with a foliation.
There are marked points on the boundary (at least one per boundary) and possibly also marked
points in the surface. The part of the boundary between two marked points is called a window.

The foliation is thought of as being transverse to the propagating string and as keeping track
of splitting and recombining of pieces of string. The foliation and its partial transverse measure
are encoded in a graph of weighted arcs. Furthermore there is the data of a brane labelling
which keeps track of the branes that the strings might end on.

Given two windows, either on two disjoint surfaces or on the same surface, we can glue them
and the foliations together if their weights agree on these windows. In [11] we showed that this
gluing gives rise to an c/o structure on the topological level and induces chain level operations,
which descend to a bi-modular operad on the homology level.

More technically, the setup is as follows:

2.1 Arc graphs in brane labelled windowed surfaces

A windowed surface F = F s
g (δ1, . . . , δr) is a smooth oriented surface of genus g ≥ 0 with s ≥ 0

punctures and r ≥ 1 boundary components together with the specification of a non-empty finite
subset δi of each boundary component, for i = 1, . . . , r, and we let δ = δ1 ∪ · · · ∪ δr denote the
set of all distinguished points in the boundary ∂F of F and let σ denote the set of all punctures.
The set of components of ∂F − δ is called the set W of windows.

Furthermore one needs to specify a brane labelling β. For this we first fix a set B of basic
brane labels and denote by P(B) power set. Notice that ∅ ∈ P(B), this will encode the closed
sector. The elements of P(B) of cardinality bigger than one should be thought of as intersecting
branes. These give room for extra data, but it is possible to set all the contributions for these
“higher intersection” branes to zero in a given model.

A brane-labeling on a windowed surface F is a function

β : δ
∐

σ → P(B),

where t denotes the disjoint union, so that if β(p) = ∅ for some p ∈ δ, then p is the unique
point of δ in its component of ∂F . A brane-labeling may take the value ∅ at a puncture.

A window w ∈ W on a windowed surface F brane-labeled by β is called closed if the endpoints
of w coincide at the point p ∈ δ and β(p) = ∅; otherwise, the window w is called open. Each
window defines a pair of brane labels β(w) which is the pair (S, T ) of the brane labels of the
beginning and end of the window (these may coincide).

2.1.1 Arc families

We define the sets

δ(β) = {p ∈ δ : β(p) 6= ∅}, σ(β) = {p ∈ σ : β(p) 6= ∅}.

Define a β-arc a in F to be an arc properly embedded in F with its endpoints in W so that a
is not homotopic, fixing its endpoints, to ∂F − δ(β). For example, given a distinguished point
p ∈ ∂F , consider the arc lying in a small neighborhood that simply connects one side of p to
another in F ; a is a β-arc if and only if β(p) 6= ∅. We will call such an arc a small arc around p.

Two β-arcs are parallel if they are homotopic rel δ, and a β-arc family is the homotopy class
rel δ of a collection of β-arcs, no two of which are parallel. Notice that we take homotopies rel δ
rather than rel δ(β).



4 R.M. Kaufmann

Given a positively weighted arc family in F , let us furthermore say that a window w ∈ W
is active if there is an arc in the family with an endpoint in w, and otherwise the window is
inactive.

2.1.2 The mapping class group and arc graphs

The (pure) mapping class group MC(F ) of F is the group of orientation-preserving homeomor-
phisms of F pointwise fixing δ ∪ σ modulo homotopies pointwise fixing δ ∪ σ.

MC(F ) acts naturally on the set of β-arc families. An arc graph is an equivalence graph
under this action.

2.2 Arc spaces, moduli spaces and the open/closed Sullivan PROP

2.2.1 The Arc spaces

A weighting on an arc family is the assignment of a positive real number to each of its compo-
nents. A weighting naturally passes to the arc graph. A weighting is called discrete if it takes
values in N.

Let Arc′(F, β) denote the geometric realization of the partially ordered set of all β-arc families
in F . Arc′(F, β) is described as the set of all projective positively weighted β-arc families in F
with the natural topology. (See for instance [12] or [15] for further detail.)

MC(F ) again acts naturally on Arc′(F, β). The arc complex is defined to be the quotient
under this action

Arc(F, β) = Arc′(F, β)/MC(F ).

We shall also consider the corresponding deprojectivized versions: Ãrc′(F, β) ≈ Arc′(F, β)×
R>0 is the space of all positively weighted arc families in F with the natural topology, and

Ãrc(F, β) = Ãrc′(F, β)/MC(F ) ≈ Arc(F, β)× R>0.

For any windowed surface F , define

Ãrc(F ) =
⊔

Ãrc(F, β),

where the disjoint union is over all brane-labellings on F .

Ãrc(n, m) =
⊔ {

α ∈ Ãrc(F ) :
α has n closed and m open active
windows and no inactive windows

}
,

where the disjoint union is over all orientation-preserving homeomorphism classes of windowed
surfaces.

2.3 The open/closed Sullivan spaces

As proved in [11], the spaces Ãrc(n, m) form an c/o structure, see the appendix for the complete
definition. We will now construct a suitable PROP to capture string topology type operations.
First, we have to add additional data to the surface (F, β), which is a partitioning i/o :=
{Win,Wout} of all of the windows of F into “in” and “out” windows. A β-arc family (or arc
graph) on such a surface is called of Sullivan type if

1. arcs only run from “in” windows to “out” windows,

2. all in windows are active.
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We set Sullc/o′(F, β, i/o) the geometric realization of the partially ordered set of all β-arc
families of Sullivan type. And let Sullc/o(F, β, i/o) be the quotient under the action of MC(F ).

As above, we also consider the deprojectivized versions S̃ull
c/o

(F, β, i/o)

S̃ull
c/o

(F ) =
⊔
S̃ull

c/o
(F, β, i/o),

where the disjoint union is over all brane-labellings on F and partitions i/o.

S̃ull
c/o

(n1, n2,m1,m2) =
⊔ {

α ∈ Sullc/o(F) :

α has n = n1 + n2 closed and m = m1 + m2 open
windows with n1 and m1 active closed resp. open “in”
windows and n2, m2 closed resp. open “out” windows

 ,

where the disjoint union is over all orientation-preserving homeomorphism classes of windowed
surfaces.

Notice that S̃ull
c/o

(n, m) is also graded by the number k of inactive “out” windows – by
definition all “in” windows are active.

2.4 Moduli space

The spaces of β arc families contains a moduli space. We call an arc family or graph quasi-filling,
if all complementary regions are polygons or once punctured polygons.

The weighted quasi-filling graphs form a subspace of each Arc(F, β) which is homeomorphic
to the moduli spaces Ms

g,t1,...,tn, of genus g surfaces with n + s marked points, where for the
first n marked points ti ≥ 1 tangent vectors at the ith marked point are specified. This is
independent of β since the small arcs only thicken the moduli spaces by a factor of R>0. This
fact is straightforward using the dual graph and Strebel differentials [17].

2.4.1 Open/closed duality moduli space of open/closed brane labelled surfaces
with marked point clusters

The moduli space Ms
g,t1,...,tn, is actually too small and too big for its cell model to act, as we

will discuss below. It is too big in the sense that there are gluings which when allowing open
windows on boundaries unexpectedly take us out of moduli space on the chain level; see Figs. 7
and 8. There is however a subspace of this space given by the arc families that are in general
position with respect to the open/closed duality (see Fig. 9) which solves this problem. The
other problem that arises which is unique to the open sector is that unlike in [7, 8] we cannot
restrict to the case of no punctures; s = 0. But gluing with internal punctures is again not stable
in the moduli space case. This problem is overcome by introducing clusters of brane labelled
points. The resulting space is the open/closed duality moduli space of open/closed brane labelled
surfaces with marked point clusters c/oMs,β

g,δ1,...,δn
. The details are given in Section 7 below.

3 Geometric c/o structures

In [11] we axiomatized a structure of spaces that allow four different types of gluing: i.e. either
open or closed and either self or non-self gluings together with a coloring of the open gluings
by brane labels β. In the above case the gluing is on two windows, which are either both open
or closed and either belong to the same (self gluing) or disjoint surfaces (non-self gluing). The
coloring is by the brane labels. The color of a window is the pair of brane labels of its end
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points. When we glue β arc families, we glue the surfaces and glue the arc families as foliations.
We will now review this process according to [11].

3.1 The gluing underlying the topological c/o structure

If α ∈ Ãrc(n, m), then define the α-weight α(w) of an active window w to be the sum of the
weights of arcs in α with endpoints in w, where we count with multiplicity (so if an arc in α has
both endpoints in w, then the weight of this arc contributes twice to the weight of w).

Suppose we have a pair of arc families α1, α2 in respective windowed surfaces F1, F2 and
a pair of active windows w1 in F1 and w2 in F2, so that the α1-weight of w1 agrees with the
α2-weight of w2. Since F1, F2 are oriented surfaces, so are the windows w1, w2 oriented. In
each operation, we identify windows reversing orientation, and we identify certain distinguished
points.

To define the open and closed gluing (F1 6= F2) and self-gluing (F1 = F2) of α1, α2 along the
windows w1, w2, we identify windows and distinguished points in the natural way and combine
foliations.

A crucial difference between the closed and open string operations is that in the closed case,
the points are thought of as marked, which in the open case the points behave like punctures.
This means that in the closed case, we replace the distinguished point by simply forgetting
that is was distinguished. This way no puncture is created. In the open case the distinguished
points always give rise to other distinguished points or perhaps punctures. In any case whenever
distinguished points are identified, one takes the union of brane labels (the intersection of branes)
at the new resulting distinguished point or puncture.

3.1.1 Closed gluing and self-gluing

Identify the two corresponding boundary components of F1 and F2, identifying also the distin-
guished points on them and then including this point in the resulting surface F3. F3 inherits
a brane-labeling from those on F1, F2 in the natural way. We furthermore glue α1 and α2

together in the natural way, where the two collections of foliated rectangles in F1 and F2 which
meet w1 and w2 have the same total width by hypothesis and therefore glue together naturally
to provide a measured foliation F of a closed subsurface of F3.

3.1.2 Open gluing

The surfaces F1 and F2 are distinct, and we identify w1 to w2 to produce F3. There are cases
depending upon whether the closure of w1 and w2 is an interval or a circle. The salient cases
are illustrated in Fig. 1, b–d. In each case, distinguished points on the boundary in F1 and F2

are identified to produce a new distinguished boundary point in F3, and the brane labels are
combined, as is also illustrated. As before, since the α1-weight on w1 agrees with the α2-weight
on w2, the foliated rectangles again combine to provide a measured foliation F of a closed
subsurface of F3.

Open self-gluing. There are again cases depending upon whether the closure of w1 or w2 is
a circle or an interval, but there is a further case as well when the two intervals lie in a common
boundary component and are consecutive. Other than this last case, the construction is identical
to those illustrated in Fig. 1, b–d. In case the two windows are consecutive along a common
boundary component, again they are identified so as to produce a surface F3 with a puncture
resulting from their common endpoint as in Fig. 1, e–f, where the puncture is brane-labeled by
the label of this point, and the foliated rectangles combine to provide a measured foliation F of
a closed subsurface of F3.
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Figure 1. The different cases of gluing.

At this stage, we have only constructed a measured foliation F of a closed subsurface of F3,
and indeed, F will typically not be a weighted arc family, but the sub-foliation F ′ comprised of
leaves that meet ∂F corresponds to a weighted arc family α3 in F3. Notice that the α3-weight
of any window uninvolved in the operation agrees with its α1- or α2-weight.

The assignment of α3 in F3 to αi in Fi, for i = 1, 2 completes the definition of the various
operations. Associativity and equivariance for bijections are immediate, and so we have our first
non-trivial example of a c/o structure; see Appendix A for the precise definition.

3.2 Extended gluing and the open/closed Sullivan PROP

For the PROP case, we will need to extend the gluing to the case where one window is active
and the second window is inactive. In this case, we glue the surfaces and distinguished points
as above and simply delete foliation in the rectangle. This may result in additional windows
becoming inactive.
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Remark 3.1. We do not wish to formalize c/o PROP structures here. A PROP gluing is
given by pairing of all “ins” to all “outs” of two different surfaces and gluing on all of them.
In apparent terminology, we can have the open and closed PROP substructures separate or at
once. Technically there are also so-called vertical compositions which in our cases are always
just disjoint unions. The brane labelling is handled in the same fashion as in the c/o case. For
more details see Appendix A.7.1.

Proposition 3.2. The open/closed Sullivan spaces are closed under the extended gluing, when
gluing an open (respectively closed) “in” to an open (respectively closed) “out” window with the
same weight or to an empty “out” window.

Corollary 3.3. This also gives the structure of a c/o, i/o modular operad in the terminology
of the appendix. This implies that these spaces form c/o PROP. These structures also exist in
the brane labelled case.

Proof. Both conditions for families in the Sullivan spaces are stable under the gluing. (1) If
arcs only run from “in” to “out”, they also do so after gluing an “in” to an “out” window:
Indeed a foliation could only run from “in” to “in” on the glued surface if there was a foliation
running from “in” to “in” in the surface to whose “in” window we glue. The extended gluing
only kills foliations. (2) After gluing all “in” boundaries are active: This is clear if we do not
glue to an empty “out”. But even if we glue to an empty “out” this holds true, since in this
case only leaves get deleted on the surface to whose “in” we glue. These foliations run to “out”
windows of that surface and hence to “out” windows of the glued surface. The “in” windows of
the glued surface are unaffected. The number of inactive “out” windows may of course increase.

Since the gluing is associative, we can obtain a c/o PROP gluing by simply gluing successively
as described in the appendix. The first gluing will be a non-self gluing, while all remaining
gluings are self-gluings. Since gluing is associative this is insensitive to the order chosen.

The brane labelling is external to the foliation gluing, so the last statement readily follows. �

There is actually a open/closed colored dg-PROP structure on the chain level, if we use
cellular chains as we demonstrate in Section 6. This is induced by a topological quasi-PROP
structure on the topological level; see the appendix for the definitions of these types of PROPs.

3.3 Discretization of the model N-valued foliations

We wish to point out that the subset of discrete valued foliations is stable under the compositions
in both the c/o structure and the c/o PROP structure.

3.3.1 Discrete representation for discretely weighted β-arc families

In order to decorate, we will change the picture slightly. Previously we had arc graphs, whose
edges are not allowed to be parallel. For a discretely weighted β-arc families with weighting wt we
will consider its leaf representation to be the foliation each of whose bands e has wt(e) number
of leaves. This means that we consider an new type of arc graph which has wt(e) parallel edges
for each underlying edge of the original arc graph. We will call this the discrete representative
of the arc graph.

4 Algebraic c/o structures

Given a β-arc graph with weights that are natural numbers, we are going to associate an op-
eration on the Hochschild complexes CH∗(A∅,MB,B′) of a fixed Frobenius algebra A∅ with
coefficients in a module MB,B′ with B,B′ ∈ B. These modules will be given by tensor products
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of Frobenius algebras AB indexed by elements of B: MB,B′ : AB′ ⊗ AB. These operations will
be defined on the isomorphic double sided bar-complexes B(AB, A∅, AB′). For most operations
we will need that A∅ is commutative, but this is not always the case. We will indicate when the
commutativity can be dropped.

4.1 Frobenius algebras and systems of Frobenius algebras

4.1.1 Notation for Frobenius algebras

The main actors are Frobenius algebras, so we will fix some notation.
Recall that a Frobenius algebra (FA) is a triple (A, 1, 〈 , 〉) where (A, 1) is a unital (super-)

algebra and 〈 , 〉 is a non-degenerate (super-) symmetric even pairing which satisfies

〈ab, c〉 = 〈a, bc〉.

We will set∫
a := 〈a, 1〉.

Then
∫

is cyclically (super-)invariant, i.e. a trace∫
abc = 〈ab, c〉 = 〈c, ab〉 =

∫
cab.

Since 〈 , 〉 is non-degenerate on A, so is 〈 , 〉A⊗A := 〈 , 〉⊗ 〈 , 〉 ◦ τ2,3 on A⊗2⊗A⊗2. Here τ2,3

is the commutativity constraint for the symmetric monoidal category applied to the second and
third factors, be it the category of vector spaces, dg-vector spaces or Z/2Z graded vector spaces
In our current setup this just interchanges the second and third factors of A⊗A⊗A⊗A or in
the super case changes these factors and introduces the usual super sign.

We will omit all super signs from our discussion as they can be added in a straightforward
fashion.

The multiplication µ : A⊗A → A has an adjoint ∆ : A → A×A defined by

〈∆a, b⊗ c〉A⊗A = 〈a, bc〉. (1)

Moreover given a FA we will consider a basis ∆i, set gij = 〈∆i,∆j〉 and let gij the coefficients
of the inverse of (gij), viz. the inverse “metric”.

There are two special elements

e = µ∆(1) =
∑
ij

∆ig
ij∆j ,

which we call the Euler element and

C = ∆(1) =
∑

∆ig
ij ⊗∆j ,

which we call the Casimir element.
Notice that Euler element commutes with every element.

ae = aµ∆(1) = µ∆(a) = µ∆(1)a = ea.

This follows by direct computation and the Frobenius relations

(id⊗ µ)(∆⊗ id) = ∆µ = (µ⊗ id)(id⊗∆),

which in turn follow from the definition of ∆ and the invariance of the pairing (1).
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4.1.2 Adjoint maps

Notice that for any map r : A → B between two Frobenius algebras there is an adjoint map
r† : B → A defined by

〈r†(b), a〉 = 〈b, r(a)〉.

This is equivalent to∫
r†(b)a =

∫
br(a). (2)

These maps arise in geometric situations as follows. Let i : N → M be the inclusion map,
where M is a compact manifold and N is a compact submanifold. Then i induces a map i∗ from
A := H∗(M) to B := H∗(N). By Poincaré duality there is a push forward i∗ : B → A. In the
previous notation if r = i∗ then r† = i∗.

Lemma 4.1. In general, we have the Projection Formula

r†(r(a)b) = ar†(b).

Proof.

〈r†(r(a)b), c〉 = 〈r(a)b, r(c)〉 = 〈b, r(ca)〉 = 〈ar†(b), c〉,

where we used the cyclic symmetry of the product twice. �

With the self-intersection condition Section 4.6 in mind, we define the element

e⊥r := r(r†(1)).

4.1.3 Systems of Frobenius algebras

Definition 4.2. A B-Frobenius algebra is a set of Frobenius algebras AS indexed by S ∈ P(B)
together with algebra maps rS,S′ : AS → A′

S whenever S ⊂ S′, such that for S ⊂ S′ ⊂ S′′:
rS′,S′′ ◦ rS,S′ = rS,S′′ .

Note that in particular if A∅ is commutative every AS is an A∅ module via the restriction
map. More precisely, every AS is a left and a right A∅ module via the maps λ(a, a′) := r∅S(a)a′

and ρ(a, a′) := a′r∅S(a). If A∅ is not commutative, we still have that AS is a left A∅ module
and a right Aop

∅ module.

4.1.4 Basic brane label systems

Given a brane label set B one set choices of B-Frobenius algebras is given by a collection AB,
B ∈ B and A∅ together with maps rB : A∅ → AB.

For any S ∈ PB with |S| ≥ 2 we simply set AS = 0 where we allow the zero algebra to be
a Frobenius algebra.

We call these systems basic brane label systems and for simplicity deal only with these. The
data of the Frobenius algebras and morphisms will be called a basic B Frobenius algebra.

Remark 4.3. In the following we will mostly deal with only basic B Frobenius algebra in order
to not unduly burden the reader with yet more structures that we would need in order to deal
with the general case. All the results do however generalize to the general case if we introduce
propagators to fix the c/o structure on the algebraic side.
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Notation 4.4. Given AB we will use the notation 1B, eB, ∆i
B, 〈, 〉B, gB

ij , gij
B , e⊥B, . . . for its

unit, Euler element, basis AB, metric inverse metric, e⊥rB
etc.

We will also omit the label ∅ i.e. write e for e∅, A for A∅ if no confusion can arise.

Definition 4.5. We say that a basic B-FA satisfies the condition of commutativity (C) if A∅
is commutative.

And we say that a B-FA satisfies the the Euler compatibility condition or the condition (E)
if for all B ∈ B, a(1), a(2) ∈ AB

(E)
∑
ij

r†B
(
a(1)∆B

i

)
gij
B r†B

(
∆B

i a(2)
)

= e∅r†B
(
a(1)a(2)

)
.

Definition 4.6. A basic B-Frobenius algebra satisfies the self-intersection condition (I) if for
all B ∈ B

(I1) rBr†B(a) = ae⊥B and (I2) eBe⊥B = rB(e).

Proposition 4.7. A basic system of B Frobenius algebra which satisfies the self-intersection
condition (I) satisfies the Euler condition (E).

Proof. We will show that the r.h.s. and the l.h.s. of (E) have the same inner product with any
element b of A:

For all b ∈ A∅, a, a′ ∈ AB∑
ij

∫
br†B

(
a∆B

i

)
gij
Br†B

(
∆B

j a′
)

=
∑
ij

gij
B

∫
B

rB(b)a∆B
i rBr†B

(
∆B

j a′
)

(I1)
=

∑
ij

gij
B

∫
B

rB(b)a∆B
i ∆B

j a′e⊥B =
∫

B
rB(b)aa′eBe⊥B

(I2)
=

∫
B

rB(b)aa′rB(e) =
∫

ber†B(aa′),

where the first equality follows from equation (2), the third equality from the definition of eB

and the fact that eB as the Euler element commutes with all other elements and the last equality
follows from the projection formula and the fact that e commutes. �

4.1.5 Geometric data

One example of the basic data is given by a compact manifold M together with a collection
NB ⊂ M , B ∈ B of compact submanifolds. We can then set AB := H∗(NB) and use the
restriction maps rB given by pullback. These satisfy the first condition (I1) of (I) due to the
self-intersection formula where e⊥B = e(NM/NB

) is the Euler class of the normal bundle of NB

in M . The second condition (I2) follows from the excess intersection formula for homology [16]
applied to the diagram

NB
∆B−−−−→ NB ×NB

iB

y iB×iB

y
M

∆−−−−→ M ×M

(3)

keeping in mind that µ = ∆∗, rB = i∗B

rB(e) = rBµµ†(1) = i∗B∆∗∆∗(1) = ∆∗
B(i∗B × i∗B)∆∗(1)

= e⊥B∆∗
B∆B∗i

∗
B(1) = e⊥B∆∗

B∆B∗(1) = e⊥BeB.

Alternatively one can use decomposition TM |NB
= TNB ⊕ NM/NB and multiplicativity of

the Euler class.
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Remark 4.8. We can also formalize the geometricity by staying in the framework of Frobenius
algebras, but postulating a new axiom which guarantees the equations one would obtain from
excess intersection formulas from all embedding and intersection diagrams analogous to (3).

Corollary 4.9. A basic geometric B Frobenius algebra satisfies the Euler condition (E).

4.1.6 Hochschild complexes

The action on the closed sector is on the Hochschild cochain-complex of A. Recall that the
Hochschild chain complex of an A bimodule M is the complex CHn(A,M)

CHn(A,M) = M ⊗A⊗n

and whose differential is given by d =
∑

i(−1)idi, where the di are the pre-simplicial differentials

d0(m⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ a2 ⊗ · · · ⊗ an,

di(m⊗ a1 ⊗ · · · ⊗ an) = m⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an,

dn(m⊗ a1 ⊗ · · · ⊗ an) = anm⊗ a1 ⊗ · · · ⊗ an−1.

There are degeneracies inserting 1 into the ith position

si : CHn(M,A) → CHn+1(M,A),
m⊗ a1 ⊗ · · · ⊗ an 7→ m⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ 1⊗ ai ⊗ · · · ⊗ an.

The Hochschild chain complex CH∗(A,M) is also sometimes called the cyclic bar complex
and is denoted by B∗(A,A).

The Hochschild co-chain complex is dually given by

CHn(A,M) = Hom(A⊗n,M)

with the dual differential dCH∗
=

∑
i(−1)idCH∗

i , dCH∗
: CHn(A,M) → CHn+1(A,M), where for

f ∈ CHn(A,M)

dCH∗
0 f(a1 ⊗ · · · ⊗ an+1) = a1f(a2 ⊗ · · · ⊗ an),

dCH∗
i f(a1 ⊗ · · · ⊗ an+1) = f(a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an),

dCH∗
n+1 (a1 ⊗ · · · ⊗ an+1) = f(a1 ⊗ · · · ⊗ an)an+1.

The degeneracies dualize to sCH∗
i : CHn(A,M) → CHn−1(A,M)

sCH∗
i f(a1 ⊗ · · · ⊗ an−1) = f(a1 ⊗ · · · ⊗ ai−1 ⊗ 1⊗ ai ⊗ · · · ⊗ an−1).

In case M = A multiplication of functions gives a natural product

∪ : CHn(A,A)⊗ CHm(A,A) → CHn+m(A,A).

Notice that if A is a Frobenius algebra, it is isomorphic to its dual as a bi-module. Since
A ' Ǎ, CHn(A,A) ' A ⊗ Ǎ⊗n ' A⊗n+1 ' CHn(A,A). The cup product and the product
pairing, make CH• into a graded Frobenius algebra. Furthermore, the differentials d and dCH∗

dualize to one and another.
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4.1.7 Reduced Hochschild complex

For technical reasons discussed in [8] it is actually easier to work with the reduced Hochschild
co-chain complex CH∗(A,A). This complex is the subcomplex of functions that vanish on all
degeneracies that is functions f : A⊗n → A such that f(a1, . . . , 1, . . . , an) = 0 where 1 is plugged
in into any position. The complex inherits the differential and computes the same cohohmology
as the original complex. Dually there is the reduced bar complex CH∗(A,A) or B̄∗(A,A) which
we shall use in the closed sector.

4.1.8 Double sided bar construction

For the open action, we will consider the double sided bar complexes B(S, T ) := B•(AS , A, AT )
whose components are defined as

Bn(AS , A, AT ) = AS ⊗A⊗n ⊗AT

and whose differential is given by d =
∑

i(−1)idi, where the di are the pre-simplicial differentials

d0(aS ⊗ a1 ⊗ · · · ⊗ an ⊗ aT ) = aSa1 ⊗ a2 ⊗ · · · ⊗ an ⊗ aT ,

di(aS ⊗ a1 ⊗ · · · ⊗ an ⊗ aT ) = aS ⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an ⊗ aT ,

dn(aS ⊗ a1 ⊗ · · · ⊗ an ⊗ aT ) = aS ⊗ a1 ⊗ · · · ⊗ an ⊗ anaT .

Remark 4.10. Notice that since we are dealing with Frobenius algebras, this is isomorphic to
CH•(A,AT ⊗AS) and again the differentials dualize to one and another.

4.1.9 Degeneracies

The double sided complex is actually simplicial, which means that it also has degeneracy maps

si : Bn(AS , A, AT ) → Bn+1(AS , A, AT ),
aS ⊗ a1 ⊗ · · · ⊗ an ⊗ aT 7→ aS ⊗ a1 ⊗ · · · ⊗ ai−1 ⊗ 1⊗ ai ⊗ · · · ⊗ an ⊗ aT .

4.1.10 Brane labelled bar complexes

Fix a B Frobenius algebra. For a window w on a brane labelled surface with labelling β we set
B(w) := B(β(w)) if w is open and B(w) = B(β(w)) = B(∅, ∅) := CHn(A,A) if w is closed.

4.2 Gluing in brane labelled complexes

As we have noted, the complexes B(β) have non-degenerate graded inner products which allows
us to dualize them. Using this dualization, we can compose two correlation functions for the
basic brane label case. In the general case we would need to introduce propagators to do this.
We will refrain from adding this technical point here for clarity of the discussion.

Given (graded) vector spaces Vβ : β ∈ I over a ground field k with an involution ¯ on I,
isomorphisms Vβ ' Vβ̄ s.t. ¯̄a = a and (graded) non-degenerate even symmetric pairings 〈 , 〉β
for each Vβ let Cβ =

∑
∆β

i gij
β ⊗ ∆̄β

j be the Casimir element for the induced pairing between Vβ

and Vβ̄ expressed in a basis (∆β
i ).

We can compose two correlators two correlators Y :
⊗

l∈L Vβl
→ k and Y ′ :

⊗
l′∈L′ Vβl′ → k

where L and L′ are labelling sets by inserting a Casimir.
More precisely given l0 ∈ L and l′0 ∈ L′ such that βl0 = β̄l′0

= β we define their composition
Y ◦l0l′0

Y ′ :
⊗

l′′∈(L\{l0}tL′\{l′0})
→ k by

Y ◦l0l′0
Y ′

( ⊗
l∈L\{l0}

vl ⊗
⊗

l′∈L′\{l′0}

vl′

)
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=
∑
ij

Y

(( ⊗
l∈L\{l0}

vl

)
⊗∆β

i

)
gijY ′

(( ⊗
l′∈L′\{l′0}

vl′

)
⊗ ∆̄β

j

)
,

where ∆β
i is in the position l0 and ∆̄β

j is in position l′0. If βl0 6= β̄l′0
we set the composition to 0.

In the more general case these would be non-zero and the composition would use propagators.
Alternatively, we could also dualize the maps Y using Cβl

in any position l to obtain maps
to Vβl

instead of k and then compose these maps. There is an analogous procedure for self-gluing.

Remark 4.11. In our case I = B × B ∪ {∅, ∅}, (S, T ) = (T, S), Vβ = B(β) the corresponding
bar complex and the isomorphisms¯: B(S, T ) → B(T, S) are given by

aS ⊗ a1 ⊗ · · · ⊗ an ⊗ aT 7→ aT ⊗ an ⊗ · · · ⊗ a1 ⊗ aS

and B(∅, ∅) → B(∅, ∅)

a0 ⊗ · · · ⊗ an 7→ a0 ⊗ an ⊗ · · · ⊗ a1.

Remark 4.12. In order to give a brane labelled c/o structure, we should consider slightly
enriched more complicated data. For this we would have to look at tensors products of cyclic
tensor products of bar complexes B(S1, S2)⊗B(S2, S3)⊗ · · · ⊗B(Sn, S1). Again in the interest
of brevity, we will not introduce this kind of complexity in a formal fashion here.

Remark 4.13. There are actually two c/o structures, one can compose the bar complexes or
their duals, viz. the correlators. Of course these operations are dual to each other.

5 Correlators

5.1 A universal formula for correlators

There is a universal formula for the correlators. It is given by partitioning, decorating and
decomposing the surface of a discretely weighted arc family along the arcs into little pieces of
surface Si and integrating around these pieces. We will now give the details.

5.1.1 Decorating the boundary

Fix a basic B collection of Frobenius algebras. For each discretely weighted β-arc family α, we
will define a map

Y (α) :=
⊗

w∈Windows of α

B(β(w)) → k.

These functions are homogeneous and their homogeneous components are zero by definition
unless aw ∈ Bα(w)−1(β(w)).

Given a collection of homogeneous elements we will decorate the pieces belonging to the
boundary of the discrete representation of α by the elements of the bar complexes

aw = aw
S ⊗ aw

1 ⊗ · · · ⊗ aw
α(w)−1 ⊗ a′wT if β(w) = (S, T ),

aw = aw
0 ⊗ aw

1 ⊗ · · · ⊗ aw
α(w)−1 if β(w) = (∅, ∅).

Notice that the boundary of the underlying surface minus the discrete representative of the
graph is a disjoint union of intervals, which may or may not contain marked points. We call
these the boundary pieces. There are three types of boundary pieces
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(1) those not containing a marked point,

(2) those containing a marked point β-labelled by ∅,

(3) those containing a marked point with β-label not ∅.

In case (3), if we remove the marked point we will have two components which we will call half
sides of the boundary piece. Now each piece of type (1) and the half sides of the pieces of type (3)
belong to a unique window. A piece of type (2) comes from a unique closed window/boundary
component. Moreover these pieces all come in a natural linear order in each window as do the
half sides of a piece of type (3) if we consider the marked point to lie in between the half sides.

We decorate the boundary pieces as follows:
Type description of s Decoration
(1) s is the ith piece of type (1) of the window w aw

i ∈ A

(2) s is the unique piece of type (2) of the closed window w aw
0

(3) the marked point of s is labelled by S and the half (a′w1
S , aw2

S )
sides in their order belong to the
not necessarily distinct windows w1, w2

5.1.2 Weights

Let {Si : i ∈ I} be the components of complement of the discrete representative of a given
discretely weighted β arc family α. Each of these pieces has a polygonal boundary, where the
sides of the polygons alternate between pieces of the boundary and arcs running between them.
If we decorate the surface as described above every second side is a decorated piece of boundary.
We will call these the decorated sides.

To each decorated side s of Si, we associate a weight depending ω on its type and decoration.

Table 1. General weights.

Type Decoration Weight ω(s)
(1) s without marked point a ∈ A∅ a

(2) s with marked point marked by ∅ a ∈ A∅ a

(3) s marked point marked by S (a(1)
S , a

(2)
S ), ai

S ∈ AS r†∅S(a(1)
S a

(2)
S )

5.1.3 The formula

Moreover, the Si are oriented and so hence are their boundaries. This means that the sides
comprising each boundary component come with a cyclic order. If there is only one boundary
component for a given Si, this gives a cyclic order over which we will integrate the given weights.
If there are more components, in which case the underlying arc family is not quasi-filling, then we
need to assume (C) in order to make the following expression independent of choices. For a ho-
mogeneous a =

⊗
w∈Windows of α aw ∈

⊗
w∈Windows of α B(β(w)) such that aw ∈ Bα(w)−1(β(w)),

we decorate as above and define

YSi(a) =
∫

e−χ(S)+1
∏

Decorated sides
s of Si

ω(s)
∏

Punctures p
inside Si

r†∅β(p)(eβ(p)). (4)

If a is as above but there is some aw /∈ Bα(w)−1(β(w)) we set YSi(a) = 0.
We then define

Y(Γ,w))(a) :=
∏

i

YSi(a) (5)

and extend by linearity.
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5.1.4 Signs

The correlators above actually have hidden signs which come from the permutation of the input
variables to their respective position. In the bar complexes these signs can be read off by
imposing that the tensor symbols have degree 1. On the geometric side there are signs as well
which are fixed by fixing an enumeration of the flags, angles or edges. In general we adhere to
the sign conventions spelled out in [8, Section 1.3.4].

5.2 Action of the c/o structure of discretely weighted arc-graphs

We say a c/o structure acts via correlation functions if the composition of the elements of the
c/o is compatible with the composition of the correlation functions. In short Y (α ◦w,w′ α′) =
Y (α) ◦w,w′ Y (α′) where ◦w,w′ denotes the gluing of the window w and w′ holds as well as the
corresponding equation for the self-gluing.

Theorem 5.1. For a basic B-Frobenius algebra the c/o structure of discretely weighted arc-
graphs acts on the collection of complexes B(β) and the isomorphic Hochschild complexes via
the correlation functions Y .

Just like there are algebras over operads, we can define algebras over c/o structures. The
theorem above reads: The collection of bar complexes B(S, T ) form an algebra over the c/o
structure of discretely weighted arc-graphs.

Proof. The proof is a case by case study which occupies Section 5.3. �

5.3 Case by case analysis of the discrete arc-graph action

The gluing of the surfaces with discrete arcs breaks down into individual local gluings of pairs of
surfaces Si and S′

j . In case the surfaces are distinct, there are five cases of this gluing depicted
in Figs. 2 and 3. The cases a) and b) are the ones familiar from the closed gluing [8], the cases c)
and d) are new in the open/closed case. The gluing c) appears when we are gluing two open
windows where none of them is the only window in its boundary component. The gluing d)
appears when gluing two open windows each of which is the only window in its boundary
component. The most complicated case is when one of the windows is the only window, while
the other is not. This case e) is given in Fig. 3.

5.3.1 Non-self gluing, the closed case

In the case that there is no self-gluing: a)–b) correspond to:[ ∫
. . . w∆∅

i w′ . . .

]
gij

∅

[ ∫
. . . w′′∆∅

j w′′′ . . .

]
=

∫
w′ . . . w′′ . . . w′′′, (6)

where the w, w′, w′′ are the weights of the adjacent sides and we use Einstein summation
conventions. We have also included any factors of e into the ellipses.

5.3.2 Non-self gluing case in the simple brane case

Assuming the simple brane case, all labels have to be the same, say S then c) corresponds to[ ∫
. . . wr†S(aS∆S

i w′ . . .

]
gij
S

[ ∫
. . . w′′r†S(∆S

j a′S)w′′′ . . .

]
=

[ ∫
S

rS(w′ . . . w)aS∆S
i

]
gij
S

[ ∫
S

∆S
j a′SrS(w′′′ . . . w′′)

]
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Figure 2. Types of local gluings: a) two sides without marked points; b) side with marked point labelled
by ∅ to side with marked point labelled by ∅; c) half a labelled side with marked point labelled by S to
half side with marked point labelled by T ; d) full side with labelled point marked by S to full side with
labelled point marked by T .

Figure 3. e) Gluing of a lone window with an open marked point to window with two marked points.

=
∫

w′ . . . wr†S(aSa′S)w′′′ . . . w′′ =
∫

. . . wr†S(aSa′S)w′′′ . . . w′′w′,

while d) corresponds to[ ∫
. . . wr†S(∆S

i ∆S
k )w′ . . .

]
gij
S gkl

S

[ ∫
. . . w′′r†S(∆S

l ∆S
j )w′′′ . . .

]
=

∫
w′ . . . wr†S(∆S

i gij
S ∆S

j )w′′′ . . . w′′ =
∫

. . . wr†S(eS)w′′′ . . . w′′w′.

The case e) has two subcases. 1) there are three surfaces which are glued:[∫
. . . wr†S(aS∆S

i )w′ . . .

]
gij
S

[∫
. . . w′′r†S(∆S

k a′S)w′′′ . . .

]
gkl
S

[∫
. . . w(vi)r†S(∆S

j ∆S
l )w(v) . . .

]
×

[ ∫
S

a′SrS(w′′′ . . . w′′)∆S
k

]
gkl
S

∫
S

∆S
l rS

(
w(v) . . . w(vi)

)
∆S

j gij
S

[ ∫
S

∆S
i rS(w′ . . . w)aS

]
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=
∫

S
. . . wr†S(aSa′S)w′′′ . . . w′′w(v) . . . w(vi)w′,

and the case 2) where only two surfaces are glued[ ∫
. . . wr†S(aS∆S

i )w′ . . . w′′r†S
(
∆S

k a′S
)
w′′′ . . .

]
gij
S gkl

S

[ ∫
. . . w(vi)r†S

(
∆S

j ∆S
l

)
w(v) . . .

]
=

[
gij
S

∫
S

a′SrS

(
w′′′ . . . wr†S

(
aS∆S

i

)
w′ . . . w′′)∆S

k

]
gkl
S

∫
S

∆S
l rS

(
w(v) . . . w(vi)

)
∆S

j

= gij
S

∫
S

a′SrS

(
w′′′ . . . wr†S

(
aS∆S

i

)
w′ . . . w′′w(v) . . . w(vi)

)
∆S

j

= gij
S

∫
. . . wr†S

(
aS∆S

i

)
w′ . . . w′′w(v) . . . w(vi)r†

(
∆S

j a′S
)
w′′′ . . . .

In this case we have to use commutativity (C) and the Euler compatibility (E):

gij
S

∫
. . . wr†S

(
aS∆S

i

)
w′ . . . w′′w(v) . . . w(vi)r†S

(
∆S

j a′S
)
w′′′ . . .

× gij
S

∫
. . . ww′ . . . w′′w(v) . . . w(vi)r†S

(
aS∆S

i

)
r†S

(
∆S

j a′S
)
w′′′ . . .

=
∫

. . . ww′ . . . w′′w(v) . . . w(vi)r†S(aSa′S)e,

which is the contribution we get from the glued surfaces, since there is one self-gluing involved
and this makes the Euler characteristic go up by one.

5.3.3 The self gluing cases

So far we have assumed that the two (half) sides that are glued are on different Si and S′
j . It

can happen that they belong to the same surface. In these cases, much like in the case e) 2),
there are fewer integrals and instead an Euler class factor e appears. In the case that there is
self-gluing: a)–b) correspond to:[

gij
∅

∫
. . . w∆∅

i w′ . . . w′′∆∅
j w′′′ . . .

]
=

∫
w′ . . . w′′ . . . w′′′e.

This r.h.s. is the contribution to correlator for the glued surface since the self-gluing changes
the Euler characteristic by −1. Again we need to use (C).

The cases c), d) are analogous to the case e) 2). The self gluing decreases the Euler charac-
teristic by one, while the summation gives the factor e by condition (E). The two cases for e)
then either involve only one or two integrals, respectively; correspondingly the gluing then gives
rise to a factor of e or e2, respectively.

There is one more local gluing which comes from gluing consecutive windows corresponding
to Fig. 1 cases e) and f). In these cases two half sides of a single side marked by a point labelled
by some S 6= ∅ are glued together.

This corresponds to the following equation in the contribution to the correlator of Si∫
. . . wr†

(
∆S

i gij∆S
j

)
w′ · · · =

∫
. . . wr†(eS)w′′ . . . .

When performing the gluing on the whole window, it might happen, that there are also self-
gluings for the surfaces Si at some other sides, in which case we need (C) and (E) and proceed
as above. If there are more consecutive open gluings on one Si, we produce two punctures and
correspondingly two factors of r†S(eS).
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Figure 4. (g) Gluing consecutive half sides.

5.4 Partitioning arc graphs and the action of arc graphs

Given a discrete weighting w for an arc graph (F, β,Γ) or Γ for short we define Γ(w) to be the
graph in which the edge e has been duplicated w(e) − 1 times. This is we replace e with w(e)
parallel copies of e.

We define its discretized version PΓ of Γ to be given by the formal sum of the Γ(w)

PΓ =
∑

w: discrete weighting of Γ

Γ(w).

5.4.1 Action of arc graphs

Given correlation functions Y (Γ, w) for discretely weighted arc graphs (Γ, w) we define

Y (Γ) := YPΓ

by extending Y as a function to formal sums.

5.4.2 Examples: multiplication and comultiplication in the open sector

As an example we will consider the arc graphs given in Fig. 5. This triangle gives a correlation
function, which when dualized on the bottom edge yields a multiplication and when dualized on
the top two edges yields a comultiplication. A more familiar form is given in the Sullivan case;
see Section 6.5.1 below.

Given

a = a
(2)
T ⊗ a1 ⊗ · · · ⊗ an ⊗ a

(1)
S ∈ Bn(AT , A, AS)

and

a′ = a
(2)
S ⊗ a′1 ⊗ · · · ⊗ a′m ⊗ a

(1)
U ∈ Bm(AS , A, AU )

their product which lies in Bn+m+1(AT , A, AU ) is given by

mTSU (aa′) = a
(2)
T ⊗ a1 ⊗ · · · ⊗ an ⊗ r†S(a(1)

S a
(2)
S )⊗ a′1 ⊗ · · · ⊗ a′m ⊗ a

(1)
U .

The calculation goes as follows. The integrals are
∫

r†T (a(1)
T a

(2)
T ) =

∫
T a

(1)
T a

(2)
T which dualizes

to idT (a(1)
T ) = a

(1)
T and likewise for U . For the rectangles we get either

∫
aia

′′
j or

∫
a′ia

′′
k which

dualize to id(ai) and id(aj). Finally we get
∫

r†S(a(1)
S a

(2)
S )a′′n+1 which dualizes to r†S ◦ µ.

The corresponding co-products by dualizing are ∆TSU : B(AT , A, AU ) → B(AU , A, AS) ⊗
B(AS , A, AT ) let

a′′ = a
(2)
T ⊗ a′′1 ⊗ · · · ⊗ a′′n+m+1 ⊗ a

(1)
U ,
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Figure 5. To the left: an arc graph Γ in a triangle yielding the open sector multiplication or the co-
multiplication. To the right: a discrete summand of PΓ with weights 2 and 3 together with a decoration
of it.

∆TSU (a′′) =
∑

i

[
a

(2)
T ⊗ a′′1 ⊗ · · · ⊗ a′′i−1⊗ (rS(ai))(1)

]
⊗

[
(rS(aj))(2)⊗ ai+1 ⊗ · · · ⊗ an⊗ a

(1)
U

]
,

where ∆S(rS(ai) = (rS(ai))(1)) ⊗ (rC(aj))(2)) using Sweedler’s notation. For this we dualize∫
r†S(a(1)

S a
(2)
S )a′′n+1 =

∫
S⊗S(a(1)

S ⊗ a
(2)
S ∆S(rS(a′′i )).

6 Open/closed string topology

6.1 Cell actions

We will now consider chain complexes whose chain groups are generated by generators indexed
by arc graphs. The basic way to obtain actions of these chain complexes is to let each generator
act via the graph that indexes it as we explain below.

Analogously to the purely closed situation [7, 8] there are two cases which we can study.
The open/closed moduli space case and the open/closed Sullivan PROP case. Although their
basic underpinnings are the same the details are slightly different, again as in [7, 8]. For the
open/closed PROP case, we will have to change the actions of the weighted arc graphs slightly
by using degeneracy maps. This is what corresponds to the breaking of the symmetry between
“ins” and “outs” in the PROP itself. After putting in these degeneracies, we obtain a dg-PROP
action on the cell level. We will give the full details below. The moduli space case is discussed
further in Section 7.

6.2 The open/closed Sullivan c/o-colored topological quasi-PROP

So far we have only a partial gluing structure. At the expense of having associativity only up to
homotopy, we can rectify this partial structure to a full open/closed colored structure (see the Ap-
pendix for a definition). Again without being too technical this means that we will have PROP

gluings for two given elements α ∈ S̃ull
c/o

(n1, n2,m1,m2) and α′ ∈ S̃ull
c/o

(n2, n3,m3,m4) and
a paring of the closed “out” windows of α and the “in” windows of α. Likewise given elements and

appropriate pairings there are gluings α ∈ S̃ull
c/o

(n1, n2,m1,m2) and α′ ∈ S̃ull
c/o

(n3, n4,m2,m3)

on all the open windows. Or even gluing all “in” to all “out” windows α ∈ S̃ull
c/o

(n1, n2,m1,m2)

and α′ ∈ S̃ull
c/o

(n2, n3,m2,m3).
This will be done by means of a flow. This flow analogous to the flow in [7], but differs from

the flow in [11]. The flow in [11] might take us outside the Sullivan spaces.
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Given two elements α ∈ S̃ull
c/o

(n1, n2,m1,m2) and α′ ∈ S̃ull
c/o

(n3, n4,m2,m3), the flow
depends on the choice of a pairing of open “in” windows of α′ and “out” windows of α and
scales the weights of all the arcs incident to the m2 open “in” windows of α′ simultaneously.
Given such a pairing the flow at time t scales each weight of an arc to an “in” window w′ of α′

by the factor of 1−t(α(w)/α(w′)−1) where w is the window of α paired with w. At time 1, each
window has the weight of its partner under the paring. Now glue using the previously established
gluings on all windows. Since the partial structure was bi-modular, it does not matter in which
order the gluings are performed. We can repeat the analogous procedure for open windows
or all windows at once. The proof that these gluings are associative up to homotopy, which
is the definition of a topological quasi-PROP goes along the same line of arguments as in [7,
Section 5.6]:

Proposition 6.1. The open/closed Sullivan spaces S̃ull
c/o

(n1, n2,m1,m2) form a (two-colored)
brane labelled topological quasi-PROP.

Proof. The two colors are open and closed. We can either choose to glue only these, or glue
both open and closed windows at one. The brane labelling is just given by the left and right
brane labels of each window. The associativity up to homotopy comes from the fact that we
used a flow. Flowing backwards interpolates between the different bracketings. These flow of
course is only on the non-deleted arcs, which are the same set in both bracketings. An arc is
deleted if it passes through the preimage of the glued windows. This condition is the same for
both iterations in the associativity check. �

Notice that we have rectified the partial structure on the topological level, but we had to pay
the price of relaxing associativity. This weaker structure of course induces a strict structure on
the homology.

Corollary 6.2. The homology open/closed Sullivan spaces S̃ull
c/o

(n1, n2,m1,m2) form a (two-
colored) brane labelled PROP.

The surprising fact is that although there is only the weaker structure on the topological
level, there is already a strict structure on the chain level, when using the correct chains. This
is the underlying principle of our constructions.

6.3 A CW model for Sullc/o

This paragraph is an application of the methods set forth in [7]. We define the following

subspaces of S̃ull
c/o

(n1, n2,m1,m2) we let Sullc/o
1(n1, n2,m1,m2) be the subspace of all α ∈

S̃ull
c/o

(n1, n2,m1,m2) such that the α weight of each “in” window is 1.

Proposition 6.3. Sullc/o
1(n1, n2,m1,m2) is a CW complex, is a sub-topological quasi-PROP

and is a deformation retract of S̃ull
c/o

(n1, n2,m1,m2). The dimension k cells of this complex
are indexed by arc graphs of Sullivan type with k + 1 arcs and their attaching maps are given by
deleting arcs and identifying this boundary with the cell of lower dimension.

Proof. The fact that this is a deformation retract is shown again by using a flow. This time the
flow scales the weights of the arcs incident to an “in” window w by a factor of 1− t(1/α(w)−1).

Since for a graph of Sullivan type, all the arcs can be enumerated by going along the “in”
windows, we see that before taking PMC orbits, the graphs of a given Sullivan type with α
weight on the “in” windows is simply a product of simplices. Now there is no PMC isotropy
inside this product of simplices, but under the action sides may become identified. So for each
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arc graph Γ of Sullivan type on a brane labelled windowed surface F , we obtain a cell C(Γ)
whose interior Ċ(Γ) is given by a product of open simplices ∆̇k:

Ċ(Γ) =
∏

w∈{ “in” windows of F}

∆̇|{arcs incident to w}|.

The statement about the attaching maps follows directly from the topology in S̃ull
c/o

, where
we simply delete an arc in the limit where its weight goes to zero. The fact that this is a sub-
topological quasi PROP is immediate upon noticing that the property that the α weight of each
“in” window is one is stable under the operation of gluing.

Since the gluing a window with n arcs to a window with m arcs produced at most n + m− 1
arcs we see that the gluing maps are indeed cellular and there are induced maps on the cellular
level.

It remains to prove that these maps are associative on the nose. This follows in the same
way as in [7, Theorem 5.33]. The proof there essentially goes over to the current situation for
the closed part. The open part is actually simpler, since we do not have to worry about the
condition of “twisted at the boundary”, since we keep the punctures upon gluing. �

Theorem 6.4. The cellular chains of Sullc/o
1 (n1,n2,m1,m2) are an open/closed colored brane

labelled PROP cell model for the spaces S̃ull
c/o

(n1, n2,m1,m2).

Proof. This follows directly from the proposition. �

Corollary 6.5. There is a open/closed brane labelled PROP structure on the free Abelian group
generated by arc graphs of Sullivan type induced by the corresponding structure on the cellular
chains of Sullc/o

1 .

Proof. This is defined simply by the identification of the free Abelian groups of cellular chains
which are generated by the C(Γ) and the free Abelian groups generated by the respective
graphs. �

Notice that in this structure when gluing Γ and Γ′ we obtain all the graphs that can appear
combinatorially by giving arbitrary weights in Γ and Γ′ matching on the windows that are glued,
with the extra condition that the arcs of the glued graph have the maximal number, i.e. the
corresponding cell has the maximum possible dimension.

6.4 The open/closed string topology action
on brane labelled Hochschild complexes

6.4.1 The correlators in the Sullivan case

In the Sullivan graph case, when decorating and calculating the weights, we also distinguish
between “in” and “out” boundaries. We will use the correlators Y i/o(Γ) which are obtained
from the Y ((Γ, w)) by using the degeneracies.

Given an discretely weighted arc family of Sullivan type (Γ, w) on a surface F with “in” and
“out” boundary markings. Let

a = a(in) ⊗ a(out) ∈
⊗

w∈“in” windows of α

B(β(w))⊗
⊗

w∈“out” windows of α

B(β(w)),

we define sa as a(in) ⊗ sa(out) where sa(out) is defined as follows:
Let a(out) =

⊗
aw. On the window w of the discrete family enumerate all components

of w \ {endpoints of arcs incident to w} in the order induced by the orientation of the surface
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starting at 0. Let n1 < n2 . . . nk be the boundary pieces between non-parallel arcs, which are
not flags. Then we set

saw := sn1sn2 . . . snk
aw.

Given a ∈ a(in) ⊗ a(out) we define

Y i/o(a) := Y (sa).

According to this the correlators will again be multilinear maps

Y i/o(α) :=
⊗

w∈Windows of α

B(β(w)) → k,

where these functions are homogeneous and their homogeneous components are zero by definition
unless aw ∈ Bα(w)−1−(β(w), A).

6.4.2 Decorations in the string topology case

The above procedure is tantamount to changing the decorations as follows:

Table 2. Weights for open/closed string topology.

Type Decoration Weight w(s)
side without marked point

part of “in” boundary a ∈ A∅ a
part of “out” boundary and part of a rectangle a ∈ A∅ a
part of “out” boundary not part of a rectangle 1 ∈ A∅ 1

side with marked point marked by ∅ a ∈ A∅ a

side with marked point marked by S (a1
S , a2

S), ai
S ∈ AS r†∅S(a1

Sa2
S)

In [8] we used angle markings to this effect. In that language the table above is the analog
of the decorations for the angle markings in the PROP case. The angles correspond exactly to
the components of the boundary minus the arcs.

6.5 The action

Theorem 6.6. The open/closed β brane labelled open/closed dg-PROP cell model of S̃ull
c/o

provided by Sullc/o
1 acts in a brane labelled open/closed dg-PROP fashion on the brane labelled

Hochschild complexes for a β-Frobenius algebra which satisfies the Euler condition (E).

This has an immediate geometric consequence by using β Frobenius algebras coming form
the geometric data of Section 4.1.5. Notice that in this case the bar complex B(∅, ∅)) after
dualizing computes H∗(LM) where LM is the free loop space [6] and the bar complex B(b, b′)
after dualizing computes H∗(PM, Nb, Nb′) where PM(Nb, Nb′) is the space of paths which start
in Nb and end in Nb′ .

Corollary 6.7. If M is a simply connected compact manifold with a given set of D-branes
realized by submanifolds Nb : b ∈ B then there are open closed string topology type operations on
H∗(LM) and the various H∗(PM,Nb, Nb′).

Here define new operations through the E2 term of the respective spectral sequence. One
actually can do it for the E1 term; confer [8]. This is what we call string topology type operations.
One can ponder if such operations exist in a purely geomtric framework and if these coincide
with the ones defined here.
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Figure 6. Gluing with angle labels in [8], in the current terminology the label 0 corresponds to a side
without marked point on an “out” boundary that is not part of a rectangle.

Proof of Theorem 6.6. There are two things left to prove, the dg-properties and the compati-
bility of the gluings on both sides of the action. We fist show the dg-properties. In the closed
case the argument is the same as in [8, Section 4.2.1]. It basically relies on the fact that the
co-multiplication and the multiplication are dual to each other. The argument carries over to
the open case upon noticing that the only relevant case is the one where we locally consider an
arc which has no parallel arc, as otherwise the terms of the differential cancel out. The only
new case is when this arc is the only arc in the window. In this case (unlike in the closed case)
removing the incident arc will still leave two decorations. In all other cases one of the decorations
before removing the arc will be by 1. In this new case there are however two decorations before
and after removing the arc due to the new rules of decorating on open windows, and hence the
right hand side of the equations (4.7) and (4.8) of [8] still give the correlators on the surface
with the arc removed.

The argument that the gluings on the Hochschild side in view of Theorem 5.1 and the
geometric side coincide is completely analogous to [8, Theorem 4.4]. There are two steps in the
argument. The first is that on the cellular chain side, only the graphs with maximal dimension
appear and we have to check that only these appear on the Hochschild side. This is forced
by the labelling. This labelling is equivalent to considering the gluing of [8] for angle labelled
graphs (see Fig. 6). If does not want to take this detour one can prove this directly by noticing
that the degeneracies duplicate edges on gluing. Now with this gluing the number of arcs is
always maximal after gluing. On the Hochschild side, this is automatic as the number of “in”
variables has to be equal to the number of “out” variables in order to obtain a non-zero gluing.
The second step is to check that the actions given by the discretized arcs coincide before and
after gluing. This is the content of Theorem 5.1. The surprising new feature is that among the
new local gluings coming from the open sector the compatibility holds only if additionally the
condition (E) is satisfied. �

6.5.1 Examples multiplication and comultiplication
in the open sector in the string topology case

As an example we will consider the arc graphs given in Fig. 5 but now with the Sullivan deco-
ration. Given

a = a
(2)
T ⊗ a1 ⊗ · · · ⊗ an ⊗ a

(1)
S ∈ Bn(AT , A, AS)

and

a′ = a
(2)
S ⊗ a′1 ⊗ · · · ⊗ a′m ⊗ a

(1)
U ∈ Bm(AS , A, AU )
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their product now lies in Bn+m(AT , A, AU ) and is given by

mTSU (aa′) =
( ∫

S
a

(1)
S a

(2)
S

)
a

(2)
T ⊗ a1 ⊗ · · · ⊗ an ⊗ a′1 ⊗ · · · ⊗ a′m ⊗ a

(1)
U .

The calculation goes as follows. The integrals are
∫

r†T (a(1)
T a

(2)
T ) =

∫
T a

(1)
T a

(2)
T which dualizes

to idT (a(1)
T ) = a

(1)
T and likewise for U . For the rectangles we get either

∫
aia

′′
j or

∫
a′ia

′′
k which

dualize to id(ai) and id(aj). Finally we get
∫

r†S(a(1)
S a

(2)
S )1 =

∫
S a

(1)
S a

(2)
S which gives the factor

in front.
The corresponding co-products ∆TSU : B(AT , A, AU ) → B(AU , A, AS) ⊗ B(AS , A, AT ) are

left unchanged.

7 Moduli space actions

In the moduli spaces case, there an associated chain complex indexed by graphs. The difficulties
in this case are manifold. First the cells of the chain complex are open cells. As we saw
in [7, 8], the way to deal with this is to pass to the associated graded complex and look at
the actions induced from the topological level there. Now there are new problems that arise in
the open/closed case. While in the purely closed situation, the “forbidden” gluings which on
the topological level gave rise to elements outside the moduli space were codimension one, here
there are “forbidden” gluings for whole cells. An example is given in Figs. 7 and 8. We can
deal with this by restricting the cells to come from an open/closed duality subspaces of moduli
space. Also there are problems since we have to deal with internal marked points.

7.1 Point clusters

The property of moduli space that only once punctured polygons may appear among the com-
plementary regions is very fragile under gluing. Not even the inclusion of the open and closed
sectors into each other is stable with respect to this condition. So we will allow polygons with
an arbitrary number of punctures. Using Strebel differentials, we can put a conformal structure
on such a piece and have one distinguished point for this polygon. We now choose the geometric
interpretation that all the points in the polygon with their brane labels are a cluster of points
located at that distinguished point. We can think of these points as labelled “bosons” sitting on
top of each other. In this sense they are equivalent to one internal marked point with a multiple
brane label. This is very close to the moduli spaces considered in [13].

7.2 Open/closed duality

In [11] we saw that the open/closed duality holds on the chain level. This basically means that
any element of Ãrc can be decomposed into a piece which is purely closed and cylinders whose
one end is closed. This is simply obtained by cutting on a closed curve parallel to each boundary.
If the boundary is already closed there is no need to cut. An example of this is given in Fig. 9.
Notice the since we are cutting, we have the free choice of a point on the boundary and hence the
pieces are not unique. They are of course unique up to twisting on the boundary, with the one
parameter family on the annulus with closed windows, which is equivalent to moving a marked
point marked by ∅ along the boundary. On the chain level this does however not hold for the
whole space and hence we will impose this condition.

Definition 7.1. We say that two arc families α and α′ are in general position with respect to
the windows w of α and w′ of α′ if the number of arcs after the gluing is subadditive.
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Figure 7. A gluing of two elements of moduli space whose result does not lie in the moduli space. The
window AB is glued to window DE and the resulting element is not quasi-filling anymore.

A main result of [7] is that elements of open cells of two purely closed quasi-filling arc graphs
are not in general position only in codimension one. This was enough to induce an operad
structure on the associated graded of the chains.

Now, we also have problems with gluings of the type where two flags of a window belong to
the same complementary region, e.g. the case e) 2) discussed in Section 5.3.3.

Definition 7.2. We say an open window of an arc family α is degenerate if its flags are both
part of the boundary of a complementary region, but are not an edge of this boundary. The
latter can only happen if there is only one marked point on the boundary. This case will be
non-degenerate.

An arc family is non-degenerate if it has no degenerate windows.

7.2.1 Cell complexes

For a β arc graph α on F , we let C(α) be the set of all projective weightings on α. Recall that
a weighting is by positive reals, so that this set is just the open inside of a cell.

The space Arc(F, β)(n, m) := Ãrc(F, β)(n, m)/R>0 has decomposition into these open cells

Arc(F, β) := tΓ:β arc graph on F with only active windowsĊ(α).
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Figure 8. Gluing of two cells of moduli space whose result does not lie in the moduli space. The gluing
is along the windows ST which face each other. Again the result is not quasi-filling.

Figure 9. Open/closed duality: cut on the dotted lines.

This gives a complex whose generators are the open cells and whose boundary is given by the
differential in the associated CW complex. The terms in the sum are only over those graphs
which appear in the boundary. These are the subgraphs with one fewer edge.

Definition 7.3. The open/closed duality moduli space is the space given by those arc families
which satisfy the following conditions
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1. The complementary regions are only polygons possibly with punctures of any finite num-
ber.

2. The arc family admits a decomposition under the open/closed duality as above such that

(a) the pieces are in general position with respect to the boundaries obtained by cutting
and

(b) the annuli appearing in the decomposition are non-degenerate.

In particular we let c/oMs,β
g,δ1,...,δn

be the component where the arc families are on (F s
g,n, β)

where the point clusters are given by the sets of marked points of cardinality si and s =
∑

si
,

where a point cluster is the set of marked points within one polygonal complementary region.

Notice that the spaces c/oMs,β
g,δ1,...,δn

are stratified by the spaces c/oMs1...sk,β
g,δ1,...,δn

and each space
c/oMs1...sk,β

g,δ1,...,δn
is a finite unramified cover of Mk

g,δ1,...,δn
.

To avoid yet additional notation, we will think of Ms
g,δ1,...,δn

and c/oMs,β
g,δ1,...,δn

as a subspace
of Arc(F, β)(n1, n2) where n1 is the number of δi = 1 and n1 + n2 = n and F = F s

g,n.
The subspaces are then just given by the disjoint union of open cells of those graphs that

satisfy the additional requirements.
There are gluings on the topological level, which are giving by scalings. Given α and a win-

dow w of it together with α′ and a window w′ on it, we scale all arcs α by α′(w′) and all arcs
of α′ by α(w), just as in [12]. After the scaling the two windows have the same weight and
we can glue. The structure we get is a two colored operad (open/closed) with the additional
information of brane labels. We call such a structure a brane labelled open/closed operad.

Lemma 7.4. This gluing yields a brane-labelled open/closed operad structure. And this induces
an operad structure on the complex of open cells.

Proof. On the topological level the only thing that is left to be checked is the associativity.
Adapting [12] this is straightforward. For the chains, we notice that the set obtained from
composing cells is a union of cells and proceed as in [7]. �

If we only stick to basic brane labels, we would need to introduce more colors, which would
be as usual pairs (S, T ) of S, T 6= ∅ or (∅, ∅).

Lemma 7.5. The open cell complexes of Arc(F, β)(n1, n2) are graded by dimension – which
for Ċ(Γ) is the number of arcs minus one – and the induced operad structure respects the corre-
sponding filtration and hence passes to the associated graded complexes.

Proof. This follows from the fact that when gluing two windows with k and l arcs, the maximal
number is k + l + 1. �

Proposition 7.6. The associated graded of the complexes of open cells c/oMs,β
g,δ1,...,δn

form a sub-
operad of the associated graded of the complexes of open cells of Arc(F, β)(n1, n2).

Proof. We have to show that when gluing two open cells which are in the open/closed moduli
part, we are still in the open/closed moduli part up to codimension one. For the closed part
this is contained in [7] up to handling the punctures. But since we allow arbitrary punctures
in polygons, we do not have to keep track of them. This generalizes directly to gluing on two
closed windows in the possible presence of additional open windows. Now we use the condition
of the open/closed moduli space to decompose any given two elements into cylinders and pieces
that only have closed boundaries. We now only have to consider gluing on such a cylinder along
an open window to an open window. Since the cylinder will have a non-degenerate quasi-filling
arc family, we see that indeed the result of the gluing will be quasi-filling and non-degenerate
as we will locally never glue polygons twice on sides that are not consecutive. �
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To each such cell Ċ(Γ) we can associate the correlation function Y (Γ) acting on the approp-
riate Hochschild co-chains or bar complexes. Now since we passed to the associated graded
on the moduli space side, we will have to do the same thing on the algebraic side. This is
accomplished by grading with respect to the number of comultiplications, analogous to [8] and
then passing to the associated graded. The resulting objects can naturally be called a β-labelled
Hom operad.

Theorem 7.7. There is an operadic cell model associated to the β-brane labelled open/closed
moduli spaces c/oMs,β

g,δ1,...,δn
which acts on β-labelled Hochschild co-chains via operadic correlation

functions with values in a β-labelled Hom operad.

Remark 7.8. On the image this operation is dg with respect to the induced differential.

8 Outlook

Again like in [9, 10] we can consider the stabilization. We see that in this case, we need that
all the Frobenius algebras AS are (normalized) semi-simple in order to pass to the appropriate
stabilization.

One case where this would be true would be in Landau–Ginzburg models. We are currently
working on the details of this theory.

One can furthermore ask about the modular operad structure on the moduli space. Then
further technical complications arise from the intricate structure of the flows defining the chain
level structure of the c/o structure in [11]. In this case we will show that there is an underlying
solution to the quantum master equation.

A Appendix: operadic, PROPic and c/o structures

A.1 The definition of a c/o structure

Specify an object O(S, T ) in some fixed symmetric monoidal category for each pair S and T of
finite sets. A G-coloring on O(S, T ) is the further specification of an object G in this category
and a morphism µ : S t T → Hom(O(S, T ),G), and we shall let Oµ(S, T ) denote this pair of
data.

A G-colored “closed/open” or c/o structure is a collection of such objects O(S, T ) for each
pair of finite sets S, T together with a choice of weighting µ for each object supporting the
following four operations which are morphisms in the category:

Closed gluing: ∀ s ∈ S, ∀ s′ ∈ S′ with µ(s) = µ′(s′),

◦s,s′ : Oµ(S, T )⊗Oµ′(S′, T ′) → Oµ′′(S t S′ − {s, s′}, T t T ′);

Closed self-gluing: ∀ s, s′ ∈ S with µ(s) = µ(s′) and s 6= s′,

◦s,s′ : Oµ(S, T ) → Oµ′′(S − {s, s′}, T );

Open gluing: ∀ t ∈ T , ∀ t′ ∈ T ′ with µ(t) = µ′(t′),

•t,t′ : Oµ(S, T )⊗Oµ′(S′, T ′) → Oµ′′(S t S′, T t T ′ − {t, t′});

Open self-gluing: ∀ t, t′ ∈ T with µ(t) = µ(t′) and t 6= t′,

•t,t′ : Oµ(S, T ) → Oµ′′(S, T − {t, t′}).
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In each case, the coloring µ′′ is induced in the target in the natural way by restriction, and we
assume that S t S′ t T t T ′ − {s, s′, t, t′} 6= ∅.

The axioms are that the operations are equivariant for bijections of sets and for bijections of
pairs of sets, and the collection of all operations taken together satisfy associativity.

Notice that we use the formalism of operads indexed by finite sets rather than by natural
numbers as in [14] for instance.

A.2 Restrictions

A c/o structure specializes to standard algebraic objects in the following several ways.
There are the two restrictions (Oµ(S, ∅), ◦s,s′) and (Oµ(∅, T ), •τ,τ ′) each of which forms

a G-colored cyclic operad in the usual sense.
The spaces (Oµ(S, T ), ◦s,s′ , •τ,τ ′) with only the non self-gluings as structure maps form a cyclic

G×Z/2Z-colored operad, where the Z/2Z accounts for open and closed, e.g., the windows labeled
by S are regarded as colored by 0 and the windows labeled by T are regarded as colored by 1.

If the underlying category has a coproduct (e.g., disjoint union for sets and topological spaces,
direct sum for Abelian groups and linear spaces), which we denote by

∐
, then the indexing sets

can be regarded as providing a grading: i.e., (
∐

T Oµ(S, T ), ◦s,s′) form a cyclic G-colored operad
graded by the sets T , and (

∐
S Oµ(S, T ), •τ,τ ′) form a cyclic G-colored operad graded by the

sets S.

A.3 Modular properties

There is a relationship between c/o structures and modular operads. Recall that in a modular
operad there is an additional grading on the objects, which is additive for gluing and increases
by one for self-gluing. Imposing this type of grading here, we define a (g, χ − 1) c/o structure
to be a c/o structure with two gradings (g, χ),

Oµ(S, T ) =
∐

g≥0,χ≤0

Oµ(S, T ; g, χ)

such that

(1) Oµ(S, T ;χ− 1) =
∐

g≥0Oµ(S, T ; g, χ) is additive in χ− 1 for •t,t′ , and χ− 1 increases by
one for •t,t′ ; and

(2) Oµ(S, T ; g) =
∐

χ≤0Oµ(S, T ; g, χ) is additive in g for ◦s,s′ , and g increases by one for ◦s,s′ .

It follows that a (g, χ − 1) c/o structure is a modular G-colored bi-operad in the sense that
the Oµ(S, T ; g) form a T -graded R>0-colored modular operad1 for the gluings ◦s,s′ and ◦s,s′ , and
the Oµ(S, T ; 1−χ) form an S-graded R>0-colored modular operad∗ for the gluings •t,t′ and •t,t′ .

A.4 Brane-labeled c/o structures

A brane-labeled c/o structure is a c/o structure {Oµ(S, T )} together with a fixed Abelian
monoid P of brane labels and for each α ∈ Oµ(S, T ) a bijection Nα : T → T and a bijection
(λα, ρα) : T → P ×P, such that

(1) ρ(t) = λ(N(t)),

1We impose neither 3g − 3 + |S| > 0 nor 3(−χ + 1) + |T | − 3 ≥ 0.
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(2) if Nα(t) 6= t and Nα′(t′) 6= t′

Nα•t,t′α
′(N−1

α (t)) = Nα′(t′), Nα•t,t′α
′(N−1

α′ (t′)) = Nα(t),

ρα•t,t′α
′(N−1(t)) = λα(t)ρα′(t′), λα•t,t′α

′(N(t)) = λα′(t′)ρα(t),

(3) Nα(t) 6= t and Nα′(t′) 6= t′

N•t,t′ (α)(N
−1
α (t)) = Nα(t′), N•t,t′ (α)(N

−1
α (t′)) = Nα(t),

ρα•t,t′α′(N
−1(t)) = λα(t)ρα(t′), λα•t,t′α′(N(t)) = λα(t′)ρα(t),

(4) if either Nα(t) = t or Nα′(t′) = t′ but not both, then in the above formulas, one should
substitute Nα′(t′) for Nα(t) in the first case and inversely in the second case. (If both
Nα(t) = t and Nα′(t′) = t′, then there is no equation.)

This is the axiomatization of the geometry given by open windows with endpoints labeled by
right (ρ) and left (λ) brane labels, their order and orientation along the boundary components
induced by the orientation of the surface, and the behaviour of this data under gluing.

For a brane-labeled c/o structure and an idempotent submonoid B ⊂ P (i.e., for all b ∈ B,
b2 = b), one has the B ×B-colored substructures defined by restricting the gluings •t,t′ and •t,t′

to compatible colors λ(t) = ρ(t′).

A.5 PROPs and partial modular operads

Recall that a PROP is a collection of objects O(S, T ) as above with two sets of operations.
Composition: for each bijection T ↔ S′ a morphism ◦φ : O(S, T ) ⊗ O(S′, T ′) → O(S, T ′).
We can think of S as “in” labels and T as “out” labels. Mergers or vertical compositions:
O(S, T ) ⊗ O(S′, T ′) → O(S q S′, T q T ) satisfying the obvious compatibilities, associativities
and invariance under bijections.

A partial modular operad is a modular operad in which not all gluing operations need to
be defined, when they are defined all the relations hold. A particular kind of partial modular
operad is a colored modular operad. There is an additional coloring of S by some set C and only
like colors can be glued. Another partial structure is the following: For each element in O(S)
fix a partition if S into S0 q S1. We can think of S0 as “in” and S1 as “out”. The gluings are
given for ◦s,s′ : O(S)⊗O(S′) → O(S \ {s} q S′ \ {s′}) for all s ∈ S1, s′ ∈ S′

0. We will call this
an i/o modular operad.

Notice and i/o modular operad in a category with a direct sum induces a PROP.
Given a bijection φ : T → S′ we perform the concatenation of all operations ◦t,φ(t), where

the first gluing is a non-self gluing and all further gluings are self-gluings. The mergers are then
just defined as the coproduct, which is the disjoint union.

A.6 Two colored or open/closed colored PROPs

A two colored or open/closed PROP is a PROP with a partition for each the sets S, T that is
it is given by objects O(So q Sc, To q Tc) and there are gluing operations for bijections So ↔ T ′

o

and Sc ↔ T ′
c that give PROP structures separately (treating the other set as a grading) and

jointly.

A.7 Weaker structures on the topological level

A topological quasi-PROP has the data of PROP but the associativity only needs to hold up
to homotopy. Notice that this is enough to guarantee that there is a PROP structure on the
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homology level. The adjective “quasi” in any context means that the associativity need not hold
and the specification “topological quasi” means that the objects are topological spaces and the
associativity holds up to homotopy.

A.7.1 C/o versions, c/o PROP

To get the c/o versions, we need two additional colorings on top of all the other structures. This
first is open/closed and the second is a coloring µ by R. The gluing then is partial or colored
with respect to both the coloring open/closed and the coloring µ.

Thus a c/o PROP has colors “closed” and “open” together with a real weight on each “in”
and each “out”. There will be two types of full gluings: closed and open given by bijections
between the open “ins” and “outs” or the closed “ins” and “outs”. The gluings are possible if
the bijection φ has the property that the weight of t is the weight of φ(t). Both gluings and the
simultaneous open/closed gluing will satisfy the usual equations.

Adding brane labels is straightforward as above.
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