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Abstract. Some aspects of the “exotic” particle, associated with the two-parameter central
extension of the planar Galilei group are reviewed. A fundamental property is that it has
non-commuting position coordinates. Other and generalized non-commutative models are
also discussed. Minimal as well as anomalous coupling to an external electromagnetic field
is presented. Supersymmetric extension is also considered. Exotic Galilean symmetry is also
found in Moyal field theory. Similar equations arise for a semiclassical Bloch electron, used
to explain the anomalous/spin/optical Hall effects.
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1 Introduction: “exotic” Galilean symmetry

A curious property of massive non-relativistic quantum systems is that Galilean boosts only act
up-to phase, so that only the 1-parameter central extension of the Galilei group acts unitarily [1].
True representations only arise for massless particles.

Do further extension parameters exist? It is well-known that central extensions are associated
with non-trivial Lie algebra cohomology [2, 3], and Bargmann [4] has shown that, in d ≥ 3 space
dimensions, the Galilei group only admits a 1-parameter central extension, identified with the
physical mass, m. Lévy-Leblond [5] has recognized, however, that, owing to the Abelian nature
of planar rotations, the planar Galilei group admits a second central extension. The cohomology
is two-dimensional, and is parametrized by two constants, namely by the mass and a second,
“exotic”, parameter κ. The second extension is highlighted by the non-commutativity of Galilean
boost generators,

[K1,K2] = iκ.

This fact has long been considered, however, a mere mathematical curiosity, as planar physics
itself has been viewed as a toy.

?This paper is a contribution to the Special Issue “Noncommutative Spaces and Fields”. The full collection is
available at http://www.emis.de/journals/SIGMA/noncommutative.html
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Around 1995 the situation started to change, though, with the construction of physical models
carrying such an “exotic” structure [6, 7, 8]. [8] uses an acceleration-dependent Lagrangian, while
that in [9], is obtained following Souriau’s method [3].

These models have the distinctive feature that the Poisson bracket of the planar coordinates
does not vanish,

{x1, x2} = − κ

m2
≡ θ, (1.1)

and provide us with two-dimensional examples of non-commutative mechanics [10, 11, 12, 13,
14, 15]1.

What is the physical origin of exotic mechanics? What is the quantum mechanical counter-
part? An answer has been found soon after its introduction: it is a sort of “non-relativistic
shadow” of (fractional) spin [16, 17, 18]. Our particles can be interpreted therefore, as nonrela-
tivistic anyons [19, 20].

The supersymmetric extension of the theory is outlined in Section 9.
All these examples have been taken from one-particle mechanics; exotic Galilean symmetry

can be found, however, also in field theory [21], as explained in Section 10.
Remarkably, similar structures were considered, independently and around the same time, in

condensed matter physics, namely for the Bloch electron [22]: it was argued that the semiclassical
dynamics should involve a “Berry term”, which induces “anomalous” velocity similar to the one
in the “exotic” model [9].

These, 3-space dimensional, models are also non-commutative, but the parameter θ is now
promoted to a vector-valued function of the quasi-momentum: ~Θ = ~Θ(~k). Exotic Galilean
symmetry, strictly linked to two space dimensions, is lost. However, a rich Poisson structure
and an intricate interplay with external magnetic fields can be studied. Further developments
include the Anomalous [23], the Spin [24] and the Optical [25, 26, 27, 28] Hall effects.

This review completes and extends those in [29, 30, 31].

2 Exotic model, constructed by Souriau’s method

Models associated with a given symmetry group can be conveniently constructed using Souriau’s
method: the classical phase spaces of “elementary systems” correspond to coadjoint orbits of
their symmetry groups [3]. This was precisely the way followed in [6, 9] to produce an “ele-
mentary” classical system carrying Lévy-Leblond’s “exotic” Galilean symmetry. Translated
from Souriau’s to more standard terms, the model has an “exotic” symplectic form and a free
Hamiltonian,

Ω0 = dpi ∧ dxi +
1
2
θεijdpi ∧ dpj ,

H0 =
~p 2

2m
.

The associated free motions follow the usual straight lines, described by the equations

mẋi = pi −mθεij ṗj , ṗi = 0.

The “exotic” structure only enters the conserved quantities, namely the boost and the angular
momentum,

j = εijxipj +
θ

2
~p 2, Ki = −mxi + pit−mθεijpj . (2.1)

1Our conventions are as follows. Symbols with arrows denote vectors, and those in boldface are tensors. The
position vector ~r has coordinates xi.
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The “exotic” structure behaves hence roughly as spin: it contributes to some conserved quanti-
ties, but the new terms are separately conserved. The new structure does not seem to lead to
any new physics.

The situation changes dramatically, though, if the particle is coupled to a gauge field. Ap-
plying Souriau’s coupling prescription [3] yields indeed

Ω = Ω0 + eB dq1 ∧ dq2, H = H0 + eV, (2.2)

where B is the magnetic field assumed to be perpendicular to the plane, and V is the electric
potential. For simplicity, both B and V are assumed to be time-independent.

The associated Poisson bracket then automatically satisfies the Jacobi identity. The resulting
equations of motion read

m∗ẋi = pi − emθ εijEj , ṗi = eEi + eB εij ẋj , (2.3)

where the parameter θ = k/m2 measures the non-commutativity of x1 and x2, and we have
introduced the effective mass

m∗ = m(1− eθB). (2.4)

The novel features, crucial for physical applications, are twofold: Firstly, the relation between
velocity and momentum contains an “anomalous velocity term” −emθεijEj , so that ẋi and pi

are not in general parallel. The second one is the interplay between the exotic structure and the
magnetic field, yielding the effective mass m∗ in (2.4).

Equations (2.3) do not derive from a configuration-space Lagrangian (but see Section 3). The
1-order “phase” (in fact “evolution space” [3]) formalism works, however, so that the equations
of motion (2.3) come from varying the action defined by integrating the “Cartan” 1-form [3],

λ = (pi −Ai)dxi −
~p 2

2m
dt+

θ

2
εijpidpj

along the lifted world-line γ̃ in evolution space T ∗R2×R. The exterior derivative, σ = dλ, of the
Cartan form λ provides us with a closed “Lagrange–Souriau” 2-form, which, however, cannot
be separated canonically into a “symplectic” and a “Hamiltonian part” [3]. Thus more general
procedures have to be adopted to build such a system and clarify their Hamiltonian structure.
These aspects will be discussed in detail in the following Sections 3, 4 and 5. Here we limit
ourselves to notice that, in fact, when m∗ 6= 0, (2.3) is a Hamiltonian system,

ξ̇ = {H, ξα}, ξ = (xj , pi),

with Poisson brackets

{x1, x2} =
m

m∗ θ, {xi, pj} =
m

m∗ δij , {p1, p2} =
m

m∗ eB. (2.5)

A remarkable property is that for vanishing effective mass m∗ = 0, i.e., when the magnetic
field takes the critical value

B =
1
eθ
,

the system becomes singular. Then “Faddeev–Jackiw” (alias symplectic) reduction yields an
essentially two-dimensional, simple system, reminiscent of “Chern–Simons mechanics” [32]. The
symplectic plane plays, simultaneously, the role of both configuration and phase space. The
only motions are those which follow a generalized Hall law.
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Quantization of the reduced system yields, moreover, the “Laughlin” wave functions [33],
which are the ground states in the Fractional Quantum Hall Effect (FQHE).

The relations (2.5) diverge as m∗ → 0, but after reduction we get, cf. (1.1),

{x1, x2} =
1
eB

= θ.

The coordinates are, hence, non-commuting, and their commutator is determined by the mag-
netic field, fine-tuned to the parameter θ.

Relation to another non-commutative mechanics. The exotic relations (2.5) are similar
to those proposed (later) in [10],

{xi, xj} = θεij , {xi, pj} = δij , {p1, p2} = eB, (2.6)

which look indeed simpler. Using the standard Hamiltonian H = p2

2m + eV (x), the associated
equations of motion read

mx′i = pi − emθεijEj , p′i = eBεij
pj

m
+ eEi, (2.7)

where we noted “time” by T and (·)′ = d
dT .

A short calculation reveals, however, that{
xi, {p1, p2}

}
cycl

= eθ εij∂jB,

so that the Jacobi identity is only satisfied if B is a constant. In other words, the system (2.6)
is only consistent for a constant magnetic field – which is an unphysical condition in general2.

The model (2.6) has another strange feature. Let us indeed assume that the magnetic field
is radially symmetric, B = B(r). One would then expect to have conserved angular momentum.
For constant B, applying Noether’s theorem to an infinitesimal rotation δξi = εijξj yields indeed
δξi = −{jNP, ξi}, with

jNP =
1

1− eθB

(
~x× ~p+

θ

2
~p 2 +

eB

2
~x 2

)
︸ ︷︷ ︸

j

. (2.8)

This differs from the standard expression by the pre-factor (1− eθB)−1. But what is even worse
is that, for a radial but non constant magnetic field, (2.8) is not conserved :

djNP

dT
=

eθj

(1− eθB)2
∂iBx

′
i,

while j in (2.1) is still conserved as it should.
Can the theory defined by (2.6) be extended to an arbitrary B?
Let us first assume that B = const. s.t. m∗ 6= 0, and let us redefine the time3, as

T → t = (1− eθB)T ⇒ d

dT
= (1− eθB)

d

dt
. (2.9)

Then equations (2.7) are carried into the exotic equations, (2.3). When B = const. s.t. m∗ 6=
0, the two theories are therefore equivalent.

Remarkably, the time redefinition (2.9) actually extends the previous theory, since it carries it
into the “exotic model”, for which the Jacobi identity holds for any, not necessarily constant B.
Thus, the transformation (2.9) (which is singular for eBθ = 1), removes the unphysical restriction
to constant magnetic fields: (2.9) regularizes the system (2.6).

2For another role of the Jacobi identity in non-commutative mechanics, see [34].
3This was suggested to us by G. Marmo (private communication).
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3 Acceleration-dependent Lagrangian in configuration space

An independent and rather different approach was followed in [8].
We start again with a particle characterized by the two central charges

m and κ = −m2θ

of the exotic Galilei group. These charges appear in the following Lie-brackets (represented by
Poisson-brackets (PBs)) between the translation generators Pi and the boost generators Ki

{Pi,Kj} = mδij , {Ki,Kj} = −m2θεij . (3.1)

In order to find a configuration space Lagrangian whose Noether charges for boosts satisfy (3.1)
we must add the second time derivative of the coordinates ẍi to the usual variables xi and ẋi.
As shown in [8] the most general one-particle Lagrangian, which is at most linearly dependent
on ẍi, leading to the Euler–Lagrange equations of motion which are covariant w.r.t. the planar
Galilei group, is given, up to gauge transformations, by

L =
m

2
ẋ2

i +
m2θ

2
εij ẋiẍj . (3.2)

Introducing the Lagrange multipliers pi and adding pi(ẋi − yi) to (3.2) yields

L = piẋi +
m2θ

2
εijyiẏj −H(~y, ~p) (3.3)

with

H(~y, ~p) = yipi −
m

2
y2

i .

(3.3) describes a constrained system, because we have

∂L
∂ẏi

= −m
2θ

2
εijyj .

Therefore the PBs, obtained by means of the Faddeev–Jackiw procedure, take a non-standard
form

{xi, pj} = δij , {yi, yj} = − 1
m2θ

εij . (3.4)

All other PBs vanish.
For the conserved boost generator we obtain

Ki = −mxi + pit−m2θεijyj

and therefore, due to (3.4), the PB resp. commutator of two boosts is nonvanishing

{Ki,Kj} = −m2θεij . (3.5)

The Lagrangian (3.3) shows that the phase space is 6-dimensional. In order to split off two
internal degrees of freedom, we have to look for a Galilean invariant decomposition of the 6-dim
phase space into two dynamically independent parts: a 4-dim external and a 2-dim internal
part. This decomposition is achieved by the transformation [8, 19] (~x, ~p, ~y) → ( ~X, ~p, ~Q) with

yi =
pi

m
+
Qi

mθ
and xi = Xi − εijQj , (3.6)
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leading to the following decomposition of the Lagrangian (3.3)

L = Lext + Lint

with

Lext = piẊi +
θ

2
εijpiṗj −

p2
i

2m
and Lint =

1
2mθ2

Q2
i +

1
2θ
εijQiQ̇j . (3.7)

From (3.6) and the PBs (3.4) it now follows that the new coordinates Xi are noncommutative

{Xi, Xj} = θεij . (3.8)

The remaining nonvanishing PBs are

{Xi, pj} = δij , {Qi, Qj} = −θεij .

Conclusion. The particle Lagrangian (3.2) containing ẍi leads to a nonvanishing commutator
of two boosts. But in order to obtain noncommutative coordinates we are forced to decompose
the 6-dim phase space in a Galilean invariant manner into two dynamically independent 4-dim
external and 2-dim internal phase spaces.

Relation of the DH and LSZ models. The relation of the “minimal” and the configura-
tion-space models of DH [9] and of L.S.Z. [8] respectively, has been studied in [19]. Introducing
the coordinates Xi, Qi, and pi on 6-dimensional phase space according to (3.6) allows us to
present the symplectic structure and the Hamiltonian associated with (3.2) as

Ω = dpi ∧ dXi +
θ

2
εijdpi ∧ dpj +

1
2θ
εijdQi ∧ dQj ,

H =
~p 2

2m
− 1

2mθ2
~Q2.

Thus, the model of L.S.Z. is decomposed into the DH theory, augmented with a two-dimensional
internal space, and a negative zero point of the Hamiltonian. Note that the “external” and
“internal” phase spaces are “almost” independent: the only effect of internal motion is indeed
through the length of the internal vector, | ~Q|.

Generalization of (3.2). If we add to (3.2) a term f(ẍ2
i ), the obtained Lagrangian is the

most general one involving, in a Galilean quasi-invariant manner, the variables xi, ẋi and ẍi.
Then one can show

i) the PB of the two boosts (3.5) will not change,

ii) the new 8-dim phase space may be decomposed again in a Galilean invariant manner into
two dynamically independent 4-dim parts, an external and an internal one.

Commutative – versus noncommutative plane.
The subalgebra of the Galilean algebra containing only translations and boosts is given in

the cases of, respectively, their one- or two-fold central extensions by

one-fold centrally extended two-fold centrally extended

{pi,Kj} = mδij , {p′i,K ′
j} = mδij ,

{pi, pj} = 0, {p′i, p′j} = 0,

{Ki,Kj} = 0, {K ′
i,K

′
j} = −m2θεij .

Obviously both are related by the transformations

K ′
i = Ki −

mθ

2
εijpj , p′i = pi.
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To this corresponds the following point transformation between noncommutative coordinates Xi

and commutative ones qi

Xi = qi −
θ

2
εijpj

as can be read off immediately from the form of Lext in (3.7).
Now the question arises: What to use in physics, the commutative or the non-commutative

plane?
Answer. For free particles both possibilities are equivalent. But in the case of a nontrivial

interaction one has to use the commutative (noncommutative) plane, if a local potential or gauge
interaction is given in terms of qi (Xi).

It is worth mentioning that the acceleration-dependent model presented in this Section can
be related to radiation damping [35].

4 General form of noncommutative mechanics

Up to now noncommutativity has been described by a constant θ in the PB (3.8). But it is
possible to get θ as a function of ~X and ~p if one considers external Lagrangians more general
than (3.7).

To do this consider a very general class of Lagrangians given by

L = piẊi + Ãi( ~X, ~p)ṗi −H(~p, ~X) (4.1)

leading to the PBs

{Xi, Xj} ∼ εijB̃, B̃ = εk`∂pk
Ã`( ~X, ~p)

with

{Pi, Pj} = 0.

We dispense with the reproduction of the more complicated form of the PBs for the phase space
coordinates (Xi, pj). Again by the point transformation

Xi → qi = Xi − Ãi( ~X, ~p)

we obtain commuting coordinates qi as follows from

piẊi + Ãiṗi = piq̇i +
d

dt
(Ãipi).

Examples:

i)

Ãi = f(p2)( ~X · ~p )pi (4.2)

leading to the PBs of the phase space variables

{Xi, Xj} =
f(p2)

1− p2f(p2)
εijL, L = εk`Xkp`, (4.3)

{Xi, pj} = δij +
f(p2)

1− p2f(p2)
pipj . (4.4)
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A particular example is given by

f(p2) =
θ

1 + p2θ
and therefore

f

1− p2f
= θ.

This gives exactly Snyder’s NC-algebra, presented in 1947 [36].

Another case, defined by

f(p2) =
2
p2
, (4.5)

can be related to a deformed Galilei algebra (to be discussed in the next section).

ii)

Ãi = Ãi(~p)

leading to the PBs

{Xi, Xj} = εijB̃(~p), {Xi, pj} = δij .

B̃ is the Berry curvature for the semiclassical dynamics of electrons in condensed matter
to be discussed in Section 11.

We may generalize (4.1) to the most general 1st-order Lagrangian

L = (pi +Ai( ~X, ~p))Ẋi + Ãi( ~X, ~p)ṗi −H(~p, ~X).

Here Ai( ~X) describes standard electromagnetic interaction (cp. Section 6, and Section 11
for the 3 dimensional case, respectively). A particular case of a ~p-dependent Ai has been
considered in [37].

5 Lagrangian realization of the k̃-deformed Galilei algebra
as a symmetry algebra

In 1991 Lukierski, Nowicki, Ruegg and Tolstoy invented the k-deformed Poincaré algebra [38],
which later found applications, e.g., in Quantum Gravity [39]. By rescaling the Poincaré genera-
tors and the deformation parameter k, the corresponding nonrelativisitic limit, the k̃-deformed
Galilei algebra, has been derived by Giller et al. [40] and, in a different basis, by Azcarraga et
al. [41]. In this Section we will describe a Lagrangian realization of the latter.

Again we look at the classical Lagrangian (4.1) specified by (4.2) and (4.5) together with the
following choice of the Hamiltonian

H = k̃ ln(p2/2). (5.1)

According to (4.3), (4.4) we obtain the PBs

{Xi, Xj} = − 2
p2
εijL and {Xi, pj} = δij −

2
p2
pipj

which lead, together with the Hamiltonian (5.1), to the equations of motion

ṗi = 0 and Ẋi = −2k̃
p2
pi.
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Then, we may define the “pseudo-boosts” Ki

Ki = pit+
p2

2k̃
Xi

which are conserved. They satisfy, together with pi and H, the PB-algebra

{Ki, pj} =
δij

2k̃
p2 − pipj

k̃
, {Ki,H} = −pi, {Ki,Kj} = 0. (5.2)

Together with the standard algebra of translations (represented by pi and H) and rotations
(represented by L) the relations (5.2), build the k̃-deformed Galilei algebra derived in [41].

The limit k̃ →∞ leads to a divergent Hamiltonian (5.1). Therefore, the k̃-deformation does
not have a standard “no-deformation limit”.

6 Physical origin of the exotic structure

A free relativistic “elementary” particle in the plane corresponds to a unitary representation of
the planar Lorentz group O(2, 1) [17]. These representations are in turn associated with the
coadjoint orbits of SO(2, 1), endowed with their canonical symplectic structures, interpreted by
Souriau as classical phase spaces [3]. Applied to the planar Lorentz group, the procedure yields
the relativistic model [17, 18]

Ωrel = dpα ∧ dxα +
s

2
εαβγ pαdpβ ∧ dpγ

(p2)3/2
,

Hrel =
1

2m
(
p2 −m2c2

)
.

The p-dependent contribution looks like a “magnetic monopole in momentum space” (cf. (11.10)
below).

As pointed out by Jackiw and Nair [16], the free exotic model can be recovered considering
a tricky non-relativistic limit , namely

s/c2 → κ = m2θ.

The two-form Ωrel

∣∣
Hrel=0

goes indeed over into the exotic symplectic form. Intuitively, the exotic
structure can be viewed as a “non-relativistic shadow” of relativistic spin.

The exotic Galilei group can itself be derived from the planar Poincaré group by “Jackiw–
Nair” contraction [16]. One starts with the planar Lorentz generators,

{Jα, Jβ} = εαβγJγ .

For the classical system

Jµ = εµνρx
νpρ + s

pµ√
p2
.

A non-relativistic boost is the “JN” limit of a suitable Lorentz transformation,

1
c
εijJ

j → mxi − pit+mθεijpj = −Ki,

and the exotic relation is recovered,

{K1,K2} = J0/c
2 → s

c2
= κ.
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The angular momentum is in turn

J0 = ~x× ~p+ s+
s

m2c2
~p 2 → ~x× ~p+

θ

2
~p 2 = j.

whereas the divergent term s = κc2 has to be removed by hand.
It is worth mentioning that the “Jackiw–Nair limit” of a relativistic particle with torsion [42]

provides us with the L.S.Z. model [19], and a similar procedure yields the so-called “Newton–
Hooke” system [43]. Applied to the infinite-component Majorana-type anyon equations [17, 18]
yields, furthermore, a first-order infinite-component “Lévy-Leblond type” system with exotic
Galilean symmetry [20].

About anyons constructed from orbits, see also [44].

7 Anomalous coupling of anyons

It has been suggested [45] that a classical, relativistic anyon in an electromagnetic field should
be described by the equations

m
dxα

dτ
= pα (velocity-momentum),

dpα

dτ
=

e

m
Fαβpβ (Lorentz equation), (7.1)

α, β, . . . = 0, 1, 2 and τ denotes the proper time. These equations are Hamiltonian, with sym-
plectic form and Hamilton’s function

Ω = Ωrel +
1
2
eFαβdx

α ∧ dxβ,

H = Hrel +
es

2m
√
p2
εαβγF

αβpγ , (7.2)

respectively. Let us observe that the second, non-minimal term in the Hamiltonian is dictated
by the required form of the velocity relation in (7.1).

The model of [45] has gyromagnetic ratio g = 2, and some theoreticians have long be-
lieved [45, 46] that this is indeed the “correct” g value of anyons. Experimental evidence shows,
however, that in the Fractional Quantum Hall Effect, for example, the measured value of g is
approximately zero [47]. Is it possible to construct an “anomalous” model with g 6= 2? The
answer is affirmative [48], as we now explain.

Planar spin has to satisfy the relation Sαβp
β = 0. The spin tensor has, therefore, the form

Sαβ =
s√
p2
εαβγp

γ .

Introducing the shorthand −FαβS
αβ = F · S, the Hamiltonian (7.2) is presented as

HCNP =
1

2m
(
p2 −M2c2

)
where M2 = m2 +

e

c2
F · S. (7.3)

Let us observe that the “mass” M depends here on spin-field coupling. Our clue for gene-
ralizing this model has been the formula put forward by Duval [49, 50]: let us posit, instead
of (7.3), the mass formula

M2 = m2 +
g

2
e

c2
F · S,
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where g is an arbitrary real constant. Then consistent equations of motion are obtained for
any g, namely

D
dxα

dτ
= G

pα

M
+ (g − 2)

es

4M2
εαβγFβγ , (7.4)

dpα

dτ
=

e

m
Fαβpβ, (7.5)

where the coefficients denote the complicated, field-dependent expressions

D = 1 +
eF · S
2M2c2

, G = 1 +
g

2
eF · S
2M2c2

.

Choosing g = 2, the generalized model plainly reduces to equation (7.1), proposed in [45]. We
stress, however, that no physical principle requires that the second, “anomalous” term should
vanish in (7.4). g = 2 is not a physical necessity therefore: a perfectly consistent model is
obtained for any g, as it has been advocated a long time ago [49, 50].

Non-relativistic anyon with anomalous coupling. We can now consider the “Jackiw–
Nair” non-relativistic limit of the above relativistic model. This provides us, for any g, with the
Lorentz equation (7.5), supplemented with

(MgD)ẋi = Gpi −
(
1− g

2

)
eMgθεijEj ,

where

Mg = m(
√

1− gθeB), D =
(
1− (g + 1)θeB

)
, G =

(
1− (3g/2))θeB

)
.

• It is a most important fact that, for any g 6= 2, the only consistent motions follow a gene-
ralized Hall law, whenever the field takes either of the critical values

B =
1

1 + g

1
eθ

or
2
3g

1
eθ
.

One can indeed show that, for any g 6= 2, the models can be transformed into each other by
a suitable redefinition. For g = 0 the equations become identically satisfied. See [48] for details.
• In particular, for g = 0 the minimal exotic model of [9] is recovered. The latter is, hence, not

the NR limit of the model of [45] (7.1) [which has g = 2, as said]. The experimental evidence [47]
is, hence, a strong argument in favor of the minimal model of [9].
• g = 2 is the only case when the velocity and the momentum are parallel. This is, however,

not required by any first principle.
Having an anomalous velocity relation seems to be unusual in high-energy physics; it is,

however, a well accepted requirement in condensed matter physics, as explained in Section 11.
Let us mention that relativistic anyons can be described, at the field theoretical level, by

infinite-component fields of the Majorana–Dirac type [18]. Coupling them to an external gauge
field is a major unsolved problem. Partial results can be obtained in the non-relativistic case [51].

8 Two ways of introducing electromagnetic interactions

In this section we will show that Souriau’s coupling prescription (2.2) is not the only possibility
to introduce electromagnetic (e.m.) interaction into the Lagrangian Lext (3.7).

In the commutative case we have the principle of minimal e.m. coupling

piẊi −
p2

i

2m
→ (pi + eAi( ~X, t))Ẋi −

p2
i

2m
+ eA0( ~X, t),
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called the minimal additon rule, which is equivalent, due to the point transformation pi →
pi − eAi, to the minimal substitution rule [52],

piẊi −
p2

i

2m
→ piẊi −

(pi − eAi)2

2m
+ eA0( ~X, t).

In the noncommutative case the equivalence of minimal addition and minimal substitution rule
is not valid. Therefore we have to consider two different ways of introducing the minimal e.m.
coupling:

Minimal addition (Duval–Horvathy [9], called DH-model)

L → Le.m. = L+ e(AiẊi +A0), (8.1)

which, as usual, is quasi-invariant w.r.t. standard gauge transformations

Aµ( ~X, t) → Aµ( ~X, t) + ∂µΛ( ~X, t).

Obviously the minimal addition rule (8.1) is equivalent to Souriau’s prescription (2.2).
Minimal substitution (Lukierski–Stichel–Zakrzewski [52], called L.S.Z. model)4

H =
p2

i

2m
→ He.m. =

(pi − eÂi)2

2m
− eÂ0.

The corresponding Lagrangian is quasi-invariant w.r.t. generalized gauge transformations, given
in infinitesimal form by

δÂµ( ~X, t) = Â′
µ( ~X + δ ~X, t)− Âµ( ~X, t) = ∂µΛ( ~X, t),

with

δXi = −eθεij∂jΛ (8.2)

and supplemented by

δpi = e∂iΛ.

Note that the coordinate transformations (8.2) are area preserving.
It turns out that both models are related to each other by a noncanonical transformation of

phase space variables supplemented by a classical Seiberg–Witten transformation of the corre-
sponding gauge potentials:

If we denote the phase space variables and potentials for

– the DH-model by (~η, ~P, Aµ),

– the L.S.Z.-model by ( ~X, ~p, Âµ),

then we find the relations

ηi( ~X, t) = Xi + eθεijÂj( ~X, t),

Pi = pi − eÂi( ~X, t)

with the corresponding field strengths related by

F̂µν( ~X, t) =
Fµν(~η, t)

1− eθB(~η, t)
. (8.3)

4 In this model the gauge fields carry a “hat” in order to distinguish them from the corresponding quantities
in the DH-model.
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The Seiberg–Witten transformation between the resp. gauge fields is more involved, and will
not be reproduced here (for details cp. [52]).

These results lead to an interesting by-product: Consider the PBs of coordinates in both
models, given by

{ηi, ηj} =
θ εij

1− eθB(~η, t)
and {Xi, Xj} = θ εij . (8.4)

Then the foregoing results implicitly give the coordinate transformation between a model with
a constant noncommutativity parameter m2θ and one with arbitrary coordinate-dependent non-
commutativity function m2θ( ~X, t) (this result has been rediscovered in [53]).

Now the question arises, which of both models has to be used for physical applications? Let
us look at one example, the Quantum Hall effect. As already shown in Section 2 in the case of
the DH-model [9] the Hall law,

Ẋi = εij
Ej

B
, (8.5)

is valid at the critical magnetic field

Bcrit =
(
eθ

)−1
.

Then it follows from the field transformation law (8.3) that, for the L.S.Z.-model, the Hall law is
valid in the limit of large e.m. fields. In order to see this in more detail we have to consider the
equations of motion for the L.S.Z.-model formulated in terms of the gauge-invariant phase space
variables ~η and ~P. For that, we use the equations of motion (2.3) for the DH model written in
terms of ηi and Pi, transform the e.m. fields according to (8.3) and we obtain (e = 1, m = 1)

η̇i = (1 + θB̂)Pi − θεijÊj ,

Ṗi = B̂εijPj + Êi. (8.6)

For the particular case of homogeneous e.m. fields we obtain finally

η̈i = B̂εij η̇j + Êi (8.7)

leading to the Hall law (8.5) in the high field limit.
Note that (8.7) has the same functional form as in the commutative case.
Another point of view is presented in [54].

9 Supersymmetry

In the following, we supersymmetrize the e.m. coupling models treated in the last section. To do
that we follow the treatment in Section 3 of [55]. For that, we consider standard N = 2 SUSY
characterized by

H =
i

2
{Q, Q̄} (9.1)

and

{Q,Q} = {Q̄, Q̄} = 0. (9.2)

In order to construct the supercharge Q, satisfying (9.1), we start with the common structure
of the bosonic Hamiltonian Hb for both models (e = 1, m = 1)

Hb =
1
2
(
P2

i +W 2
i ( ~X)

)
(9.3)
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with

Pi = pi for the DH-model

and

Pi = pi −Ai for the L.S.Z.-model.

Note that, in accordance with the quantized form of (9.1), the potential term in (9.3) is chosen
to be positive

A0 = −1
2
W 2

i . (9.4)

In order to add to (9.3) its fermionic superpartner, we supplement the bosonic phase space
variables with fermionic coordinates ψi(ψ̄i) satisfying canonical PBs

{ψi, ψ̄j} = −iδij .

Now we assume

Q = i(Pi + iWi)ψi

such that (9.3) is valid. But now the relations (9.2) are fulfilled only if the following two
conditions are satisfied:

{Pi,Pj} = {Wi,Wj} (9.5)

and

{Pi,Wj} = {Pj ,Wi}. (9.6)

It can be shown that (9.6) is satisfied automatically in both models, whereas (9.5) fixes the
magnetic field in terms of Wi (same form for both models):

B =
θ

2
εijεk`∂kWi∂`Wj . (9.7)

The connection between B-field (9.7) and electric potential A0 (9.4) takes a simple form in the
case of rotational invariance. From

Wi( ~X) = ∂iW (r)

we obtain

A0(r) = −1
2
(W ′(r))2

and

B(r) = −θ
r
A′

0(r).

As an example, consider the harmonic oscillator. Then

A0 = −ω
2

2
r2

and we obtain a homogeneous B-field of strength

B = θω2.

The supersymmetric extension of the DH model, and of anyons, have also been studied in [56]
and in [57], respectively.
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10 Galilean symmetry in Moyal field theory

As we mentioned already, the physical explanation of the Fractional Quantum Hall Effect
(FQHE) relies on the dynamics of quasiparticles which carry both an electric and a magnetic
charge [33]. In the field theory context, these quasiparticles arise as charged vortex solutions
of the coupled field equations. The phenomenologically preferred theory of Zhang et al. [58] is
Galilei invariant; the Galilean boost commute for these models, though. Does there exist a field
theoretical model with “exotic” Galilean symmetry? The answer is yes, if we consider Moyal
field theory [14, 59]. Here one considers the usually-looking Lagrangian

L = iψ̄Dtψ −
1
2

∣∣ ~Dψ∣∣2 + κ

(
1
2
εij∂tAiAj +AtB

)
but where the covariant derivative and the field strength,

Dµψ = ∂µψ − ieAµ ? ψ,

Fµν = ∂µAν − ∂νAµ − ie
(
Aµ ? Aν −Aν ? Aµ

)
,

respectively, involve the Moyal “star” product, associated with the parameter θ,

(
f ? g

)
(x1, x2) = exp

(
i
θ

2
(
∂x1∂y2 − ∂x2∂y1

))
f(x1, x2)g(y1, y2)

∣∣∣
~x=~y

.

Here the matter field ψ is in the fundamental representation of the gauge group U(1)∗ i.e.,
Aµ acts from the left. The associated field equations look formally as in the commutative case,

iDtψ +
1
2
~D2ψ = 0,

κEi − eεikj
l
k = 0,

κB + eρl = 0, (10.1)

where B = εijFij , Ei = Fi0. Note, however, that ρl and ~j l denote here the left density and left
current, respectively,

ρl = ψ ? ψ̄, ~j l =
1
2i

(
~Dψ ? ψ̄ − ψ ? ( ~Dψ)

)
.

These theories admit static, finite-energy vortex solutions [59] which generalize those found
before in ordinary CS theory [58, 60].

Are these theories Galilean invariant? At first sight, the answer seems to be negative, and it
has been indeed a widely shared view that Moyal field theory is inconsistent with Galilean sym-
metry. The situation is more subtle, however. The conventional infinitesimal implementation
of a Galilean boost,

δ0B = −t~b · ~∇B but δ0ρl = −θ
2
~b× ~∇ρl −~b · ~∇ρl.

is indeed broken, as the Gauss constraint (10.1) is not preserved. Galilean symmetry can be
restored taking into account the Moyal structure [21], namely considering the antifundamental
representation

δrψ = ψ ? (i~b · ~x)− t~b · ~∇ψ = (i~b · ~x)ψ +
θ

2
~b× ~∇ψ − t~b · ~∇ψ.
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Observing that

δrψ = δ0ψ +
θ

2
~b× ~∇ψ

we find that the θ-terms cancel in δrρl, leaving us with the homogeneous transformation law

δrρl = −t~b · ~∇ρl.

Putting δrAµ = δ0Aµ, so that δrB = δ0B, the Gauss constraint (10.1) is right-invariant, as
are all the remaining equations. The associated boost generator, calculated using the Noether
theorem, reads

~Kr = t ~P −
∫
~xρrd2~x, (10.2)

where

Pi =
∫

1
2i

(
ψ̄∂iψ − (∂iψ)ψ

)
d2~x− κ

2

∫
εjkAk∂iAjd

2~x

is the conserved momentum. The conservation of (10.2) can also be checked directly, using the
continuity equation satisfied by the right density, ρr = ψ̄ ? ψ. At last, the boost components
have the exotic commutation relation{

Ki,Kj

}
= εijk, k ≡ −θ

∫
|ψ|2d2x.

Let us note, in conclusion, that Galilean symmetry as established here makes it possible to
produce moving vortices by boosting the static solutions constructed in [59], see [61].

11 Noncommutativity in 3 dimensions:
the semiclassical Bloch electron

11.1 The semiclassical model

Around the same time and with no relation to the above developments, a very similar theory
has arisen in condensed matter physics. For instance, applying a Berry-phase argument to
a Bloch electron in a lattice, the standard semiclassical equations [62] are modified by new
terms [22], generating purely quantum effects on the mean values of the electron’s position and
quasi-momentum ~r and ~p, respectively, which add to the force due to the momentum gradient of
the energy band dispersion relation εn(~p) and to the external (for instance, Lorentz) forces. The
semiclassical approach allows several applications and generalizations, both from the physical
[22, 23, 24, 25, 13], and the mathematical [29, 63, 64, 65] side.

The clue is that the semiclassical model fits perfectly into Souriau’s general framework [3]
presented above. One starts with a “microscopic” Hamiltonian operator Ĥ

[
~̂r, ~̂p, f(~̂r, t)

]
for

a particle (electron) for a periodic potential, which is adiabatically (in space-time) modified by
a perturbation f (possibly an external field). The position/momentum operators ~̂r and ~̂p satisfy
the Heisenberg algebra, as usual. Moreover, for any constant f , the Hamiltonian Ĥ reduces to
the usual one for a periodic crystal lattice.

The adiabatic features of the perturbation f are expressed by the inequalities llatt � lwp �
lmod, among the lattice constant length llatt, the wave-packet dispersion length lwp and the
modulation wave-length lmod. Furthermore, the characteristic time scale ~/∆Egap must be
much smaller than the typical time-scale of variations of f .
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The first order truncation of the Hamiltonian around the instantaneous mean position ~rc,

Ĥ
[
~̂r, ~̂p, f(~̂r, t)

]
= Ĥ(~rc,t) + Ŵ(~rc,t),

Ŵ(~rc,t) =
1
2
[
∂f Ĥ∇~rcf(~rc, t) · (~̂r − ~rc) + h.c.

]
,

defines a quasi-static Hamiltonian Ĥ(~rc,t), depending on the “slow” parameters c = (~rc, t). Ĥ(~rc,t)

is periodic under ~a – translations, and its eigenstates are Bloch the waves. The latter are defined,
for any fixed time t and ~rc, by

Ĥ(~rc,t)|ψ
n,~q
(~rc,t)〉 = En,~q

(~rc,t)|ψ
n,~q
(~rc,t)〉, 〈ψn,~q

(~rc,t)|ψ
n′,~q ′

(~rc,t)〉 = δn,n′δ
(
~q − ~q ′) ,

〈~r|ψn,~q
(~rc,t)〉 = ei~q·~run,~q

(~rc,t) (~r) , un,~q
(~rc,t) (~r + ~a) = un,~q

(~rc,t) (~r) ,

where the energy eigenvalues En,~q
(~rc,t) are labeled by the band index, n, and by the quasi-

momentum ~q, restricted to the first Brillouin zone (IBZ). We assume that the time evolution
of ~rc closely follows the one obtained by the exact integration of the Schrödinger equation and
that the eigenvalues En,~q

(~rc,t) form well separated bands, and that band jumping is forbidden. The
label n will be dropped in what follows.

A classical result by Karplus and Luttinger [66] says that

〈ψ~q
(~rc,t)| ~̂r |ψ

~q′

(~rc,t)〉 =
[
i∇~q + 〈u~q

(~rc,t) (~r) |i∇~q u
~q
(~rc,t) (~r)〉cell

]
δ
(
~q ′ − ~q

)
. (11.1)

That is, the momentum representation of ~̂r is

~̂r = i∇~q + ~A (~rc, ~q, t) , ~A = 〈u~q
(~rc,t)|i∇~q u

~q
(~rc,t)〉cell,

where 〈·|·〉cell is the restriction of the scalar product to the unit cell with periodic boundary
conditions, and with normalization factor (2π)3 /Vcell. Then the quantity ~A (~rc, ~q, t) is inter-
preted as a U(1) Berry connection, whose curvature appears in the commutation relations for
the position operator components,

[r̂j , r̂l] = i εjl ∂qjA l(~rc, ~q, t) = Θjl (~rc, ~q, t) , (11.2)

which converts the dynamics of an ordinary particle in a periodic background potential into
a quantum mechanical system in a non-commutative configuration space [14]. The antisymmetric
tensor Θ = (Θij) generalizes in fact the scalar parameter θ of the planar non-commutative theory.

Its effects cannot be disregarded for the semiclassical motion of a wave-packet

|Ψ̃ [~rc (t) , ~qc (t)]〉 =
∫

IBZ
Φ (~q, t) |ψ~q

(~rc,t)〉 d~q,

built by superimposing one-band Bloch waves with a normalized amplitude Φ (~q, t). In fact,
under the assumptions of small momentum dispersion, ∆q � 2π/llatt, it can be proved that the
mean packet-position is

~rc (t) = 〈Ψ̃| ~̂r |Ψ̃〉 ≈ −∇~qc arg [Φ (~qc, t)] + ~A (~rc, ~qc, t),

where the mean quasi-momentum,

~qc (t) =
∫

IBZ

~q |Φ (~q, t) |2 d ~q, (11.3)
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has been introduced. Then, the semiclassical description of the wave-packet is reduced to that
of a particle – like system in the (~rc, ~qc) “phase space”, the dynamics of which is obtained by
minimizing the Schrödinger field action

S =
∫ t2

t1

{
i

2
〈Ψ|dΨ

dt 〉 − 〈
dΨ
dt |Ψ〉

〈Ψ|Ψ〉
− 〈Ψ|Ĥ|Ψ〉

〈Ψ|Ψ〉

}
dt,

where (~rc (t) , ~qc (t)) parametrize the wave-function [67]. This leads to an “approximate La-
grangian” for a point-like classical particle of the form (4.1), namely to

Lapp = ~̇rc ·
(
~qc +

−→
R (~rc, ~qc, t)

)
+ ~̇qc · ~A (~rc, ~qc, t) + T (~rc, ~qc, t)

− E (~rc, ~qc, t)−∆E (~rc, ~qc, t) , (11.4)

where

T (~rc, ~qc, t) = 〈u~qc

(~rc,t)|i∂t u
~qc

(~rc,t)〉cell,
−→
R (~rc, ~qc, t) = 〈u~qc

(~rc,t)|i∇~rc u
~qc

(~rc,t)〉cell,

E = 〈Ψ̃|Ĥ(~rc,t)|Ψ̃〉, ∆E = 〈Ψ̃|Ŵ(~rc,t)|Ψ̃〉.

Together with ~A, the scalar T and the vector field
−→
R provide us with the complete Berry

connection on the entire “environmental parameter space” (~rc, ~qc, t). The quantity E expresses
the potential energy felt by the wave packet in the periodic environment and ∆E comes from
the adiabatic perturbations.

For slowly changing electromagnetic potentials
(
~A (~r, t) , Vel (~r, t)

)
, the rather involved ex-

pressions above take an elegant form [22], – but the Bloch eigenfunctions get a gauge-dependent
phase modification ≈ e ~A(~rc, t) · ~r. In fact, a change of phase has no influence on the Berry
connection because of (11.1), so one can introduce the gauge invariant kinetic momentum

~kc = ~qc − e ~A(~rc, t)

and set again

~A (~rc, ~qc, t) = ~A (~kc),
−→
R ' −e∇~rc

(
~A (~rc, t) · ~r

)∣∣∣
~r=~rc

, T ' −e ∂t
~A (~rc, t) · ~rc,

E = E0(~kc) + e Vel(~rc, t), ∆E = − ~M(~kc, t) · ~B(~rc, t),

where

~M(~kc, t) = − e

2m
〈Ψ̃|~̂L|Ψ̃〉

is the mean magnetic moment of the wave-packet. ~B(~rc, t) and ~E(~rc, t) are defined as usual
from the mean values of the potentials. Dropping the label c, and putting

Θi = 1
2
εijkΘjk,

the generalized semiclassical equations of motion are

~̇r = ∇~k

[
E0(~k)− ~M(~k, t) · ~B(~r, t)

]
− ~̇k × ~Θ(~k),

~̇k = −e
(
~̇r × ~B(~r, t) + ~E(~r, t)

)
+∇~r

(
~M(~k, t) · ~B(~r, t)

)
, (11.5)
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further confirming the idea of the non-commutativity parameter, now a function of momentum-
space variables, is in fact a Berry phase effect.

Notice, here that the semiclassical procedure has consistently “averaged” on the gauge degrees
of freedom at local scales of order ∼ lwp, but the final model still possesses the same gauge
invariant character as a point-like particle interacting with an external e.m. field.

Then, for the electronic wave-packet semiclassically described by (11.5), one can adapt the
symplectic techniques described in the previous sections and it can be used for a Hamiltonian
formulation.

11.2 Hamiltonian structure

Comparing the system (11.5) with the previous ones in (2.3) or (8.6), one recognizes a general
common structure. The nice group-geometrical symmetry properties of the 2D Galilei group,
which partially motivated the present research, are broken in general. However, the unifying
framework for such differential systems is provided by the same ideology adopted in Sections 2
and 6, i.e. writing them as the kernel of a postulated anti-symmetric, closed, constant-rank
Lagrange–Souriau 2-form σ of the form

σ = [(1−Qi) dqi − eEidt] ∧ (dri − gidt)

+
1
2
eεijkBkdri ∧ drj +

1
2
εijkΘkdqi ∧ dqj +Q0εijdri ∧ dqj , (11.6)

where the Souriau’s prescription to explicitly include the electromagnetic contributions has been
used. The vector fields ~g, ~Θ, ~Q and the scalar functions Q0 may depend on all independent
variables (~r, ~q, t). Notice that (11.6) only contains “forces”, i.e. gauge invariant quantities.
Moreover, the so called “Maxwell principle” [3], i.e. the closure relation dσ = 0, implies a set
of integrability conditions for functions involved, which reduce to the usual Maxwell equations
for

(
~E, ~B

)
, when the new extra fields are set to constants. Even in this case, and in 2 space

dimensions, the resulting equations are non-trivial, coinciding for instance with (2.3) after the
identifications ri → xi, gi → qi/m, θ3 → θ and Qi ≡ 0.

We note (like in Section 2) that a model defined by the 2-form (11.6) may not possess a
globally defined configuration space Lagrangian. This makes the value of the semiclassical
Lagrangian (11.4) questionable. If it is assumed valid at least locally, the physical meaning of
the coefficients appearing in (11.6) can be deduced, via exterior derivative, from the Cartan
1-form

λ =
(
~q +

−→
R

)
· d~r + ~A · d~q + (T − E −∆E) dt.

Thus, the most general equations of motion deriving from (11.4) (or equivalently from (11.6))
are

(1 + Ξ) ~̇r + Θ~̇q = ∇~q [E + ∆E − T ] + ∂t
~A,

X~̇r + (1 + Ξ) ~̇q = −∇~r [E + ∆E − T ]− ∂t
~R, (11.7)

where the antisymmetric matrices Ξ = (Ξij) and X = (Xij) have elements

Ξij = ∂riAj − ∂qjRi, Xij = ∂riRj − ∂rjRi. (11.8)

The dynamical system (11.7) is defined on the tangent manifold of the configuration space,
endowed with generalized coordinates ~ξ = (~r, ~q). But, when ∂t

~A = ∂t
~R ≡ 0, the rearrangement

σ = ω − dH ∧ dt of the terms in (11.6) is possible, introducing the symplectic 2-form

ω = (δi,j + Ξij) dri ∧ dqj +
1
2

[Xijdqi ∧ dqj −Θijdri ∧ drj ]

and the Hamiltonian function H = E + ∆E − T .
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Actually, the closure of σ implies that, dω = 0, for ω. Equivalently, the set of differential
constraints

εijk∂qiΘjk = 0, εijk∂riXjk = 0,
∂qjΞij = −∂rjΘij , ∂rjΞij = ∂qjXij , (11.9)
(1− δhk) εkij∂qk

Ξij = εhij∂rh
Θij , (1− δhk) εkij∂rk

Ξij = −εhij∂qh
Xij ,

which, however, are automatically satisfied, because of the antisymmetry and the differentiabi-
lity properties of the tensors Θ, Ξ and X defined in (11.2) and (11.8). Thus, for non degenerate
ω = ωαβdξα ∧ dξβ, Poisson brackets,

{f, g} = ωαβ∂αf∂βg

can be defined for any pair of functions f(~ξ) and g(~ξ), where ωαγωγβ = δα
β is the inverse

of the symplectic matrix [3, 68]. Thus, the equations (11.7) take the usual Hamiltonian form
ξ̇α = {ξα,H}. In the present case (ωαβ) is a real symplectic 6×6 matrix, which is non degenerate
when √

det (ωαβ) = 1− 1
2
Tr

(
Ξ2 + X (1 + 2Ξ)Θ

)
6= 0.

Such a factor generalizes the denominators present in the Poisson brackets (2.5), (4.3) or (8.4).
Moreover, it crucially appears in the expression of the invariant phase-space volume, ensuring
the validity of the Liouville theorem [69, 64].

As special example, we deal with only momentum (gauge invariant) dependent Berry curva-
ture ~Θ(~q) which is to be divergence-free according to the first equation in (11.9). That condition
can be satisfied, except in one point, e.g., by a monopole in ~q-space,

~Θ = g
~q

q3
, (11.10)

which is indeed the only possibility consistent with the spherical symmetry and the canonical re-
lations {xi, qj} = δij [65]. The expression (11.10) appears to be consistent, at least qualitatively,
with the data reported in [23] and in Spin Hall Effects [24].

In absence of a magnetic field and taking, for simplicity, the energy band εn(~q) to be parabolic,
the equations (11.5) for become

~̇r = ~q +
eg

q3
~E × ~q, ~̇q = −e ~E.

The anomalous term shifts the velocity and deviates, hence, the particle’s trajectory perpendi-
cularly to the electric field, just like in the anomalous Hall effect, see [23].

A similar pattern arises in optics [25, 26, 27, 28]: to first order in the gradient of the refractive
index n, spinning light is approximately described by the equations

~̇r ≈ ~p− s

ω
grad

(
1
n

)
× ~p, ~̇p ≈ −n3ω2grad

(
1
n

)
,

where s denotes the photon’s spin. In the first relation we recognize, once again, an anomalous
velocity relation of the type (11.5). The new term makes the light’s trajectory deviate from
that predicted in ordinary geometrical optics, giving rise to the “optical Magnus effect” [25].
A manifestation of this is the displacement of the light ray perpendicularly to the plane of
incidence at the interface of two media with different refraction index: this is the “Optical Hall
Effect” [26, 27, 28].
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Another nice illustration is provided by the non-commutative Kepler problem [13]. Choosing
the non-commutative vector ~Θ in the vertical direction,

Θi = θδiz

the 3D problem reduces to the “exotic” model presented in Section 2. Then the authors of [13]
show that, for the Kepler potential V ∝ r−1 the perturbation due to non-commutativity induces
the precession of the perihelion point of planetary orbit.

As yet another example, we would like to mention the recent work [70], in which it is shown
that a particle with “monopole-type” noncommutativity (11.10) admits a conserved Runge–Lenz
vector, namely

~K = ~r × ~J − α
~q

q
,

provided the Hamiltonian is

H =
~r 2

2
+

g2

2q2
+
α

q
.

Note that ~q here is the momentum: the “monopole” is in “dual space”. Let us observe that this
expression is reminiscent of the Chern–Simons mechanics” [32] in that it has no mass term. The
associated the equations of motion read,

~̇r = −
(
g2

q4
+
α

q3

)
~q + g

~q × ~r
q3

, ~̇q = −~r.

The Kepler-type dynamical symmetry then allows one to show that the classical motions
follow (arcs of) oblique ellipses [70].
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Moscow, 1967.

[2] Simms D., Projective representations, symplectic manifolds and extensions of Lie algebras, Lectures given
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Horváthy P.A., The non-commutative Landau problem, Ann. Physics 299 (2002), 128–140, hep-th/0201007.

[10] Nair V.P., Polychronakos A.P., Quantum mechanics on the noncommutative plane and sphere, Phys. Lett. B
505 (2001), 267–274, hep-th/0011172.

[11] Sochichiu C., A note on noncommutative and false noncommutative spaces, Appl. Sciences 3 (2001), 48–51,
hep-th/0010149.
Bellucci S., Nersessian A., Sochichiu C., Two phases of the non-commutative quantum mechanics, Phys.
Lett. B 522 (2001), 345–349, hep-th/0106138.
Acatrinei C., Path integral formulation of noncommutative quantum mechanics, J. High Energy Phys. 2001
(2001), no. 9, 007, 7 pages, hep-th/0107078.
Gamboa J., Loewe M., Méndez F., Rojas J.C., Noncommutative quantum mechanics, Phys. Rev. D 64
(2001), 067901, 3 pages.
Banerjee R., A novel approach to noncommutativity in planar quantum mechanics, Modern Phys. Lett. A
17 (2002), 631–645, hep-th/0106280.

[12] Djemai A.E.F., Smail H., On quantum mechanics on noncommutative quantum phase space, Commun.
Theor. Phys. 41 (2004), 837–844, hep-th/0309006.
Banerjee R., Kumar K., Deformed relativistic and nonrelativistic symmetries on canonical noncommutative
spaces, Phys. Rev. D 75 (2007), 045008, 5 pages, hep-th/0604162.
Banerjee R., Deformed Schrödinger symmetry on noncommutative space, Eur. Phys. J. C 47 (2006), 541–
545, hep-th/0508224.
Papageorgiou G., Schroers B.J., A Chern–Simons approach to Galilean quantum gravity in 2+1 dimensions,
J. High Energy Phys. 2009 (2009), no. 11, 009, 40 pages, arXiv:0907.2880.
Scholtz F.G., Gouba L., Hafver A., Rohwer C.M., Formulation, interpretation and application of non-
commutative quantum mechanics, J. Phys. A: Math. Theor. 42 (2009), 175303, 13 pages, arXiv:0812.2803.
Gangopadhyay S., Scholtz F.G., Path integral action of a particle in the non commutative plane,
arXiv:0904.0379.
Baldiotti M.C., Gazeau J.P., Gitman D.M., Semiclassical and quantum description of motion on non-
commutative plane, Phys. Lett. A 373 (2009), 3937–3943, arXiv:0906.0388.
Gomes M., Kupriyanov V.G., Position-dependent noncommutativity in quantum mechanics, Phys. Rev. D
79 (2009), 125011, 6 pages, arXiv:0902.3252.

[13] Romero J.M., Santiago J.A., Vergara J.D., Newton’s second law in a non-commutative space, Phys. Lett. A
310 (2003), 9–12, hep-th/0211165.
Romero J.M., Vergara J.D., The Kepler problem and noncommutativity, Modern Phys. Lett. A 18 (2003),
1673–1680, hep-th/0303064.

[14] Szabo R.J., Quantum field theory on noncommutative spaces, Phys. Rep. 378 (2003), 207–299,
hep-th/0109162.

[15] Delduc F., Duret Q., Gieres F., Lefrancois M., Magnetic fields in noncommutative quantum mechanics,
J. Phys. Conf. Ser. 103 (2008), 012020, 26 pages, arXiv:0710.2239.

[16] Jackiw R., Nair V.P., Anyon spin and the exotic central extension of the planar Galilei group, Phys. Lett. B
480 (2000), 237–238, hep-th/0003130.
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[27] Duval C., Horváth Z., Horváthy P.A., Geometrical spinoptics and the optical Hall effect, J. Geom. Phys.
57 (2007), 925–941, math-ph/0509031.
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électromagnétique, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A1082–A1084.
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[57] Horváthy P.A., Plyushchay M.S., Valenzuela M., Bosonized supersymmetry of anyons and supersymmetric
exotic particle on the non-commutative plane, Nuclear Phys. B 768 (2007), 247–262, hep-th/0610317.

[58] Zhang S.C., Hansson T.H., Kivelson S., Effective-field-theory model for the fractional quantum Hall effect,
Phys. Rev. Lett. 62 (1989), 82–85.
Zhang S.C., The Chern–Simons–Landau–Ginzburg theory of the fractional quantum Hall effect, Internat.
J. Modern Phys. B 6 (1992), 25–58.

[59] Lozano G.S., Moreno E.F., Schaposnik F.A., Self-dual Chern–Simons solitons in non-commutative space,
J. High Energy Phys. 2001 (2001), no. 2, 036, 17 pages, hep-th/0012266.
Bak D., Kim S.K., Soh K.-S., Yee J.H., Noncommutative Chern–Simons solitons, Phys. Rev. D 64 (2001),
025018, 9 pages, hep-th/0102137.

[60] Jackiw R., Pi S.-Y., Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev.
Lett. 64 (1990), 2969–2972.
Jackiw R., Pi S.-Y., Classical and quantal nonrelativistic Chern–Simons theory, Phys. Rev. D 42 (1990),
3500–3513.
Jackiw R., Pi S.-Y., Self-dual Chern–Simons solitons, Prog. Theor. Phys. Suppl. (1992), no. 107, 1–40.
Dunne G., Self-dual Chern–Simons theories, Springer Lecture Notes in Physics, Vol. 36, Springer, New York,
1995.
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