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Abstract. We review an approach to non-commutative geometry, where models are con-
structed by quantisation of the coordinates. In particular we focus on the full DFR model
and its irreducible components; the (arbitrary) restriction to a particular irreducible compo-
nent is often referred to as the“canonical quantum spacetime”. The aim is to distinguish and
compare the approaches under various points of view, including motivations, prescriptions
for quantisation, the choice of mathematical objects and concepts, approaches to dynamics
and to covariance.
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1 Introduction

Within the class of models of quantum spacetime which are defined by imposing non trivial
commutation relations on the coordinates, there are quite different approaches on the market.
A list of differences should include at least

a) different aims and motivations,

b) different philosophies in the quantisation prescriptions,

c) different classes of algebras (as mathematical objects),

d) different approaches to dynamics and,

e) last but not least, different approaches to covariance.

Of course the above differences are not all independent.
In this review, some comments on the above issues will be made under a narrow perspective.

I will not attempt a thorough description of the immense literature, both for reasons of space
and lack of knowledge; I apologise in advance for any unforgivable omission. Very little of the
material and the comments presented is new, although some remarks only previously arose in
discussions.

The root of motivations for these investigations is shared by everybody in this field: the hope
that a full theory of quantum gravity could possibly emerge from completing the transition to
a full quantum “description of nature”, encompassing geometry as well. Another common key
remark is that the ultraviolet nightmare which plagues perturbative quantum field theory might
be a symptom that geometry is not classical in the small. Moreover, by a consistence argument,
sharp localisation should not be expected to be possible at all scales: indeed, at very small scales
it should lead to some instability of the geometric background, as localisation in sharp regions
might induce the formation of closed horizons. This comment is very old and took many shapes;
depending on the chosen shape, it leads to different approaches to the problem; we will discuss
it in Section 2. There, we also will shortly comment on Doubly Special Relativity, and show
that singly Special Relativity is already multiply special, at least in some models.

On a more detailed ground, the above comments have been interpreted in at least three
different contexts: string theory, quantum field theory, and quantum mechanics.

We will not discuss the string-theoretical aspects because I feel incompetent.
In quantum field theory, the quantisation of the localisation algebra should be interpreted

as the framework providing a non-commutative replacement for pointwise products of local free
fields in interaction terms; we will discuss this in Section 6.

The quantum mechanical approach, instead, involves a change in the commutation relations
for the momenta as well: while in a non-commutative algebra (with translation covariance)
momenta pairwise commute and generate the usual action of the classical translation group,
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in this approach1 momenta and coordinates with mixed commutation relations should ideally
replace the usual Schrödinger operators at small scales. We will not discuss this approach; indeed,
because of the extremely high energies expected to occur in processes at Planck scale, a Planck
scale modification of quantum mechanics does not seem to be a physically interesting limit.

The choice of the relevant algebraic structure and quantisation prescription is somewhat
critical, and is full of consequences on the technical and conceptual ground as well. The issue is
not at all a marginal technical one. For example, it is often said that to a great extent quantum
physics is a spectral theory. But if the relations

[xµ,xν ] = iθµνI,

instead of being understood as regular relations among selfadjoint operators on some Hilbert
space, are taken as the defining relations between a finite set of Hermitean generators of an
abstract ∗-algebra (which turns out not C∗), then every non trivial element in that algebra
(including the selfadjoint coordinates xµ) has the whole complex plane as its spectrum, and the
spectral theory is completely trivial. Moreover, the transition from the above relations to the
apparently equivalent notation

xµ ? xν − xν ? xµ = iθµν (1.1)

is far from innocent: if ? is understood as a twisted product of symbols, the above cannot
coexist with the so called Weyl quantisation: they are mutually exclusive. This will be discussed
in Section 3.

The importance of identifying the representations of the relations is made even more evident
when we consider for example time/space commutativity; we will see in Section 5.1 that there
is a variety of situations, including the possibility that no representation exists.

The full DFR model is described in some detail in Section 4, where an attempt is made to
make some concepts more accessible, notwithstanding the technical implications. The material
is organised so to easily discuss related concepts available in the literature.

In Section 5 we comment on some flavours of the “canonical” quantum spacetime. In particu-
lar the relations with twisted covariance are discussed in Section 5.4.

Section 6 is devoted to quantum field theory (QFT) on quantum spacetime (QST). We will
recall the approach based on the Gell-Mann–Low formula with a non local interaction, and focus
on the issue of time-ordering, and its relations with unitarity. We also shortly recall some basic
facts about the diagrams, with a disambiguation between the Filk rules and those arising from
the Dyson series. We finally will shortly comment on the availability of Euclidean methods, and
on the IR/UV mixing.

We will not conclude with an outlook, for which I refer instead to [1, 2].

2 Motivations

2.1 Planck length and probes

If spacetime is classical (e.g. the Minkowski spacetime), the non trivial Heisenberg space/mo-
mentum uncertainty relations

∆xj∆pj >
~
2

1These approaches are usually referred to as “non-commutative quantum field theory (NQFT)” and “non-
commutative quantum mechanics (NCQM)”. However, since by its very nature quantum physics is non commuta-
tive, “non-commutative quantum” contrasted with “quantum” alone is really an awful terminology, in my humble
opinion. Since words do matter, we shall dismiss it here.
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should be ideally complemented with the missing 4th component time/energy uncertainty rela-
tion

∆t∆E >
~
2

(all other uncertainty relations being trivial). Indeed in classical Hamiltonian mechanics, time
and energy are canonically conjugate variables.

Although there are no time and position observables in a relativistic theory, the above rela-
tions can be taken as an indication that the localisation process implies an energy transfer to
spacetime. The higher is the precision of localisation in time (small ∆t), the higher is the energy
transferred to the geometric background; if localisation is also confined

in a small space volume, (2.1)

then the energy density induced by localisation might produce a closed horizon (a black hole).
This would lead to a paradoxical situation, where the horizon would trap any information,
and we would face a localisation process with no output. Thus, in order to have a consistent
operational description of spacetime, geometry should be modified in the small so to prevent
“too sharp” localisation.

This remark is very old and it is probably fair to ascribe it to folklore. As far as I know, the
first who tried to give it a quantitative content was Mead in [3]2. From a quite general argument
based on the “Heisenberg microscope”, he deduced that, to avoid the above mentioned spacetime
instability, the size ∆r of probes should be bounded below by the Planck length

λP =
(

G~
c3

)1/2

' 1.6× 10−33 cm.

Reduced to its essence, Mead’s argument is based on the remark that if one considers a mass m
with its associated Compton wavelength λ(m) and Schwarzschild radius R(m), the condition
λ(m) ∼ R(m) is fulfilled for m ∼ mP , the Planck mass, and we find λ(mP ) ∼ R(mP ) ∼ λP .

Mead deduced from this the necessity of a minimal uncertainty of order of λP . While this
statement is somewhat questionable, certainly the basic argument provides a good motivation
for assuming that the Planck length is the relevant scale where gravitation and quantum physics
should meet.

Analogous conclusions were drawn by Amati, Ciafaloni and Veneziano, from a different per-
spective [5] and in the context of string theory; they found a relation of the form

∆r >
~

∆p
+ α′∆p, (2.2)

where α′ is a positive constant depending on Regge’s slope and the gravitation constant. For
positive x’s, ~/x + α′x takes its minimum value λ = 2

√
α′~ at x =

√
~/α′. Hence they found

again the lower estimate

∆r > λP ∼ 10−33 cm

for the size of an admissible probe.
The same relation (2.2) and the same conclusions were reobtained by Maggiore [6], with

a “model independent” argument quite close to that of Mead; probably Maggiore was not aware
of Mead’s analysis.

2Actually that paper was submitted in 1961, but underwent referee troubles; see the interesting letter of Mead
to Physics Today [4].
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2.2 Planck length and uncertainty relations

The argument of Mead and Maggiore is indeed model independent from the dynamical point
of view, but there is a hidden assumption [2], which also is present in [5]. Namely that the
uncertainties of the three space coordinates must be of the same order. Indeed, to derive (2.2)
the interaction of probes with spacetime is explicitly modeled (at least by Mead and Maggiore)
by means of a solution of the Einstein equations with spherical symmetry: the “∆(p)” showing
up in (2.2) is the total black hole momentum. Hence the only conclusion which is obtained in
those references is that

If we assume that spacetime only can be probed with spherically symmetric devices,
than there must be a minimal uncertainty.

But why should probes be spherical? Let us come back to the heuristic discussion at the
beginning of the section. All the point is hidden in (2.1). Indeed, if we assume that the
localisation region has spherical symmetry, then all the ∆xj ’s are equal to each other, and in
particular they all must be small in order to obtain a small volume. But a small volume can
also be obtained with some large ∆xj ; it only is necessary that

∏
j ∆xj is small. Hence, if we

dismiss the assumption of spherically symmetric probes, the argument of Mead for the necessity
of a minimal uncertainty for a length measurement is not compelling any more3. Indeed, this
remark was the starting point of the investigation of [7].

It is interesting to note that Maggiore was able to rederive the relation (2.2) from suitably
modified commutation relations between positions and momenta [8]. He found that the so called
κ-Poincaré commutation relations induce uncertainty relations such that

in a certain regime (2.3)

the relation (2.2) is fulfilled. However, the close (2.3) implies that those relations are not
always valid; they only are asymptotically valid under limiting conditions which imply spherical
symmetry. Maggiore then concluded, once again, that there must be a minimal uncertainty; but
if one looks instead at the unrestricted uncertainty relations, no absolute bounds can be deduced
for the values of a single coordinate.

Starting from a quantitative heuristic analysis (using quantum field theory) of the initial
remark of this section, Doplicher, Fredenhagen and Roberts wrote down operationally motivated
uncertainty relations:

∆x0(∆x1 + ∆x2 + ∆x3) > λ2
P ,

∆x1∆x2 + ∆x1∆x3 + ∆x2∆x3 > λ2
P .

Moreover, they found commutation relations inducing those uncertainty relations [7]. This led
them to formulate their model (DFR model); we shall discuss those relations in some detail, later
in this review. Let us anticipate however that no minimal length for a length measurement shows
up in that model: coordinates have purely continuous spectrum and nothing prevents sharp
localisation in some of the coordinates; it is only the precision in the simultaneous localisation
of all the coordinates which is bounded by uncertainty relations involving the Planck length as
a characteristic length of the model.

3The situation is much alike that of usual quantum mechanics (for a particle on the line, for simplicity). There
the Heisenberg uncertainty relations ∆P ∆Q > ~/2 do not imply that P , Q have discrete spectrum. On the
contrary, it is well known that the Schrödinger operators have purely continuous spectrum. The rectangular
Planck cells used in quantum statistical mechanics have no fixed shape; for all computations it is sufficient to
know their area ~/2.
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2.3 Spacetime regularisation

We may observe, as an additional motivation for spacetime quantisation, that relativistic quan-
tum field theory has defeated for almost a century every attempt to construct a non perturbative
model in physical (i.e. 4) dimensions: only free fields are known as exact models. Moreover,
the perturbative approach is plagued by severe divergences, called “ultraviolet” because they in-
volve the behaviour at small distances. Notwithstanding the general success of renormalisation
theory4 and the wonderful experimental validation of lower order renormalised contributions, no
exact perturbative limit theory is known in d = 4, which is not trivial (i.e. not free). It is rather
reasonable to conclude that some internal contradiction in the theory arises when we push local-
ity to the “infinitely small scale”. Hence an additional motivation for spacetime quantisation is
the hope for obtaining well defined interacting models, as a byproduct of the regularising effect
of the quantum texture of spacetime.

For the sake of completeness, we mention that the first model of quantum spacetime based
on non-commuting coordinates is due to Snyder [9]. This model was motivated precisely as
an attempt to mimic lattice regularisation of the perturbative terms in a covariant way. The
elegant idea was abandoned when the renormalisation program gave an effective solution to the
perturbative problem. Although Snyder was aware of the conceptual implications of spacetime
quantisation and of the possible follow-up of his research, he did not develop this line. Indeed,
from his point of view uncertainty relations were a possible source of nuisance, and he only com-
puted them to check that they would have not spoiled the consistency of the picture underlying
his framework (see especially the very last sentence of his paper).

2.4 The meaning of “minimal length”, and Doubly Special Relativity

The notation “∆xµ” deserves to be better specified. It is of course related with the precision
with which the position xµ can be known. It is however necessary to distinguish the concepts
of minimal length and minimal uncertainty.

If the position is described by a selfadjoint operator xµ under a quantum perspective, then
it is understood that the uncertainty of the position in a state ω is given by

∆xµ = ∆ω(xµ) =
√

ω((xµ − ω(xµ)I)2) =
√

ω(xµ2)− ω(xµ)2.

It is clear that, for any spectral value a of xµ, there is a state ω such that ω(xµ) = a with
arbitrarily small uncertainty5, whatever commutation relations the coordinates do fulfil. Hence
an absolute lower bound for the uncertainty of one coordinate is incompatible with the possibility
of describing the coordinates by means of operators.

For example, since Snyder’s model is defined in terms of selfadjoint coordinates, it is always
possible to sharply localise in one Snyder coordinate alone. There, however, interest is appointed
to the fact that the spectrum of each coordinate xµ is of the form λZ for some parameter λ. In
this model we may speak of a minimal length, defined as the minimal separation ∆xµ between
two possible values of the same coordinate (which plays the rôle of the precision of an instrument,
instead of its error); but this now means to attach a different meaning to the notation ∆xµ.
Anyhow, we see here a first example where the concept of minimal length has a meaning even
when all the coordinates can be separately sharply localised.

In general, relative bounds on the precision of joint localisation in two or more non commuting
coordinates arise, as a consequence of the commutation rules, by (variants of) the generalised

4A rather complicate recursive local covariant strategy for removing divergences from the perturbative series.
5If a is an eigenvalue with eigenvector |a〉, take ω(a) = 〈a| · |a〉/〈a|a〉; if a is in the continuous spectrum, replace

the generalised eigenket |a〉 with a sufficiently good finite length approximation.
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Heisenberg uncertainty theorem6. In the case of Snyder’s model, such uncertainty relations are
not known (Snyder never published the computations he made). In the case of the DFR model
such relations are known, and actually were the motivations for the investigation.

In the DFR model, though the coordinates are selfadjoint and have spectrum R, there also is
room for a minimal length. Indeed the “Euclidean square distance”7 operator is bounded below
by 2λ2

P . Note that the Euclidean length is not a Lorentz invariant, so that inequivalent observers
may fail to agree on states achieving the minimum. However, the minimal length (in the sense
above) is well defined and has the same value for every observer, and is thus a general property
of the model.

Above, we speak of Euclidean distance of a quantum event from a classical point, which has
no physical interpretation. However there is a more refined version of this comment, which shows
that there also is a minimal Euclidean distance between two independent quantum events [10].

It is often stated that the existence of a minimal8 length is incompatible with ordinary Lorentz
covariance, because of Lorentz–Fitzgerald contraction; and that, as a consequence, it is necessary
to “deform” covariance in some appropriate sense (e.g. in the sense of Quantum Groups). This
in turn is interpreted in the general phenomenological framework of “Doubly Special Relativity”
(DSR). We will not enter here in a description of DSR (see e.g. [11]). We only observe that the
DFR analysis provides a well defined model where

• the coordinates are described by non commuting coordinates, which are selfadjoint oper-
ators on some Hilbert space,

• there is a continuous unitary representation of the (usual, undeformed) Poincaré group on
the same Hilbert space,

• the above representation implements ordinary covariance of the coordinates (quantum
symmetry in the usual sense of Wigner), and

• there is a minimal length which is the same for all equivalent observers.

Hence Lorentz–Fitzgerald contraction is not at all incompatible with the presence of a minimal
length; the quest for DSR does not forces us in principle to deform covariance, though of course
deformed covariance might well be anyway interesting for other reasons.

In a sense, usual special relativity is already multiply special. To encompass n-ply special
relativity it is sufficient to find non commutative algebras with n universal parameters, equipped
with an undeformed action of the usual Poincaré group by automorphisms; there is plenty of
such examples (see e.g. [12]).

3 Which algebra?

In this section we will begin our disambiguation by discussing and comparing some necessary
mathematical tools and concepts. In particular we will show that defining the algebra of quan-
tum spacetime through Weyl quantisation, or as an algebra generated by finitely many elements
and relations, leads to profoundly different mathematical structures, and we will shortly discuss
the consequences of this.

Let us keep apart for the moment the issue of covariance, and consider relations of the form

[xµ,xν ] = iθµνI, (3.1)

where θµν is a non zero antisymmetric matrix with real entries. Assume moreover that the xµ

are selfadjoint.
6For any A = A∗, B = B∗ and state ω, ∆ω(A)∆ω(B) > 1

2
|ω([A,B])|.

7From the (classical) origin; but note that the model has translation covariance.
8The “smallness” of this length is not relevant here; we’d better call it a universal length.
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Let us show that a ∗-algebra Aθ with unit, which contains selfadjoint elements xµ fulfilling
the above relations, cannot be faithfully represented as an algebra of bounded operators.

To see this9, let µ̄, ν̄ be some fixed choice of the values of the dummy indices µ, ν, such
that θµ̄ν̄ 6= 0. If we rename P = xν̄ , Q = xµ̄, ~ = θµ̄ν̄ , we discover the well known Canonical
Commutation Relation (CCR)

[P ,Q] = −i~I

hidden in the spacetime commutation relations (as a purely mathematical fact, deprived of any
physical interpretation). It is well known from elementary quantum mechanics that the CCR
cannot be represented by means of bounded operators: at least one among position and momen-
tum must be unbounded. It follows that the algebra Aθ cannot have a faithful ∗-representation
by bounded operators on some Hilbert space (for, otherwise, there also would be a bounded
representation of the CCR). This applies in particular if Aθ is precisely the algebra generated
by the relations (3.1), as we shall assume from now on.

In other words, Aθ has no C∗-completions at all (technically: there is no pre-C∗-norm on Aθ).
Existence of C∗-completions is not a marginal technical detail for quantum physics. In

a generic ∗-algebra, all one can say about the spectrum of a selfadjoint element is that it is
invariant under complex conjugation; but it might well fail to be contained by the real axis.
Moreover, “functions” of elements in a generic ∗-algebra (even a Banach one) may be defined
to a limited extent. The C∗ property10 is the minimal requirement ensuring that spectra of
selfadjoints are real, and that there is a useful notion of functional calculus, mapping the spec-
tra in the natural way. These two properties, in turn, are indispensable for a sound physical
interpretation.

The existence of sufficiently many representations of (regular) commutation relations is a con-
ditio sine qua non for the existence of C∗-completions; whence comes the quantum motto

“No deformation without representation!”

A completely different approach to the construction of the spacetime algebra was proposed
much earlier in [7], in a more general setting. The idea is to follow the approach proposed by
Weyl (and adopted by von Neumann) in the case of quantum mechanics, where a canonical map
is defined, which sends functions into operators, and is called Weyl quantisation; the functions
in the domain of the quantisation are called “symbols”. By pulling back the operator product to
symbols, one obtains the ∗-algebra Eθ of “symbols”, equipped with a non-commutative product ?
which is a deformation of the usual pointwise product (e.g. in the sense of [14]); we will describe
it in more detail here below. It was shown in [7] that, for a large class of matrices θ, this ∗-algebra
may be faithfully represented as a ∗-algebra of bounded operators on some Hilbert space (= it
has a unique C∗-completion). Note however that, though this ∗-algebra is indirectly defined by
commutation relations among the coordinates, it does not contain the coordinates themselves!
The quantum coordinates xµ arise as the unbounded selfadjoint operators on the Hilbert space
which are canonically associated with the Weyl quantisation.

Hence, the ∗-algebras Aθ, Eθ are non-isomorphic in a very substantial way, which can not
be circumvented, and which leads to very different frameworks, both on the conceptual and
technical side.

As a remarkable example, note that in the algebra Aθ the Weyl quantisation is not available,
since there is no such object in Aθ as eikµxµ

; nor there is any natural notion of completion or
multipliers algebra of Aθ, where to give a meaning to the defining series of eikµxµ

. Even worse
is that the spectral theory is completely trivial in Aθ, as we shall soon see.

9For a nice purely C∗-algebraic argument not relying on von Neumann uniqueness, see [13, § 11]
10A C∗-algebra is a Banach ∗-algebra enjoying ‖a∗a‖ = ‖a‖2 for any of its elements a. A C∗-algebra admits

a unique C∗-norm, fully determined by the algebraic structure.
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In the remaining of this section we will describe more precisely the way in which the alge-
bras Eθ and Aθ are constructed, and we will make some of the above remarks more precise. We
also will comment in some detail on the most dangerous cowboy downtown, the Moyal expan-
sion. Since in the literature the same words and symbols are used in the two different contexts
for related concepts, we will be a little pedantic, in order to detect the sources of ambiguity.
Although references will be made to advanced mathematical concepts at some points, hopefully
the bulk material should appear reasonably accessible.

3.1 Weyl relations and quantisation

By the BCH formula, (3.1) formally implies the relations

eikµxµ
eihνxν

= e−
i
2
hµθµνkν ei(h+k)µxµ

. (3.2)

Contrary to (3.1), (3.2) is completely unambiguous if the xµ are understood to be selfadjoint
operators.

By a simple argument ([7]; see also Section 3.5) it is possible to show that, for a large class
of matrices θ, there exist unbounded selfadjoint operators xµ on a Hilbert space H, fulfilling
the above relations as relations between unitary operators. For a smaller, yet still large class of
matrices, the operators xµ are also unique (up to multiplicity and equivalence); we assume this
to be the case.

In [7] it also was proposed to adapt the Weyl quantisation prescription

f(x) =
∫

dk f̌(k)eikµxµ
, (3.3)

where

f̌(k) =
1

(2π)4

∫
dx f(x)e−ikµxµ

is the usual Fourier transform. The idea is to replace the plane waves with their quantised
counterparts. Note that f̄(x) = f(x)∗, where f̄ is the function obtained by pointwise complex
conjugation, and ∗ means adjoint (as an operator). In particular f(x) is selfadjoint if f is real.

Note that, in order that both integrals are well defined, we require that both f , f̌ are L1; such
functions are called symbols; in particular the coordinate functions xµ are not in the domain of
the quantisation.

Since the map f 7→ f(x) is injective, it is possible to define an associative product of symbols
by setting

(f ? g)(x) = f(x)g(x), (3.4)

where on the right hand side the operator product is taken. Standard computations using (3.2)
and antisymmetry of θ yield

f(x)g(x) = (f ? g)(x) = f̂×̃g(x), (3.5)

where

(f̌×̃ǧ)(k) =
∫

dh f̌(h)ǧ(k − h)e−
i
2
hµθµνkν . (3.6)

More explicitly,

(f ? g)(x) =
∫

dk eikµxµ

∫
dh f̌(h)ǧ(k − h)e−

i
2
hµθµνkν . (3.7)

The product ? is called the twisted product; ×̃ is the twisted convolution.
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The algebra Eθ of symbols equipped with the product ? and the involution f 7→ f̄ is a well
defined, associative ∗-algebra. Note that only the relations (3.2) were used to define it; at
this stage it is not necessary to know the precise form of the operators xµ. However, knowing
that they exist and are unique is sufficient to conclude that this ∗-algebra admits a unique
C∗-completion, which is found to be the C∗-algebra K of compact operators, see [7].

Note that the C∗-completion of Eθ is the same for all θ’s as above; hence the particular choice
of θ is visible only in the quantisation prescription (3.3), while the C∗-algebra is the same for
all choices.

Finally, observe that equation (1.1) is meaningless in this framework. For unbounded oper-
ators, even the operator product is a concept of little interest in general, because of problems
with domains (operator product is composition of maps). Hence the notation xµ ? xν can not
even be given a sound meaning as a product of operators. Only the Weyl relations (3.2) are
unambiguously meaningful; in this context (3.1) is always understood as a symbolic reminder of
the Weyl relations.

3.2 Moyal expansion

Let f , g be symbols such that f̌ , ǧ have compact support. Note that by the Paley–Wiener
theorem this implies that f , g are entire analytic functions of R4. It is important to keep in
mind that they also are symbols, thus L1; in particular, polynomials are ruled out.

We may now replace the exponential exp(−iθµνhµkν) by its series expansion; for the selected
subclass of symbols,

∫ ∑
=

∑∫
, and

(f̌ × ǧ) =
∞∑

n=0

(−i/2)n

n!

∫
dk (hµθµνkν)nf̌(k)ǧ(k).

By standard Fourier theory

(f ? g)(x) = ̂̌f × ǧ(x) =
∞∑

n=0

(i/2)n

n!
m ((θµν∂µ ⊗ ∂ν)nf ⊗ g) (x),

where m(f ⊗ g)(x) = f(x)g(x). As a shorthand of the above (Moyal) expansion, one writes

f ? g = m ◦ e
i
2
θµν∂µ⊗∂ν f ⊗ g,

which is unambiguously true for real analytic symbols.
The Moyal expansion is often said asymptotic. However this refers to the asymptotic be-

haviour of the truncated series when θ goes to zero; see [15]. There is an extensive literature
about extensions of the Moyal expansion to wider classes of functions than real-analytic symbols.
However, the underlying philosophy there – as far as I know – is to focus the attention on more
general, standalone non local products, without correspondingly enlarging the domain of the
quantisation. For this reason we will not discuss them in this review.

3.3 Algebraic relations

Usually the ∗-algebra generated by a finite set of elements with given commutation relations and
adjoints is defined as the free algebra generated by that set, divided by the equivalence relation
induced by the given commutation relations. However in our case there is a simpler way.

Consider the ring C[xµ] of polynomials in the variables x0, x1, x2, x3. With fg the usual
product of two polynomials f , g, define the map

m : f ⊗ g 7→ fg.
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The expression

Fθ = e
i
2
θµν∂µ⊗∂ν

gives a well defined linear operator on C[xµ]⊗C[xµ], since for any two polynomials f, g ∈ C[xµ],
only a finite number of terms in the sum

Fθf ⊗ g =
∞∑

n=0

(i/2)n

n!
(θµν∂µ ⊗ ∂ν)nf ⊗ g

is different from 0.
We now may set

f ? g = m ◦ Fθf ⊗ g.

One may directly check that the above defines an associative product of polynomials. Moreover,
due to the antisymmetry of θ, it is also involutive under the usual involution of polynomials
(complex conjugation of coefficients). The unital ∗-algebra Aθ obtained by equipping C[xµ] with
the usual involution and the product ? is generated by its elements xµ, which are selfadjoint
and fulfil

xµ ? xν − xν ? xµ = iθµν .

Since the algebra generated by a finite set of relations is unique (up to isomorphisms), here we
are.

Notations: xµ1 · · ·xµk is the product taken in C[xµ]; while xµ1?· · ·?xµk is taken inAθ. Note in
particular that, due to antisymmetry of θ, (xµ)n = (xµ)?n; moreover, xµ ?xν = xµxν +(i/2)θµν .

This algebra contains in particular the elements xν , and thus admits no C∗-completion, as
discussed in the first part of this section.

It is easily seen that the (maximal) degree of polynomials is additive under the deformed
product ? (the non-commutative corrections f ? g − fg being of lower degree). Hence, like in
C[xµ], no polynomial of non zero degree can be invertible in Aθ. It follows that any element on
nonzero degree has the whole complex plane as its spectrum (because resolvents never exist),
no matter whether it is selfadjoint, skewadjoint, or none of the two. Moreover, since the only
invertible elements are the multiples of the identity, the only unitary elements in Aθ are the
complex phases.

Note that in particular

specAθ
(xµ) = C,

which should raise some serious concerns about the physical interpretation of such coordinates
under a quantum perspective.

3.4 Dangers of the Moyal expansion

We see that we are facing a confusing situation. The same expression

m
(
e(i/2)θµν∂µ⊗∂ν f ⊗ g

)
can be used for pairs f , g of polynomials in Aθ or of functions in a dense sub algebra of Eθ

(not containing the polynomials); in both cases it gives the right product in the corresponding
algebra, which in both cases is denoted by ?. However the two algebras are dramatically non
isomorphic.
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One common misuse is to understand ? as a product in Aθ (for example, writing down (1.1)),
yet making use of the Weyl quantisation prescription, which only makes sense in Eθ. The two
are mutually excluding, as we have seen. Formal computations under such a mixed formalism
are somewhat out of control, since one may inadvertently switch from an algebra to the other,
and back; the result might depend on the way the computation is done.

Let us see another example of what happens if one does not specify where the symbols live:

“Let f , g be functions with disjoint supports, and consider their Moyal ?-product

f ? g = m
(
e(i/2)θµν∂µ⊗∂ν f ⊗ g

)
.

Since derivatives cannot enlarge the domains, at any order the product vanishes, and
f ? g = 0.”

In the best case, this statement is a trivial tautology (whatever of the two algebras we choose
to work with): if two real-analytic symbols or two polynomials have disjoint supports, at least
one of the two is zero, so that their product is evidently zero; which is certainly true, yet not so
thrilling.

If f , g are generic C∞ functions, the above statement is meaningless, since in general the
Moyal expansion does not converge and there is no f ? g at all. One solution is to understand
the Moyal product in the sense of formal power series in θ; in this direction, see e.g. [16], and
references therein (especially to work of Drinfel’d and Kontsevich). However, doing this one
misses something important from the point of view of nonlocality. Indeed, the integral form of
the twisted product in Eθ is intrinsically non local. On the contrary, the structure of the Moyal
expansion alone is unable to reproduce the non local character of the full product: for generic
functions, it is non-commutative but local (look at the supports) at any order11. Only when
applied to real analytic symbols is the Moyal expansion able to catch the full non local content
of the twisted product; for, in the analytic world (as in the stock exchange), local is global.

Finally, quite common a misuse is to formally use the Moyal expansion as a “product” of
functions on unspecified type, in the spirit of “existence in notation”. As it is easy to imagine,
this also is completely out of control. A spectacular example is the famous saga of (non existing)
“violations of unitarity”, which will be discussed in some detail in Section 6, and especially in
Section 6.4. We also will see that Filk diagrams and rules can be obtained in this way.

Let me conclude with a point of history. Weyl quantisation was suggested, in the framework
of canonical quantisation, by Hermann Weyl in his famous book [17]; everybody interested in
this field should find the time for reading those beautiful pages. Weyl also advocated the
usefulness of symbolic calculus; however, he did not write down the explicit formulas. The first
appearance of the deformed product is in the famous paper of von Neumann, on the uniqueness
of Schrödinger operators [18]. However, for technical reasons, he decided to work in Fourier
space, so that he only wrote down the twisted convolution product. Wigner found the solution
of the inverse problem (given the operator, find the corresponding symbol), while he was working
to his (unsuccessful) theory of negative probabilities applied to quantum physics. His follower
Moyal wrote down (the quantum mechanical version of) the tricky expansion we discussed in
Section 3.2. The correct integral formula for the twisted product in configuration space first
appeared in printed form in papers by Baker and Pool (see references of [15]). Finally, the
covariant version of the Weyl quantisation (in terms of the quantum coordinates of the spacetime,
instead of the Schrödinger coordinates of the phase space) and the corresponding Weyl calculus
was first suggested by Doplicher, Fredenhagen and Roberts [7].

11By the way, this also provides a proof that geometric quantisation is not equivalent to Weyl quantisation,
since the resulting algebras are deeply inequivalent.
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3.5 Existence of representations

We shortly recall the very simple, yet effective argument of [7] for the existence of the unbounded
operators associated to the quantisation; for more general choices of θ and for time/space com-
mutative models, see Section 5.1). Let Λ be a 4×4 matrix (not necessarily in the Lorentz group);
let moreover12

S = (Sµν) =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 .

Then define

X0 = P1, (3.8a)

X1 = P2, (3.8b)

X2 = Q1, (3.8c)

X3 = Q2, (3.8d)

where Pj = −i∂j and Qj = sj · are the usual Schrödinger operators on H = L2(R2, ds1ds2) for
the particle on the plane, fulfilling [Pj ,Qk] = −iδjkI strongly (this is a purely formal analogy,
with no physical interpretation). Then clearly the Weyl form of the relations

[Xµ,Xν ] = iSµνI

is fulfilled (as regular relations; see last paragraph of Section 3.1 at page 9). It follows that, for
any matrix Λ = (Λµ

ν) (not necessarily in the Lorentz group; but we use a covariant notation for
later convenience), the operators

xµ = Λµ
νX

ν

fulfil

[xµ,xν ] = iθµνI

in the Weyl form (3.2), where

θµν = Λµ
µ′Λ

ν
ν′S

µ′ν′ .

This gives at once the class of matrices θ for which the argument works, and existence of the
corresponding operators xµ.

Note also that if in addition Λ is invertible then, given the operators xµ, we may reconstruct
the Schrödinger operators Pj , Qj . Hence in this case we also know that there cannot be other
irreducible representations (up to equivalence), as a corollary of von Neumann uniqueness of
Schrödinger operators [18].

Translation covariant representations

For the special case of θ = S, let us see how to construct a translation covariant representa-
tion. The idea is to consider other two independent Schrödinger pairs P3, Q3, P4, Q4, so that
[Pj ,Qk] = iδjkI, j, k = 1, 2, 3, 4. Now take Xµ as in (3.8); moreover, take

Π0 = Q1 + Q3, (3.9a)

12The matrix S was denote σ0 in [7]. The change of notation is motivated by the fact that here we use repeated
sum over dummy indices instead of matrix notation.



14 G. Piacitelli

Π1 = Q2 + Q4, (3.9b)
Π2 = P3 − P1, (3.9c)
Π3 = P4 − P2, (3.9d)

and Πµ = gµνΠν . It is easy to check that

[Πµ,Πν ] = 0, [Πµ,Xν ] = −igµνI;

hence the Πµ’s are the pairwise commuting generators of spacetime translations (in this parti-
cular representation). Note that the localisation algebra has no dynamical content by itself, so
that these generators can not be interpreted as the “momenta” of some theory. A similar trick
works for every invertible θ, see [7]13.

4 Covariance and the DFR model

We now will describe the DFR model [7]. We will take a bottom-up strategy. Firstly, we will
try to cure the lack of covariance by a simple construction, and obtain a class of C∗-algebras
which are covariant under the action of the full Poincarè group. Then we will select a particular
algebra in this class (corresponding to a particular orbit of the antisymmetric tensors under the
action of the Lorentz group). Finally we will show that this algebra fulfils physically motivated
uncertainty relations.

This line of exposition does not make justice to the original paper, where the structure
was derived from very general assumptions and ansätze (top-down approach), instead of being
constructed by hand. However I hope that this will make easier, for a broad readership, to grasp
in a few pages some of the more delicate technical aspects. Moreover, the comparison with the
usual approach to the so called “canonical quantum spacetime” will be more transparent. The
price to pay is that some apparently arbitrary assumptions will have to find their motivations
only in the end.

In what follows, we will assume that θ is such that there exists a unique representation of
the Weyl relations (3.2). Moreover, we will keep separate the purely algebraic structure and the
choice of the length scale (or unit of measure) by setting

θµν = λ2σµν ,

where λ is a length and the entries of σ are pure numbers.
Correspondingly, we will write ?σ instead of ? for the product in Eσ; the symbol ? will be

reserved for a more general product. Hence, we may rewrite (3.7) as

(f ?σ g)(x) =
∫

dk eikµxµ

∫
dh f̌(h)ǧ(k − h)e−i λ2

2
hµσµνkν . (4.1)

4.1 “Be wise, covariantise”

For a given L = (Λ, a) in the Poincaré group P, let

f ′(x) = f(Λ−1(x− a)), g′(x) = g(Λ−1(x− a)),

(f ?σ g)′(x) = (f ?σ g)(Λ−1(x− a)).

Of course, the product ?σ is not covariant: in general, we have

f ′ ?σ g′ 6= (f ?σ g)′.

13There, the conjugate Hilbert space is used to get compact formulas; note that if (Jψ)(s) = ψ(s) is the usual
conjugation on L2(R, ds), then JPJ = −P .
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However (as one can easily imagine) a simple computation yields

(f ′ ?σ′ g′)(x) = (f ?σ g)′(x),

where

σ′
µν = Λµ

µ′Λ
ν
ν′σ

µ′ν′ .

This suggests a very simple way out. The idea is to turn the parameter σ into a variable. Let Σ
be a set of antisymmetric matrices which is stable under the action

Λ : σ 7→ σ′ = (Λµ
µ′Λ

ν
ν′σ

µ′ν′).

Then consider generalised symbols, namely functions of Σ× R4, and define the product

(f ? g)(σ;x) =
∫

dk eikµxµ

∫
dh f̌(σ;h)ǧ(σ; k − h)e−i λ2

2
hµσµνkν ,

where of course f̌ is the Fourier transform of f(σ; ·) for each σ fixed. In addition, set pointwise
complex conjugation as the involution:

f?(σ;x) = f(σ;x).

The above gives a well defined ∗-algebra, which we denote E(0).
If we define the action of L = (Λ, a) ∈ P, the Poincaré group, by

(γ(L)f)(σ′;x′) = det Λf(σ;x),

σ′
µν = Λµ

µ′Λ
ν
ν′σ

µ′ν′ , x′ = Λx + a,

then by construction we obtain covariance:

γ(L)(f ? g) = (γ(L)f) ? (γ(L)g).

In more technical language, for each L, γ(L) is a ∗-automorphism of E(0), and γ(L1)γ(L2) =
γ(L1L2); this situation is often described in the mathematical literature as γ providing an action
of P by automorphisms of E(0).

We still have to fix the class of functions, and the set Σ. Of course, for every σ fixed we have
to require that f(σ; ·) is an admissible symbol. As for Σ, the simplest choice is to pick a single
orbit in the space of antisymmetric matrices under the given action. For the moment this choice
only can be motivated by the quest for simplicity; but we will see that it corresponds to assume
that there is one only characteristic length driving the algebraic structure.

For the purpose of computations, the above is almost all one needs. However, since we put
emphasis on the importance of existence of C∗-completions (especially in order to have a non
trivial theory from the spectral point of view), let us give a hint about the underlying C∗

structure, and how to unveil it.
Giving a closer look at the way the product of generalised symbols is defined, we may see

that there is a natural bundle structure emerging: indeed, the product

(f ? g)(σ; ·) = f(σ; ·) ?σ g(σ; ·), σ ∈ Σ,

appears as a fibrewise product over the base space Σ. This suggest to take f as a continuous
function (vanishing at infinity) sending each σ ∈ Σ to an element of Eσ, namely a continuous
section of a bundle of algebras. At a first glance, it seems to be a non trivial bundle, since
each fibre is different; however we now can remember that every fibre is dense in the same
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C∗-completion, which is the algebra K of compact operators on the separable Hilbert space.
Hence we are naturally led to consider a trivial bundle of C∗-algebras, with base space Σ and
standard fibre K. It may be shown (see [7]) that actually

E = C0(Σ,K)

is the unique C∗-completion of the algebra E(0) of continuous sections (= generalised symbols).
Note that the action γ of the Poincaré group on the algebra of continuous sections maps each

fibre over σ onto the fibre over σ′ and extends by continuity to an action by automorphisms of
the full C∗-algebra E .

4.2 Representations

In this section, we describe how to construct the representations of the C∗-algebra E = C0(Σ,K),
using the Dirac notation; for a mathematically rigorous treatment, see the original paper.

Let us fix Σ to be the orbit containing the matrix S described at the end of Section 3. This is
not technically necessary at this point of the discussion, but it simplifies the notations, and we
will anyhow find that this choice is the correct one. We also fix the choice λ = λP , the Planck
length.

The reader should have clear in mind the idea underlying the construction described in
Section 3.5.

We consider the Hilbert space14

H = L2(L , dΛ)⊗ L2(R2, ds1ds2),

where dΛ is the Haar measure of the Lorentz group Λ. As usual, we associate to it a complete
set of generalised kets

|Λ〉|s1, s2〉, Λ ∈ L , (s1, s2) ∈ R2,

with bracket

{〈Λ|〈s1, s2|}{|Λ′〉|s′1, s′2〉} = 〈Λ|Λ′〉〈s1, s2|s′1, s′2〉 = δ(Λ−1Λ′)δ(s1 − s′1)δ(s2 − s′2),

where integrals are taken with the measure dΛds1ds2 and δ(Λ)dΛ is the purely atomic normalised
measure on L , concentrated on I.

We define the operators qµ by their actions on the kets |Λ〉|ξ〉:

qµ|Λ〉|ξ〉 = λP |Λ〉{Λµ
νX

ν |ξ〉},

where the Xµ are described in Section 3.5. These operators being defined in terms of the
Schrödinger operators, we have

spec(qµ) = R.

We may easily check that the operators Qµν defined by

[qµ, qν ] = iλ2
P Qµν

are simultaneously diagonalised by the kets |Λ〉|s1, s2〉:

Qµν |Λ〉|ξ〉 = Λµ
µ′Λ

ν
ν′S

µ′ν′ |Λ〉|ξ〉.
14If there were a Lorentz invariant measure dσ on Σ, we could have taken kets of the form |σ〉|ξ〉 and integrate

with dσ instead of dΛ. It is a fact of life that such a measure does not exist.
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It follows that the spectrum of each Qµν is

spec(Qµν) = {σµν : σ ∈ Σ} = R.

We have a unitary representation U of the Lorentz group

U(Λ)|M〉|s1, s2〉 = |ΛM〉|s1, s2〉;

it fulfils

U(Λ)−1qµU(Λ) = Λµ
νq

ν ,

U(Λ)−1QµνU(Λ) = Λµ
µ′Λ

µ
µ′Q

µ′ν′ .

Let now f = f(σ;x) be a generalised symbol, as described in Section 4.1. We may define its
DFR quantisation à la Weyl

f(Q; q)|Λ〉|ξ〉 = |Λ〉
{∫

dk f̌((Λµ
µ′Λ

ν
ν′S

µ′ν′); k)eiλP kµΛµ
νXν |ξ〉

}
.

Note that if we take a function of the form

f(σ;x) = (f1 ⊗ f2)(σ;x) = f1(σ)f2(x),

then the DFR quantisation prescription gives the operator product

(f1 ⊗ f2)(Q; q) = f1(Q)
∫

dkf̌2(k)eikq,

where f1(Q) is the usual evaluation of a function on a set of pairwise commuting operators (joint
functional calculus). By a direct check, we find in general

f(Q; q)g(Q; q) = (f ? g)(Q; q), f̄(Q; q) = f(Q; q)∗

and

U(L)f(Q; q)U(L)−1 = (γ(L)f)(Q; q), L ∈ P.

Finally, we may consider the functions σµνσµν and (σµν(∗σ)µν)2 of Σ, where (∗σ)µν =
1
2εµνρτσ

ρτ is the Hodge dual of σ. These functions are invariants of the full Lorentz group,
and there are no other invariants independent from these two. Since they are invariants, their
values are constant and can be computed at any point in Σ, e.g. at S. Hence

σµνσµν = 0, (σµν(∗σ)µν)2 = 16, σ ∈ Σ.

It follows that the same relations hold true with Q in the place of σ.
The Lorentz covariant representation (qµ,U) described above is essentially (i.e. up to equiva-

lence and multiplicity) unique. This follows from a “fibrewise” von Neumann uniqueness argu-
ment15 [7].

An adaptation of the same argument, where now we take the translation covariant represen-
tations described at the end of Section 3.5 as building blocks, will give a full Poincaré covariant
representation.

15The reader may recognise in the above construction a direct integral over L of irreducible representations
labeled by σ = ΛSΛt. For generic kets |ψ〉 ∈ H of finite length, the functions ψ(Λ; s1, s2) = {〈Λ|〈s1, s2|}|ψ〉 may
be recognised as the measurable fields Λ 7→ ψ(Λ; ·) in the direct integral H =

∫ ⊕
dΛL2(R2).
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4.3 The DFR model recovered

In the preceding section we have shown that the universal, covariant representation of the C∗-
algebra C0(Σ,L) is associated with selfadjoint operators qµ fulfilling

[qµ, qν ] = iλ2
P Qµν , (4.2a)

where

[qµ,Qνρ] = 0, (4.2b)
QµνQµν = 0, (4.2c)

(Qµν(∗Q)µν)
2 = 16I. (4.2d)

In [7], the above relations were the starting point for the analysis. Indeed, the pattern proposed
there was precisely opposite to the one we followed.

So, everything is a consequence of the relations (4.2) and their full Poincaré covariance ex-
pressed by

U(Λ, a)−1qµU(Λ, a) = Λµ
νq

ν + aµI, (4.3a)

U(Λ, a)−1QµνU(Λ, a) = Λµ
µ′Λ

µ
µ′Q

µ′ν′ , (4.3b)

for (Λ, a) ∈ P, the Poincaré group.
But where do they come from? To give a quantitative content to the remarks of Section 2,

in [7] some important steps were made precise.

• The (limited) scope of the model: an idealised situation describing scattering experiments
in particle physics. This means that the density of processes is so low that it does not
produce significant deviations from the flat geometry of the laboratory; however their
energy is so high that deviations from classical flat spacetime are produced only at very
small scales.

• The necessity of consistence with usual particle physics (described in terms of quantum
fields). This requires in particular that the usual classical (commutative) Minkowski space-
time must be obtained in the large scale limit (possibly at the cost of extra dimensions).

• The necessity of ordinary Poincaré covariance (phrased in the dear old Wigner’s language
for quantum symmetries). This for many reasons: a) the need for preserving Wigner’s
classification of particles scattered far away (which are then detected in the “classical
region”, where non-commutativity is smeared away: in- and out-fields are defined on the
classical spacetime); b) the remark that transformations of reference frames are global and
affect the cosmic scale as well as the Planck scale; c) the need for preserving the symmetry
between active and passive point of view (think of an experiment in a laboratory).

Within this conceptual framework, we may formulate the first DFR problem:

(DFR1) Find relations between the uncertainties ∆xµ, which prevent the formation
of trapped surfaces enclosing the observed region, as an effect of localisation alone.

Note that, in view of the limited scope of the model, dynamical black hole formation is prevented
from the outset, since the large scale geometric background is fixed, and it is flat. In a would-
be, still unknown more general model, one should be able to distinguish dynamical black hole
formation from localisation-induced black hole formation, and find conditions preventing the
latter only.
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It is possible to carry over a heuristic analysis, where localisation states are modeled by
coherent states of the form eiφ(f)|0〉 (|0〉 is the Fock vacuum for a free field φ). If the (“com-
mutative”) test function f has support in a 4-box of sides ∆xµ, bounds from Einstein equations
are obtained by (crude) estimates on the expectation of the energy-momentum tensor in such
states. We omit the details, for which the reader is referred to the original paper [7]. This leads
to the relations

∆x0(∆x1 + ∆x2 + ∆x3) > λ2
P , (4.4a)

∆x1∆x2 + ∆x1∆x3 + ∆x2∆x3 > λ2
P . (4.4b)

The second DFR problem comes from the idea of following the pattern which led to canonical
quantisation in the 1920s: given the uncertainty relations, find the commutation relations which
reproduce them by the uncertainty theorem16.

(DFR2) Find commutation relations between selfadjoint operators qµ such that the
relations (4.4) are fulfilled if one replaces ∆ωqµ for ∆xµ, no matter which state ω is
chosen.

Above, ∆ωqµ is the usual uncertainty of the operator qµ in the state ω, namely

∆ωqµ =
√

ω((qµ)2)− ω(qµ)2.

Now it is clear that there is nothing bad in the uncertainty relations not having a covariant
look’n feel since, despite the misleading notation, in general the uncertainties ∆ωqµ are not the
components of a covariant vector. Indeed ∆ω is not a linear functional on operators, so that
Λµ

ν∆ω(qν) 6= ∆ω(Λµ
νq

ν), in general. What is important is to check that the relations hold in
any reference frame.

To solve problem DFR2, we observe that a measure of non-commutativity of n elements is
given by the determinant

[A1,A2, . . . ,An] :=
∑

εj1...jnAj1 · · ·Ajn = det


A1 A2 . . . An

A1 A2 . . . An
...

...
. . .

...
A1 A2 . . . An


which for n = 2 reduces to the usual commutator. Hence a model with 4 coordinates is fixed by
giving conditions on

[qµ, qν ], [qµ, qν , qρ], [qµ, qν , qρ, qτ ]. (4.5)

Setting

(∗Q)µν =
1
2
εµνρτQ

ρτ ,

we have

[q0, . . . , q3] = −1
2
Qµν(∗Q)µν

which is invariant under the special Lorentz group L ↑
+. There also is the full Lorentz invariant

QµνQµν

16We recall that, given two selfadjoint operators A, B, then for any state ω (which may be a vector state or
a density matrix, it is irrelevant), we have ∆ω(A)∆ω(B) > 1

2
|ω([A,B])|.
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and there are no other invariants which are independent from these ones. Hence the only Poincaré
invariant constrains which can be formulated with the determinants (4.5) must be given in terms
of these objects and of [qµ, qν , qρ].

With the simplifying ansatz [qµ,Qνρ] = 0 (no physical motivations for it), which may be
equivalently written as

[qµ, qν , qρ] = 0,

it is possible to show that the solution of problem DFR2 is provided precisely by (4.2).
Writing down commutation relations is not enough! Existence of operators actually fulfilling

them is not granted; hence we have the third DFR problem

(DFR3) Find operators qµ which fulf il the relations (4.2), and are covariant.

This problem is solved precisely by the construction described in Section 4.2.
We close by observing that, in the DFR model, the spectrum of [q0, q1, q2, q3] is {±2λ4

P },
while the spectrum of [qµ, qν ][qµ, qν ] is zero. Hence in this model there is one only universal
length, which is precisely λP .

4.4 Working with the DFR model

Due to the uniqueness of the representation, it is useful to forget the difference between abstract
elements and their representations. So, we think of f(Q; q) both as of an operator, and of an
element of the C∗-algebra; and, since the algebra of continuous sections is naturally embedded
in its unique C∗-completion, we are allowed to think of f(Q; q) as a function of (σ, x). This way
of reasoning may seem at first rather confusing, since one thinks of the same symbol as of an
operator, a function, or an element of an abstract C∗-algebra depending on the convenience of
the moment. However, it is quite a fruitful point of view.

To make this clear, let us work out some example which will be used in later sections.
Firstly, observe that, if f = f(x) does not depend on σ,

f(q) =
∫

dkf̌(k)eikµqµ

is well defined, yet it does not belong to the spacetime algebra E = C0(Σ,K) since f does not
vanish at infinity as a function of σ. However, f(q) is a multiplier of the algebra, in the sense
that f(q)g(Q; q) is in E for every admissible symbol g. This can be understood also without
knowing the abstract definition of multipliers algebra of a C∗-algebra17.

The functions of σ alone also are natural multipliers: if f = f(σ) is continuous and
bounded and g = g(σ;x) is an admissible symbol, then f(σ)g(σ;x) is an admissible sym-
bol and f(Q)g(Q; q) has an unambiguous meaning. Moreover, f(Q) is a central multiplier:
f(Q)g(Q; q) = g(Q; q)f(Q); or, if we enjoy using exact terms, we may say that f(Q) belongs
to the centre Z(M(E)) of the multipliers algebra M(E) of E . Note also that we have the natural
identification,

Z(M(E)) = Cb(Σ),

the algebra of bounded continuous functions of Σ.
The algebra E has no unit, because the only candidate would be, seen as a section, the constant

function σ 7→ 1; which does not vanish at infinity as a function of σ, and is not L1 as a function
17This generalises a very simple situation: a bounded continuous function times a continuous function vanishing

at infinity vanishes itself at infinity, hence Cb(R4) is the multipliers algebra of C0(R4). It is the biggest algebra of
functions with this property and thus it is a canonical object.
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of x for any fixed σ. If we ask the same question while looking at the abstract C∗-algebra
E = C0(Σ,K), we see that the only candidate to be the identity would be the constant function
σ 7→ 1; which does not vanish at infinity as a function of σ, and 1 is not compact. Of course,
both candidates coincide with the unit of the multipliers algebra, up to natural identification.

Let us now consider the map

f(Q; q) 7→
∫

dx f(Q;x)δ(x0 − t).

For every fixed t this object depends on Q only, and is thus a central multiplier. The above
map extends to a map from the whole C∗-algebra E to the central multipliers.

This map has a very interesting feature: it is positive, namely it sends positive elements into
positive elements:∫

dx f(Q;x)∗f(Q;x)δ(x0 − t) > 0.

Since f(Q;x)∗f(Q;x) = (f̄ ? f)(Q;x), the above can be written as∫∫
dx (f̄ ? f)(Q;x)δ(x0 − t) > 0.

But central multipliers are identified with functions of σ, where positivity is just pointwise (in σ)
positivity. Hence the above is equivalent to∫

dx (f̄ ? f)(σ;x)δ(x0 − t) > 0, σ ∈ Σ.

In technical terms, the above map is a conditional expectation, since in addition it maps

f(Q)g(Q; q) 7→ f(Q)
∫

dx g(Q;x)δ(x0 − t).

In [7], the following suggestive notation was proposed for the above map:∫
q0=t

d3q f(Q; q) :=
∫

dx f(Q;x)δ(x0 − t). (4.6)

Note that positivity with respect to the ∗-algebra is important, it essentially means compatibility
with the uncertainty relations. For example, for every fixed a ∈ R4, the map f(Q; q) 7→
f(Q; a) (evaluation at a point) is not positive, since there’s no reason why (f̄ ? f)(σ, a) should
define a positive function of σ; on the contrary, it cannot be positive, for otherwise it would
allow to construct (by further integrating over σ) an admissible localisation state which would
violate the uncertainty relations. The physical interpretation of positivity of the conditional
expectation (4.6) is that localisation at sharp time can be compensated by complete space
delocalisation.

The other important notion is that of derivative. Since we have the action of translations,
we may define ∂f(q)/∂qµ by

f(q + ε) = f(q) + εµ ∂f(q)
dqµ

+ o(ε).

A short computation shows that it is precisely the same as the quantisation of ∂µf :

∂f(q)
dqµ

= (∂µf)(q).
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Finally, a comment on the states. Let ω be a state on E , namely a liner functional on E which
is positive and normalised. Examples can be obtained by thinking of f(Q; q) as of an operator:
vector states18

f(Q; q) 7→ 〈ξ|f(Q; q)|ξ〉
〈ξ|ξ〉

and more general states of the form

f(Q; q) 7→ Tr(ρf(Q; q)),

where ρ is a positive operator with trace 1. A (regular) state can be extended to the multipliers.
Since the central multipliers are an algebra of functions, then for any (regular) state ω there is
a measure µω on Σ such that, for any central multiplier f(Q),

ω(f(Q)) =
∫

dµω(σ)f(σ).

A state is said with optimal localisation if it minimises∑
µ

∆ω(qµ)2.

This quantity is not Lorentz invariant, hence this definition depends on the observer, and the
pull back of such a state to a different Lorentz frame does not have optimal localisation, in
general. Such states exist and are essentially given in terms of the quantum mechanical coherent
states. It can be shown that, if ω has optimal localisation, then the associated measure µω is
supported by the orbit Σ1 ⊂ Σ of the standard simplectic matrix S under the space-orthogonal
subgroup of L . See [7] for more details.

4.5 Classical limit

It is clear that, when λP goes to zero, then f ? g goes to the pointwise product in the x variable,
fibrewise in the variable σ:

(f ? g)(σ;x) −→
λP→0

f(σ;x)g(σ;x).

The classical limit of the DFR model, then, is the same as the large dilations limit, and is R4×Σ,
the usual Minkowski spacetime, times a manifold carrying extra dimensions. This comment may
be made rigorous using Rieffel’s theory of deformations [14].

The manifold Σ has two connected componentsΣ±, each of which is homeomorphic to the
tangent space of the 2-sphere, so that there are four extra dimensions19. Hence the classical
limit can be described as R4 × TS2 × {±1}.

An unpleasant fact is that the extra dimensions are not compact, and thus in principle could
be observed at the macroscopic scale. One way out would be to restrict the representation
to the states which, in the large scale limit, will become sharp points; namely the states with
optimal localisation. We recall that states with optimal localisation, restricted to the centre,
are supported by Σ1, which, under the homeomorphism Σ± → TS2, is mapped precisely to the
2-sphere. Hence in this case, the classical limit would be R4 × S2 × {±1}, with compact extra
dimensions. Unfortunately, the price to pay is the breakdown of Lorentz covariance, so that
different observers, connected by a Lorentz boost, would disagree on the classical limit.

18Since the defining representation is reducible, ‘vector state’ is not the same as ‘pure state’.
19This can be seen directly, by observing that an antisymmetric 2-tensor has six independent entries, and there

are two independent invariants defining the manifold Σ.
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4.6 Towards quantum geometry

At its most basic level, classical geometry describes the relations of families of points.
A first step towards a generalisation of classical geometry is to discuss independent events.

Two quantum quantities are statistically independent if they commute; a natural way for
constructing independent copies of the same observable A is by means of tensors product:
A1 = A ⊗ I, A2 = I ⊗ A. We may follow this pattern for defining the quantum coordinates
of n independent events

qµ
j = I ⊗ · · ·

jth slot
↓

I ⊗ qµ ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
n factors

, j = 1, . . . , n.

Then the quantisation of a function f = f(x1, . . . , xn) of many classical independent events is
given by

f(q1, . . . , qn) =
∫

R4n

dk1 · · · dkn f̌(k1, . . . , kn)ei(k1q1+···knqn),

However, there are two natural notions of tensor product on the spacetime C∗-algebra. The
usual one, which gives E ⊗ E ' C0(Σ × Σ,K), namely functions of two independent σ’s, and
the fibrewise tensor product, according to which the tensor product of two sections is taken
fibrewise. The abstract algebraic method for doing this is to understand ⊗ as a tensor product
of Z-modules, where Z is the centre of the multipliers algebra (see Section 4.4). Essentially, this
amounts to identify the commutators of independent events:

[qµ
j , qν

k ] = iλ2
P δjkQµν ,

where

Qµν = Qµν ⊗ I ⊗ · · · ⊗ I = I ⊗Qµν ⊗ · · · ⊗ I = · · · = I ⊗ I ⊗ · · · ⊗Qµν . (4.7)

That this is the natural notion of tensor product is confirmed by the remark that the sepa-
rations between two independent events has the same commutation relations of the basic coor-
dinates, up to a factor: if we set

δjkq = qj − qk,

we find

[δjkq
µ, δjkq

ν ] = 2λ2
P Qµν , j 6= k,

where the right hand side does not depend on j, k [19, 10]. Now the square Euclidean distance∑
µ(δjkq

µ)2 is bounded below by20 4λ2
P ; hence there is a natural minimal Euclidean distance

between independent events [20].
Another pleasant feature which follows from adopting the fibrewise tensor product is that

the barycentric coordinates and the separations are independent. Indeed, setting

q̄ =
1
n

(q1 + · · ·+ qn),

20This can be seen directly in any state which is determined on Q with expectation σ ∈ Σ1; in this case, we only
see the irreducible component corresponding to the special representation described in Section 3.5, in which case
the square Euclidean distance of two independent events is twice the Hamiltonian of a four dimensional Harmonic
oscillator. See [7] for a proof that this is optimal.
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we find

[q̄µ, δijq
ν ] = 0.

This is true in a strong sense, so that q̄ can be understood to live in a different tensor factor
than the separations (up to an isomorphism). Then it is possible to set all the δijq

ν to their
minimum value, thus leaving a function of q̄ alone, with a hidden σ dependence consisting of
restriction to Σ1 (due to the fact that the Euclidean distance is not covariant under Lorentz
boosts).

What we obtain in this way is a quantum analogue of the restriction

f(x1, . . . , xn) �x1=x2=···=x

to the diagonal of a function of many events [19, 10].
In the framework of Dubois–Violette universal calculus [21], we may define dq = q⊗I−I⊗q =

q2 − q1, where, as everywhere in this section, we understand ⊗ “fibrewise” (or in the sense of
Z-modules). A natural definition of 4-volume is then

V = dq ∧ dq ∧ dq ∧ dq = εµνρσ(q2 − q1)µ(q3 − q2)ν(q4 − q3)ρ(q5 − q4)σ

(which is intuitively reminiscent of the volume of a hypercube), and analogously for 3-volumes
and area operators. The spectra of all these operators can be computed; in particular the
spectrum of V does not contain 0, and stays at a finite distance ∼ λ4

P from it [20].

4.7 Geometry of Σ; dilation covariance

Given a set of pairwise commuting operators Qµν fulfilling Qµν = −Qνµ, we may consider them
as the entries of an antisymmetric matrix with operator entries

Q =


Q00 Q01 Q02 Q03

Q10 Q11 Q12 Q13

Q20 Q21 Q22 Q23

Q30 Q31 Q32 Q33

 =


0 e1 e2 e3

−e1 0 m3 −m2

−e2 −m3 0 m1

−e3 m2 −m1 0

 ,

where, following [7], we introduced the notation21 ej = Q0j and mi = Qjk ((i, j, k) a cyclic per-
mutation of (1, 2, 3)). The (pseudo-)vectors ~e, ~m are called the electric and magnetic parts of Q,
in formal analogy with electromagnetism (no physical meaning attached to this terminology).
Note that no meaning is attached to the position of the indices of ~e, ~m.

Correspondingly, we may represent the matrix Q as a pair (~e, ~m) of vectors with operator
entries. Now, given a matrix σ ∈ Σ, we may represent it as a pair (~e, ~m) of vectors with real
entries; we recall that, for the DFR model, spec(Qµν) = {σµν : σ ∈ Σ}; under the above cor-
respondence, spec(ej) = {σ0j : σ ∈ Σ} = {ej : (~e, ~m) ∈ Σ} and spec(mj) = {mj : (~e, ~m) ∈ Σ}.

For the DFR model, Σ is the orbit of the matrix (~e3, ~e3), where ~e3 = (0, 0, 1) is the third
vector in the canonical basis of R3.

The advantage of this notation is that the two invariants take a very simple form:

QµνQ
µν = 2(| ~m|2 − |~e|2), Qµν(∗Q)µν = 4( ~m · ~e).

It follows that

Σ = {(~e, ~m) : |~e| = |~m|, ~e · ~m = ±1}.
21There are slight differences with formulas in [7], since here we define ~e, ~m with respect to indices in upper

position.
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We observed at the end of Section 4.3 that the Planck scale is given by the spectrum
of the operator [q0, q1, q2, q3]. There is however a natural way to construct a model with
[q0, q1, q2, q3] = 0, where there is no characteristic length. This model is covariant under dila-
tions, too (S. Doplicher, private conversation).

This can be obtained by replacing Σ with the orbit

Σconf = {(~e, ~m) : |~e| = |~m|, ~e ⊥ ~m};

for example, (~e1, ~e2) ∈ Σconf, which corresponds to the (non trivial) commutation relations

[X0,X1] = [X1,X3] = iI.

Then by Schur’s lemma X2 and X0 +X3 are multiples of the identity; there are ∞2 equivalence
classes of irreducible representations corresponding to the given choice of σ = (~e1, ~e2):

(X0,X1,X2,X3) = (Q,P , αI, βI −Q), α, β ∈ R.

Note that this is different than in the λP 6= 0 case, where to each σ there corresponds a unique
class of equivalence classes. However, essentially by the same methods of [7], it is possible to
build up coordinates qµ with commutators Qµν = −i[qµ, qν ] fulfilling

QµνQµν = Qµν(∗Q)µν = 0,

and covariant under a unitary representation of the group generated by Poincaré transformations
and dilations. Uncertainty relations and field theory will be analysed elsewhere.

5 The “canonical” quantum spacetime

The so called “canonical” quantum spacetime is defined by the relations

[xµ,xν ] = iθµνI. (5.1)

According to the discussion of Section 3.5, the DFR argument grants the existence of at least
one regular representation if there is a matrix Λ such that θµν = Λµ

µ′Λ
ν
ν′S

µ′ν′ .
However, if no such Λ is known to exist, everything is possible: there could be other inequiva-

lent regular representations, or no representations at all. Even if Λ exists, but is not invertible,
there might be many other inequivalent representations which cannot be obtained in this way.
In these cases, no general solution is known, and the representation theory of the given relations
must be discussed case by case.

We consider two classes of examples in this section. In the next section, we discuss the repre-
sentation theory of models where the time coordinate commutes with all the space coordinates
(θ0j = 0), and we show that the existence of representations depends on the particular choice
of θ (and as a byproduct, we describe the method for classifying them all in the good cases).

In the rest of the section we will discuss the case where θ is a DFR matrix, in which case the
representations always exist.

We will shortly comment on the conceptual implications of the breakdown of isotropy in the
flat spacetime at Planck scale, and on the lack of motivations.

5.1 Time/space commutative models and representations

We consider the most general time/space commutative models where θ0j = 0, so that in parti-
cular [x0,xj ] = 0.
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Space/time commutative models have no direct physical motivations; they enjoy some for-
tune because they apparently remove an obstruction to the development of a unitary non local
perturbative S-matrix. We shall later see that these obstructions only are due to an improper
treatment of time ordering, the consequences of which are hidden by time/space commutativity.

For some a, b, c ∈ R, we have

θ =


0 0 0 0
0 0 −a −b
0 a 0 −c
0 b c 0

 ,

which means

[x0,xk] = 0, [x1,x2] = −iaI, [x1,x3] = −ibI, [x2,x3] = −icI,

and where at least one of a, b, c is not zero. We first seek for irreducible representations.
By Schur’s lemma, x0 = qI for some q ∈ R. Now, according to the desired relations, the

operator T = cx1 − bx2 + ax3 should fulfil [T ,xµ] = 0 and thus, again by Schur’s lemma,
T should be a multiple of the identity. We assume, say, that a 6= 0; otherwise one may reason
analogously (or permute the indices). Then it should be

x3 =
1
a
(bx2 − cx1) + q′I

for some q′ ∈ R. In other words, the representation is irreducible if and only if x1, x2 are
irreducible; but in view of this and their commutation relations, by von Neumann uniqueness
we must have x1 = P , x2 = aQ (up to equivalence) where [P ,Q] = −iI.

To sum up, the most general irreducible representation should have the form

x0 = qI, x1 = P , x2 = aQ, x3 =
b

a
P − c

a
Q + q′I,

for some q, q′ ∈ R. But in this way, we find

[x1,x3] = i
c

a
I, [x2,x3] = ibI;

which are the desired relations if and only if c = −ab, c = −b (with solutions a = 1, c = −b ∈ R
or a ∈ R, c = b = 0); this gives conditions for the existence of irreducible representations in the
case a 6= 0. In other words, the relations (5.1) admit representations only for some choices of θ.
For the good choices, all irreducible representations are obtained in the above way.

Note that in the bad case where no representation exists, there is no Weyl quantisation, and
there is no corresponding Weyl product. Of course the usual formula for the Weyl product still is
meaningful and may well be taken as a standalone definition; but the resulting ∗-algebra would
not admit C∗-completions.

On the other side, let us now assume that we are in the good case, and that representations
exist. Hence we classified them all. Note however that, if we took any of such irreducible
representations as our choice of the coordinates, we would find eikµxµ

= eik0qe−i~k·~x for the Weyl
operators, which would give a very strange quantisation prescription, whose effect on the time
variable would be evaluation at the fixed value x0 = q:∫

R4

dk eikµxµ
f̌(k) =

1
(2π)3

∫
R3

d~x

∫
R3

d~kf(q, ~x)e−i~k·(~x−~x).
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Apart from describing a very strange classical limit with . . . constant time x0 = q, it would be
impossible to define an associated twisted product (which requires injectivity of the quantisation,
not to be ill posed).

Hence we have no rights to make an arbitrary choice, and we must take into account all
irreducible representations at once. By direct integral techniques22, we get the universal repre-
sentation (in the case a = b = −c = 1, say)

ξ0 = Q2, ξ1 = P1, ξ2 = Q1, ξ3 = P1 + Q1 + Q3,

where Q1, Q2, Q3, are the Schrödinger position operators for a particle in the 3-space, and P1

is the Schrödinger momentum fulfilling [P1,Qk] = −iδ1kI. By construction (or a direct check),
they fulfil

[ξµ, ξν ] = iθµνI

as required. The Weyl quantisation is injective, the twisted product is well defined, and there
is a unique C∗-completion of the resulting algebra, which is C0(R2)⊗K.

5.2 “Canonical” quantum spacetime and DFR model

From now on, we stick to the case of DFR matrices, where θ = λ2
P σ for σ ∈ Σ. In this case

the “canonical” quantum spacetime is nothing but one single fibre over the DFR C∗-bundle
E = C0(Σ,K), precisely the fibre over the chosen σ. Abstractly, the fibre is the same for all
σs, hence the choice of a particular σ only entails a particular choice of the Weyl quantisation
prescription, and the corresponding (reduced) twisted product. Let us write

qµ
(σ) = λP Λµ

νX
µ,

where the Xµ’s are defined in Section 3.5 and Λ is any23 Lorentz matrix fulfilling σµν =
Λµ

µ′Λ
ν
ν′S

µ′ν′ . Then by construction

[qµ
(σ), q

ν
(σ)] = iλ2

P σµνI, (5.2)

and the quantisation over σ is defined by

f(q(σ)) =
∫

dk f̌(k)eikµqµ
(σ) ;

it maps admissible symbols into compact operators on L2(R), and fulfils

(f ?σ g)(q(σ)) = f(q(σ))g(q(σ)).

In mathematics, “canonical” is used to indicate something which is independent from arbitrary
choices. Standing the arbitrariness of the choice of a particular σ, the terminology “canonical
quantum spacetime” is totally unjustified.

As it stands, the spacetime quantisation associated with the reduction to a particular irre-
ducible representation is clearly non covariant, and there is not much to say.

However, it is possible to use the DFR bundle of algebras to define a form covariant model,
where however the relativity of observers is broken, and Wigner’s approach to quantum sym-
metries is dismissed. It amounts to let θ transform as a tensor, and to attach to each reference

22Note that
∫ ⊕

R dq C = L2(R), and
∫ ⊕

R dq q· = Q, the Schrödinger position.
23The matrix Λ is defined up to elements of the stabiliser of S in L ; however qµ

(σ) does not depend on this
choice; it only depends on σ.
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frame O′ its own θ′, compatibly with Lorentz transformations of reference frames. This model
had some fortune in the literature, and can be shown to be equivalent to yet another approach
named “twisted covariance”, which we shall discuss in Section 5.4.

The basic idea is to fix a specific θ with respect to a specific frame, and claim that the
observer O in that particular frame “sees” the commutation relations (5.2). Let us call it the
privileged observer.

Then an observer O ′ in a frame related to the privileged frame by a Poincaré transformation
(Λ, a) will correspondingly “see” the commutation relations

[qµ
(σ′), q

ν
(σ′)] = iλ2

P σ′
µν

I,

The resulting formalism is then form-covariant; yet it is possible to classify the observers in an
absolute way, according to the relations they“see”. While in the DFR model all the observers (in
the sense of special relativity) are equivalent, here there are infinitely many equivalence classes
of observers, labeled by Σ; two observers are equivalent if and only if they are connected by
a Poincaré transformation (Λ, a) such that Λ leaves S unchanged (=Λ is in the stabiliser of S
in L ).

5.3 “Canonical quantum spacetime” and localisation states

The situation of the end of the preceding section may be described as regarding the DFR bundle
of algebras as a collection of algebras labeled by σ, together with a groupoid of automorphisms
connecting pairs of algebras in that collection; the global algebraic structure carried by the
fibrewise product of sections is dismissed.

An equivalent way of describing it is to retain the global algebraic structure, while restricting
instead the class of admissible localisation states [22]. The best way to understand this argu-
ment is to think that there are the Gods, who can see the whole structure of the spacetime;
and the poor human beings (the observers described by the theory), with limited capability of
understanding the Universe.

Indeed, observers can test the algebra with the states at their disposal. Let us assume
that, by a decision of the Gods, the privileged observer O only may test, in his own reference
frame, the full DFR algebra with states such that each Qµν is completely determined and has
expectation σµν :

ω(Qµν) = σµν , ∆ω(Qµν) = 0.

We denote by SO this class of states. By definition, for any state ω ∈ SO there is a state wω

on K such that

ω(f(Q; q)) = wω(f(σ; q(σ))),

and all states in SO arise in this way. It follows that on one side

ω(f(Q; q)g(Q; q)) = wω(f(σ; q(σ))g(σ; q(σ))), ω ∈ SO ;

on the other,

ω((f ? g)(Q; q)) = wω((f(σ; ·) ?σ g(σ; ·))(q(σ))), ω ∈ SO .

In other words, being enabled to test the geometry only by means of states in SO , the privileged
observer will not recognise the full algebraic structure available to the Gods, and only will find
the “canonical quantum spacetime”over σ; his symbol algebra will be Eσ, his twisted product ?σ,
and so on and so forth.
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Let us now give a look at the situation of the primed observer O ′, connected to O by the
Poincaré transformation (Λ, a). The states available to her are just those in the pull-back

SO′ = {ω(U(Λ, a)−1 ·U(Λ, a)) : ω ∈ SO , (Λ, a) ∈ P}

of SO . They are precisely the states such that each Qµν is completely determined and has
expectation σ′µν . By repeating the discussion, his symbol algebra will be Eσ′ , his twisted pro-
duct ?σ′ , and so on and so forth.

Hence we are in the following situation: there is a perfectly covariant model, the DFR model,
where the equivalence of observers is fully enforced. Fixing a θ = λ2

P σ in a particular frame is
equivalent to put a non invariant constraint on that model, which amounts to dismiss a huge
class of otherwise admissible localisation states by means of a non invariant selection criterion.
The natural question is then: Why should we dismiss all those states? This question
was raised in [22, 23].

5.4 Twisted covariance

In this section, we discuss an apparently different approach to covariance, based on quantum
deformations of the Lorentz group (in the spirit of quantum groups) [24, 25].

Following [22, 23], we will convince ourselves that this formalism is equivalent in spirit to
work with the full DFR model, if we agree to dismiss a large classes of otherwise admissible
localisation states (in the sense described in Section 5.3); “in spirit” meaning: up to the choice
between Weyl quantisation and algebraic relations.

Again, we will take a bottom-up approach, and describe twisted covariance by adding further
degrees of structure step by step, when necessary. This will help us to keep track of the various
assumptions, and of the nature of the mathematical concepts.

Twists

We will start by considering a map f ⊗ g 7→ f ? g of the form

(f ? g)(x) =
∫

da db K2(x, a, b)f(a)g(b), x ∈ R4.

The only specific initial assumption is that manipulations like∫
da

∫
db =

∫
db

∫
da, lim

∫
=

∫
lim

are allowed (possibly in a weak sense). Functions will be assumed smooth at wish.
Under the above assumptions, for some ξ2 such that ξ2(x, x) = x, we may define

F2(x, y, a, b) = K2(ξ2(x, y), a, b),

(F2f ⊗ g)(x, y) =
∫

da db F2(x, y, a, b)f(a)g(b).

With

m2 : f ⊗ g 7→ fg, m̃2 : f ⊗ g 7→ f ? g,

it follows that

m̃2 = m2 ◦ F2.

Note that we did not use associativity of ?, nor invertibility of F2.
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Finite twisted covariance

The only additional assumption now is invertibility of F2.
With L the Lorentz group, we define the actions of Λ ∈ L

(γ(Λ)f)(x) = f(Λ−1x), γ2(Λ) = γ(Λ)⊗ γ(Λ);

they are intertwined by the usual product:

m2 ◦ γ2(Λ) = γ(Λ) ◦m2. (5.3)

The twisted action of L is defined as

γ̃2(Λ) = F−1
2 ◦ γ2(Λ) ◦ F2;

it is conceived so that, by construction,

m̃2 ◦ γ̃2(Λ) = γ(Λ) ◦ m̃2, (5.4)

which may be regarded as a deformation of (5.3). Note that in (5.4) the action γ(Λ) on functions
of one variable is unchanged. Equation (5.3) expresses usual covariance of the pointwise product;
(5.4) is called twisted covariance of the twisted product.

We will need the following commutation relation: let F (Λ)
2 be defined by

γ2(Λ) ◦ F2 = F (Λ)
2 ◦ γ2(Λ); (5.5)

then of course

(F (Λ)
2 f ⊗ g)(x, y) =

∫
da db F2(Λx,Λy, Λa, Λb)f(a)g(b).

Infinitesimal twisted covariance

Here too, we only assume invertibility of F2. Let us define Xµ by setting (Xµf)(x) = xµf(x);
with ω ∈ Lie(L ), we have the action

ω . = ωµ
νX

ν∂µ,

so that

γ(etω)f = f − tω . f + o(t).

Let ∆ be the coproduct for the usual (undeformed) coalgebra structure of the the universal
enveloping Lie algebra U(Lie(L )) of the Lie algebra of Lie(L ) of the Lorentz group. With

∆(ω) = ω ⊗ 1 + 1⊗ ω,

we have the action

∆(ω) . = (ω . )⊗ I + I ⊗ (ω . )

so that

γ2(etω)f ⊗ g = f ⊗ g − t∆(ω) . f ⊗ g + o(t).
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Moreover,

γ̃2(etω)f ⊗ g = f ⊗ g − t∆̃(ω) . f ⊗ g + o(t),

where

∆̃(ω) . = F−1
2 ◦ (∆(ω) . ) ◦ F2.

Note that the above defines a twisted action of the undeformed coproduct.
By (5.5),

γ̃2(Λ) = F−1
2 ◦ F (Λ) ◦ γ2(Λ).

Hence

∆̃(ω) . =
d

dt

(
F−1 ◦ F (e−tω) ◦ γ2(e−tω)

)∣∣∣∣
t=0

= (∆(ω) . ) + F−1 d

dt
F (e−tω)

∣∣∣∣
t=0

.

Weak coassociativity

Besides invertibility of F2, now we also assume that ? is associative, namely (f ?g)?h = f ?(g?h).
With K3 defined by

(f ? g ? h)(x) =
∫

da db dc K3(x; a, b, c)f(a)g(b)h(c),

associativity implies that

K3(x; a, b, c) =
∫

dy K2(x; y, c)K2(y; a, b) =
∫

dy K2(x; a, y)K2(y; b, c)

within integrals. We may now reproduce all the steps: for some ξ3 such that ξ3(x, x, x) = x,
define

(F3f ⊗ g ⊗ h)(x, y, z) =
∫

da db dc K3(ξ3(x, y, z); a, b, c)f(a)g(b)h(c);

with m3f ⊗ g ⊗ h = fgh, set

m̃3(f ⊗ g ⊗ h) = f ? g ? h = m3 ◦ F3f ⊗ g ⊗ h;

if F3 is invertible, set

γ3(Λ) = γ(Λ)⊗ γ(Λ)⊗ γ(Λ),

γ̃3 = F−1
3 ◦ γ3 ◦ F3 = F−1

3 ◦ F (Λ)
3 ◦ γ3

it follows that

m̃3 ◦ γ̃3(Λ) = γ(Λ) ◦ m̃3.

As for infinitesimal transformations,

γ̃3(etω)f ⊗ g ⊗ h = (id3 + ∆̃3(ω) . + o(t))f ⊗ g ⊗ h,

where

∆̃3(ω) . = F−1
3 ◦∆3(ω) ◦ F3 = ∆3(ω) . + F3 ◦

d

dt
F (e−tω)

3

∣∣∣∣
t=0

.
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Above ∆3(ω) is obtain by iteration of the undeformed, coassociative coproduct:

∆3(ω) = (∆(ω)⊗ 1) ◦∆(ω) = (1⊗∆(ω)) ◦∆(ω).

Now, if we choose ξ symmetric, namely

ξ(x1, x2) = ξ(x2, x1),

then we have weak twisted coassociativity, namely coassociativity of the twisted action:

∆̃3(ω) . = ((∆̃(ω) . )⊗ I) ◦ ∆̃(ω) . = (I ⊗ (∆̃(ω) . )) ◦ ∆̃(ω) . .

Strict twisted covariance

The above steps where performed under rather mild assumptions. Maybe the most restrictive
assumption is the invertibility of the twist operators; in the cases where they turn out to be
invertible, it only requires some care with the analytic aspects to obtain weakly coassociative
twisted covariance for a sufficiently regular model based on the Weyl quantisation of some set
of relations.

However, in the above setting the Hopf algebra U(Lie(L )) associated with the Lie group L
remains in the background: the coproduct is the usual one, twists only affect its action.

We now make the final step: the additional bit of structure is to assume that F2 = F2. for
some (invertible) F2 ∈ U(Lie(L )) which fulfils some requirements (enforcing twisted coassocia-
tivity). In that case we can drop the symbol . and define a new coproduct

∆̃(·) = F−1
2 ∆(·)F2.

Hence we have the following situation. Weakly twisted Poincaré covariance is possible both
for the “canonical” quantum spacetime [23, 22] (see also next paragraph) and the κ-Minkowski
spacetime [12, 26]. In the first case, we can make the last step to strict twisted covariance [24, 25].
In the second case, strict twisted Poincaré covariance is not possible in the case of κ-Minkowski
spacetime because of the obstructions to the existence of a suitable F2 (although this obstruction
can be circumvented by adding the dilation group, see [27]).

Canonical quantum spacetime and twisted covariance

Let σ ∈ Σ and qµ
(σ), ?σ be the corresponding irreducible coordinates and star product.

We may restrict ourselves to the Schwartz functions, which are dense in the algebra of symbols,
and allow for most manipulations with integrals and limits.

We recall that, like the usual pointwise product becomes convolution under Fourier transform
(where f̂g = f̂ × ĝ), its deformation ?σ is related with the corresponding deformation ×̃σ of the
convolution product again by Fourier theory:

f̂ ?σ g = f̂×̃σ ĝ,

where

(f̂×̃ĝ)(k) =
∫

dk f(h)g(k − h)e
i
2
hµσµνkν .

Let us introduce the notation

c(f̂ ⊗ ĝ) = f̂ × ĝ
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for the usual (undeformed) convolution; then we have

cσ(f̂ ⊗ ĝ) = f̂×̃σ ĝ = (c ◦ Tσ)f ⊗ g,

where Tσ is simply the multiplication by e(i/2)σµνhν⊗kµ , and is evidently invertible. Hence an
invertible Fσ exists, and we find

f ?σ g = m ◦ Fσ(f ⊗ g).

Relation (5.5) now reads

γ2(Λ) ◦ Fσ = Fσ′ ◦ γ2(Λ),

where primes indicate usual Lorentz actions on scalars, 4-vectors, and functions. It follows that

mσ ◦ γ̃(2)(Λ)(f ⊗ g) = m ◦ Fσ ◦ F−1
σ (F−1

σ f ⊗ g)′ = f ′ ?σ′ g′ = (f ?σ g)′.

Hence the usual form-covariance (where σ is treated as a tensor and the action of Lorentz
transformations is the usual one, in the framework described in Section 5.3) is perfectly equiva-
lent – as a formalism – to weakly coassociative twisted covariance, where

• σ is treated as a constant,

• the Lorentz action on functions of one event is unmodified, and

• the Lorentz action on functions of two or more events is twisted.

In turn, we have seen that usual form-covariance applied to “canonical” quantum spacetime is
equivalent to deal with the full DFR model, up to dismiss a huge class of otherwise admissible
localisation states (Section 5.3).

6 Quantum field theory

6.1 Local quantum fields

It is wise to shortly revise the fundamental concepts underlying relativistic quantum field the-
ory on classical spacetime24, for the purpose of identifying the concepts which will have to be
modified, and the motivations for such modifications.

To formulate a relativistic quantum physics, it is necessary to find a way to establish a quan-
tum version of Einstein locality (or causality, they are synonyms). The most natural way is to
rely on the usual notion of statistical independence for quantum observables, namely commuta-
tivity. If two observables A, B are localised at some events x, y respectively, they must fulfil
[A,B] = 0 whenever x− y is spacelike25.

The theory is said local if the above condition is fulfilled, and any possible observable is either
localised, or in the algebra generated by the localised observables.

To sum up, in order to describe a relativistic theory, two new concepts (axioms?) are to be
injected into quantum physics: 1) it must be meaningful to ask whether a certain observable
is localised in any region of spacetime (ideally even at a sharp point) or not, and 2) Einstein
causality must hold in the form of commutativity at spacelike distances (we confine ourselves
to observable fields).

The other basic ingredient is a unitary representation U of the Poincaré group P, imple-
menting a symmetry of the system with the natural geometric interpretation; namely for any
observable A localised at x, U(Λ, a)AU(Λ, a)−1 represents the same experimental procedure,
either performed

24Sometimes this is referred to as “commutative quantum field theory” (CQFT), as opposed to NCQFT; this is
a nonsensical terminology, see also footnote 1 at page 3.

25We take the signature (+ −−−) for the Lorentz metric; hence x is spacelike if xµx
µ < 0.
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• in a different, equivalent laboratory as seen by the initial observer in her reference frame
(active point of view), or

• in the original event, but seen by a different observer from his reference frame (passive
point of view).

Note that, for the active point of view to be meaningful, the localisation of the device must
belong to the specifications of the experimental setup associated with the observable.

The action of translations define the total energy-momentum P µ of the theory by U(I, a) =
eiaµP µ

. In non relativistic quantum physics it is necessary to postulate that the energy is
lower bounded (otherwise an infinite amount of energy could be extracted from the system).
The relativistic version is that the joint spectral resolution P µ|p〉 = pµ|p〉 of P must fulfil
the condition pµpµ > 0. In the absence of spontaneously broken symmetries, we also require
uniqueness of the lower energy state |0〉, called the vacuum.

Let A be an observable localised at the event x0; then for any other event x we may define
a new observable φ(x) by setting

φ(x) = U(I, x0 − x)AU(I, x0 − x)−1,

where we take the active point of view. In other words, φ(x) describes the observable obtained
by displacing the experimental setup of φ(x0) = A from its original event x0 into the new
event x. We are then naturally led to consider operator-valued “functions” of the spacetime.
The active point of view forces us to require consistence with Einstein locality:

[φ(x),φ(y)] = 0, x− y spacelike.

Moreover, the above must be compatible with Poincaré symmetry:

U(Λ, a)φ(x)U(Λ, a)−1 = φ(Λ−1(x− a)).

A field fulfilling the above two conditions (Einstein locality and Poincaré covariance) is called
a relativistic quantum field. If in a theory there are many independent observable fields26 φj ,
they must be relatively local:

[φj(x),φk(y)] = 0, x− y spacelike.

For several reasons (see [28] for a review) the above picture is too optimistic: quantum fields
are too singular, and cannot be treated as ordinary functions; sharply localised fields“φ(x)”only
are meaningful within integrals (namely: as distributions). While this fact should not necessarily
be seen as disturbing (pointwise localised instruments would have been an idealisation in any
case), it might be regarded as the very first manifestation that something might go wrong in
the infinitely small.

In standard textbooks, this is usually taken care of at the technical level by assuming that
quantum fields are elements of some class of operator valued distributions, defined on a suitable
class of regular test functions. However in this way we miss a point which is very important to
us: that in this game test functions do not play the rôle of elements of an algebra of functions;
they should instead be thought of as linear functionals on that algebra!

So, let us elaborate this idea of “smearing”. As we have seen, already on classical spacetime,
the localisation of an observable must be made “fuzzy”by choosing a probability density ρ(x)dx,
and smearing the field over that density:

φ(ρ) =
∫

φ(x)ρ(x)dx.

26Although for general reasons the theory might encompass unobservable fields with different commutation
relations (related with global gauge symmetries) at this level this is irrelevant for our discussion.
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Since fields are too singular, these probability densities must be sufficiently regular (we usually
take infinitely differentiable functions), and vanish at infinity sufficiently fast (usually one takes
functions with compact support or faster than inverse polynomials). In particular, a probability
measure of the form δ(x− a)dx (sharp localisation at a ∈ R4) is not available.

Since any complex function with the same properties (smoothness, fast decay) can be written
as the linear combination of at most four regular probability densities, it is natural to dismiss
the requirements of positivity and normalisation, and extend the fields to generic test functions
by linearity: fields are usually defined as linear maps ` 7→ φ(`) from test functions (= linear
functionals, not necessarily positive and/or normalised) to operators.

The notation ` for a test function is unconventional; the reason is that we wish to reserve the
symbol f for an element of the localisation algebra C0(R4). If ρ is a probability density, then

f 7→
∫

f(x)ρ(x)dx

is a well defined state on the localisation algebra C0(R4). Moreover, any test function ` defines
a continuous linear functional

f 7→
∫

f(x)`(x)dx.

Hence, quantum fields φ(·) should be thought of as maps from the (sufficiently regular) states
of the localisation algebra to the operators on some Hilbert space; extended by linearity to the
regular linear functionals.

Then an expression like
∫

P ((φ(x))`(x)dx, where P is some polynomial (e.g. a Wick poly-
nomial), is to be interpreted in terms of pointwise (local) products of fields, smeared with
a sufficiently regular linear functional ` on the localisation algebra.

6.2 DFR quantisation of local quantum free fields

Let F be a continuous function of R4, vanishing at infinity, and taking values in the operators
on some Hilbert space (or in some C∗-algebra F). Then we may set

F (q) =
∫

dk eikµqµ ⊗ F̌ (k),

where

ˇF (k) =
1

(2π)4

∫
dx F (x)e−ikµxµ

,

is well defined (provided F , F̌ are in L1).
We may apply the above to a function of the form F (x) = f(x)A, where A is some fixed

operator (or element of F), and f is a complex continuous function, and we get F (q) = f(q)⊗A.
If we consider another function of the form G(x) = g(x)B, then we get G(q) = g(q) ⊗ B.
Their product has two sources of non-commutativity: the original one, due to the fact that the
functions take values in a non-commutative algebra; and the new one, due to the spacetime
quantisation. In other words, already before spacetime quantisation the pointwise product was
non-commutative: (FG)(x) = F (x)G(x) 6= G(x)F (x) = (GF )(x), in general. Now spacetime
quantisation in a sense “increases the non-commutativity”.

The most general function F as above can be approximated as

F (x) ≈
∑

j

fj(x)Aj , (6.1)



36 G. Piacitelli

so that

F (q) ≈
∑

j

fj(q)⊗Aj ; (6.2)

note that above F (q) is obtained by applying the DFR quantisation of ordinary symbols in the
first tensor factor only, leaving the second tensor factor unmodified.

The exact mathematical meaning of (6.1) is that there is a canonical isomorphism between
C0(R4,F) and C0(R4) ⊗ F, sending the function x 7→ f(x)A into the element f ⊗ A. The
meaning of (6.2) is that the quantisation of F (x) is obtained by combining the above mentioned
isomorphism with the ordinary quantisation on the first tensor factor only.

The above comments embody the statement that the non-commutative replacement of
C0(R4,F) is E ⊗ F. But we have much more, we have a consistent quantisation recipe for
the F-valued functions.

We may of course define a symbolic calculus, but, precisely as in the case of ordinary symbols,
we must allow for more general symbols, namely F-valued functions F = F (σ;x) of Σ×R4, and
define their quantisation F (Q; q) consistently. This allows to define a twisted product by

F (Q; q)G(Q; q) = (F ? G)(Q; q),

which again is fibrewise:

(F ? G)(σ;x) = F (σ; ·) ?σ F (σ; ·).

Now, a local free field φ is not continuous (it’s a distribution), nor it takes values in a C∗-
algebra (fields are unbounded operators, in general). However, precisely as in the classical case,
they can be formally treated as ordinary functions to some extent (see any book on Wightman
theory). Hence, following [7], we may give the formal recipe

φ(q) =
∫

dk eikµqµ ⊗ φ̌(k) (6.3)

for the quantisation of a given local free quantum field.
Note that, precisely in the same way as the label “x” of a local quantum field φ(x) is not an

observable, here the “q” of φ(q) is not an observable!
Let ω be a localisation state on the quantum spacetime localisation algebra. We can apply

it to the first tensor factor, and obtain

φ(ω) =
∫

dk (ω ⊗ id)(eikµqµ ⊗ φ̌(k)) =
∫

dx φ(x)ρω(x),

where

ρω(x) =
1

(2π)4

∫
dk ω(eikµqµ

)e−ikµxµ
;

namely the initial local field φ(x) evaluated on a probability density on the classical spacetime.
This gives us the definition of “sufficiently regular state ω”, as a state ω such that ρω is an
admissible test function for the initial field.

The question as to why we restricted ourselves to free fields has a simple and neat answer:
no interacting field is known in four dimensions.
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6.3 Perturbation theory – the Dyson series

Local perturbation theory of local quantum fields on classical spacetime (in its more sophis-
ticated version, namely renormalisation theory) has been very effective in giving extremely
accurate predictions with wonderful experimental validation. Quite surprisingly, it works even
if the interaction is not a “small” perturbation of the free dynamics in any reasonable sense.

As a first attempt to develop quantum field theory on quantum spacetime, we may expect
that non local Planck scale corrections are “small” enough not to destroy the good behaviour of
the local perturbation series. On the contrary, the fuzziness of quantum spacetime should have
an intrinsic regularising effect on the ultraviolet (i.e. small scale) divergences.

We begin with an important remark. Let H (φ, ∂µφ) be the usual (Wick ordered) Hamiltonian
density of the free scalar (Klein–Gordon) field φ, with H0 =

∫
x0=t d~xH (φ(x), ∂µφ(x)) (as an

operator on the Fock space; it does not depend on t); then it was found in [7] that∫
q0=t

d3q H (φ(q), ∂µφ(q)) = H0 (as a constant function of σ).

The exact meaning of
∫
q0=t d3q is explained in Section 4.4 (see in particular equation (4.6)).

The above remark suggests that the free theory remains consistent after spacetime quantisa-
tion. This is a rewarding confirmation, but not really a surprise. Indeed spacetime quantisation
is a purely kinematical, fully covariant procedure, and the local free field is well defined and
covariant as well.

The next step is to define, for each t,

HI(Q; t) =
∫

q0=t
d3q :φ(q)n :,

which may be thought of as a non constant function of σ (see Section 4.4). In symbolic language,
we may rewrite the above as

HI(σ; t) =
∫

dx δ(x0 − t) :(φ ?σ · · · ?σ φ)(x) : .

Up to now, everything was perfectly satisfactory. However now we have the problem of the σ
dependence of HI . At some point of the story, it must be integrated out. The reason is that this
is a model for particle scattering. Particles scattered far away are free and thus do not undergo
high energy processes which could excite the quantum geometric background. They are to be
described by the dear old free fields (as in- and out-fields).

There are many inequivalent possibilities. But they all are affected by the same problem:
there is no Lorentz invariant measure on Σ. It’s just a fact of life27. Hence whatever measure is
chosen over Σ, this operations will break Lorentz covariance. We will come back to this problem
later on.

The choice proposed in [7] is to take the rotation invariant measure dσ on Σ1 ⊂ Σ, where Σ1

was described at the end of Section 4.4. This choice is for the largest possible geometric sym-
metry. We get

HI(t) =
∫

Σ1

dσ

∫
dx δ(x0 − t) :φ ?σ · · · ?σ φ : (x)

as a non local replacement of the usual local perturbation of the Hamiltonian of the free field,
in the interaction picture. This interaction is covariant under translations and space rotations,
but not under Lorentz boosts.

27Technically it is a consequence of L + being not amenable.
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The opposite choice is to take for the measure on Σ the Dirac measure concentrated on some
special choice of σ, which gives the same result as if we would have restricted ourselves from the
start to the “canonical quantum spacetime” corresponding to that choice of σ.

Note that, for any of the above choices, there is a suitable kernel Gt such that

HI(t) =
∫

R4n

da1 · · · dan Gt(a1, . . . , an)φ(a1) · · ·φ(an). (6.4)

The scattering matrix (S-matrix) is defined as the formal solution

S = U(∞,−∞)

of

d

dt
U(t, s) = iHI(t)U(t, s)

fulfilling U(t, t) = I. It can be described in terms of Dyson’s non-commutative modification of
Picard’s method:

S =
∞∑

n=0

1
n!

∫
dt1 · · · dtnT [HI(t1), . . . ,HI(tn)];

the time ordered product is defined as

T [HI(t1), . . . ,HI(tn)] = HI(tπ(1)) · · ·HI(tπ(n)),

where π is the permutation of (1, 2, . . . , n) such that tπ(1) > tπ(2) > · · · > tπ(n).
The regularising effect of non locality on the Dyson series for this ansatz has not yet been

fully investigated. However there are interesting partial results; in particular Bahns [29] found
an ultraviolet finite S-matrix in a variant of this model for the :φ?3 : interaction, where the σ
variable is integrated out independently at any vertex of the resulting diagrams.

Other proposals, which go beyond the scope of this review, are possible for the generalisation
of Wick product on quantum spacetime. Indeed, on classical spacetime fg can be looked at
in at least two ways: as a pointwise product f ⊗ g 7→ fg in the algebra of functions, or as
a limiting procedure (fg)(x) = lim

y→x
f(x)g(y). These two equivalent procedures have inequivalent

generalisations to quantum spacetime: the first becomes f ⊗ g 7→ f ? g, while the second can be
given a meaning by sending the differences qj−qk to their minimum, compatibly with positivity
(i.e. uncertainty relations), as described in Section 4.6. The first one is precisely the one used
in [7], which we already have seen. The second is investigated in [10] and used to define another
form of quantum Wick product; it results in a complete ultraviolet regularisation of the S-matrix.
A third proposal is to give standalone definition of “local” subtractions of divergences for the
product φ?n; this gives yet another definition of quantum Wick product [30], whose behaviour
in the Dyson series has not yet been investigated.

Not only there are many inequivalent generalisations of the Wick product. There also are
inequivalent generalisations of the perturbative series. The Yang–Feldman equation, which is
equivalent to the Dyson series on the classical spacetime, provides a different evolution series [31].

In all the approach described above, interactions sooner or later destroy Lorentz covariance.
A striking example of this situation is provided by the approach based on the Yang–Feldman
equation, which seems to be covariant at all steps; yet in the end it requires a σ-dependent mass
renormalisation [30].

Since every more or less naive generalisation of local interactions seems to lead to a conflict
with Lorentz covariance, it is reasonable to conjecture that the crucial point on which we should
concentrate our efforts is to understand the fate of locality beyond non-commutativity.
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6.4 Formal unitarity is not violated!

In [32], unitarity violations of the S-matrix were found for the φ?4 theory, in the form of a failure
of the optical theorem for a particular graph (the “fish”).

However, it is clear that, if the interaction Hamiltonian is formally selfadjoint, the S-matrix
is formally unitary, and no formal violations of unitarity can be expected. So, what went wrong?

There are two main sources of ambiguity: the Euclidean methods and the Moyal expansion.
We first discuss the latter. To this end we consider the first order contribution to the two points
τ -function, arising upon insertion of the Dyson expansion into the Gell-Mann–Low formula28:

−1
2

∫
dt 〈0|T [φ(x),φ(y),HI(t)]|0〉, (6.5)

where the time ordering refers to the variables x0, y0, t.
For the sake of comparison we first recall a basic trick of the local theory, in the case of an

interaction term of the form HI(t) =
∫

d4a δ(t−a0) :φn(a) :. Plugging it into the above formula,
and carrying first the integration over the variable t we get

−1
2

∫
R4

da〈0|T [φ(x),φ(y), :φn(a) :]|0〉,

where now the time ordering refers to the variables x0, y0, a0. Inadvertently, the time ordering
has been shifted inside the integral which appear in the definition of HI(t). The reason why
this is possible is that the time parameter defining the interaction term is precisely the same
as the time variable the Wick monomials are evaluated at; hence integration and time ordering
commute.

The same trick cannot be done if instead we plug a non local interaction term of the form (6.4)
into (6.5), which gives

−1
2

∫
dt 〈0|T

[
φ(x), φ(y),

∫
da1 · · · danGt(a1, . . . , an) :φ(a1) · · ·φ(an) :

]
|0〉,

where the time ordering is relative to the variables x0, y0, t and has no relations at all with the
variables a0

j . This comment was already available in [7], but was rediscovered much later: the
correct time ordered prescription was then given the name of “Interaction Point Time Ordering
Prescription” (IPTOP), which is a somewhat unfortunate terminology, since a basic feature on
non commutative spacetimes is that the concept of point is not available any more.

Indeed, it was shown in [31] that, with the proper treatment of time ordering, the optical
theorem for the “fish” graph holds true, and there is no violation of unitarity even if time and
space do not commute. Indeed, this is only one single example; formal unitarity was already
implied by the choice of using the Dyson series with the correct time ordering prescription.

It has been observed that, if one takes a time/space commutative “canonical quantum space-
time”, than the violations of unitarity disappear, and this was taken as an indication that
time/space non-commutativity was responsible for the unitarity violations. As we have seen,
this is not the case. Formal unitarity violations were due to an improper treatment of the time
ordering; the only effect of time/space commutativity is to cancel the effects of that error.

We observed in Section 3.4 that, in a sense, the Moyal expansion is non-commutative but
local; non-locality being taken care of by analyticity. If one manipulates the Moyal expansion
and formally treats the twist as if it were a true differential operator, then all the fields (external
and internal vertices of Feynman diagrams) would be apparently evaluated at the same time and

28Here we omit the (infinite) normalisation 1
〈0|S|0〉 ; for an explicit proof that the cancellation of vacuum-vacuum

components carries over also in the non local framework, see [33].
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we would be naturally led to bring the time ordering inside the integral, thus taking the wrong
time ordering prescription.

Of course, this is not a proof that there exists a unitary theory; indeed, this would require
having completed the renormalisation programme in the Minkowskian setting. On the contrary,
this programme is quite underdeveloped, since it must be formulated in terms of operator fields,
which is a formidable task already in the commutative case (this is precisely the reason of the
fortune of Euclidean measure-theoretic methods on classical spacetime).

6.5 Perturbation theory and diagrams

The perturbative terms in the Gell-Mann–Low formula can be treated in a very economical
way by means of Feynman diagrams, namely simple drawings representing complicate integrals,
encoded in rules for drawing the diagrams. Unfortunately the situation in the non-commutative
case is quite confusing.

The first set of rules for diagrams appeared in a paper by Thomas Filk [34]. Filk’s approach
was in the spirit of a standalone S-matrix theory, as described e.g. in [35]29. So, his starting point
was to consider the classical action, keep the quadratic (i.e. free) term unchanged (according
to DFR analysis), and replace the pointwise product in the interaction term with the twisted
product.

Unfortunately, the classical action arises in the Gell-Mann–Low formula precisely due to the
trick of bringing the time ordering inside the integral (see any standard textbook on QFT);
which is not allowed in the case of time/space non-commutativity. The Filk rules, then, can
not be derived from the Hamiltonian evolution proposed in [7]. This is the first manifestation
of a basic fact of life: it is not obvious that perturbative methods which are equivalent in the
commutative case have equivalent non-commutative generalisations; usually they don’t. In this
case, the lack of unitarity could be regarded as a good reason to dismiss this approach.

This also explains why Filk rules turn out to fulfil unitarity in the case of time/space com-
mutativity. Motivated by [31], the rules for the DFR Hamiltonian approach were developed
in [36, 37] (see also the very clear [38]). In view of a remark of [39], the situation was further
clarified in [33], to which we may refer for more details.

Additional sets of inequivalent rules for diagrams can be obtained in the Euclidean framework,
discussed in the next section.

6.6 Euclidean methods and UV/IR mixing

There is a well known connection between local QFT and classical statistical mechanics. Indeed,
due to translation covariance and the spectrum condition, vacuum expectations

W (x1 − x2, x2 − x3, . . . , xn−1 − xn) = 〈0|φ(x1)φ(x2) · · ·φ(xn)|0〉

of local product of fields (Wightman functions) have analytic continuations to imaginary time
(Wick rotation), and the resulting functions Sn(η1, . . . , ηn−1) (the Schwinger functions) are to-
tally symmetric; here η0

j = i(xj − xj+1)0. This suggests to think of them as of correlation
functions of generalised Brownian motions, were the space of “paths” is a suitable space of dis-
tributions on R4, called Euclidean fields (or sometimes Euclidean field configurations). The
probability measure tolling these “paths” is expressed in terms of the classical Euclidean action,
which arises from the combination of the Wick rotation and of locality in time (the shift of
time ordering inside the integral, discussed in Section 6.4). This allows for using methods from
stochastic theory in the computation of Feynman diagrams; the idea is to finally switch back to

29It is well known that this approach was first sponsored by Werner Heisenberg; according to a private conver-
sation reported by Rudolph Haag, however, Heisenberg then dismissed this view.



Quantum Spacetime: a Disambiguation 41

real time to obtain physically observable quantities (inverse Wick rotation). This approach is
called “Euclidean” because the Lorentzian square of a 4-vector is positive definite at imaginary
times, if the signature −+ ++ is taken.

Note that the Euclidean formulation is possible only at the level of expectation values (Wight-
man functions); no Euclidean operator field theory can be directly obtained by a Wick rotation,
because of the sad fate of the time evolution operator eitH , when computed at imaginary times.

Wightman functions enjoy a property called “Wightman positivity”, which is equivalent to
the positivity of transition probabilities. Thanks to locality and covariance, this property has
a Euclidean counterpart, called “reflection positivity”, or “Osterwalder–Schrader” positivity; it
is necessary for a family of would-be Schwinger functions to be actually connected to some
physical expectation values in Minkowski space (see e.g. the nice and readable textbook [40]).
Note however that the correspondence between Wightman and OS axioms is not one-to-one; OS
positivity is a joint consequence of Wightman positivity, locality and covariance.

It is evident that there are many potential sources of trouble in trying to extend this method
to the non commutative case:

a) the original argument showing that the analytic continuation reaches imaginary times still
may be valid in the case of time space commutativity, since it is based on the spectral
condition (see d) here below);

b) since Lorentz covariance is broken, Schwinger functions cannot be expected to be symmet-
ric, so their interpretation as correlation functions is lost, and the stochastic interpretation
(if any) cannot be expected to be obtained by a simple deformation of the local partition
function (which would give symmetric Schwinger functions);

c) no replacement for reflection positivity is available so far (note that it should reproduce
usual reflection positivity in the large scale limit).

The above remarks are general; if in addition time does not commute with space,

d) twists blow up exponentially at imaginary times and destroy the analyticity argument for
the Wick rotation based on the spectrum condition (see however [41]);

e) there is really no reason to expect any rôle for the classical Euclidean action, because of
the time ordering issue.

Euclidean theory can (and is) of course be studied as a standalone S-matrix theory, but it
is not clear which could be its physical content; without any guidance from first principles or
experiments, there is little hope to guess appropriate Euclidean Feynman rules, giving a physical
theory on Minkowski space up to some Wick rotation. Note that it also might be sensible to
expect such a theory to have a local large scale limit.

Indeed, there are good indications that the current Euclidean approach is not related with
the Minkowski formulation [41].

Since the standalone approach is rather fashionable, quite often authors do not state explicitly
which is their perturbative setting. The joint consequences of Euclidean methods and exotic time
ordering prescription are then quite difficult to disentangle. Writing diagrams in terms of the
classical action would mean to take an exotic time ordering prescription on Minkowski space, if
the Euclidean theory could be obtained by a naive Wick rotation (it can not).

An example where such a disentanglement would be particularly useful is in the issue of
IR/UV mixing, namely the conjecture that infrared and ultraviolet divergences (usually de-
coupled in local QFT) get coupled in the non commutative case. This was first observed in the
Euclidean setting in [42], where the following intuitive explanation is given: “Roughly, very small
pulses instantaneously spread out very far upon interacting. In this manner very high energy
processes have important long distance consequences.” Were this true, then we could expect
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single particle collisions at Planck energy to have large detectable effects at astronomical dis-
tances, which would be quite surprising. The IR/UV mixing is now the strongest obstruction to
renormalisation in the Euclidean setting; as we said, in the Minkowskian setting renormalisation
is way underdeveloped, and it is not even crystal clear how to formulate it. As of today we do not
know if IR/UV mixing (or similar features/pathologies) does arise as well in the Minkowskian
setting (this claim could become outdated in the near future).
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