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Abstract. In this paper, we develop results in the direction of an analogue of Sjamaar
and Lerman’s singular reduction of Hamiltonian symplectic manifolds in the context of
reduction of Hamiltonian generalized complex manifolds (in the sense of Lin and Tolman).
Specifically, we prove that if a compact Lie group acts on a generalized complex manifold
in a Hamiltonian fashion, then the partition of the global quotient by orbit types induces
a partition of the Lin–Tolman quotient into generalized complex manifolds. This result holds
also for reduction of Hamiltonian generalized Kähler manifolds.
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1 Introduction

Generalized complex geometry was introduced by Hitchin in [11], and further developed by his
student Gualtieri in his doctoral thesis [9]. It serves as a common ground in which symplectic,
Poisson, and complex geometry can meet. For this reason, there has been much effort to
import ideas and techniques from these other fields into the generalized complex setting. In
particular, many constructions and results from equivariant symplectic geometry have found
useful analogues here. One example is that of Hamiltonian group actions and moment maps,
developed in [14]. (Similar constructions were developed and examined by other groups, such
as [4, 20] and [12], but this paper expands specifically on the work of Lin and Tolman.)

Lin and Tolman’s construction generalizes the usual symplectic definition, and they go on
to prove that one can reduce a generalized complex manifold by its Hamiltonian symmetries,
in perfect parallel to Marsden–Weinstein symplectic reduction [15] (sometimes also credited to
Meyer [16]). Just as in the symplectic case, in order to ensure that the generalized reduced space
is a manifold, one must make an assumption regarding freeness of the group action.

In [19], Lerman and Sjamaar proved that if the symplectic reduced space is not a manifold,
then the orbit type stratification of the original symplectic manifold induces the structure of
a stratified space (see Definition 1.7 of that paper) on the reduced space, each stratum of which
is naturally a symplectic manifold. The main result of this paper, Theorem 5.3, is a first step
in the direction of an analagous result for the case of a singular generalized complex reduced
space. It states that the singular generalized complex reduced space can be partitioned into
disjoint generalized complex manifolds. It is not yet known whether the reduced space in this
situation is actually a stratified space. A similar, although distinct, situation was studied in [13],
in which the authors considered the singular reduction of Dirac manifolds. They analyzed the
global quotient of a Dirac manifold by a proper group action as a differential space, as in [6],
and obtained conditions that guarantee the Dirac structure will descend to the quotient space.

mailto:timothy.goldberg@lr.edu
http://mat.lr.edu/faculty/goldberg
http://dx.doi.org/10.3842/SIGMA.2010.081


2 T.E. Goldberg

An interesting difference between the symplectic and generalized complex situations is that
the generic result of symplectic reduction is a space with at worst orbifold singularities, whereas
for the reduction of a twisted generalized complex manifold, the generic result may be a space
with worse-than-orbifold singularities. See Remark 5.1 below.

Section 2 is a rapid introduction to some essential notions from generalized complex geomet-
ry. Section 3 reviews some important facts about equivariant cohomology and the orbit type
stratification of G-spaces. Section 4 consists of a summary of Hamiltonian actions and reduction
in generalized complex geometry. Finally, Section 5 contains the full statement and proof of our
main theorem.

An earlier version of this work appeared in the author’s doctoral thesis [8], where many
definitions and calculations are explained in great detail.

Throughout, we use the abbreviations “GC” for “generalized complex” and “GK” for “gene-
ralized Kähler”. Also, we typically use the same notation and nomenclature to refer to both
a map and its complex linear extension. Finally, we make use of the musical notation for the map
between a vector space and its dual induced by a bilinear form. If B : V × V → R is a bilinear
form on a real vector space V , then we will denote by B[ : V → V ∗ the map v 7→ ιvB := B(v, ·),
where ιv denotes the interior product by v. If B is non-degenerate, then B[ is invertible and
we denote its inverse by B] :=

(
B[

)−1
. We also use the musical notation for vector bundles,

sections of their second symmetric powers, and the associated bundle maps.

2 Generalized complex geometry

We begin by giving several standard definitions and results from generalized complex geometry,
which can be found in [9] or [3].

For any smooth manifold M , the Pontryagin bundle , or generalized tangent bundle ,
of M is TM := TM ⊕ T ∗M . This vector bundle carries a natural non-degenerate symmetric
metric 〈〈·, ·〉〉 of signature (n, n), defined by

〈〈u + α, v + β〉〉 :=
1
2

(α(v) + β(u))

for all x ∈ M and u + α, v + β ∈ TxM . We will use the same notation for the complex bilinear
extension of this metric to the complexification TCM := TM⊗RC. These metrics will henceforth
be referred to as the standard metrics on TM and TCM .

Proposition 2.1. Let M be a manifold. There is a natural bijective correspondence between
the following two structures.

1. Complex linear subbundles E ⊂ TCM over M such that E ∩ E = 0 and E is maximally
isotropic with respect to the standard metric on TCV . (Here 0 denotes the image of the
zero section of TCM → M , as is customary.)

2. Bundle automorphisms J of TM over the identity M → M such that J 2 = −id and J is
orthogonal with respect to the standard metric on TM .

Definition 2.2. Let M be a manifold. Either of the equivalent structures described in Propo-
sition 2.1 will be called an almost GC structure on M . If M is equipped with an almost GC
structure J , then (M,J ) is an almost GC manifold .

Let E ⊂ TCM be an almost GC structure on M , and for each x ∈ M let πx : TC,xM → TC,xM
be the projection. The type of this almost GC structure at the point x ∈ M is the complex
codimension of πx(Ex) in TC,xM :

type(E)x = dimC TC,xM − dimC πx(Ex).
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Let J1 and J2 be commuting almost GC structures on M . Then G := −J1 ◦ J2 is an
orthogonal and involutive bundle map TM → TM , and there is an associated bilinear form
defined by

(X ,Y) 7→ 〈〈G(X ),Y〉〉

for all X ,Y ∈ TM in a common fiber. We call G positive definite if its associated bilinear form
is positive definite, i.e. if 〈〈G(X ),X〉〉 > 0 for all nonzero X ∈ TM . An almost GK structure
on M is a pair of commuting almost GC structures (J1,J2) on M such that G := −J1 ◦ J2 is
positive definite.

Remark 2.3. Let M be a manifold. A maximally isotropic linear subbundle of TM , respec-
tively TCM , is called a Dirac structure , respectively complex Dirac structure on M . Thus
an almost GC structure on M is a complex Dirac structure E ⊂ TCM satisfying E ∩ E = {0}.

Definition 2.4. Let M be a manifold, and let B ∈ Ω2(M), where Ω2(M) denotes the space of
differential two-forms on M . The B-transform of TM defined by B is the map

eB : TM → TM, eB :=
(

1 0
B[ 1

)
.

The B-transform eB is called closed or exact if the two-form B is closed or exact, respectively.

Proposition 2.5. Let M be a manifold and let B ∈ Ω2(M). The B-field transform eB is
orthogonal with respect to the standard metrics on TM and TCM . It transforms almost GC
structures on V by

J 7→ eB ◦ J ◦ e−B and E 7→ eB(E)

for an almost GC structure given equivalently by a map J or a Dirac structure E, and it preserves
types. It transforms almost GK structures (J1,J2) by transforming J1 and J2 individually.

The Lie bracket defines a skew-symmetric bilinear bracket on sections of the tangent bund-
le TM . This can be extended to a skew-symmetric bilinear bracket on sections of the Pontryagin
bundle TM , called the Courant bracket , defined by

[X + α, Y + β] := [X, Y ] + LXβ − LY α− 1
2

d (β(X)− α(Y ))

for all X +α, Y +β ∈ Γ(TM), where Γ(TM) denotes the space of smooth sections of TM → M .
Here the bracket on the right-hand side is the usual Lie bracket of vector fields, and L denotes Lie
differentiation. For each closed differential three-form H ∈ Ω3

cl(M), there is also the H-twisted
Courant bracket , defined by

[X + α, Y + β]H := [X + α, Y + β] + ιY ιXH

X +α, Y +β ∈ Γ(TM). Both the Courant and the H-twisted Courant brackets extend complex
linearly to brackets on smooth sections of the complexified Pontryagin bundle TCM , which will
be denoted the same way.

Definition 2.6. Let M be a manifold, and let L be a real (respectively complex) linear sub-
bundle of TM (respectively TCM). Then L is Courant involutive if the space Γ(L) of smooth
sections of L is closed under the Courant bracket, i.e.

[
Γ(L),Γ(L)

]
⊂ Γ(L). If H ∈ Ω3

cl(M), we
similarly define H-twisted Courant involutive .
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Let E ⊂ TCM be an almost GC structure on M . This is a GC structure if E is Courant
involutive, in which case (M,E) is a GC manifold . If H ∈ Ω3

cl(M) and E is H-twisted Courant
involutive, then E is an H-twisted GC structure , and (M,E,H) is a twisted GC manifold .

Let (J1,J2) be an almost GK structure on M . This is a GK structure if both J1 and J2 are
Courant involutive, in which case (M,J1,J2) is a GK manifold . If H ∈ Ω3

cl(M) and J1 and J2

are H-twisted Courant involutive, then this is an H-twisted GK structure , and (M,J1,J2,H)
is a twisted GK manifold .

Remark 2.7. Let M be a manifold and D be a real or complex Dirac structure on M . Then D
is called closed , or integrable , if the space Γ(D) of smooth sections of D is Courant involutive.
Thus a GC structure on M is a closed complex Dirac structure E ⊂ TCM such that E ∩E = 0.

Proposition 2.8 (Proposition 3.23 of [9]). Let M be a manifold, let H ∈ Ω3
cl(M), and

let B ∈ Ω2(M). The B-transform of an H-twisted GC structure is an (H + dB)-twisted GC
structure. Thus, a closed B-transform of an untwisted GC structure is untwisted.

Example 2.9.

1. Let (M,ω) be an almost symplectic manifold , meaning that ω ∈ Ω2(M) is a non-
degenerate form on M , but not necessarily closed. This defines an almost GC structure Jω

on M by

Jω :=
(

0 −ω]

ω[ 0

)
of type 0 at every point. It has associated Dirac structure defined by

Eω,x = {X − i ω[
x(X) | X ∈ TC,xM},

for each x ∈ M . As discussed in Section 3 of [9], it is a GC structure if and only if dω = 0,
i.e. if and only if ω is a symplectic structure on M .

2. Let (M, I) be an almost complex manifold , meaning that I2 = −idTM but I is not
necessarily integrable. This defines an almost GC structure JI on M by

JI :=
(
−I 0
0 I∗

)
.

of type n at every point. It has associated Dirac structure defined by

EI = T0,1M ⊕ T ∗
1,0M,

where T1,0M,T0,1M ⊂ TCM denote the ±i-eigenbundles of I. As discussed in Section 3
of [9], it is a GC structure if and only if I is integrable, i.e. if and only if I is a complex
structure on M .

3. Let M be a Kähler manifold with Kähler form ω ∈ Ω2(M), complex structure I : TM →
TM , and associated Riemannian metric g. Then Jω and JI commute and

G := −Jω ◦ JI =
(

0 g]

g[ 0

)
is positive definite, so (M,Jω,JI) is a GK manifold.
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Example 2.10. Let (M1,J1) and (M2,J2) be almost GC manifolds. Then the direct sum J
of J1 and J2 is a map J := (J1,J2) : TM1⊕TM2 → TM1⊕TM2, which under the identification
TM1 ⊕ TM2

∼= T(M1 ×M2) yields an almost GC structure on M1 ×M2. We will call this the
direct sum of the almost GC structures on M1 and M2. It is not hard to see that (J1,J2) is
a GC structure on M1 ×M2 if and only if Ji is a GC structure on Mi for i = 1, 2.

Let H1 ∈ Ω3
cl(M1) and H2 ∈ Ω3

cl(M2), let πi : M1 ×M2 → Mi be the natural projection for
i = 1, 2, and set H := π∗

1H1 + π∗
2H2. By the naturality of the exterior derivative, we know H is

a closed three-form on M1×M2. Furthermore, it is not hard to see that (J1,J2) is an H-twisted
GC structure on M1 ×M2 if and only if Ji is an Hi-twisted GC structure on Mi for i = 1, 2.

There is a completely analogous product construction for almost GK and GK manifolds as
well.

Let (M,E,H) be a twisted GC manifold. Suppose S is a submanifold of M given by the
embedding j : S ↪→ M . Although j induces a natural embedding j∗ : TS ↪→ TM of tangent
bundles, because of the contravariance of cotangent bundles there is in general no obvious
embedding TS ↪→ TM of the Pontryagin bundles. The following definition comes from [3].

For each x ∈ S, define

ES,x :=
{
(X, λ|S) ∈ TC,xS | (X, λ) ∈ (TC,xS ⊕ T ∗

C,xM) ∩ Ex

}
.

By [3, Lemma 8.2], this ES,x is a maximally isotropic complex subspace of TC,xS. Let ES :=⊔
x∈S ES,x. Then ES is a constant-rank complex linear distribution of TCS, but is not in general

a smooth subbundle, nor will it generally satisfy ES ∩ ES = 0.

Proposition 2.11. Let (M,E,H) be a twisted GC manifold, let j : S ↪→ M be a submanifold,
and let ES ⊂ TCS be as defined above. If ES is a subbundle of TCS, then ES is (j∗H)-twisted
Courant involutive.

In the untwisted case, where H = 0, Proposition 2.11 was proved in [5, Corollary 3.1.4].
The proof in the twisted case is nearly identical, with only minor changes to this proof and the
relevant definitions and precursory results, (i.e. Definition 2.3.2, Propositions 2.3.3 and 3.1.3,
and Corollary 3.1.4 in [5]).

Definition 2.12. Let (M,E,H) be a twisted GC manifold, and let j : S ↪→ M be a submanifold.
If ES ⊂ TCS is a subbundle and satisfies ES ∩ ES = 0, then (S, ES , j∗H) is a (twisted) GC
submanifold of (M,E,H), and we denote by JS the GC structure on S induced by ES .

Remark 2.13. Suppose (M,E,H) is a twisted GC manifold, and j : S ↪→ M is an open sub-
manifold. Then since TS and T ∗S can be identified with (TM)|S and (T ∗M)|S , respectively, we
see that we can identify ES with E|S , that JS = J |TS , and that j∗H can be identified with H|S .
Therefore an open submanifold of an H-twisted GC manifold is automatically an H-twisted GC
manifold. Similarly, an open submanifold of an H-twisted GK manifold is automatically an
H-twisted GK manifold.

Definition 2.14. Let (M,J ) be an almost GC manifold, and let S ⊂ M be a submanifold.
A splitting bundle for S with respect to (M,J ) is a subbundle N of TM |S → S such that
TM |S = TS ⊕ N and TS ⊕ Ann(N) ⊂ TM is invariant under J . If a splitting bundle exists
for S, then S is called a split submanifold of (M,J ).

The following is an extension of Proposition 5.12 of [3] to the twisted case. As with Propo-
sition 2.11, the original proof still holds with only minor alterations.
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Proposition 2.15. Let (M,J ,H) be a twisted GC manifold, and let i : S ↪→ M be a split
submanifold of M with splitting bundle N → S. Then S is an (i∗H)-twisted GC submanifold of
(M,J ,H), and the GC structure corresponding to the bundle ES is the same as the one induced
by the restriction of J via the natural isomorphism

TS ∼= TS ⊕AnnN ⊂ TM.

It is straightforward to show that this implies the following.

Corollary 2.16. Let (M,J1,J2,H) be a twisted GK manifold, and and let i : S ↪→ M be a split
submanifold of M with respect to both J1 and J2, with common splitting bundle N → S. Then
(S, (J1)W , (J2)W ) is an (i∗H)-twisted GK manifold.

Definition 2.17. Let M be a manifold, and let G be a Lie group acting smoothly on M . This
lifts to an action of G on TM by bundle automorphisms, given by(

g∗, (g−1)∗
)

: TM → TM

for each g ∈ G, where g∗ is the pushforward of tangent vectors by the map g : M → M and
(g−1)∗ is the pullback of tangent covectors by the map g−1 : M → M .

Let J be an H-twisted GC structure on M . We say that the G-action on (M,J ,H) is
canonical if the following hold.

1. The differential form H is G-invariant, i.e. g∗H = H for all g ∈ G.

2. The action of G on TM commutes with J , i.e. the diagram

TM

(g∗,(g−1)∗)
��

J // TM

(g∗,(g−1)∗)
��

TM J
// TM

commutes for all g ∈ G.

It is easy to check that a smooth group action on a manifold commutes with an almost GC
structure J : TM → TM if and only if the complex linear extension of the action preserves the
corresponding complex Dirac structure.

Example 2.18. Let (M,ω) be an almost symplectic manifold, let ω[ : TM → T ∗M be the
associated bundle isomorphism, and let

Jω :=
(

0 −ω]

ω[ 0

)
be the associated almost GC structure on M . Let G be a Lie group acting smoothly on M .
It is easy to check that the G-action is symplectic if and only if the map ω[ : TM → T ∗M is
G-equivariant with respect to the pushforward action on TM and the inverse pullback action
on T ∗M , if and only if the G-action commutes with Jω.

Recall that for a smooth action of a compact Lie group G on a manifold M , each connected
component of the fixed point set MG is a closed submanifold of M . (Different components
of MG may have different dimensions.)

Proposition 2.19. Let M be a manifold, and let J be an almost GC structure on M . Suppose
the compact Lie group G acts canonically on (M,J ). Then each component of MG is a split
submanifold of (M,J ).
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Proof. Let (MG)′ be a component of MG. First, recall that for each x ∈ (MG)′ the derivative
of the action of G at x defines a linear action of G on TxM , and that Tx(MG)′ = (TxM)G. Let
dg be a bi-invariant Haar measure on G, adjusted so that dg(G) = 1. Define a bundle map
π : (TM)|(MG)′ → T (MG)′ by setting

πx(v) :=
∫

G
(g · v) dg for all v ∈ V,

for each x ∈ (MG)′. Define the subbundle N ⊂ (TM)|(MG)′ by setting Nx := kerπx for each
x ∈

(
MG

)′. That π is a bundle map and N is a vector bundle follow from the naturality of the
technique of averaging by integration. Note also that TxM = (TxM)G ⊕ Nx = Tx(MG)′ ⊕ Nx

for each x ∈
(
MG

)′. To conclude that N is a splitting for (MG)′ ⊂ (M,J ), it remains only to
show that T (MG)′ ⊕Ann(N) = (TM)G|(MG)′ ⊕Ann(N) is preserved by J .

Fix x ∈
(
MG

)′, let V = TxM , and let W = Nx. We claim that Ann(W ) = (V ∗)G, which
would imply that (V ⊕ V ∗)G = V G ⊕ (V ∗)G = V G ⊕ Ann(W ). Since Jx commutes with the
action of G on V ⊕ V ∗, we know that J

(
(V ⊕ V ∗)G

)
= (V ⊕ V ∗)G, and hence a proof of this

claim completes the proof of this proposition.
Let λ ∈ Ann(W ), let g ∈ G, and let u ∈ V . Decompose u as u = v + w for v ∈ V G and

w ∈ W . Then

(g · λ)(u) = λ(g−1 · u)

= λ(g−1 · v) + λ(g−1 · w)

= λ(v) + λ(g−1 · w) since v ∈ V G

= λ(v) + 0 since w ∈ W , W is G-stable, and λ ∈ Ann(W )
= λ(v) + λ(w) since w ∈ W and λ ∈ Ann(W )
= λ(u).

Therefore λ ∈ (V ∗)G, so Ann(W ) ⊂ (V ∗)G. Note that

Ann(W ) ∼= (V/W )∗ =
(
(V G ⊕W )/W

)∗ ∼= (V G)∗.

Hence dim Ann(W ) = dim(V G), so Ann(W ) = (V ∗)G. �

3 Background information on G-spaces

In this section we give some brief definitions and results about compact group actions on man-
ifolds which will be required in later sections. The standard reference for the material on
equivariant cohomology is [10]. The material on orbit spaces and their stratification by orbit
types can be found in [7, Chapter 2] and [18, Chapter 2].

3.1 Equivariant cohomology

Let M be a manifold and G be a compact Lie group acting smoothly on M . Consider the space
Ωk(M)⊗ Si(g∗), where Si denotes the degree i elements of the symmetric algebra. This is a G-
space with action defined by linear extension of the rule g · (α⊗ p) :=

(
(g−1)∗α

)
⊗ (p ◦ Adg−1)

for g ∈ G, α ∈ Ω?(M), p ∈ S(g∗). We can identify Ωk(M) ⊗ Si(g∗) with the space of degree i
polynomial maps g → Ωk(M) via

α⊗ p : ξ 7→ p(ξ) · α

for ξ ∈ g. An element of Ωk(M)⊗Si(g∗) is G-invariant if and only if its corresponding polynomial
map is G-equivariant with respect to the adjoint action of G on g and the action of G on Ωk(M)
given by g · α := (g−1)∗α for g ∈ G, α ∈ Ωk(M).
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Definition 3.1. Let M be a manifold and G be a compact Lie group acting smoothly on M .
The space of equivariant differential forms of degree n on M is

Ωn
G(M) :=

bn/2c⊕
i=0

(
Ωn−2i(M)⊗ Si(g∗)

)G
.

The differential dG : Ωn
G → Ωn+1

G is defined, viewing equivariant forms as maps g → Ω?(M), by

dG(α⊗ p)(ξ) := (dα− ιξM
α) p(ξ) for all ξ ∈ g.

The Cartan model for the G-equivariant cohomology of M is H?
G(M) := H?(Ω?

G,dG).

Suppose now that G acts freely on M . Then the G-equivariant cohomology of M is naturally
isomorphic as a graded algebra to the de Rham cohomology of the quotient M/G,

H?
G(M) ∼= H?(M/G).

We denote this isomorphism by κ : H?
G(M) → H?(M/G).

Let B ∈ Ωn(M). The form B is called basic if it is G-equivariant and if ιξM
B = 0 for all

ξ ∈ g. If there is a differential form B̃ ∈ Ωn(M/G) such that the pullback of B̃ by the quotient
map M → M/G equals B, then we say B descends to B̃.

Proposition 3.2. Let M be a manifold and G be a compact Lie group acting smoothly and
freely on M .

(a) If B ∈ Ωn(M) is basic, then B descends to some B̃ ∈ Ωn(M/G).

(b) If B ∈ Ωn(M)G ⊂ Ωn
G(M) is equivariantly closed, i.e. dGB = 0, then B is closed and basic

and descends to some closed B̃ ∈ Ωn(M/G) such that

κ[B] = [B̃],

where [B] and [B̃] are the cohomology classes of B and B̃, respectively.

(c) If η ∈ Ωn
G(M) is equivariantly closed, then there exists Γ ∈ Ωn−1

G (M) so that η + dGΓ ∈
Ωn(M)G ⊂ Ωn

G(M). In this case, since η+dGΓ is equivariantly closed, it descends to some
η̃ ∈ Ωn(M/G) such that κ[η] = [η̃].

Definition 3.3. Let M be a manifold and G be a compact Lie group acting on M smoothly
and freely. Then M → M/G is a (left) principal G-bundle. A connection on this bundle is
a g-valued one-form θ ∈ Ω1(M, g) such that

1. θ is G-equivariant, i.e. g∗θ = Adg ◦ θ;

2. θ(ξM ) ≡ ξ for all ξ ∈ g.

3.2 Orbit type stratification

Let G be a group. For each subgroup H of G, we will denote by (H) the set of subgroups of G
that are conjugate to H. Suppose G is a compact Lie group and M is a manifold on which G
acts smoothly. Note that the conjugacy relation among subgroups of G preserves closedness,
and hence also preserves the property of being a Lie subgroup.

Definition 3.4. Let x ∈ M , and let Gx := {g ∈ G | g · x = x} be the isotropy subgroup of x
in G. The orbit type of the point x, or of G · x, is the set (Gx) of subgroups of G that are
conjugate to Gx.

Let H be a closed subgroup H of G. The (H)-orbit type submanifold of M is the set
M(H) := {x ∈ M | Gx ∈ (H)}. The H-isotropy type submanifold of M is the set MH := {x ∈
M | Gx = H}. The H-fixed point submanifold of M is the set MH := {x ∈ M | Gx ⊂ H}.
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Note that the sets defined above are related by the equation MH = M(H) ∩MH . Also, two
G-orbits in M have the same orbit type if and only if they are G-equivariantly diffeomorphic.
This leads one to the following definitions.

Definition 3.5. Let x ∈ M , and let H = Gx. The local action type submanifold through x
is the subset M lx

(H) ⊂ M of points y ∈ M such that there is a G-equivariant diffeomorphism

between G-invariant open neighborhoods of x and y. Define M lx
H := M lx

(H) ∩MH .

Some important properties of the sets we have defined above are collected in the following
proposition. Their proofs can be found in the references cited at the beginning of this section.

Proposition 3.6. Let G be a compact Lie group, and M be a manifold on which G acts smoothly.
Let x ∈ M and put H = Gx. Then the following hold.

(a) M lx
(H), respectively M lx

H , is an open and closed subset of M(H), respectively MH .

(b) The sets M lx
(H) and M lx

H are locally closed embedded submanifolds of M , as is each connected
component of MH , of M(H), and of MH .

(c) M lx
H and M lx

(H) consists of the union of certain components of MH and M(H), respectively.

(d) MH and M lx
H are open in MH .

(e) M(H) and M lx
(H) are G-stable, and G ·MH = M(H) and G ·M lx

H = M lx
(H).

(f) Let N = NG(H) be the normalizer of H in G. Both MH and M lx
H are N -stable, and N/H

acts freely on both. Hence M lx
H /N ∼= M lx

H / (N/H) is a manifold.

(g) The inclusions MH ↪→ M(H) and M lx
H ↪→ M lx

(H) induce homeomorphisms MH → M(H) and

M lx
H /N → M lx

(H)/G. Thus the quotient M lx
(H)/G inherits a natural manifold structure.

(h) Each component of the quotient M(H)/G inherits a natural manifold structure.

In general, the orbit space M/G can be a very singular space. It will be a Hausdorff and
second-countable topological space, but will rarely inherit a manifold, or even an orbifold, struc-
ture from M . However, because M is the disjoint union of its orbit type submanifolds, we can
also partition the orbit space:

M/G =
⊔
(H)

M(H)/G, (3.1)

where the disjoint union is taken over all the distinct orbit type submanifolds of M . Since each
component of M(H)/G is a manifold, we know that, after refining the partition to components,
(3.1) is a partition of M/G into manifolds. It is called the orbit type partition of M/G.

Remark 3.7. All of the above results hold true even if G is an arbitrary Lie group, so long as
it acts on M both smoothly and properly.

4 Hamiltonian actions on generalized complex manifolds

In [14], the authors proposed the following definition of Hamiltonian actions on GC manifolds.

Definition 4.1. Let (M,J ) be an untwisted GC manifold, let E be the associated complex
Dirac structure on M , and let G be a Lie group acting canonically on (M,J ). This action is
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generalized Hamiltonian if there exists a G-equivariant map µ : M → g∗ such that, for all
ξ ∈ g,

ξM = −J (dµξ)

or equivalently ξM − idµξ ∈ Γ(E). Here µξ : M → R is the smooth function defined by µξ(x) :=
〈µ(x), ξ〉 for all x ∈ M . The map µ is called a generalized moment map for the G-action
on (M,J ).

Let (M,J ,H) be a twisted GC manifold, and let G be a Lie group acting canonically on
(M,J ,H). This action is twisted generalized Hamiltonian if there exists a G-equivariant
map µ : M → g∗ and a G-equivariant g∗-valued one-form α ∈ Ω1(M, g∗) on M such that, for all
ξ ∈ M ,

1. ξM = −J (dµξ)− αξ (or equivalently ξM + αξ − idµξ ∈ Γ(E)), and

2. ιξM
H = dαξ.

Here µξ is as defined above, and αξ ∈ Ω1(M) is the differential one-form on M defined by
(αξ)x(v) := 〈αx(v), ξ〉 for all x ∈ M , v ∈ TxM . The map µ and the one-form α are called
a generalized moment map and a moment one-form , respectively, for the action G-action
on (M,J ,H).

Definition 4.2. Let (M,J1,J2) be a GK manifold, and let G be a Lie group acting on M and
preserving both J1 and J2. This action is called generalized Hamiltonian if the action of G
on (M,J1) is generalized Hamiltonian.

Similarly, if (M,J1,J2,H) be a twisted GK manifold, and the G-action preserves J1, J2,
and H, then the action is twisted generalized Hamiltonian if the action of G on (M,J1,H)
is twisted generalized Hamiltonian.

Remark 4.3.

(a) Note that a moment one-form α ∈ Ω1(M, g∗) is an equivariant differential form of degree 3.

(b) Because E is an isotropic subbundle, the condition that ξM + αξ − idµξ ∈ E implies that〈〈
ξM + αξ − idµξ, ξM + αξ − idµξ

〉〉
= 0, and hence that ιξM

αξ = ιξM
dµξ = 0.

(c) Given a GC manifold (M,J ), one can consider this as a twisted GC manifold (M,J ,H)
by setting H = 0. Therefore, if a Lie group G acts on (M,J ) canonically, we have
two notions of whether the action is Hamiltonian. It may be Hamiltonian as an action
on (M,J ), in which case there is just a moment map, or it may be Hamiltonian as an
action on (M,J ,H), in which case there is both a moment map and a moment one-form.
It is potentially interesting to explore both possibilities.

Example 4.4. Let (M,ω) be a symplectic manifold, and let G be a Lie group acting on (M,ω)
in a Hamiltonian fashion with moment map Φ: M → g∗. Recall that this means the G-action is
symplectic, the map Φ is G-equivariant, and for all ξ ∈ g we have dΦξ = ιξM

. Let Jω be the GC
structure on M induced by ω. As discussed in Example 3.8 of [14], the action of G on (M,Jω)
is generalized Hamiltonian, and Φ is a generalized moment map.

Theorem 4.5. Let (M,E,H) be a twisted GC manifold, where E is the associated complex
Dirac structure, and let G be a Lie group acting on (M,E,H) in a Hamiltonian fashion with
moment map µ : M → g∗ and moment one-form α ∈ Ω1(M, g∗). If j : S ↪→ M is a G-stable
twisted GC submanifold of (M,E,H), then the restriction of the action of G to (S, ES , j∗H) is
Hamiltonian with moment map µ|S : S → g∗ and moment one-form j∗α ∈ Ω1(S, g∗).
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Proof. First we will prove that the action of G on S preserves ES . Let x ∈ S and (X, λ) ∈
(TC,xS ⊕ T ∗

C,xM) ∩ Ex, which means that (X, λ|S) ∈ ES,x. Then for any g ∈ G we have

g · (X + j∗λ) = g∗(X) + (g−1)∗λ|S .

Because S is G-stable, the inclusion j : S ↪→ M is G-equivariant, i.e. the G-action commutes
with j. Hence j∗ : TS ↪→ TM is G-equivariant, so g∗(X) ∈ Tg·xS. Also

(g−1)∗ (λ|S) = (g−1)∗j∗λ = j∗(g−1)∗λ =
(
(g−1)∗λ

)
|S .

Since E is G-stable, we have g · (X + λ) = g∗(X) + (g−1)∗λ ∈ Eg·x. Therefore g · (X, j∗λ) =(
g∗(X), j∗(g−1)∗λ

)
∈ ES,g·x. Thus ES is G-stable.

Now suppose that (S, ES , j∗H) is a GC submanifold of (M,E,H), meaning that ES is a vector
bundle, that ES ∩ ES = 0, and that ES is j∗H-twisted Courant involutive. Since j is G-
equivariant, for all ξ ∈ g we have ξM |S = ξS , (j∗µ)ξ = j∗(µξ), and (j∗α)ξ = j∗(αξ). Furthermore,
by the naturality of the exterior derivative we have

d(j∗µ)ξ = dj∗(µξ) = j∗
(
dµξ

)
,

so d(µ|S)ξ = (dµξ)|S . For each x ∈ S ⊂ M , since
(
ξM + αξ − idµξ

)∣∣
x
∈ Ex, this means that(

ξS + αξ|S − idµξ
∣∣
S

)∣∣∣
x
∈ ES,x.

Again using the G-equivariance of j, for all x ∈ S we have

ιξS
j∗(H)|x = j∗(ιξS

H)|x = j∗(ιξM
H)|x = j∗(dαξ)

∣∣∣
x

= d(j∗α)ξ
∣∣∣
x
.

Thus the action of G on (S, ES , j∗H) is twisted Hamiltonian with moment map µ|S and moment
one-form α|S . �

The above result holds also for the untwisted case, of course, by putting H = 0 and α = 0.
The following three results are exactly what makes reduction of generalized Hamiltonian

manifolds possible.

Theorem 4.6 (Lemma 3.8 and Proposition 4.6 of [14]). Let a compact Lie group G act
on a GC manifold (M,J ), respectfully a GK manifold (M,J1,J2), in a Hamiltonian fashion
with moment map µ : M → g∗. Suppose a ∈ g∗ is an element such that G acts freely on
the inverse image µ−1(Oa) of the coadjoint orbit Oa of G through a. Then the quotient space
µ−1(Oa)/G inherits a natural GC structure J̃ from J , respectfully a natural GK structure
(J̃1, J̃2) from (J1,J2).

Lemma 4.7 (Lemma A.6 of [14]). Let a compact Lie group G act freely on a manifold M .
Let H be a G-invariant and closed three-form, and let α : g → Ω1(M) be an equivariant map.
Fix a connection θ ∈ Ω1(M, g) on the principal G-bundle M → M/G. Then if H + α ∈ Ω3

G(M)
is equivariantly closed, there exists a natural form Γ ∈ Ω2(M)G so that ιξM

Γ = αξ for all ξ ∈ g.
Thus H + α + dGΓ ∈ Ω3(M)G ⊂ Ω3

G(M) is closed and basic and so descends to a closed form
H̃ ∈ Ω3(M/G) so that [H̃] = κ[H + α].

Theorem 4.8 (Propositions A.7 and A.10 of [14]). Let a compact Lie group G act on
a twisted GC manifold (M,J ,H), respectfully a twisted GK manifold (M,J1,J2,H), in a Hamil-
tonian fashion with moment map µ : M → g∗ and moment one-form α ∈ Ω1(M, g). Suppose
a ∈ g∗ is an element such that G acts freely on the inverse image µ−1(Oa) of the coadjoint
orbit Oa of G through a. Assume that H + α is equivariantly closed. Given a connection on
the principal G-bundle µ−1(Oa) → µ−1(Oa)/G, the quotient space µ−1(Oa)/G inherits an H̃-
twisted GC structure J̃ from J , respectfully an H̃-twisted GK structure (J̃1, J̃2) from (J1,J2),
where H̃ is defined as in Lemma 4.7 above. Up to B-transform, these inherited structures are
independent of our choice of connection.
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Definition 4.9. The quotient space µ−1(Oa)/G in Theorems 4.6 and 4.8 is called the gene-
ralized complex quotient (or generalized Kähler quotient , as applicable), or the Lin–
Tolman quotient , of M by G at level a. We use the notation

Ma := µ−1(Oa)/G.

Remark 4.10. As noted in Example 3.9 of [14], in the context of the hypotheses of Theorem 4.6,
if the GC structure and moment map come from a symplectic structure and moment map,
then the GC structure on the quotient is exactly the one induced by the Marsden–Weinstein
ssymplectic structure on the quotient.

The following result will be useful to us later. Its proof follows trivially from the definitions
of generalized and twisted generalized Hamiltonian actions.

Lemma 4.11. Let (M,J ,H) be a twisted GC manifold with a Hamiltonian action of a Lie
group G, moment map µ : M → g∗, and moment one-form α ∈ Ω1(M, g∗). Let K ⊂ G be a Lie
subgroup. Then the induced action of K on (M,J ,H) is also Hamiltonian, with generalized
moment map and moment one-form the compositions of µ and α, respectively, with the projection
g∗ � k∗ dual to the inclusion k ↪→ g:

M
µ // g∗ // // k∗ , TM

α // g∗ // // k∗ .

Example 4.12. Let G be a Lie group, and let (Mi,Ji,Hi) be a twisted GC manifold on
which G acts in a Hamiltonian fashion with moment map µi : Mi → g∗ and moment one-
form αi ∈ Ω1(Mi, g

∗), for i = 1, 2. Let (M1 × M2,J ,H) be the product of these two GC
manifolds, as defined in Example 2.10. Recall that J = (J1,J2) and H = π∗

1H1 + π∗
2H2, where

πi : M1 × M2 → Mi is the natural projection for i = 1, 2. Define µ : M1 × M2 → g∗ ⊕ g∗ and
α ∈ Ω1(M1 ×M2, g

∗ ⊕ g∗) by µ = π∗
1µ1 + π∗

2µ2 and α = π∗
1α1 + π∗

2α2. It is easy to check that
the action of G × G on M1 ×M2 is twisted generalized Hamiltonian with moment map µ and
moment one-form α.

Embedding G diagonally in G×G, we obtain a Hamiltonian action of G on M1 ×M2. The
projection g∗ ⊕ g∗ � g∗ induced by this embedding is given by addition: (λ1, λ2) 7→ λ1 + λ2, so
a moment map and moment one-form for the G-action on M1 ×M2 is given by

M1 ×M2 → g∗, (x1, x2) 7→ µ1(x1) + µ2(x2)

and

TM1 × TM2 → g∗, (X1, X2) 7→ α1(X1) + α2(X2),

respectively.

Perhaps the most important instance of the construction of Example 4.12 is if we start with
an arbitrary twisted generalized Hamiltonian G-manifold, (M,J ,H, µ, α), and let the second
GC manifold be a coadjoint orbit Oa in g∗, where a ∈ g∗ is some fixed element. Let ωa be the
canonical symplectic structure on Oa. The action of G on Oa is Hamiltonian in the symplectic
sense, with moment map given by the inclusion Oa ↪→ g∗. Using the symplectic structure −ωa

instead, the action is still Hamiltonian, but now the moment map is given by the negative
inclusion Oa → g∗, λ 7→ −λ.

As described in Examples 2.9 and 4.4, the symplectic structure−ωa induces a GC structure Ja

on Oa, and the G-action on Oa is generalized Hamiltonian with the same moment map. Viewing
(Oa,Ja) as a twisted GC manifold where the twisting is by the zero three-form, the G-action
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is twisted generalized Hamiltonian with a constantly vanishing moment one-form. Then the
diagonal G-action on M ×Oa is twisted generalized Hamiltonian with moment map

µ′ : M ×Oa → g∗, (x, λ) 7→ µ(x)− λ

and moment one-form

α′ : TM × T (Oa) → g∗, (X, Y ) 7→ α(X).

The reason this construction is important is that it is the basis of the shifting trick . If one
wishes to reduce M by G at level a ∈ g∗, one can instead consider the reduction of M × Oa

by G at level 0, because

Ma ≈ (M ×Oa)0

as topological spaces. To see this, observe that µ−1(Oa) and (µ′)−1(0) are G-equivariantly
homeomorphic via the maps

µ−1(Oa) → (µ′)−1(0), x 7→ (x, µ(x))

and

(µ′)−1(0) → µ−1(Oa), (x, λ) 7→ x.

5 Partition of the generalized reduced space

Let M be a manifold, G be a Lie group acting on M smoothly, and µ : M → g∗ a smooth, G-
equivariant map. Let a ∈ g∗. By equivariance the pre-image µ−1(Oa) of the coadjoint orbit Oa

is preserved by G, and so we can consider the quotient space µ−1(Oa)/G. Let M =
⊔

M(H)

be the orbit type partition of M . Because each set M(H) is stable under G, each intersection
µ−1(Oa)∩M(H) is also stable under G, so the orbit type partition of M descends to a partition

µ−1(Oa)/G =
⊔
(H)

(
µ−1(Oa) ∩M(H)

)
/G

of the quotient µ−1(Oa)/G.
Suppose now M is a symplectic manifold, the G-action is Hamiltonian, and µ is a moment

map. In this case the quotient space Ma := µ−1(Oa)/G is called the symplectic reduction ,
or Marsden–Weinstein quotient , of M at level a. The symplectic moment map condition is
that dµξ = ιξM

ω for all ξ ∈ g. If G acts freely on µ−1(Oa), then each ξM is nonzero on µ−1(Oa),
which by the non-degeneracy of ω implies that a is a regular value of µ. Therefore µ−1(Oa) ⊂ M
is a submanifold, so Ma is a manifold. In this case, Marsden and Weinstein proved that Ma

inherits a natural symplectic structure. Theorems 4.6 and 4.8, proved in [14], are analogues of
this result.

In the event that the symplectic quotient is singular, one can consider the individual parts
of the partitioned quotient. In [19], Lerman and Sjamaar proved that each component of
(Ma)(H) :=

(
µ−1(Oa) ∩M(H)

)
/G inherits a natural symplectic structure. The main results

of this paper are analogues of this in the generalized complex case.

Remark 5.1. By the symplectic moment map condition, dµξ = ιξM
ω, if a ∈ g∗ is a regular

value of µ, then each vector field ξM is nowhere zero on µ−1(a). This means that the action of G
on µ−1(a) is at least locally free, which means that the quotient Ma is at worst an orbifold, to
which Marsden and Weinstein were able to associate a symplectic structure. By Sard’s Theorem,
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a generic value of µ will be regular, so the generic result of symplectic reduction is a symplectic
orbifold.

If (M,J ) is an untwisted GC manifold with moment map µ, then the generalized moment
map condition, J (dµξ) = −ξM , likewise guarantees the equivalence of regular values and local
freeness of the action, so Ma is at worst an orbifold. However, if (M,J ,H) is a twisted GC
manifold with moment map µ and moment one-form α, then this equivalence may no longer
hold, due to the presence of the moment one-form in the moment condition:

J (dµξ) = −ξM − αξ.

Specifically, ξM could vanish even if J (dµξ) does not. Therefore, it seems that the generic result
of GC reduction may be a GC singular space.

Before stating and proving our main theorem, we need the following lemma.

Lemma 5.2. Let (M,J ,H) be a compact, twisted GC manifold, and let G be a compact Lie
group acting on (M,J ,H) in a Hamiltonian fashion with moment map µ : M → g∗ and moment
one-form α ∈ Ω1(M, g). If the G-action on M is trivial, then dµ = α ≡ 0.

In Lemma 5.5 of [1], the authors proved the above result in the case that G is a torus; however,
their proof holds just as well in the non-abelian case. It relies on viewing the components of
µ as the real parts of a pseudo-holomorphic function and applying a version of the Maximum
Principle, a course first taken in [17]. A thorough description of this version of the Maximum
Principle can be found in Section 4.4 of [8].

Theorem 5.3 (Singular generalized reduction).

(a) Let (M,J ) be a GC manifold, and let G be a compact group acting in a Hamiltonian fashion
on (M,J ) with generalized moment map µ : M → g∗. Let a ∈ g∗, and let Ma =

⊔
(Ma)(H)

be the orbit type partition of the GC quotient of (M,J ) by G at level a. Then each
component of each (Ma)(H) inherits a natural GC structure from (M,J ).

(b) Let (M,J ,H) be a compact GC manifold, and let G be a compact group acting in a Hamil-
tonian fashion on (M,J ,H) with generalized moment map µ : M → g∗ and moment
one-form α ∈ Ω1(M, g∗). Assume that H + α is equivariantly closed. Let a ∈ g∗, and
Ma =

⊔
(Ma)(H) be the orbit type partition of the GC quotient of (M,J ,H) by G at level a.

Then each component of each (Ma)(H) inherits a twisted GC structure from (M,J ,H),
natural up to B-transform.

Proof. We begin with the twisted case.
First we prove the theorem in the case that a = 0.
Let x ∈ M and K = Gx. Note that this implies that K is a closed subgroup of G, and

is hence compact. Clearly K acts canonically on (M,J ,H), since G does. By part (c) of
Proposition 3.6, M lx

K is open in MK . It follows that every component of MK intersecting M lx
K

has the same dimension as M lx
K . Let MK

x be the union of components of MK having nontrivial
intersection with M lx

K . Since each component of MK is a manifold, it follows that MK
x is also.

Furthermore, by Proposition 2.19 we know that each connected component of MK is a split
submanifold of (M,J ), and hence also a twisted GC submanifold. Therefore so is MK

x .
Let Zx

K be the union of components of M lx
K that have nontrivial intersection with µ−1(0).

Since Zx
K is open in M lx

K , which is open in MK
x , as discussed in Remark 2.13 we know that Zx

K

is a twisted GC submanifold of MK
x , and hence also of M . Let j : Zx

K ↪→ M be the inclusion,
and denote the (j∗H)-twisted GC structure of Zx

K by J ′.
Let N = NG(K) be the normalizer of K in G. By part (e) of Proposition 3.6, we know M lx

K

is N -stable. In fact, so is Zx
K , as we now show. Note that connected components of manifolds
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are path-connected. Therefore, for any n ∈ N , if y, z ∈ M lx
K are in the same component, then

so are n · y and n · z. Now let n ∈ N and y ∈ Zx
K . By the definition of Zx

K , there exists some z
in the same component of M lx

K as y such that z ∈ µ−1(0). Since µ−1(0) is N -stable, this means
n · z ∈ µ−1(0) ∩M lx

K ⊂ Zx
K , and hence n · y ∈ Zx

K as well.
Now we will show that µ(Zx

K) and α(TZx
K) lie in Anng∗(k) ∩ (g∗)K , where Anng∗(k) denotes

the annihilator of k in g∗. Since MK
x is fixed point-wise by K and µ and α are equivariant, we

know these two sets are contained in (g∗)K . Because MK
x is closed in M , it is compact. Since K

acts trivially on MK
x , it follows from Theorem 4.5 and Lemmas 4.11 and 5.2 that dµξ = αξ = 0

on TMK
x , and hence on TZx

K , for all ξ ∈ k. Hence µξ is locally constant on Zx
K for all ξ ∈ k.

Because each component of Zx
K has nonempty intersection with µ−1(0), it follows that µξ = 0

on Zx
K for all ξ ∈ k, so µ(Zx

K) ⊂ Anng∗(k).
Let L denote the quotient Lie group N/K, and let l denote its Lie algebra. In Lemma 17 of [2],

it is proved that the projection g∗ � n∗ dual to the inclusion n ↪→ g induces an isomorphism

Anng∗(k) ∩ (g∗)K ∼= Annn∗(k) ∼= l∗.

Let µ′ : Zx
K → l∗ and α′ : TZx

K → l∗ be the compositions of this isomorphism with the restrictions
of µ and α, respectively, and note that

Zx
K ∩ µ−1(0) = Zx

K ∩ (µ′)−1(0).

Because Zx
K is fixed point-wise by K, the action of N on Zx

K induces an action of the quotient
L = N/K on Zx

K . We now verify that this action is twisted generalized Hamiltonian with
moment map µ′ and moment one-form α′.

Since µ, α, and the projection g∗ � n∗ are N -equivariant, and Zx
K consists of K-fixed

points, we know that µ′ and α′ are L-equivariant. Now we check that µ′ and α′ satisfy the
generalized moment map conditions for the L-action on Zx

K . Because K fixes the points of Zx
K ,

the infinitesimal action of k on Zx
K is zero, so for all ξ ∈ n we have [ξ]Zx

K
= ξZx

K
, where [ξ] denotes

the image of ξ under the quotient projection n � n/k ∼= l. As noted above, µη = 0 and αη = 0
for all η ∈ k, so (µ′)[ξ] = µξ and (α′)[ξ] = αξ for all ξ ∈ n. By Theorem 4.5 and Lemma 4.11, the
compositions

Zx
K

µ // g∗ // // n∗ and TZx
K

α // g∗ // // n∗

are a generalized moment map and moment one-form for the N -action on the (j∗H)-twisted GC
manifold Zx

K , respectively, so we conclude that

[ξ]Zx
K

= ξZx
K

= −J ′(dµξ
)
− αξ = −J ′(d(µ′)[ξ]

)
− (α′)ξ

and

ι[ξ]Zx
K

(j∗H) = ιξZx
K

(j∗H) = dαξ = d(α′)[ξ]

for all [ξ] ∈ l.
By part (e) of Proposition 3.6, we know that N/K acts freely on Zx

K , and hence also
on (µ′)−1(0). Since H + α is G-equivariantly closed, we know H is closed. Using this fact,
our computations from the previous paragraph, and part (b) of Remark 4.3, we compute

dL(j∗H + α′)([ξ]) = d(j∗H)− ι[ξ]Zx
K

(j∗H) + d(α′)[ξ] − ι[ξ]Zx
K

(α′)[ξ]

= j∗(dH)− ιξZx
K

(j∗H) + dαξ − ιξZx
K

(αξ)

= 0− dαξ + dαξ − 0 = 0
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for all [ξ] ∈ (n/k)∗ ∼= l∗. Hence j∗H + α′ is L-equivariantly closed. Therefore we can apply
Lin–Tolman’s twisted generalized reduction, Theorem 4.8 above, and obtain a GC structure on
the quotient space

(µ′)−1(0)
/
(N/K) ∼= (µ′)−1(0)

/
N ∼=

(
Zx

K ∩ µ−1(0)
)/

N.

Recall that this structure is only natural up to B-transform. It follows that each component of(
Zx

K ∩ µ−1(0)
)/

N is a twisted GC manifold.
By varying the point x ∈ MK , and thus varying the manifold Zx

K , we can conclude that every
component

(
MK ∩ µ−1(0)

)/
N is a twisted GC manifold.

By parts (d) and (f) of Proposition 3.6, we know that G ·MK = M(K) and that the inclusion
MK ↪→ M(K) induces a homeomorphism MK/N ≈ M(K)/G. Together with the fact that µ−1(0)
is G-stable, this first fact implies that G ·

(
MK ∩ µ−1(0)

)
= M(K) ∩ µ−1(0). Together with the

second fact, this implies that

(M0)(K) :=
(
M(K) ∩ µ−1(0)

)/
G ≈

(
MK ∩ µ−1(0)

)/
N,

and so each component of (M0)(K) inherits a twisted GC structure, natural up to B-transform.
The general case, where the reduction is taken at an arbitrary level a ∈ g∗ now follows from

the shifting trick, as explained following Example 4.12 above.
Now we consider the untwisted case. Since an untwisted Hamiltonian GC manifold is simply

a twisted Hamiltonian GC manifold with H = 0 and α = 0, the only real difference between
parts (a) and (b) of this theorem is that in part (a) we do not assume that M is compact. Note
that the only time above where we used the fact that M is compact was when showing that µξ

and αξ both vanish on Zx
K for all ξ ∈ k, and hence that µ(Zx

K) and α(TZx
K) lie in Anng∗(k). For

this non-compact case, note that since Zx
K contains only K-fixed points, we have ξZx

K
= 0 for

all ξ ∈ k, so

dµξ = J ′(ξZx
K

) = J ′(0) = 0

and hence µξ is locally constant on Zx
K for all ξ ∈ k. Because each component of Zx

K has
nonempty intersection with µ−1(0), it follows that µξ = 0 for all ξ ∈ k, so µ(Zx

K) ⊂ Anng∗(k).
This completes the proof of (a). �

Corollary 5.4 (Singular generalized Kähler reduction). The results of Theorem 5.3 hold
if all GC and twisted GC structures are replaced by GK and twisted GK structures, respectively.

Proof. Suppose (M,J1,J2) is a GK manifold, twisted or untwisted. Because a generalized
Hamiltonian action on the GK manifold (M,J1,J2) is simply a generalized Hamiltonian action
on the GC manifold (M,J1) which also preserves the structure J2, it is easy to check that
the proof of Theorem 5.3 holds in precisely the same way for our present situation. We will
simply note that, for any Lie subgroup K of G, because both J1 and J2 are preserved by K, by
Proposition 2.19 we know that each component of MK is a split submanifold of M with respect
to both GC structures, so it is a GK manifold. Everything else is entirely straightforward to
check. �
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