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Abstract. In this paper, we investigate the entanglement of multi-partite Grassmannian
coherent states (GCSs) described by Grassmann numbers for n > 2 degree of nilpotency.
Choosing an appropriate weight function, we show that it is possible to construct some well-
known entangled pure states, consisting of GHZ, W, Bell, cluster type and bi-separable
states, which are obtained by integrating over tensor product of GCSs. It is shown that for
three level systems, the Grassmann creation and annihilation operators b and b† together
with bz form a closed deformed algebra, i.e., SUq(2) with q = e

2πi
3 , which is useful to

construct entangled qutrit-states. The same argument holds for three level squeezed states.
Moreover combining the Grassmann and bosonic coherent states we construct maximal
entangled super coherent states.
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1 Introduction

Quantum entanglement has been recognized as the vital resource for the applications of quan-
tum information and quantum computation. The emergence of entanglement is a fundamental
difference between classical and quantum composite systems. Consequently The question of
entanglement of composite systems has been intensively studied in last years [1, 2].

In the same direction, the growth of research in theoretical physics and quantum optics has
revealed the importance of the coherent states and hence the entanglement of the bosonic, su(2)
and su(1,1) coherent states has been widely investigated [3, 4, 5, 6, 7, 8, 9, 10, 11]. On the other
hand, studying the entanglement properties of Grassmannian coherent states (GCSs) which is
defined as a eigenstate of the annihilation operator with Grassmannian eigenvalue [12, 13, 14],
remains as a challenging problem of quantum information theory [15, 16, 17, 18]. In [19] we
have investigated the relation between entanglement and fermionic coherent states [20].

Aim of the present work is to generalize our previous attempt in [19] to multi-level GCS.
Choosing some appropriate weight functions, we show that it is possible to construct some
entangled pure states, consisting of GHZ, W, Bell, cluster type and bi-separable states, by
tensor product of GCSs. It is shown that for three level systems, the Grassmann creation and
annihilation operators b and b† together with bz form a closed deformed algebra, i.e., SUq(2)

with q = e
2πi
3 . Based on this algebra and corresponding GCS we construct some entangled

qutrit-states. Similar discussion is made for three level Grassmannian squeezed states. Moreover
combining the Grassmannian and bosonic coherent states we construct maximal entangled super
coherent state.

The paper is organized as follows. In Section 2, the GCS for n level system is introduced. In
Section 3, the entangled GCS is studied and explicit examples of multi-qubit entangled states
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such as Bell, W, GHZ, bi-separable and cluster type states are constructed. Moreover, entang-
led qutrit states based on coherent and squeezed states are presented and then the discussion
is generalized for entangled multi-qudit states. Finally combining Grassmannian and bosonic
coherent states we construct maximal entangled super coherent state. A brief conclusion is given
in Section 4.

2 Grassmannian coherent states

Grassmann variables and their applications have been discussed in [12, 20, 21, 22, 23, 24, 25].
Here we review the properties which are particularly appealing for our purposes. Grassmann
algebra is generated by variables like θis which have the following properties

θiθj = qθjθi, i, j = 1, 2, . . . , i < j, θni = 0, q = e
2πi
n .

Likewise, for the Hermitian conjugate of θ, θ† = θ̄, we have

θ̄iθ̄j = qθ̄j θ̄i, i < j, θ̄ni = 0.

One has the Berezin’s rule of integration as follows∫
dθθk =

∫
dθ̄θ̄k = δk,n−1,

where k is a positive integer. Moreover we have the relations

θdθ̄ = qdθ̄θ, θ̄dθ = qdθθ̄,

θdθ = q̄dθθ, θ̄dθ̄ = q̄dθ̄θ̄,

dθdθ̄ = q̄dθ̄dθ, θθ̄ = q̄θ̄θ.

The quantization relations between number states {|m〉, m = 0, 1, 2, . . . , n− 1} and Grassmann
variables θ, θ̄ are

θ|m〉 = q
m−1 |m〉θ, θ〈m| = q̄

m−1〈m|θ.

By definition, GCS denoted by |θ〉n, is the eigenstate of annihilation operator b with eigenvalue θ
that is

b|θ〉n = θ|θ〉n,

where θ is a complex Grassmann variable with the following relations

[θ, b†]q = [b, θ]q = 0,

where [A,B]q := AB − qBA. One may tempt to define the annihilation operator b as

b =

n−1∑
m=0

√
m+ 1|m〉〈m+ 1|.

Hence |θ〉n can be define as below

|θ〉n =

n−1∑
m=0

q̄
m(m+1)

2

√
m!

θm|m〉 =: e(b†θ)|0〉. (1)

One may regard D(θ) := e(b†θ) as the displacement operator for GCS.
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3 Entangled Grassmann coherent states

Consider a linear combination of tensor product of Grassmannian coherent states as follows

|ψ〉 =
∑

i1,i2,...,in

fi1,i2,...,in |θi1〉|θi2〉 · · · |θin〉.

Some times, if we take a proper form of the tensor product of Grassmannian coherent states, it
is possible to find an appropriate weight function to make the right hand side of the following
equation to be a maximally entangled state like Bell, cluster type, GHZ and W states, i.e.,∫

dθi1dθi2 · · · dθinw(θi1 , . . . , θin)|ψ〉 = |γ〉, (2)

where w(θi1 , . . . , θin) is a proper weight function, and the state |γ〉, is maximally entangled state.
We note that the weight functions is not unique and of course for a given state there may not
be such a function at all. Here there is no need to normalize GCSs since it can be included in
the weight functions.

3.1 Multi-qubit states

Two level Grassmannian coherent state can be written as

|θ〉 = |0〉 − θ|1〉.

At first, we consider simple cases that yield maximally entangled Bell states as follows∫
dθ

(
∓1

2
√

2

)
[|θ〉| ± θ〉 − | − θ〉| ∓ θ〉] =

1√
2

(|01〉 ± |10〉) = |Ψ±〉,∫
dθ̄dθ

(
±1√

2
e±θθ̄

)
|θ̄〉|θ〉 =

1√
2

(|00〉 ± |11〉) = |Φ±〉.

One gets the general form of the W state as follows∫
dθ

(
−1√
n

)
|θ〉|θ〉 · · · |θ〉︸ ︷︷ ︸

n times

=
1√
n

(|100 . . . 0〉+ |010 . . . 0〉+ · · ·+ |0 . . . 001〉) = |W(n)〉.

Likewise, we can construct the general form of GHZ state as follows∫
dθ1dθ2 · · · dθnw|θn〉|θn−1〉 · · · |θ1〉 =

1√
2

(|00 . . . 0〉+ |11 . . . 1〉) = |GHZ(n)〉,

where

w =
1√
2

(
(−1)[n

2
] + θnθn−1 · · · θ1

)
.

Note that unlike W(n), we can not construct GHZ(n) using just one Grassmann variable for
n > 2. The amount of entanglement of these states can be evaluated using the purity which
is defined as p(|ψ〉) = 2

n

∑
i tr ρ2

i − 1, where ρi is reduced density matrix of qubit i [26]. For

GHZ(n) state the purity is zero and for W(n) state reads (n−2
n )2, which implies that GHZ(n)

state is maximally entangled while in the limit n → ∞ the purity goes to 1 for W(n) hence it
become separable. The other set of important entangled states are cluster type states [27]. Here
we consider one example of these states as follows

|CLUSTER±〉 =
1

2
(±|0000〉+ |0011〉+ |1100〉 ∓ |1111〉).
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If we take |ψ〉 = |θ1〉|θ2〉|θ3〉|θ4〉, in equation (2), then we get∫
dθ1 · · · dθ4w(CLUSTER±)|θ1〉|θ2〉|θ3〉|θ4〉 = |CLUSTER±〉,

where

w(CLUSTER±) =
1

2
(±θ4θ3θ2θ1 + θ2θ1 + θ4θ3 ∓ 1).

Taking the same method, one can construct the other cluster type states with appropriate weight
functions.

3.2 Multi-qutrit states and SUq(2) deformed algebra

Multi-qutrit states are three level systems. Therefore, we take the following bases to describe
these states

|0〉 ≡

 1
0
0

 , |1〉 ≡

 0
1
0

 , |2〉 ≡

 0
0
1

 .

The associated Grassmann numbers satisfy θ3 = 0. So, the following quantization relations
hold

θ|0〉 = q̄|0〉θ, 〈0|θ̄ = qθ̄〈0|,
θ|1〉 = |1〉θ, 〈1|θ̄ = θ̄〈1|,
θ|2〉 = q|2〉θ, 〈2|θ̄ = q̄θ̄〈2|,

where q = e
2πi
3 . Now, we are going to derive an algebra under which three level GCSs can

be constructed. For this purpose, consider the explicit form of the three level annihilation and
creation operators b, b† and bz as follows

b := |0〉〈1|+
√

2|1〉〈2|, b† := |1〉〈0|+
√

2|2〉〈1|, bz := [b, b†]q := bb† − qb†b.

Using the commutation relation between operators b and bz, we get

[bz, b]q =
(
1− 2q + q2

)
|0〉〈1|+

(
2− q + 2q2

)√
2|1〉〈2|. (3)

If the right hand side of the above equation is taken to be proportional to b, we must have(
1− 2q + q2

)
=
(
2− q + 2q2

)
,

or equivalently

(1 + q + q2) = 0 ⇒ q = e
2πi
3 . (4)

Thus the equation (3) reduces to

[bz, b]q = −3qb.

Developing the same method to the commutator of b† and bz the condition (4) is obtained again.
Hence we have

[b, b†]q = bz, [bz, b]q = −3qb, [b†, bz]q = −3qb†.
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As we see this algebra is closed and it is reminiscent of the SU(2) algebra, and we call it deformed
SUq(2) algebra. The coherent state for three level system is

|θ〉 = |0〉+ q̄θ|1〉+
1√
2
θ2|2〉 =

(
1 + b†θ + 1

2θ
2b†

2)|0〉.
Using the second equality we rewrite three level GCS in terms of the exponential function,
defined in equation (1) as follows

|θ〉 = e(b†θ)|0〉.

Now we will use this coherent state to construct some entangled qutrit states. To do so, we start
with generalized Bell states for three level system [28]. These states are

|ψ±〉 =
1√
3

(|00〉 ± |11〉+ |22〉), |ϕ±〉 =
1√
3

(|02〉 ± |11〉+ |20〉).

In order to obtain the above states, we take the state |θ1〉|θ2〉. Therefore we have∫
dθ1dθ2

1√
3

(
θ2

2θ
2
1 ± q2θ1θ2 + 2q

)
|θ1〉|θ2〉 = |ψ±〉,

likewise∫
dθ1dθ2

1√
3

(√
2θ2

1 ± q2θ1θ2 +
√

2θ2
2

)
|θ1〉|θ2〉 = |ϕ±〉.

Of course the weight function may be chosen in a way that it yields contraction, this means that
we may have MES in the subspaces. The following examples are of this type∫

dθ1dθ2
1√
2

(
θ2

2θ
2
1 ± 2q

)
|θ1〉|θ2〉 =

1√
2

(|00〉 ± |22〉),∫
dθ1dθ2

1√
2

(
θ2

2θ
2
1 ± q2θ1θ2

)
|θ1〉|θ2〉 =

1√
2

(|00〉 ± |11〉),

which is comparable with hole burning of an atomic coherent state prepared for a collection
of N two-level atoms [29]. One may construct bi-separable states for three partite systems, for
instance∫

dθ1dθ2dθ3
1√
3

(
θ2

3θ
2
2θ

2
1 ± q̄θ2

1θ2θ3

)
|θ1〉|θ2〉|θ3〉 = |0〉 ⊗ 1√

2
(|00〉 ± |11〉).

By changing the weight functions, one may get some other entangled states as well. For example,
we can create all MESs introduced in [30]. Here we give an example as follows∫

dθ1dθ2
1√
3

(
q2θ2

1θ2 +
√

2ωθ1 +
√

2ω2θ2
2

)
|θ1〉|θ2〉 = |Ψ(2)

2 〉,

where ω3 = 1 and

|Ψ(2)
2 〉 =

1√
3

(|01〉+ ω|12〉+ ω2|20〉).
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3.3 Grassmannian qutrit squeezed states

For three level system, it is possible to define squeezing operator associated to Grassmann
number as follows

S(ξ) = exp

[
1

2

(
ξb†

2

− ξ̄b2
)]
. (5)

Here instead of θ we use ξ, for three level squeezed state. Noting that in the three level system,
the operators b3 and b†

3
vanish and hence the expansion of squeezing operator becomes

S(ξ) = I +
1

2

(
ξb†

2

− ξ̄b2
)
− q̄

8
ξξ̄
(
b†

2

b2 + qb2b†
2)
.

It is remarkable that the operators b2 and b†
2
, used in squeezing operator for three level system,

together with b′z obey a closed algebra as follows

[b†
2

, b2] := b′z, [b′z, b
2] = −8b2, [b′z, b

†2 ] = 8b†
2

.

Grassmannian squeezed states by definition can be obtained by applying squeezing operator S(ξ)
on the vacuum state |0〉, i.e.

|ξ〉 = S(ξ)|0〉.

Therefore for three level system we get the squeezed state as

|ξ〉 = |0〉+
1√
2
ξ|2〉 − 1

4
ξξ̄|0〉 =

(
1− 1

4
ξξ̄

)
|0〉+

1√
2
ξ|2〉. (6)

Therefore we can construct entangled state, 1√
2
(|00〉+ |22〉) just by one Grassmannian squeezed

state |ξ〉 which such construction is not possible by GCS with one Grassman number, i.e.,∫
dξ̄dξ

1√
2

(
2q̄ξ̄2 − 16q̄ − 2q̄ξξ̄ + ξ̄2ξ2

)
|ξ〉|ξ〉 =

1√
2

(|00〉+ |22〉). (7)

Now, we construct entangled state using tensor product of the coherent and squeezed states as
follows∫

dθ(q + θ)|̃θ〉|θ〉 =
1√
2

(|02〉+ |20〉),

where |̃θ〉 is squeezed state (6), (which ξ is replace with θ) and |θ〉 is GCS for three level system.
It is notable that, in this case we have used one Grassmann number and obtained the state

1√
2
(|02〉+ |20〉), which is not possible to be obtained using tensor product of GCSs with just one

Grassmann number, i.e., there is no weight function w such that
∫
dθw|θ〉|θ〉 = 1√

2
(|02〉+ |20〉).

3.4 Multi-qudit entangled states

We should mention that it is easy to generalize this method to any Zn graded GCS. To this aim
let us start with the general form of the GCS

|θ〉n =

n−1∑
m=0

q̄
m(m+1)

2

√
m!

θm|m〉,
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we product two GCSs with different Grassmann numbers as

|θ1〉n|θ2〉n =
n−1∑
i,j=0

cijθ
i
1θ
j
2|i〉|j〉, where cij =

q
(j−i)−(i+j)2

2

√
i!j!

.

In [31] it has been shown that the symmetric states are either globally entangled or fully se-
parable with all the constituent systems having identical states, whereas antisymmetric states
are globally entangled. By globally entangled we mean that the state remains entangled across
any bi-partition. On the other hand a state is fully separable if it remains separable across all
bi-partitions. Therefore we may determine the weight function in a way that the obtained state
becomes symmetric MES after integration, i.e.,∫

dθ1dθ2w|θ1〉n|θ2〉n =
1√
n

n−1∑
i=0

|i〉|i〉, (8)

∫
dθ1dθ2w

n−1∑
i,j=0

cijθ
i
1θ
j
2|i〉|j〉 =

1√
n

n−1∑
i=0

|i〉|i〉. (9)

Now consider the general form of Grassmannian weight function

w =
n−1∑
k,l=0

wk,lθ
k
1θ
l
2.

Putting this weight in equation (9) and taking into account the quantization and the integration
rules of generalized Grassmannian variables we have

n−1∑
k,l=0

n−1∑
i,j=0

cijwk,l

∫
dθ1dθ2θ

k
1θ
l
2θ
i
1θ
j
2|i〉|j〉 =

1√
n

n−1∑
i=0

|i〉|i〉,

n−1∑
k,l=0

n−1∑
i,j=0

cijwk,lq
kl+jk+ij

∫
dθ1dθ2θ

l+j
2 θi+k1 |i〉|j〉 =

1√
n

n−1∑
i=0

|i〉|i〉,

n−1∑
k,l=0

n−1∑
i,j=0

cijwk,lq
kl+jk+ijδl+jn−1δ

i+k
n−1|i〉|j〉 =

1√
n

n−1∑
i=0

|i〉|i〉, (10)

where the symbol δij is the usual Kronecker delta. We note that

δl+jn−1δ
i+k
n−1 6= 0 =⇒ l + j = n− 1 = i+ k. (11)

The equation (10) gives the right hand side MES if the terms with i 6= j vanish, which due
to the equation (11) implies that wk,l = 0 for k 6= l. With this explanation the equation (10)
reduces to

n−1∑
i=0

ciiwn−1−i,n−1−iq
(n−1−i)(n−1)+i2 |i〉|i〉 =

1√
n

n−1∑
i=0

|i〉|i〉.

Thus

w =
1√
n

n−1∑
k=0

c−1
(n−1−k),(n−1−k)q̄

k(n−1)+(n−1−k)2
θn−1−k

1 θn−1−k
2 .

With this weight the equation (8) holds.
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We note that any attempt for finding finite deformed SUq(2) algebra, as for qutrit case, for
more than three level systems will cease to exist. Actually these generators do not form finite
closed algebra at all. In the previous subsection we defined squeezed state for three level system
by action the squeezing operator (5) on vacuum state |0〉. One may tempt to define the squeezed
state for general qudit states. Here is a point. Instead of using squeezing operator (5), we use

S(ξ) = e(ξb†
2
) to define squeezed state

|ξ〉 = e(ξb†
2
)|0〉.

This makes the coefficients change in |ξ〉. For instance if we take S(ξ) = e(ξb†
2
), then its associ-

ated qutrit squeezed state becomes |0〉 + ξ|2〉, which up to the coefficients is the equation (6).
But the construction of maximally entangled qutrit states go to the same state in (7) no matter
how we take the squeezing operator here, i.e.,∫

dξ
1√
2

(
1 + ξ2

)
|ξ〉|ξ〉 =

1√
2

(|00〉+ |22〉).

As was clearly seen in qutrit case, the squeezed state is superposition of even number states |0〉
and |2〉. This is the case in general. Now we use this operator to develop equation (5) to qudit
case. The general squeezed state is

|ξ〉 = e(ξb†
2
)|0〉 =

n−1∑
i=0

q̄
i(i−1)

i!
ξi|2i〉.

Thus considering the product of two squeezed states

|ξ〉|ξ〉 =
n−1∑
i,j=0

di,jξ
i+j |2i〉|2j〉,

with di,j = q̄
i(i−1)+j(j−1)+(2j−1)j

i!j! , one can create the maximally entangled state as follows∫
dθw|ξ〉|ξ〉 =

1√
n

n−1∑
k=0

|2k〉|2k〉,

where the general form of the one-variable weight function is

w =

n−1∑
m=0

wmξ
m.

Similar to the n level qudit coherent states we can find the weight function as

w =
1√
n

n−1∑
i=0

1

dii
ξn−2i−1.

There is rather tight relation between the construction of entangled states of this work and [32]
where they used the same method to characterize the entanglement by polynomials of fermionic
nilpotent raising operators σ+, acting on a reference vacuum state. The difference is that we
use Grassmann anticommuting variables instead of Clifford nilpotent variables. For example in
two qubit case one may take

F (σ+
1 , σ

+
2 ) = a0 + a1σ

+
1 + a2σ

+
2 + a3σ

+
1 σ

+
2 ,

which acting on vacuum state |00〉 yields, a0|00〉+ a1|10〉+ a2|01〉+ a3|11〉. So one can take the
coefficients such that the state becomes MES. As a simple example taking a0 = a3 = 1√

2
and

a1 = a2 = 0 yields Bell state |Φ+〉.
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3.5 Entangled supper coherent state

The study of entanglement in a system involve both bosons and fermions remains one of the
most challenging problems in quantum information science [15, 17]. Here we want to show
that in some cases it is possible to construct MES using superposition of bosonic and fermionic
coherent states. Fermions are described in the anti-commuting Grassmann coordinate space,
consequently one must use super-Hilbert space to study both bosons and fermions. A bosonic
coherent state can be defined as eigenstate of the annihilation operator

b|α〉 = α|α〉,

where α is a complex number, and b is annihilation operator for the bosonic coherent state

|α〉 = e
−|α|2

2

∞∑
n=0

αn√
n!
|n〉 = D(α)|0〉,

and D(α), is displacement operator

D(α) := exp(a†α− α∗a).

We can also express that

〈α|β〉 = e−
1
2

(|α|2+|β|2−2α∗β).

With this background, let |α〉 and |β〉 be two orthogonal bosonic coherent states, which is
possible in the limit α→∞ and β → 0. Therefore in the space spanned by two coherent states
one can take |α〉 ≡ |1〉b and |β〉 ≡ |0〉b. On the other hand in the space of fermionic system we
can describe the states |1〉f and |0〉f integrating on fermionic coherent states. Now consider the
following super coherent states belonging to the Hilbert space Hfermion ⊗Hboson

lim
α→∞

∫
dθ

θ√
2
|θ〉|α〉 ∓ lim

β→0

∫
dθ

1√
2
|θ〉|β〉 =

1√
2

(|0〉f |1〉b ± |1〉f |0〉b),

and likewise

lim
α→0

∫
dθ(
−1√

2
)|θ〉|α〉 ± lim

β→∞

∫
dθ

θ√
2
|θ〉|β〉 =

1√
2

(|0〉f |0〉b ± |1〉f |1〉b).

The right hand sides of the above equations may be interpreted as two partite MESs in the
Hilbert space Hfermion ⊗Hboson. We not that, if α→ β, then we obtain separable states, i.e.,

lim
α→β

∫
dθ

θ√
2
|θ〉|α〉 ∓

∫
dθ

1√
2
|θ〉|β〉 =

1√
2

(|0〉f ± |1〉f )|α〉.

Of course the other way to create the orthogonal basis in the bosonic Hilbert space is

|0〉b = |α〉, |1〉b =
|β〉 − 〈α|β〉|α〉

N1
, where N1 =

√
1− |〈α|β〉|.

Thus instead of taking limit we can use the above bases to construct MESs in Hfermion⊗Hboson,
however in spite of the fact that it belongs to Hboson |1〉b is not a coherent state anymore.

The approach used here is somewhat different from the method used by Castellani et al.
in [17]. They established the superqubits states in composed Hilbert space of the form Hboson⊕
Hfermion, with general form

|ψ〉 =
n∑
i

bi|Bi〉+ θ
n∑
i

fi|Fi〉,
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with n bosonic states |Bi〉 and n fermionic states |Fi〉, combined via a single Grassmann co-
ordinate θ and then normalized it with suitable weight function. For identical particles they
symmetrized tensor product superqubits to produce the entangled states such as

|ψ〉 ⊗ |ψ′〉 =
n∑
i,j

bib
′
j |BiBj〉+ θ

n∑
i,j

(bif
′
j + b′ifj)|BiFj〉.

Basically there are some differences between these constructions. For example, we begin to
establish fermionic state as an eigenstate of the fermionic annihilation operator, while the above
superqubit state has no connection to such operator at all. On the other hand there is no need
to normalize GCSs beforehand since the normalization factor can be included in the weight
function.

4 Conclusion

In conclusion, we have investigated the entanglement of multi-partite Grassmannian coherent
states (GCS) described by anti-commuting Grassmann numbers. This task is achieved by in-
tegration over Grassmann numbers with taking appropriate weight functions. In other words
we established a relation between GCS and pure entangled states which are treated almost
separately. The construction of GHZ, W, Bell, cluster type and bi-separable states and also
generalization of entanglement for n level GCSs was developed. It is shown that for three level
systems, the creation and annihilation operators b and b† together with bz := [b, b†]q form a closed

deformed algebra SUq(2). The similar closed algebra was obtained for three operators b2, b†
2

and b′z := [b2, b†
2
], which one may tempt to define Grassmannian squeezed state and create

some MESs using these squeezed states. For three level systems, combination of Grassmannian
coherent and squeezed states yields other MESs which was not possible to be obtained using
GCSs with just one Grassmann number before.

Finally combining the Grassmann and bosonic coherent states we construct maximal entan-
gled super coherent states.
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[12] Majid S., Rodŕıguez-Plaza M.J., Random walk and the heat equation on superspace and anyspace, J. Math.
Phys. 35 (1994), 3753–3760.

[13] Cabra D.C., Moreno E.F., Tanasa A., Para-Grassmann variables and coherent states, SIGMA 2 (2006), 087,
8 pages, hep-th/0609217.

[14] Najarbashi G., Fasihi M.A., Fakhri H., Generalized Grassmannian coherent states for pseudo-Hermitian
n-level systems, J. Phys. A: Math. Theor. 43 (2010), 325301, 10 pages, arXiv:1007.1392.

[15] Borsten L., Dahanayake D., Duff M.J., Rubens W., Superqubits, Phys. Rev. D 81 (2010), 105023, 16 pages,
arXiv:0908.0706.

[16] Khanna F.C., Malbouisson J.M.C., Santana A.E., Santos E.S., Maximum entanglement in squeezed boson
and fermion states, Phys. Rev. A 76 (2007), 022109, 5 pages, arXiv:0709.0716.

[17] Castellani L., Grassi P A., Sommovigo L., Quantum computing with superqubits, arXiv:1001.3753.

[18] Najarbashi G., Fasihi M.A., Mirmasoudi F., Mirzaei S., Entanglement of fermionic coherent states for pseudo
Hermitian Hamiltonian, Poster at International Iran Conference on Quantum Information-2010 (2010, Kish
Island, Iran).

[19] Najarbashi G., Maleki Y., Entanglement in multi-qubit pure fermionic coherent states, arXiv:1004.3703.

[20] Cahill K.E., Glauber R.J., Density operators for fermions, Phys. Rev. A 59 (1999), 1538–1555,
physics/9808029.

[21] Kerner R., Z3-graded algebras and the cubic root of the supersymmetry translations, J. Math. Phys. 33
(1992), 403–411.

[22] Filippov A.T., Isaev A.P., Kurdikov A.B., Para-Grassmann differential calculus, Theoret. and Math. Phys.
94 (1993), 150–165, hep-th/9210075.

[23] Isaev A.P., Para-Grassmann integral, discrete systems and quantum groups, Internat. J. Modern Phys. A
12 (1997), 201–206, q-alg/9609030.

[24] Cugliandolo L.F., Lozano G.S., Moreno E.F., Schaposnik F.A., A note on Gaussian integrals over para-
Grassmann variables, Internat. J. Modern Phys. A 19 (2004), 1705–1714, hep-th/0209172.

[25] Ilinski K.N., Kalinin G.V., Stepanenko A.S., q-functional Wick’s theorems for particles with exotic statistics,
J. Phys. A: Math. Gen. 30 (1997), 5299–5310, hep-th/9704181.

[26] Barnum H., Knill E., Ortiz G., Somma R., Viola L., A subsystem-independent generalization of entangle-
ment, Phys. Rev. Lett. 92 (2004), 107902, 4 pages, quant-ph/0305023.

[27] Munhoz P.P., Semião F.L., Vidiella-Barranco A., Cluster-type entangled coherent states, Phys. Lett. A 372
(2008), 3580–3585, arXiv:0705.1549.

[28] Fujii K., A relation between coherent states and generalized Bell states, quant-ph/0105077.

[29] Gerry C.C., Peart M., Spin squeezing and entanglement via hole-burning in atomic coherent states, Phys.
Lett. A 372 (2008), 6480–6483.

[30] Sun C., Xue K., Wang G., Wu C., A study on the relations between the topological parameter and entan-
glement, arXiv:1001.4587.

[31] Ichikawa T., Sasaki T., Tsutsui I., Yonezawa N., Exchange symmetry and multipartite entanglement, Phys.
Rev. A 78 (2008), 052105, 8 pages, arXiv:0805.3625.

[32] Mandilara A., Akulin V.M., Smilga A.V., Viola L., Quantum entanglement via nilpotent polynomials, Phys.
Rev. A 74 (2006), 022331, 34 pages, quant-ph/0508234.

http://dx.doi.org/10.1103/PhysRevA.64.022302
http://arxiv.org/abs/quant-ph/0102048
http://dx.doi.org/10.1063/1.530868
http://dx.doi.org/10.1063/1.530868
http://dx.doi.org/10.3842/SIGMA.2006.087
http://arxiv.org/abs/hep-th/0609217
http://dx.doi.org/10.1088/1751-8113/43/32/325301
http://arxiv.org/abs/1007.1392
http://dx.doi.org/10.1103/PhysRevD.81.105023
http://arxiv.org/abs/0908.0706
http://dx.doi.org/10.1103/PhysRevA.76.022109
http://arxiv.org/abs/0709.0716
http://arxiv.org/abs/1001.3753
http://arxiv.org/abs/1004.3703
http://dx.doi.org/10.1103/PhysRevA.59.1538
http://arxiv.org/abs/physics/9808029
http://dx.doi.org/10.1063/1.529922
http://dx.doi.org/10.1007/BF01019327
http://arxiv.org/abs/hep-th/9210075
http://dx.doi.org/10.1142/S0217751X97000281
http://arxiv.org/abs/q-alg/9609030
http://dx.doi.org/10.1142/S0217751X04018506
http://arxiv.org/abs/hep-th/0209172
http://dx.doi.org/10.1088/0305-4470/30/15/016
http://arxiv.org/abs/hep-th/9704181
http://dx.doi.org/10.1103/PhysRevLett.92.107902
http://arxiv.org/abs/quant-ph/0305023
http://dx.doi.org/10.1016/j.physleta.2008.02.009
http://arxiv.org/abs/0705.1549
http://arxiv.org/abs/quant-ph/0105077
http://dx.doi.org/10.1016/j.physleta.2008.08.074
http://dx.doi.org/10.1016/j.physleta.2008.08.074
http://arxiv.org/abs/1001.4587
http://dx.doi.org/10.1103/PhysRevA.78.052105
http://dx.doi.org/10.1103/PhysRevA.78.052105
http://arxiv.org/abs/0805.3625
http://dx.doi.org/10.1103/PhysRevA.74.022331
http://dx.doi.org/10.1103/PhysRevA.74.022331
http://arxiv.org/abs/quant-ph/0508234

	1 Introduction
	2 Grassmannian coherent states
	3 Entangled Grassmann coherent states
	3.1 Multi-qubit states
	3.2 Multi-qutrit states and SUq(2) deformed algebra
	3.3 Grassmannian qutrit squeezed states
	3.4 Multi-qudit entangled states
	3.5 Entangled supper coherent state

	4 Conclusion
	References

