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Abstract. We study the energy properties of a particle in one dimensional semi-harmonic
rectangular wells and barriers. The integration of energies is obtained by solving a simple
transcendental equation. Scattering states are shown to include cases in which the impinging
particle is ‘captured’ by the semi-harmonic rectangular potentials. The ‘time of capture’ is
connected with the dwell time of the scattered wave. Using the particle absorption method,
it is shown that the dwell time τaD coincides with the phase time τW of Eisenbud and Wigner,
calculated as the energy derivative of the reflected wave phase shift. Analytical expressions
are derived for the phase time τW of the semi-harmonic delta well and barrier potentials.
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1 Introduction

One-dimensional models of quantum mechanics are useful in a number of applications in con-
temporary physics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Often employed
into the approximations which make tractable the more elaborated three-dimensional systems,
they allow to get a deeper insight on the physics involved. Their simplicity has made them
valuable as academic and research tools. For instance, the concept of effective mass, success-
fully applied in describing the formation of shallow energy levels due to impurities in crystals,
leads to one-dimensional systems [1]. Localized lattice deformations can be modelled as a rect-
angular potential to study isolated transitions, observed in semiconductors, from a bound state
within a quantum well to a bound state at an energy greater than the barrier height [2]. The
analysis of resonances [3, 4, 5, 6, 7, 8] is transparent for rectangular potentials in either, the
presence of a background interaction [9, 10], or in free space [11, 12, 13, 14, 15, 16, 17]. Simple
models of point-like [18, 19], as well as regularized singular interactions [20], can be obtained
as limit cases of rectangular potentials [21, 17, 22]. The one-dimensional models are also useful
in the study of supersymmetric quantum mechanics [23, 24, 25, 26, 27]. Based on the Darboux
transformations [28] (see also [23]), the supersymmetric (intertwining or factorization) formalism
allows the construction of new exactly solvable potentials even if complex energies are involved
[29, 30, 31, 32, 33]. This last property has been implemented to get one-dimensional complex
potentials behaving as an optical device which both refracts and absorbs light waves [15, 33].
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Collisions, on the other hand, are modelled as interactions localized in time and space. This
implies that the involved potential vanishes rapidly enough in space, so that incoming and out-
going asymptotic states can be represented by wave packets in free motion. The problem is
usually reduced to the analysis of a one-dimensional effective potential. Main information is
then obtained from the transmission and reflection amplitudes. Of particular interest, the reso-
nance phenomenon is experimentally studied in atomic, nuclear and particle physics [3, 4, 5, 6].
A resonance can be understood as an special result of the scattering process in which the inci-
dent wave is ‘captured’ by the scatterer for a while. A measurable time delay (relative to free
motion) is then associated to the scattered wave [34, 35].

The concept of time delay corresponds to the time spent by an scattered particle in the scat-
tering zone when compared to a free particle subject to the same initial conditions. According
to Eisenbud and Wigner, this is associated to the energy derivative of the phase shift for binary
collisions (see [36, 37]). The existence of a global time delay (as connected to sojourn times),
and its identity with the Eisenbud–Wigner phase time, have been proved for local potentials
in R3 [38]. The proof has been extended to an abstract formalism where time delay is defined in
terms of the expectation values of non-negative normalized functions of compact support [39].
In general, the retardation of the scattered wave involves transient effects which are relevant in
nuclear reactions [40, 41], and is also fundamental in the characterization of resonances [34, 35].
The time delay is also connected with the Levinson theorem [42], the density of states in meso-
scopic conductors [43] and with the study of the photodetachment rate due to weak time-periodic
electric fields [44]. In one-dimensional systems, the time delay has been studied for step-like
potentials exhibiting a two-channel structure [45]. Quite recently, it has been shown that time
delay can be obtained from the eigenvalues of a non-Hermitian Hamiltonian in two and three
dimensions [46]. Extensive, clear reviews with complete bibliography can be found in [47, 48, 49].

The present work is addressed to the analysis of the energy properties of a particle subject
to the action of a semi-harmonic rectangular potential. This last is either a rectangular well or
barrier in a background integrated by a free-particle interaction to the right and an oscillator-
like interaction to the left of the rectangular potential. The model corresponds to a system (the
rectangular potential) embedded in an environment (the semi-harmonic background), and the
issue is the study of the modifications on the energy spectrum and resonances of the system
which are induced by the environment. Thus, the semi-harmonic square potentials are viewed as
open one-dimensional quantum systems [5]. The bound states and resonances of square poten-
tials have been studied by using diverse approaches (see, e.g., [14, 15, 16] and references quoted
therein). In particular, if closer resonances imply narrower widths (i.e., in the case of isolated
resonances), the transmission amplitude T can be written as a superposition of Fock–Breit–
Wigner distributions [15]. Then, the position E and width Γ of a resonance ε = E − i

2Γ are
in correspondence with one of the bell-shaped peaks of T . This result is extended to the case
of resonances which are not isolated by identifying the position of the peaks with the absolute
value of ε, rather than using Re(ε) = E [16]. In the limit where the square potentials become
a point-like interaction (i.e., a delta barrier or well), the transparency properties involved pro-
duce no resonances [18]. The situation is different for dipole-like interactions represented by
derivatives of the delta distribution with respect to the position [17].

As open systems, rectangular potentials have been previously studied in a static field as the
environment [9, 10]; the reports include the point-like limit [44]. Unlike the rectangular potentials
in the free-particle background, these last open systems are not isotropic since the environment
is represented by a potential diverging as ±x at |x| = +∞. Thus, though the presence of
resonances is ensured by adding such a background, the conventional definitions of dwell time
and time delay are not automatically applicable in these cases. Indeed, most of the approaches
on the matter consider a potential which is very localized in a finite region of space [47, 48, 49]
(see also [38]). In contraposition, the open systems presented in this paper become zero when
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they are evaluated at positions to the right of the square potential. This condition represents
an advantage over the square potentials in a constant field environment since reflection times
can be now calculated. In this context, the mean time spent by the particle in the interaction
zone is defined as the dwell time (or sojourn time) involved. However, it must be emphasized
that the parabolic part of the environment makes not simple the calculation of transmission
times. Thereby, there is not a clear definition of time delay in terms of dwell time differences
in arbitrary open balls of the one-dimensional domain of these systems. Instead, the time delay
can be defined as the difference between the reflection times above mentioned. Here, we shall
show that the dwell time coincides with the phase time introduced by Eisenbud and Wigner.

The organization of the paper is as follows. In Section 2 we establish the general expressions
concerning the semi-harmonic rectangular potentials. The condition for the trapping of particles
is identified as the finding of zeros of the Jost function. A very simple transcendental equation
is derived for the numerical integration of energies. In Section 3, the family of semi-harmonic
rectangular wells of unit area is shown to converge to a semi-harmonic delta well in the sense
of distribution theory. The corresponding transcendental equation is shown to admit a unique
root associated to bound states, and the result is compared with the single bound energy of
the delta well in a free particle background. The resonances obey a rule of distribution in
the complex plane of the energies that resembles the distribution of the odd bound energies
of a harmonic oscillator. Section 4 is devoted to the application of the previous results to the
case of a semi-harmonic rectangular barrier. Interestingly, the limit case of a semi-harmonic
delta barrier obeys a distribution of resonances which is in correspondence with the even energy
eigenvalues of the harmonic oscillator. A brief discussion on the Darboux transformations of
rectangular potentials in a semi-harmonic background is also given. In Section 5 we investigate
the dwell time of the scattering process associated to the semi-harmonic rectangular potentials.
This is defined as the time spent by the incident particle in the interaction zone. We use the
particle absorption method [50, 51, 52] to determine the characteristic time involved. Then
we assume that the probability of finding the particle decays exponentially from the moment
that it is ‘captured’ by the potential. The dwell time so calculated coincides with the phase
time τW of Eisenbud and Wigner. For delta wells and barriers explicit analytical expressions
of τW are given. In each case, the time delay τW has local maxima centered at the real part of
the involved resonances. This last, combined with the results of Sections 3 and 4 for delta-like
potentials, indicates that the semi-harmonic background induces the real part of the resonances
to be distributed in correspondence with the energy eigenvalues of the harmonic oscillator. Some
concluding remarks are given in Section 6. Finally, a short appendix includes some derivations in
terms of the confluent hypergeometric functions which, although important, can be postponed
to a later reading.

2 Semi-harmonic rectangular well

Consider a particle of energy E which is under the influence of the one-dimensional potential

V (x; a) =


x2, x ≤ −a (Region I),

−V0, |x| < a (Region II),

0, a ≤ x (Region III),

a ≥ 0, V0 > 0. (2.1)

Potential (2.1) is depicted in Fig. 1. The corresponding stationary dimensionless Schrödinger
equation

(H − E)ψ(x) = 0, H := − d2

dx2
+ V (x, a) (2.2)
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Figure 1. The rectangular well in a semi-harmonic background. The number N of bound state energies

E0, . . . , EN−1, depends on the area A = 2aV0 of the well (cf. Section 2.1.1). Some of the incoming

scattering waves of energy E ≥ 0 are ‘captured’ for a while in the region (−∞, a), as discussed in

Section 5. If V −1
0 = 2a, the limit a → 0 leads to a semi-harmonic delta well (see Section 3). Semi-

harmonic rectangular and delta barriers are obtained by the change V0 → −V0 (cf. Section 4).

is solved by the appropriate combination of the functions

ψI(x) = A1e
−x2/2

1F1

(
α, 1

2 ;x2
)

+B1e
−x2/2x 1F1

(
α+ 1

2 ,
3
2 ;x2

)
,

ψII(x) = A2u(x) +B2v(x) := A2 sin qx+B2 cos qx,

ψIII(x) = A3e
ikx +B3e

−ikx,

where k =
√
E and q =

√
V0 + k2, the functions eikx and e−ikx represent waves moving towards

the right and the left respectively, and 1F1(α, γ; z) stands for the confluent hypergeometric

function (see Appendix) with α = 1−k2
4 .

To analyze the solutions of (2.2) as x→ −∞, we use (A.3). A simple calculation gives

ψI(x) ≈
√
π

Γe(α)
e

x2

2 (xe−iπ)2α−1

[
A1 −

B1

2

Γe(α)

Γe(α+ 1/2)

]
, as x→ −∞,

with Γe(z) the Euler gamma function of z ∈ C. Therefore, to construct solutions which are
regular at the left edge of DomV (x, a) = (−∞,∞), the coefficient B1 is constrained to satisfy

B1 = 2A1
Γe(α+ 1/2)

Γe(α)
.

As a consequence, the function ψI reads

ψI(x) = A1e
−x2/2

[
1F1

(
α, 1

2 ;x2
)

+ 2x
Γe(α+ 1/2)

Γe(α)
1F1

(
α+ 1

2 ,
3
2 ;x2

)]
:= A1ϕ(x), (2.3)

and it becomes zero as x → −∞. If the parabolic part of the potential appears to the right,
rather than to the left of the well, it occurs a phase difference in the asymptotic behavior of the
solution (compare equations (A.2) and (A.3)). We decided to put the oscillator-like interaction
to the left of the well to precisely emphasize the subtleties of the involved mathematics.

The condition of continuity at x = −a leads to the coefficients

A2

A1
=
ϕv(βv − βϕ)

q

∣∣∣∣
x=−a

:= ϕ(−a)C2,
B2

A1
=
ϕu(−βu + βϕ)

q

∣∣∣∣
x=−a

:= ϕ(−a)D2,

where −βf stands for the logarithmic derivative of the function f(x). Hence we have

ψII(x) = A1ϕ(−a)[C2 sin qx+D2 cos qx]. (2.4)
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In turn, from the condition of continuity at x = a, one arrives at the expressions

B3

A1
= ϕ(−a)

i

2
F(k, a),

A3

A1
=

(
B3

A1

)∗
.

Here z∗ is the complex conjugate of z ∈ C, and the Jost function F(k, a) is defined as

F(k, a) = −
{
eikx

k
[u(β− + βu)C2 + v(β− + βv)D2]

}
x=a

, (2.5)

with −β− the logarithmic derivative of e−ikx. Thus, for the solution in region III we have

ψIII(x) = A1ϕ(−a)
i

2
[F(k, a)e−ikx −F∗(k, a)eikx]. (2.6)

Scattering states. Consider now a particle of energy E = k2 > 0, arriving from +∞
towards the effective zone of the semi-harmonic well (2.1). The reflection amplitude

s(k, a) =
F∗(k, a)

F(k, a)
(2.7)

is directly obtained from (2.6) and has modulus one. This can be written as s(k, a) = e2iδ(k,a).
We see that the effect of the semi-harmonic rectangular well is to cause a phase shift (up to
integer multiples of π) of the reflected wave by

δ(k, a) = − arctan

[
ImF(k, a)

ReF(k, a)

]
. (2.8)

Then, for scattering states, the solution of (2.2) cancels as x→ −∞, oscillates harmonically in
region II (see equation (2.4)), and behaves as

ψIII(x) = A1ϕ(−a)|F(k, a)| sin(kx+ δ)

in region III.

2.1 Conditions for the trapping of particles

The solutions of the Schrödinger equation (2.2) which correspond to either bound or resonance
states are picked out from (2.3), (2.4) and (2.6) such that only outgoing waves exist. In other
words, to construct these solutions, it must be imposed the Siegert condition

lim
x→+∞

βψ(x) = −ik, k ∈ C. (2.9)

This last expression is equivalent to make F(k, a) = 0 in (2.6). Then, the Jost function (2.5)
is analytically continued so that the reflection amplitude (2.7) is a meromorphic function with
poles on the zeros of F(k, a). For simplicity, hereafter A1 = 1/ϕ(−a). Therefore, the wave
functions of either bound states or resonances are written as

ψ(x) =


ϕ(x)

ϕ(−a)
, x ≤ −a,

C2 sin qx+D2 cos qx, |x| < a,

− i
2F
∗(k, a)eikx, a ≤ x,

such that F(k, a) = 0. (2.10)

Given a 6= 0, the zeros of the Jost function F(k, a) are defined by the roots of the transcendental
equation

βϕ(−a) = −ik +

[
ikβϕ(−a)− q2

q

]
tan 2qa. (2.11)

It is straightforward to verify that this last equation has no solutions on the real line.
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Table 1. The dimensionless single bound state energy of a unit area rectangular well in the free-particle

(FP) and semi-harmonic (SH) backgrounds for different values of a. In both cases, the numerical results

include the delta well as a limit (a→ 0).

a rectangular well rectangular well
(FP) (SH)

2.0 −0.113438 −0.045272
1.5 −0.130400 −0.039482
1.0 −0.153960 −0.033514
0.5 −0.189338 −0.037435
0.0 −0.25 −0.079710

2.1.1 Bound states

Potential (2.1) includes a region of classical confinement in which some bound state energies
could be present. In this context, if k = iκ is a zero of the Jost function with κ > 0, then
E = k2 = −κ2 is the energy eigenvalue of a bound state. Indeed, if k is a solution of (2.11) on

the positive imaginary axis of the complex k-plane, one has α = 1−k2
4 = 1+κ2

4 > 0, and βϕ ∈ R.
The number N of these roots is determined by the area A = 2aV0 of the well. Thereby, the
bound states are represented by the square-integrable functions

ψn(x) =



ϕn(x)
ϕn(−a) , x ≤ −a,

C2 sin qnx+D2 cos qnx, |x| < a,

u(βu + κn)C2 + v(βv + κn)D2

2κn

∣∣∣∣
x=a

e−κn(x−a), a ≤ x,

n = 0, 1, . . . , N(A)− 1.

For instance, if V −1
0 = 2a, potential (2.1) becomes a unit area rectangular well in a semi-harmonic

background. This admits a unique bound state, just as it is reported on Table 1 for five different
values of a (see also Fig. 2). For comparison, the equivalent results for a free-particle background
are also reported. In both cases, the single bound energy goes to a definite negative number
as a → 0. However, given a ≥ 0, this energy is less negative in the semi-harmonic background
than in the free-particle one. The same effect is observed for all the bound states belonging to
a rectangular well of arbitrary area A 6= 0. Thus, in a semi-harmonic background, the bound
states of the rectangular well are displaced towards the threshold. Notice that the oscillator-
like interaction to the left of a given (symmetric) well produces a left-right asymmetry in the
involved wave functions (see, e.g., Fig. 2).

2.1.2 Resonances

Siegert functions are solutions of the Schrödinger equation (2.2), associated to complex eigen-
values ε = E − iΓ

2 , and fulfilling the purely outgoing condition (2.9). It is usual to consider ε as
a compound of the resonance position E and the inverse of the involved lifetime τ−1 = Γ. We
obtain these complex eigenvalues from the wave numbers k in the fourth quadrant of the complex
k-plane which are solutions of (2.11). Some of the first resonances associated to a semi-harmonic
rectangular well of unit area are reported on Table 2 for different values of a. In contraposition
to their equivalents in a free-particle background, where the symmetry of the rectangular well
is inherited to the wave functions and resonances (see e.g. [14] and [15]), the Siegert functions
of the rectangular well in a semi-harmonic background cancel at x = −∞, obeying the left-right
asymmetry generated by the oscillator-like interaction. This is illustrated in Fig. 3.
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Figure 2. The wave function of the unique bound state belonging to the semi-harmonic rectangular

well of unit area with a = 2 (continuous, blue) and a = 0 (dashed, black). The dimensionless energies

are Ea=2 = −0.045272 and Eδ = −0.079710 respectively (see Table 1). Notice the left-right asymmetry

produced by the parabolic part of potential (2.1).

Table 2. The first five resonances ε = E − iΓ
2 belonging to the unit area rectangular well in a semi-

harmonic background for different values of a. The case a = 0 (the semi-harmonic delta well) is such

that Re(ε) = 4m+ 3 + γm, with γm / 1 and m = 0, 1, . . . (see Fig. 5).

a resonances a resonances

00.623117− i0.599545 03.569260− i1.487849
05.260402− i2.255076 10.233701− i2.499541

2 08.875649− i2.603548 0.5 13.960171− i2.280915
11.217715− i1.995880 17.904306− i2.258438
17.359977− i2.229026 21.878702− i2.356575

01.009578− i0.981433 03.792859− i0.909297
03.852457− i2.106492 07.852027− i1.117703

1.5 07.574481− i2.017753 5× 10−4 11.880118− i1.242053
09.826328− i2.651538 15.897157− i1.331170
13.723866− i2.196828 19.908829− i1.400707

01.838241− i1.632446 03.792839− i0.909196
05.675163− i1.760804 07.852012− i1.117599

1 08.749583− i2.720863 0 11.880106− i1.241947
11.835116− i2.294470 15.897146− i1.331064
15.830298− i2.343309 19.908819− i1.400600

3 The semi-harmonic delta well

A particular case of the previous results which deserves special attention is obtained in the limit
a→ 0. It is well known that the family of rectangular wells of unit area converges to the delta
well in the sense of distribution theory (see e.g. [21] and [17]). The transparency properties of
the point interactions are such that no resonances can be associated to ±Ωδ(x), with Ω an opac-
ity parameter [18]. The situation changes if the free-particle background is replaced by a less
trivial scenario. Namely, the presence of resonances is ensured for the point interactions either
by putting a constant potential as the background [9, 44] (see also [10]), or by constraining the
potential domain of δ(x − x0) to be [0,+∞) rather than the straight-line R [18]. In contradis-
tinction, point dipole interactions represented by the derivative of the delta distribution ±δ′(x)
admit resonances in a natural form [17]. We are going to analyze the bound states and reso-
nances associated to a delta well in the semi-harmonic background introduced in the previous
section.
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Figure 3. The real (continuous, blue) and imaginary (dashed, black) parts of the Siegert function

belonging to the first (left) and fifth (right) resonances reported on Table 2 for a = 2. In all cases, the

left-right asymmetry is due to the parabolic part of potential (2.1).

Potential (2.1) represents a family of functions of compact support (the unit area rectangular
wells, parameterized by a) in a semi-harmonic background. If a→ 0, we have

Vδ(x) := lim
a→0

V (x; a) = Vs(x)− δ(x),

with

Vs(x) =

{
x2, x < 0,
0, x > 0

(details of the limit procedure for this kind of potentials can be consulted in [21, 22]). Applying
the same limit to the transcendental equation (2.11), one gets the expression

2Γe

(
3− k2

4

)
= (1 + ik)Γe

(
1− k2

4

)
. (3.1)

Equation (3.1) admits an isolated root on the positive imaginary axis of the complex k-plane
(see Fig. 4). We have kδ = i0.2823302. The corresponding energy Eδ = k2

δ = −0.0797104,
is consistently recovered as the limit a → 0 of the values reported on Table 1. Interestingly,
this bound energy is closer to zero than the bound energy of the delta well in a free-particle
background E = −0.25. That is, the semi-harmonic background causes the displacement of the
single bound energy towards the threshold, just as it has been remarked above. The involved
wave function

ψδ(x) =

{
ϕ(x), x ≤ 0,
e−κx, 0 < x

is depicted in Fig. 2. Observe that the parabolic part of the potential produces a decreasing
of ϕ(x) which is faster than the decreasing of its counterpart e−κx in the free particle zone.

In the present case, the resonances are determined by the roots of (3.1) in the fourth quadrant
of the complex k-plane. Up to a constant γm, the position Em of each of these ‘complex energies’
is clearly connected to the distribution of the odd energy eigenvalues of the harmonic oscillator:
Re(ε) = 4m + 3 + γm, with m = 0, 1, 2, . . .. For the results reported on Table 2, the parame-
ter γm approaches 1 from below as m increases (see Fig. 5). As a conclusion, different than the
conventional delta well, a delta well in a semi-harmonic background admits resonances. More
details will be given in Section 5.

4 Semi-harmonic barriers

The case of a particle in a semi-harmonic rectangular barrier can be analyzed as a consequence
of the previous results. The change V0 → −V0 in (2.1), (2.2) produces q → i

√
|k2 − V0| for
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Figure 4. The isolated zero of the Jost function which corresponds to the unique bound state of a semi-

harmonic rectangular well of unit area for a = 1 (continuous, black), a = 0.1 (dashed, blue) and a = 0

(continuous, red). In each case, the curve has been depicted as a function of k = iκ, with κ ∈ R.

-1.5
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-0.5

0

1 5 9 13 17

-1.5

-1

-0.5

0

3 7 11 15 19

Figure 5. First five resonances ε = E− iΓ
2 of a delta barrier (left, red disks) and a delta well (right, blue

disks) in a semi-harmonic background. Black disks on the real line represent the even and odd energies

of the harmonic oscillator respectively. Vertical lines are included as a reference. The numerical values

of ε can be consulted on Tables 3 and 2 respectively.

k2 < V0, and q →
√
k2 − V0 for k2 > V0. The straightforward calculation shows that there is no

bound states for this system. Some of the corresponding resonances, in turn, are reported on
Table 3 (see also Fig. 6). In this case, the complex energies ε are below and close to the positive
real axis such that, in the very limit a→ 0, Re(ε) is in one of the positions 4m+1+λm, with λm
a constant and m = 0, 1, 2, . . .. For the results on Table 3, λm approaches 1 from above as m
increases (see Fig. 5). Then, the resonances of a delta barrier in a semi-harmonic background
are distributed in correspondence with the even energy eigenvalues of the harmonic oscillator.
See more details in Section 5.

4.1 Darboux transformations

The Siegert condition (2.9) is appropriate to construct the complex supersymmetric partners of
the semi-harmonic potentials analyzed in the previous sections. Consider the Darboux transfor-
mation

Ṽ (x; a) = V (x; a) + 2β′(x), (4.1)

with V (x; a) either a semi-harmonic well or barrier, and β(x) the logarithmic derivative of any of
the corresponding Siegert functions ψε. Condition (2.9) indicates that the new potential Ṽ (x; a)
behaves as V (x; a) in the limit x → +∞. On the other hand, the straightforward calculation
shows that β(x) → 0, as x → −∞. Therefore, Ṽ (x; a) is a complex potential behaving as
V (x; a) at the edges of DomV (x; a) = (−∞,+∞). The supersymmetric formalism of quantum
mechanics [28, 23, 24, 25, 26, 27] ensures that the energy spectrum of Ṽ (x; a) is the same as that
of V (x, a) if the superpotential is defined as β(x) = − d

dx lnψε(x) (cf. [15, 30, 31, 32, 33]). In Fig. 7
we show the behavior of the Darboux-deformed semi-harmonic rectangular barrier, constructed
from (4.1) with the Siegert state belonging to the fifth resonance of Table 3. The presence of
maxima and minima, in both the real and imaginary parts of the potential, makes Ṽ (x; a) to
behave as an optical device which both refracts and absorbs light waves [23, 15]. A similar result



10 N. Fernández-Garćıa and O. Rosas-Ortiz

Table 3. The first five resonances ε = E − iΓ
2 belonging to the unit area rectangular barrier in a

semi-harmonic background for different values of a. The case a = 0 (the semi-harmonic delta barrier) is

such that Re(ε) = 4m+ 1 + λm, with λm ' 1 and m = 0, 1, 2, . . . (see Fig. 5).

a resonances a resonances

00.595222− i0.312336 01.957470− i0.802720
04.211813− i1.853317 05.720407− i1.561124

2 07.387244− i2.485184 0.5 09.297545− i2.218137
10.572524− i1.985917 12.626496− i2.505935
12.865432− i2.874092 16.213699− i2.433756

00.846017− i0.497624 02.076264− i0.718026
06.188284− i2.213815 06.065577− i1.025854

1.5 08.833155− i2.011628 5× 10−4 10.058023− i1.181640
12.476467− i2.723854 14.052696− i1.286283
14.938732− i2.618887 18.048705− i1.360061

01.313699− i0.776043 02.076211− i0.718123
04.317689− i1.833635 06.065549− i1.025956

1 07.338936− i2.031873 0 10.058003− i1.181793
10.901777− i2.284989 14.052679− i1.286389
14.229903− i2.730174 18.048690− i1.365109
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Figure 6. The real (continuous, blue) and imaginary (dashed, black) parts of the Siegert function

belonging to the first (left) and fifth (right) resonances reported on Table 3 for a = 2. Remark that the

left-right asymmetry of all these functions is generated by the parabolic part of potential (2.1).

is obtained for the Darboux-deformations of the semi-harmonic wells. The procedure can be
repeated at will, giving rise to more elaborate complex deformations of the initial potentials.
Particularly interesting, the double transformation obtained by using a complex eigenvalue ε in
a first step, and its complex conjugate ε∗ in the second step, produces deformations which are
real functions (see, e.g. [31, 15, 7]). In such a case, the semi-harmonic barriers will exhibit ‘hair’
as a characteristic of the deformation [15, 7].

5 Dwell time

As yet the bound states and resonances have been analyzed as different manifestations of the
same sort of mathematical solution. Both of them are defined in terms of the zeros of the Jost
function (2.5) and are represented by a Siegert state of the form (2.10). Concerning scattering
states, let E > 0 be the energy of a particle which impinges on a scatterer from the right,
according to the rule (2.1). Here V0 can be either positive or negative. Exterior to the inter-
action zone (−∞, a), the stationary scattering wave function is ψIII ∝ e−ikx − s(k, a)eikx (see
equations (2.6) and (2.7)). Since there is neither sources nor sinks we have total probability
conservation |s(k, a)|2 = 1. We want to get some insights on the time spent by the incident



Semi-Harmonic Rectangular Potentials 11

-4 -2 0 2 4
-10

-5

0

5

10

15

20

-10 -5 0 5 10
-10

-5

0

5

Figure 7. Left. The real (continuous, blue) and imaginary (dashed, black) parts of the supersymmetric

partner Ṽ (x; a) of a semi-harmonic rectangular barrier. This has been constructed with the fifth resonance

for a = 2. Right. The Argand diagram of Ṽ (x; 2). The circle ◦ and disk • serve as reference and correspond

to Ṽ (−3; 2) and Ṽ (3; 2) respectively.

particle in the interaction zone. To analyze the ‘capturing’ of the particle by the semi-harmonic
rectangular potential, we assume |s(k, a)|2 = e−τ

a
D/τf , with τaD the mean time spent by the par-

ticle in the interaction zone (−∞, a), and τf a characteristic time constant to be determined.
Using the absorption probabilities method [50, 51, 52], a small imaginary part ∆VI is added
to the potential under consideration. The absorption dimensionless Schrödinger equation to be
solved is (H + i∆VI)ψa = i∂ψa

∂t . Given a solution ψ0 of the unperturbed equation (for which
∆VI = 0), we use the ansatz ψa = ψ0g to get ψa = ψ0e

∆VI t (an arbitrary integration constant
has been omitted for simplicity). Therefore, the probability density of finding the particle is
|ψ0|2e2∆VI t. The time τf required for the probability density to decrease a factor e−1 of its initial
value |ψ0|2 is τf = −1/(2∆VI), as this is introduced in [51]. The dwell time (or sojourn time)
τaD in the region (−∞, a) can be now obtained from |s(k, a)|2 = e2τaD∆VI . Indeed, in the limit of
small ∆VI , a simple calculation gives

τaD =
1

2
lim

∆VI→0

∂

∂∆VI
|s(k, a)|2. (5.1)

Now, consider a solution of the absorption eigenvalue equation (H + i∆VI − ε)ψε = 0, with
ε ∈ C. The derivative with respect to ∆VI of this last equation, after evaluating it for ∆VI = 0,
is reduced to

iψε + (H − ε) ∂ψε
∂∆VI

∣∣∣∣
∆VI=0

= 0.

The derivative of the absorption eigenvalue equation with respect to εI , the imaginary part of ε,
after evaluating it for ∆VI = 0, produces

−iψε + (H − ε)∂ψε
∂εI

= 0.

Adding these last two results yields

lim
∆VI→0

∂

∂∆VI
= − ∂

∂εI
.

In this way, equation (5.1) can be rewritten as follows

τaD = −1

2

∂

∂εI
|s(k, a)|2. (5.2)

Since k2 = ε, the reflection amplitude s(k, a) must be a complex analytic function of the complex
eigenvalue ε = E + iεI . The Cauchy–Riemann condition reads as

∂sR
∂E

=
∂sI
∂εI

and − ∂sR
∂εI

=
∂sI
∂E

.
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The introduction of these last expressions into (5.2) produces

τaD = 2
∂δ

∂E
= τW , (5.3)

where we have used s(k, a) = e2iδ(k,a). From the above expression, the dwell time of the scattering
particles which are ‘trapped’ in the semi-harmonic rectangular potentials is in direct connection
with the slope of the reflected wave phase shift δ(E, a). Thereby, the dwell time (5.3) coincides
with the definition of phase time τW , introduced by Eisenbud and Wigner as the time delay in
binary collisions [36]. In particular, the formation of a resonance ε = Er−iΓ

2 introduces a positive
time delay between the arrival and departure of the scattering particle from the region (−∞, a).
This last means that particles impinging the semi-harmonic rectangular potentials with energy
E = Er, will spend times in (−∞, a) which are larger than the times spent by the scattering
particles of energy E = Er + ε, with ε 6= 0 a real number small enough. A rapid increasing of
the phase shift is then expected in the vicinity of the resonance position Er. Hence, the phase
shift (2.8) encodes enough information to identify true resonances by associating the peaks
of (5.3) with the real part of the complex eigenvalues ε (see, e.g. [34]). Of special interest, the
time delay of point interactions in a semi-harmonic background can be calculated as the limit
a→ 0 of (5.3). One obtains

τ
(±)
W (E) = −2

(
1

1 +W 2
±(E)

)
dW±(E)

dE
(5.4)

where the sign + (−) stands for the semi-harmonic delta barrier (well) and

W±(E) =
Im(F±)

Re(F±)
=

−Γe
(

1−E
4

)√
E

±Γe
(

1−E
4

)
+ 2Γe

(
3−E

4

) , F± := F±(x, a→ 0).

An straightforward calculation shows that τ
(±)
W → π

2 , as E → +∞. From Fig. 8, we notice that

τ
(−)
W

(
τ

(+)
W

)
exhibits a series of Fock–Breit–Wigner peaks W1, W2, . . . (B1, B2, . . .), centered

each one at the real part of the first, second, etc, energy resonances reported on Table 2 (Tab-
le 3). Thus, the zeros of the Jost function (2.5) are interrelated with the maxima of the time
delay (5.4), as expected for true resonances [34]. A conclusion which makes self-consistent our
approach since the same results are obtained in two different forms. From Fig. 8, we also notice
that all the ‘captured’ particles spend a time τW ≥ 1 in (−∞, a), except for a region of small
positive energies in the rectangular well case. The closer to the resonance position Re(ε) is the
incoming energy E, the larger is the time spent by the particle in the interaction zone.

In general, after entering the region (−∞, a) of an arbitrary semi-harmonic rectangular po-
tential, the particle may be reflected back and forth many times before it manages to get back
out (see discussions on the matter in [35]). These reflections may take place either in the zone
of the rectangular potential (−a, a), the parabolic part of the potential (−∞,−a), or in a com-
bination of both. Our calculations consider the complete scattering process so that it is not
possible to distinguish among all possible internal reflections and self-interference during the
approach to the region (−∞, a). For an arbitrary isotropic potential V0 (i.e., V0(x) becomes
zero as |x| → +∞), the dwell time τD must obey the identity τD = τR|R|2 + τT |T |2, with R(T )
the reflection (transmission) amplitude, and τR (τT ) the average time spent in V0 by reflected
(transmitted) particles. For instance, if V0 is a rectangular barrier in the free-particle back-
ground, one has τR = τT = τD, so that all particles spend, on average, the same amount of time
in V0, no matter the size of the barrier [53, 47, 50]. Our expression (5.2) is then associated to the
reflection time, the mean time if particles are finally reflected, in the absorption model [51] (see
also [53]). The comparison of τaD, as this has been defined in (5.3), with τR for the rectangular
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Figure 8. The Eisenbud–Wigner time delay τW for the scattering process of a semi-harmonic delta

barrier (dashed, black) and well (continuous, blue). The peaks Wn (Bn) localize the real part of the

resonances reported on Table 2 (Table 3).

barrier could give us additional information of the time delay induced by the semi-harmonic
background.

Roughly speaking, time delay of the semi-harmonic rectangular potentials should correspond
to the excess time that the scattering particle spends in (−∞, a), when compared to a free particle
under the same initial conditions. Since our model considers the semi-harmonic background as
the environment into which the square potential is embedded, this last can be taken as an open
quantum system [5]. In this respect, the above indicated comparison of τaD and τR makes sense
in order to calculate time delays as the difference of reflection times. Some insights would be
also obtained concerning transmission times. Given an open interval ω = (x1, x2) of sufficiently
large size x2 − x1 in (−∞, a), and a time window θ = (t1, t2) with t2 > t1, one could introduce
the corresponding dwell time as

Θ(ω, θ) =

∫
θ
dt

∫
ω
dx|e−iHtψ(x)|2,

with H as this has been given in (2.2), and ψ an scattering state of energy E. In a similar form,
the expression

Θ0(ω, θ) =

∫
θ
dt

∫
ω
dx|e−iH0tψ(x)|2,

with H0 the Hamiltonian of the square potential in a free-particle background, could be taken
as the dwell time of the ‘free-particle’ system. The time delay in the space-temporal window
(ω, θ) should correspond to the difference Θ−Θ0, as usual. In such a definition the quantities Θ
and Θ0 are assumed to be well defined and finite for arbitrary ω ∈ (−∞, a). In principle, it
seems to be the case since all the involved scattering wave functions cancel at x = −∞ (this
is because the parabolic part of the environment). In order to arrive at a quantity which is
independent of ω, one could take the limits x1 → −∞ and x2 → a. However, the anisotropy of
the semi-harmonic rectangular potentials makes this last step not evident a priori. That is, some
caution is required to apply the difference of sojourn times as the definition of time delay in
the semi-harmonic rectangular potentials. Mainly, as connected with transmission dwell times
in the interaction zone (−∞, a) since the potential diverges as x2 at x = −∞. Thus, in this last
case, there is not a clear connection between sojourn times and phase times because almost all
the approaches on the matter require potentials localized in a finite zone of the real line. The
problem deserves a detailed analysis and the results will be reported elsewhere.
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6 Concluding remarks

In this paper, we studied the energy properties of a particle in the presence of a semi-harmonic
rectangular potential. The latter is a one-dimensional rectangular potential in a background
composed by an harmonic interaction to the left and a free particle interaction to the right
of the rectangular potential. The advantage of this model lies in its simplicity to get analytic
expressions for the wave functions, scattering states and resonances. Indeed, the problem is
faced by considering bound states and resonances as different manifestations of the same sort of
mathematical solution. Both of them are defined in terms of the zeros of the Jost function and
are represented by a Siegert state. The numerical integration of the energies is done by solving a
simple transcendental equation. In particular, it is found that, in the presence of a semi-harmonic
background, the conventional bound energies of the rectangular well are displaced towards the
threshold. Such behavior is preserved in the limit where the well becomes a delta. In this limit,
there is a single bound state of energy Eδ = −0.079710, which is less negative than its counterpart
in a free-particle background, the value of which is E = −0.25. The resonances appearing for
the semi-harmonic delta well exhibit a very peculiar behavior. They are distributed below and
close to the positive real axis of the complex plane in such a way that their real part mimics the
odd energy eigenvalues distribution of a harmonic oscillator. Namely, they are located according
to the rule 4m + 3 + γm, with γm / 1 and m = 0, 1, 2, . . .. A similar situation occurs for the
resonances of a semi-harmonic delta barrier, with the distribution ruled by 4m + 1 + λn with
λm ' 1. Thus, in this case, the semi-harmonic background induces the real part of the resonances
to be distributed in correspondence to the energy eigenvalues of the harmonic oscillator. The
Siegert functions were successfully applied to construct complex Darboux-deformations of the
semi-harmonic rectangular potentials. These new potentials behave as optical devices which
both refract and absorb light waves.

Concerning the times involved in the scattering process, we assumed the time exponential
decay rule |s(k, a)|2 = exp(−τaD/τf ), with s(k, a) the reflection amplitude, τf a constant to be
determined and τaD the mean time spent by an scattering particle coming from +∞ towards the
interaction zone (−∞, a). The application of the absorption probability method [50, 51, 52] al-
lowed us to show that τaD coincides with the phase-time of Eisenbud and Wigner τW , calculated as
the derivative of the reflected wave phase shift δ(E, a) with respect to the energy E. Becuase the
global properties of the potentials we have discussed on, the dwell time so calculated corresponds
to a reflection time (the mean time if particles are finally reflected). In the limit where the rect-
angular potentials become point-like interactions, we derived an explicit analytical expression for
τW , and showed that its local maxima are in correspondence with the resonances obtained in the
previous sections. Finally, the semi-harmonic rectangular potentials can be viewed as the open
quantum systems integrated by a rectangular potential (the system itself) and an environment
(the semi-harmonic background). In this picture, the system is an isotropic potential for which
the time spent in any finite region of space, averaged over all incoming particles, is well defined
and corresponds to the dwell time τD involved. Therefore, the semi-harmonic rectangular poten-
tials can be seen as the ‘system’ affected by a semi-harmonic interaction. Some insights on time
delay can be obtained by calculating differences between the dwell time of these two systems
in a given space-temporal window. This approach, however, is not directly applicable in the
present case because the anisotropy of the environment. Work in this direction is in progress.

A The confluent hypergeometric operator

The kernel K(a,c) of the confluent hypergeometric operator

L(a,c) := z
d2

dz2
+ (c− z) d

dz
− a, a, c ∈ R, z ∈ C
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Figure 9. The two first sheets of the Riemann surface defined by the factor e−aπi in equation (A.1), the

cut is at π
2 . If π

4 < arg z < 5π
4 , then z2 and θ = e−2πiz2 are in the second and first sheets respectively.

is integrated by the solutions of the Kummer equation L(a,c)f(a, c; z) = 0. That is, if f(a, c; z) is
a confluent hypergeometric function then f(a, c; z) ∈ K(a,c) [54, 55]. The asymptotic expansion
of f(a, c; z) for large values of |z| is given by

f(a, c; z) =
Γ(c)

Γ(c− a)
e±aπiz−a[1 + P−(a)] +

Γ(c)

Γ(a)
ezza−c[1 + P+(c− a)] (A.1)

where the positive sign in the factor e±aπi is taken when −π
2 < arg z < 3π

2 , while the negative
sign is taken when −3π

2 < arg z < π
2 [56] and

P±(γ) =
∞∑
n=1

(±)n
(γ)n(1− c+ γ)n

n!zn
, (γ)n = γ(γ + 1)(γ + 2) · · · (γ + n− 1), (γ)0 = 1.

The above expressions can be utilized to deduce the asymptotic expansion of f(a, c; z) for specific
ranges of arg z. For instance, if −π

2 < arg z < π
2 we get

f(a, c; z)→ Γ(c)

Γ(a)
ezza−c[1 + P+(c− a)], Re(z) > 0

and

f
(
a, c; z2

)
≈ Γ(c)

Γ(a)
ez

2
z2(a−c) if z → +∞. (A.2)

To find the behavior of f(a, c; z2) for z → −∞ we consider a range of arg z which includes
the negative real values of z. For this, let us assume π

4 < arg z < 5π
4 (see Fig. 9). Then

π
2 < arg z2 < 5π

2 , and z2 is in the second sheet of the Riemann surface defined by the factor
e−aπi in (A.1). Since θ = e−2πiz2 is such that −3π

2 < arg θ < π
2 , from (A.1) we arrive at

f(a, c; θ) =
Γ(c)

Γ(c− a)
eaπiz−2a[1 + P−(a)] +

Γ(c)

Γ(a)
ez

2
z2(a−c)e−2πi(a−c)[1 + P+(c− a)].

Therefore, if arg z = π one finally gets

f
(
a, c; z2

)
≈ Γ(c)

Γ(a)
ez

2
z2(a−c)e−2πi(a−c) if z → −∞. (A.3)
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[42] Osborn T.A., Bollé D., An extended Levinson’s theorem, J. Math. Phys. 18 (1977), 432–440.
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