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1 Introduction

Recently, for many discrete systems which are integrable in the sense of multi-dimensional
consistency [1, 2], their explicit soliton solutions were derived via constructive approaches [3,
4, 5, 6, 7, 8, 9] such as the Cauchy Matrix approach and bilinear method. For a continuous
integrable system, once we have its multi-soliton solutions, rational solutions usually can be
found through limiting procedures (cf. [10, 11]). In discrete case, limiting procedures for getting
rational solutions are more delicate and they often lead to a trivialization of the Cauchy matrix.
However, bilinear method has been successfully applied to get limit solutions of some multi-
dimensionally consistent lattices. This was mentioned in [7] for the lattice Boussinesq equation
and then discussed in detail in [12] for the H1 equation in the Adler–Bobenko–Suris (ABS)’s
list [2]. In fact, with the help of bilinear forms and Casoratians (see [6, 7, 12]), one can transfer
a lattice equation to a linear difference equation set satisfied by a Nth-order Casoratian column
vector. Usually there will be a coefficient matrix appearing in the difference equation set. When
the coefficient matrix has N distinct eigenvalues one gets N -soliton solutions, and when it has N
same eigenvalues one gets limit solutions.

In this paper, we will see that H3 and Q1 models in the ABS’s list [2] admit rational solutions.
In [6] Casoratian solutions for H3 and Q1 have been given with explicit Casoratian entries. In
this paper, we will first replace these explicit entries by the difference equation sets satisfied
by them, by which it is possible to get more solutions beyond solitons. We need to introduce
a coefficient matrix for each difference equation set. Then, by discussing eigenvalues of the
coefficient matrix we can get several “generalized” solutions, and one of which is rational type.

The paper is organized as follows. Section 2 provides basic notations for lattice variables,
Casoratians and so forth. In Section 3 we derive rational solutions for H3 and in Section 4
for Q1.

?This paper is a contribution to the Proceedings of the Conference “Integrable Systems and Geomet-
ry” (August 12–17, 2010, Pondicherry University, Puducherry, India). The full collection is available at
http://www.emis.de/journals/SIGMA/ISG2010.html
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2 Preliminary

Let us introduce some notations. Given a base point un,m = u, we indicate the shifts in n, m
direction by up/down-tilde and up/down-hat, say

ũ = un+1,m, û = un,m+1,
˜
u = un−1,m,

ˆ
u = un,m−1.

With these notations the lattice equations of our interest are

H3 ≡ p(uũ+ û̂̃u)− q(uû+ ũ̂̃u) + δ
(
p2 − q2

)
= 0, (2.1)

Q1 ≡ p(u− û)(ũ− ̂̃u)− q(u− ũ)(û− ̂̃u) + δ2pq(p− q) = 0, (2.2)

where p and q are independent parameters of n and m respectively, and δ is an arbitrary
constants. For generating soliton solutions, one needs to introduce an auxiliary direction l
which provides parameters of the solitons by Bäcklund transformation constructed from multi-
dimensional consistency. Shifts in l direction are indicated by up/down-bar as follows, u =
u(l + 1),

¯
u = u(l − 1).

Casoratian is a discrete version of Wronskian. It is a determinant of a Casorati matrix
composed of a basic column vector, i.e.,

|ψ(n,m, l1), ψ(n,m, l2), . . . , ψ(n,m, lN )| = |l1, l2, . . . , lN |,

where the basic column vector is

ψ(n,m, l) = (ψ1(n,m, l), ψ2(n,m, l), . . . , ψN (n,m, l))T . (2.3)

Following the standard shorthand notation given in [13], some Nth-order Casoratians that we
often use are indicated by

|N̂ − 1| = |0, 1, . . . , N − 1|, |N̂ − 2, N | = |0, 1, . . . , N − 2, N |,

| − 1, Ñ − 1| = | − 1, 1, 2, . . . , N − 1|.

The above Casoratians are defined in terms of the shifts in l direction. In fact, we can
organize columns in terms of the shifts of n or m. By the operators Eν (ν = 1, 2, 3) we denote
the operations

E1ψ = ψ̃, E2ψ = ψ̂, E3ψ = ψ̄,

then we can define a Casoratian w.r.t. Eν-shift,

|N̂ − 1|[ν] =
∣∣ψ,Eνψ, (Eν)2ψ, . . . , (Eν)N−1ψ

∣∣, ν = 1, 2, 3.

We note that if the column vector ψ satisfies

ψ = ψ̃ + αψ or ψ = ψ̂ + βψ,

where α and β are some constant, then we have

|N̂ − 1|[3] = |N̂ − 1|[1] or |N̂ − 1|[3] = |N̂ − 1|[2].

In addition to the above notations and properties, we need the the following Laplace expansion
identity for Casoratian verification.

Lemma 1 ([13]). Suppose that B is a N × (N −2) matrix, and a, b, c, d are N th-order column
vectors, then

|B,a,b||B, c,d| − |B,a, c||B,b,d|+ |B,a,d||B,b, c| = 0.
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3 Rational solutions for H3

There are two different bilinear forms related to the H3 equation (2.1), which are [6]

B1 ≡ 2cf f̃ + (a− c)f̃
¯
f − (a+ c)f

¯̃
f = 0, (3.1a)

B2 ≡ 2cf f̂ + (b− c)f̂
¯
f − (b+ c)f

¯̂
f = 0, (3.1b)

and

B′1 ≡ (b+ c)
̂̃
ff + (a− c)f

̂̃
f − (a+ b)f̃ f̂ = 0,

B′2 ≡ (c− b)̂̃f
¯
f − (a+ c)f

̂̄̃
f + (a+ b)f̃

¯̂
f = 0, (3.2)

B′3 ≡ (c− a)(b+ c)f̃
¯̂
f + (a+ c)(b− c)f̂

¯̃
f + 2c(a− b)f ̂̃f = 0,

via the same transformation

u = Aαnβm
f

f
+Bα−nβ−m¯

f

f
, AB = −1

4rδ, (3.3)

where the parametrization is

r2c2

c2 − a2
= p2,

r2c2

c2 − b2
= q2, α2 = −a− c

a+ c
, β2 = −b− c

b+ c
.

Both bilinear forms can be solved by [6]

f(ψ) = |N̂ − 1|[3] (3.4)

with the Casoratian column vector ψ (see the structure (2.3)) composed of

ψi(n,m, l) = ρ+i (a+ ki)
n(b+ ki)

m(c+ ki)
l + ρ−i (a− ki)n(b− ki)m(c− ki)l, (3.5)

where ρ±i and ki are parameters.
Now we consider a generalization of the above ψ. We will discuss the linear difference

equation set satisfied by ψ. First, there should exist symmetric relationship between (n, a) pair
and (m, b) pair. This can be seen from the symmetric position of n and m appearing in the H3
equation. In addition, from the bilinear forms (3.1) and (3.2) this symmetric relationship can
be extended to include (l, c) pair. Since ψ plays a role of the basic Casoratian column vector, it
will consequently keep the n-m-l symmetric property.

In the generalization procedure, Toeplitz matrices play important roles. A Nth-order lower
triangular Toeplitz matrix (LTTM) F is a matrix of the form (see [11] for more properties)

F =


f0 0 0 · · · 0 0
f1 f0 0 · · · 0 0
f2 f1 f0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
fN−1 fN−2 fN−3 · · · f1 f0

 , fj ∈ C. (3.6)

F(k) is called a Nth-order LTTM generated from the function F (k), if in (3.6)

fj =
1

j!
∂jkF (k),

where the ‘seed’ function F (k) is arbitrarily differentiable w.r.t. k.
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Lemma 2. Let non-zero functions F (k, l) and G(k) be sufficiently smooth w.r.t. k and satisfy

∂lF (k, l) = F (k, l)G(k).

Here l is an auxiliary argument of F (k, l). If F(k, l) and G(l) are respectively two N th-order
LTTMs generated from F (k, l) and G(k), then we have

∂lF(k, l) = F(k, l)G(k). (3.7)

Proof.

∂lfj =
1

j!
∂jk∂lF (k, l) =

1

j!
∂jk(F (k, l)G(k)) =

1

j!

j∑
s=0

Csj (∂j−sk F (k, l))(∂skG(k))

=

j∑
s=0

(
1

(j − s)!
∂j−sk F (k, l)

)(
1

s!
∂skG(k)

)
=

j∑
s=0

fj−s · gs.

This yields the relation (3.7). �

Corollary 1. Under the condition of Lemma 2, the product of LTTMs F(k, l)F−1(k, l + 1) is
independent of l.

Proof. From (3.7) we have

F−1(k, l) · ∂lF(k, l) = G(k),

which means F−1(k, l) · ∂lF(k, l) is independent of l, i.e.,

F−1(k, l) · ∂lF(k, l) = F−1(k, l + 1) · ∂lF(k, l + 1).

Noting that

∂l(F(k, l)F−1(k, l + 1))

= (∂lF(k, l))F−1(k, l + 1)−F(k, l)F−1(k, l + 1)(∂lF(k, l + 1))F−1(k, l + 1)

and then replacing F−1(k, l + 1) · ∂lF(k, l + 1) by F−1(k, l) · ∂lF(k, l) yield

∂l(F(l)F−1(l + 1)) = 0.

Thus we complete the proof. �

Now let us come to the main results of H3.

Theorem 1. For H3 the Casoratian f(ψ) defined in (3.4) solves the bilinear forms (3.1)
and (3.2) if ψ satisfies

ψ = ψ̃ + (c− a)ψ, (3.8a)

and there is a N th-order auxiliary vector σ(n,m, l) such that

ψ = A[l] σ, (3.8b)

and

¯
σ = −σ̂ + (b+ c)σ, (3.8c)

where A[l] is a N th-order transform matrix, A[l]A
−1
[l+1] is independent of l, and the subscript [l]

specially means that A[l] only depends on l but is independent of (n,m). Moreover, in the light
of n-m-l symmetric property and (3.8b), the following relation

ψ = A[n]ω, ψ = A[m]φ

automatically holds, where ω(n,m, l) and φ(n,m, l) are auxiliary vectors.
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Proof. The proof is similar to the one with concrete ψi (3.5) in [6], but here we need to carefully
examine the role played by the transform matrix A[l]. We only take (3.1a) as an example. By
a down-tilde-shift it goes to

2c
˜
ff + (a− c)f

¯
f˜ − (a+ c)

˜
f
¯
f = 0. (3.9)

The shift relation (3.8a) and its symmetric forms suggest

f(ψ) = |N̂ − 1|[i] = |N̂ − 1|[j], i, j = 1, 2, 3.

So for (3.9) we consider f(ψ) = |N̂ − 1|[2] for convenience. Same as the derivation in [6], we
have

−(a− b)N−2
˜
f(ψ) = |N̂ − 2,

˜
ψ(N − 2)|[2], −(c− b)N−2

¯
f(ψ) = |N̂ − 2,

¯
ψ(N − 2)|[2],

and

(a− c)(c− b)N−2(a− b)N−2
¯
f˜(ψ) = |N̂ − 3,

¯
ψ(N − 2),

˜
ψ(N − 2)|[2].

Besides, with the help of the shift relation (3.8c) for σ, we have

(c+ b)N−2f(σ) = |σ(0), σ(1), . . . , σ(N − 2), σ(N − 2)|[2]. (3.10)

Then, noting that f(ψ) = |A[l]|f(σ) in terms of m-shift construction of Casoratians and defining

◦
E3ψ = A[l]A

−1
[l+1]E

3ψ,

we find from (3.10) that

(c+ b)N−2f(ψ) = |A[l+1]||A−1[l] ||N̂ − 2,
◦
E3ψ(N − 2)|[2], (3.11)

and further

(a+ c)(c+ b)N−2(a− b)N−2f˜(ψ) = |A[l+1]||A−1[l] ||N̂ − 3,
˜
ψ(N − 2),

◦
E3ψ(N − 2)|[2].

Imposing a down-bar shift on (3.11) and using the relation (3.8a) yield

2c(c− b)N−2(c+ b)N−2f(ψ) = |A[l+1]||A−1[l] ||N̂ − 3,
¯
ψ(N − 2),

◦
E3ψ(N − 2)|[2],

where we have made use of the assumption of A[l]A
−1
[l+1] being independent of l. Now collecting

these obtained formulae, substituting them into the l.h.s. of (3.9) and using Lemma 1, we can
prove (3.9). The proof of other formulae in the bilinear forms (3.1) and (3.2) are similar and we
do not give further details. �

Now let us see what is new the theorem brings. One choice satisfying Theorem 1 is to take ψ
which is composed of (3.5), σ composed of

σi(n,m, l) = ρ+i (a+ ki)
n(b+ ki)

m(c− ki)−l + ρ−i (a− ki)n(b− ki)m(c+ ki)
−l,

and

A[l] = Diag(A(k1, l), A(k2, l), . . . , A(kN , l)), A(kj , l) =
(
c2 − k2j

)l
. (3.12)

This is nothing but the result given in [6] and it generates N -soliton solutions for H3.
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Now let A[l] be a Nth-order LTTM in the form of (3.6), which is generated from A(k1, l) =

(c2 − k21)l, i.e.,

aj =
1

j!
∂jk1
(
c2 − k21

)l
.

Then, the desirable Casoratian column vector ψ can be taken as

ψ(n,m, l) = A+ψ
+(n,m, l) +A−ψ−(n,m, l),

where

ψ±(n,m, l) =
(
ψ±1 (n,m, l), ψ±2 (n,m, l), . . . , ψ±N (n,m, l)

)T
,

ψ±i (n,m, l) =
1

(i− 1)!
∂i−1k1

[
ρ±1 (a± k1)n(b± k1)m(c± k1)l

]
,

and A± are two arbitrary non-singular LTTMs. The corresponding auxiliary vector σ is given
by

σ = A+σ
+(n,m, l) +A−σ−(n,m, l),

where

σ±(n,m, l) =
(
σ±1 (n,m, l), σ±2 (n,m, l), . . . , σ±N (n,m, l)

)T
,

σ±i (n,m, l) =
1

(i− 1)!
∂i−1k1

[
ρ±1 (a± k1)n(b± k1)m(c∓ k1)l

]
.

We note that in the light of Corollary 1, A[l]A
−1
[l+1] is independent of l. Besides, to avoid the

generation of zero by high order derivatives we may let l ≥ N or l 6∈ Z+. (This can be done, for
example, by taking (c ± k1)l0ρ±1 in place of the original ρ±1 where l0 is either a positive integer
greater than N − 1 or not a positive integer. As an example, see (3.13d) where we have taken
l0 = 2.)

As the simplest nontrivial case we take N = 2 and thus the Casoratian f is in the form of

f = |ψ(n,m, 0), ψ(n,m, 1)|[3] (3.13a)

where

ψ(n,m, l) = (ψ1(n,m, l), ∂k1ψ1(n,m, l))
T , (3.13b)

ψ1(n,m, l) = ψ+
1 (n,m, l) + ψ−1 (n,m, l), (3.13c)

ψ±1 (n,m, l) = ρ±1 (a± k1)n(b± k1)m(c± k1)2+l, (3.13d)

and we have taken A± = I. In this case, the coefficient (or transform) matrix A[l] is a 2nd-order

LTTM generated from A(k1, l) = (c2 − k21)2+l, i.e.,

A[l] =

∣∣∣∣∣ (c2 − k21)2+l 0

∂k1(c2 − k21)2+l (c2 − k21)2+l

∣∣∣∣∣ .
Then, substituting (3.13a) into the transformation (3.3) yields a solution to H3, which is different
from 2-soliton solution,

un,m = Aαnβm
(c− k1)2 − [D1 + 4k1c(c

2 − k21)−1](c2 − k21)Qn,m − (c+ k1)
2Q2

n,m

1−D1Qn,m −Q2
n,m

+Bα−nβ−m
(c− k1)−2− [D1− 4k1c(c

2− k21)−1](c2− k21)−1Qn,m− (c+ k1)
−2Q2

n,m

1−D1Qn,m −Q2
n,m

, (3.14a)
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where

Qn,m =

(
c+ k1
c− k1

)2(a+ k1
a− k1

)n(b+ k1
b− k1

)m
ρ0,0, (3.14b)

D1 =
4k1[a(b2 − k21)(c2 − k21)n+ b(a2 − k21)(c2 − k21)m+ 2c(a2 − k21)(b2 − k21)]

(a2 − k21)(b2 − k21)(c2 − k21)
, (3.14c)

AB = −1
4rδ, (3.14d)

and the constants ρ±1 have been absorbed into the parameter ρ0,0. Comparing with the previous
results in [5, 6], the function D1 which depends on n, m is new, and this is the generalization.

Recalling the transform(or coefficient) matrix A[l] defined in (3.12), which is a diagonal and
has N distinct eigenvalues. It leads to N -soliton solutions. When A[l] is the Nth-order LTTM

generated from A(k1, l) = (c2 − k21)l, which is a matrix with N same eigenvalues A(k1, l), we
get a kind of solutions which is closely related to some limiting procedures (see [11, 12]) and
different from solitons. Such solutions we call limit solutions. Usually taking k1 = 0 in such limit
solutions one may get rational solutions. In practice, we may take ψ1 to be an even function
of k1, for example,

ψ1(n,m, l) = (a+ k1)
n(b+ k1)

m(c+ k1)
l0+l + (a− k1)n(b− k1)m(c− k1)l0+l, (3.15)

where l0 is some constant as we mentioned before. Correspondingly, a nontrivial solution of
(3.8a) can be taken as

ψ(n,m, l) =

(
ψ1(n,m, l),

1

2!
∂2k1ψ1(n,m, l), . . . ,

1

(2N − 2)!
∂2N−2k1

ψ1(n,m, l)

)T
, (3.16)

and the transform matrix A[l] is a LTTM in the form of (3.6) with

aj =
1

(2j)!
∂2jk1
(
c2 − k21

)l0+l, j = 0, 1, . . . , N − 1.

Then, the Casoratian for rational solutions is

f = |ψ(n,m, 0), ψ(n,m, 1), . . . , ψ(n,m,N − 1)|k1=0.

The following is a rational solution (with N = 2 and l0 = 2),

u = Aαnβmc2
(

1 +
ab

c(bn+ am) + 2ab

)
+Bα−nβ−mc−2

(
1− ab

c(bn+ am) + 2ab

)
, (3.17)

where AB = −1
4rδ.

4 Rational solutions for Q1

4.1 For bilinearization-I

There are two types of bilinear forms for Q1 equation (2.2). One is [6]

Q1 ≡
̂̃
ff(b− δ) +

̂̃
ff(a+ δ)− f̃ f̂(a+ b) = 0, (4.1a)

Q2 ≡
̂̃
ff(a− b) + f̃ f̂(b+ δ)− f̃ f̂(a+ δ) = 0, (4.1b)

Q3 ≡ −f̃ f̂ + f̃ ĝ(−a+ δ) + f̃ f̂ + f̂ g̃(b− δ) + f̂̃g(a− b) = 0, (4.1c)

Q4 =
̂̃
fg(a− b) + f̃ ĝ(a+ b)− f̂ g̃(a+ b) + f̂̃g(−a+ b) = 0, (4.1d)
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where the transformation is

u = αn+ βm+ γ −
(
c2/r − δ2r

) g
f

(4.2)

with parametrization

α = pa, β = qb,
c2/r − δ2r
a2 − δ2

= p,
c2/r − δ2r
b2 − δ2

= q.

By examining the Casoratian verification we find solutions of Q1 admit the following gene-
ralization.

Theorem 2. The bilinear Q1 (4.1) can be solved by

f(ψ) = |N̂ − 1|[3], g(ψ) = | − 1, Ñ − 1|[3],

if ψ satisfies the shift relation

ψ = ψ̃ + (δ − a)ψ

as well as n-m-l-symmetric property, and there are N th-order auxiliary vector σ(n,m, l) and
φ(n,m, l) such that

ψ = A[l]σ, σ = −
ˆ
σ + (b+ δ)σ,

and

ψ = A[n]A[m]φ, φ = −
˜
φ+ (a+ δ)φ, φ = −

ˆ
φ+ (b+ δ)φ,

where A[l] is defined as in Theorem 1, A[l]A
−1
[l+1] is independent of l, A[n] and A[m] posses pro-

perties similar to A[l].

The proof is similar to the one in the previous section for H3 and in [6] for Q1. We skip it.
N -soliton solutions[6] can be derived from those Casoratians by taking the transform matrixes

as

A[µ] = Diag(A(k1, µ), A(k2, µ), . . . , A(kN , µ)), A(kj , µ) =
(
x2µ − k2j

)µ
,

where

µ = n,m, l, x1 = a, x2 = b, x3 = δ,

and the basic column vector ψ composed of

ψi(n,m, l) = ρ+i (a+ ki)
n(b+ ki)

m(δ + ki)
l + ρ−i (a− ki)n(b− ki)m(δ − ki)l. (4.3)

As a generalization, A[µ] can be a LTTM generated from A(k1, µ). In this case, ψ can be
taken as

ψ(n,m, l) = A+ψ
+(n,m, l) +A−ψ−(n,m, l), (4.4a)

with

ψ±(n,m, l) =
(
ψ±1 (n,m, l), ψ±2 (n,m, l), . . . , ψ±N (n,m, l)

)T
, (4.4b)

ψ±i (n,m, l) =
1

(i− 1)!
∂i−1k1

[
ρ±1 (a± k1)n(b± k1)m(δ ± k1)l0+l

]
, (4.4c)
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and arbitrary Nth-order LTTMs A±. Here we add the parameter l0 which, as before, plays
a role of avoiding triviality of some high order derivatives. Rational solutions may come out by
taking k1 = 0 in the above ψ(n,m, l).

As examples we give two solutions which are not soliton solutions. The first one is

un,m = αn+ βm+ γ + 2
(
c2/r − δ2r

)(δ + k1)− [δE1 − 2k1(δ
4− k41)]Qn,m − (δ − k1)Q2

n,m

(δ2 − k21)(1− E1Qn,m −Q2
n,m)

,

where Qn,m and E1 are given in (3.14b) and (3.14c) with δ in place of c. This solution is derived
from the transformation (4.2) in which we use the 2nd-order Casoratians

f = |ψ(n,m, 0), ψ(n,m, 1)|, g = |ψ(n,m,−1), ψ(n,m, 1)|

with column vector (4.4) where A± = I and l0 = 2. Another example is a rational solution,

un,m = αn+ βm+ γ − δ−1(c2/r − δ2r)
(

2− ab

δ(bn+ am) + 2ab

)
.

This is derived from the 2nd-order Casoratians

f = |ψ(n,m, 0), ψ(n,m, 1)|k1=0, g = |ψ(n,m,−1), ψ(n,m, 1)|k1=0,

where the basic vector column ψ(n,m, l) is (3.16) with even generator (3.15), N = 2 and l0 = 2,
which is the same as that we used to generate rational solution (3.17) for H3.

4.2 For bilinearization-II

The second bilinearlization for Q1 is derived through the transformation [6]

u = Aαnβm
f

f
+Bα−nβ−m ¯̄

f

f
, AB = δ2r2/16,

with the parametrization is

−1
4r(1− α)2/α = p, −1

4r(1− β)2/β = q.

The bilinear form is exactly the same as (3.1), which is a bilinear H3. In this case Q1 can
share Theorem 1 and the Casoratian column vector ψ with H3, as given in Section 3. By
the same Casoratians f that we used to generate solutions (3.14) and (3.17) in Section 3, the
corresponding solutions of Q1 are

un,m = Aαnβm
(c− k1)4 − [(c2 − k21)D1 + 8k1c](c

2 − k21)Qn,m − (c+ k1)
4Q2

n,m

1−D1Qn,m −Q2
n,m

+Bα−nβ−m
(c− k1)−4 − [(c2 − k21)D1 − 8k1c](c

2 − k21)−3Qn,m − (c+ k1)
−4Q2

n,m

1−D1Qn,m −Q2
n,m

,

and

un,m = Aαnβmc4
(

1 +
2ab

c(b n+ am) + 2ab

)
+Bα−nβ−mc−4

(
1− 2ab

c(b n+ am) + 2ab

)
. (4.5)

where AB = δ2r2/16, Qn,m and D1 are respectively defined in (3.14b) and (3.14c). (4.5) gives
a rational solution of Q1.
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5 Conclusions

We have shown that H3 and Q1 models in the ABS’s list admit more solutions than solitons. The
coefficient(or transform) matrix A[µ] in the Casoratian conditions, i.e., those difference equation
sets for the Casoratian column vector ψ, plays an important role. When A[µ] is a diagonal matrix
with N distinct eigenvalues, we get N -soliton solutions. A[µ] can also be a LTTM with N same
eigenvalues. In this case, one gets solutions different from solitons. Particularly, k1 = 0 generates
rational solutions. A[µ] can also be a combination of diagonal blocks and LTTM blocks. We
note that in continuous cases these LTTM-type solutions (related to LTTMs) can be considered
as limit solutions of solitons (cf. [11]), and this is also true for discrete cases. H1 admits LTTM-
type solutions [12] but it does not have rational solutions. The reason is that an invertible A[µ]

is needed in the Casoratian proof for H1, but this will be broken if taking k1 = 0. H2 has the
same situation as H1. In fact, for H1 and H2, the basic Casoratian entry is

ψi(n,m, l) = ρ+i (a+ ki)
n(b+ ki)

mkli + ρ−i (a− ki)n(b− ki)m(−ki)l,

i.e., c = 0 in (3.5) for H3, or δ = 0 in (4.3) for Q1. However, for H3 and Q1, it is just the existence
of c and δ to guarantee the non-triviality of A[µ] when k1 goes to zero. To keep A[µ] invertible is
also the criterion to examine rational solution reduction (δ = 0) for H3 and Q1. Obviously, the
rational solutions derived from the first bilinear form of Q1 do not admit reduction of δ = 0, but
others do. For H1 and H2, trying to introduce an auxiliary parameter (for example, c for H3)
in their Casoratian entry so that the transform matrix A[µ] is still invertible as k1 → 0 might
be a possible way to get their rational solutions in Caosratian form. This is left for further
discussion.
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