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Abstract. We show that a recently introduced fifth-order bi-Hamiltonian equation with
a differentially constrained arbitrary function by A. de Sole, V.G. Kac and M. Wakimoto is
not a new one but a higher symmetry of a third-order equation. We give an exhaustive list
of cases of the arbitrary function in this equation, in each of which the associated equation
is inequivalent to the equations in the remaining cases. The equations in each of the cases
are linked to equations known in the literature by invertible transformations. It is shown
that the new Hamiltonian operator of order seven, using which the introduced equation
is obtained, is trivially related to a known pair of fifth-order and third-order compatible
Hamiltonian operators. Using the so-called trivial compositions of lower-order Hamiltonian
operators, we give nonlocal generalizations of some higher-order Hamiltonian operators.
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1 Introduction

A hierarchy of evolution equations uti = Fi[u] are called bi-Hamiltonian integrable if by two
compatible Hamiltonian operators (HO’s) J and K there exist a Magri scheme

uti = Fi[u] = Kδu

∫
hi[u]dx = Jδu

∫
hi+1[u]dx, i = 0, 1, 2, 3, . . .

with conserved densities hi[u] which are assumed to exist for all i, where δu is the variational
derivative. HO’s are skew-adjoint operators satisfying Jacobi identity. Two HO’s are said to
be compatible if their arbitrary linear combinations are also HO. A direct byproduct of a bi-
Hamiltonian structure determined by compatible pair of HO’s K and formally invertible J is the
recursion operator R = KJ−1 which maps an equation Fi to the next equation Fi+1 = RFi in
the symmetry hierarchy uti = Fi, i = 0, 1, 2, . . . . Square brackets, like F [u] denote differential
functions of x, u and x-derivatives of u up to some finite order.

Because of their central role in the integrability theory, various operator classes are classified
for their HO content. Local and scalar HO’s of order 1 and 3 are classified by Gel’fand–Dorfman,
Astashov–Vinogradov, Mokhov, Olver in [1, 2, 3, 4], and the 5th-order ones in [5] by Cooke.
Recently in [6], A. de Sole, V.G. Kac and M. Wakimoto (deSKW) classified HO’s of order 7 up
to 13 under equivalence up to contact transformations. They also gave a conjecture for HO’s of
order grater than 13.

Contact transformations, i.e. the invertible transformations x = P (y, v, v′) and u = Q(y, v, v′)
leaving the equation w = 0 of the contact form w = du− u′dx invariant, provide a natural class
of equivalence transformations for HO’s because they preserve locality of HO’s and, moreover,
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the order of the transformed HO remains equal to that of the original one [3]. In what follows
the HO’s and the other relevant objects like symmetries, conserved densities etc. which can be
transformed into each other by contact transformations will be called equivalent.

Here we consider an integrable 5th-order equation with an arbitrary function subject to
a differential constraint, obtained by a pair of compatible newly obtained 7th-order and 3rd-
order HO’s in [6] which is announced to be new. We show that the obtained equation is not
a new one but a higher symmetry of a 3rd-order equation which is equivalent to one of three
particular equations given in Mikhailov–Shabat–Sokolov (MSS) classification [7] according to
the arbitrary function it contains. We give a lower-order recursion operator and show that the
newly obtained 7th-order HO is trivially related to a pair of known 5th-order and 3rd-order
HO’s. By using successive trivial compositions of the compatible 5th- and 3rd-order HO’s we
provide some nonlocal generalizations of the HO’s of order grater than 7 obtained in deSKW
classification.

2 The fifth-order equation

The result of the deSKW classification of 7th-order HO’s in [6] is the following theorem.

Theorem 2.1 ([6]). Any HO of order 7 is equivalent either to a quasiconstant coefficient skew-
adjoint differential operator or to the operator H(7,c(x)) + b2D3, where

H(7,c(x)) = −B∗(3,c(x)) ·D ·B(3,c(x)), B(3,c(x)) =
1

u
D

1

u
D2 + c(x)D − 1

2
c′(x),

and c′′′(x) = 0, b = const. These two types of HO’s are not equivalent. The HO’s H(7,c(x))+b
2D3

and H(7,c1(x)) + b21D
3 are equivalent if and only if α2c1(x) = c(α3x+β) and α2b1 = ±b for some

constants α 6= 0 and β. Such a HO is equivalent to a linear combination of the operators H(j,0)

if and only if c(x) = c = const, and one has H(7,c) = H(7,0) + 2cH(5,0) + c2H(3,0).

In the above theorem, quasiconstant refers to arbitrary functions of x only and (∗) denotes
(formal) adjoint. H(N,0) are HO’s defined for N = 2n+ 3 ≥ 3 by

H(N,0) = D2 ·
(

1

u
D

)2n

·D, Dn =
dn

dxn
. (2.1)

Using the compatible pair of HO’s H(7,c(x)) with c′′′(x) = 0 and D3, the following equation

ut1 = H(7,c(x))δu

∫
h0dx =

(
u(4)

u5
− 15

u′u′′′

u6
− 10

u′′2

u6
+ 105

u′′u′2

u7
− 105

u′4

u8

+

(
2c(x)− 1

4
c′′(x)x2 +

1

2
c′(x)x

)
u′′

u3
−
(

3

2
c′(x)x+ 6c(x)− 3

4
c′′(x)x2

)
u′2

u4

+ 5c′(x)
u′

u3
− 5

4

c′′(x)

u2
− 15

16
c(x)2 +

9

16
c(x)c′′(x)x2 − 9

8
c(x)c′(x)x

+
3

64
c′′(x)2x4 − 3

16
c′(x)c′′(x)x3 +

3

16
c′(x)2x2

)′
= D3δu

∫
h1dx (2.2)

is introduced as the first member of a new integrable symmetry hierarchy. The associated initial
conserved density which is a Casimir functional for the HO D3, is

h0 = −1

2
x2u,
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and the second conserved density is given as

h1 = a(x)u+
1

u

(
c(x)− 1

8
c′′(x)x2 +

1

4
c′(x)x

)
− u′2

2u5
,

with

a(x) =
x2

32

(
−18c(x)2 − 6c(x)c′′(x)x2 + 20c(x)c′(x)x

− c′′(x)2x4 + 5c′(x)c′′(x)x3 − 7c′(x)2x2
)
.

Discarding the trivial symmetry ut−1 = 0 = D3δu
∫
h0dx, the hierarchy constructed by the

HO’s H(7,c(x)) with c′′′(x) = 0 and D3 starts from the 5th-order equation (2.2). The next
symmetry ut3 = H(7,c(x))δu

∫
h1dx is of order 9. The fourth-order recursion operator

R(4,c(x)) = H(7,c(x))D
−3 (2.3)

gives the symmetries each being 4 orders higher than the one it succeeds.

3 Lower-order symmetry and recursion operator

Interestingly, for none of the functions c′′′(x) = 0, the 5th-order equation (2.2) is equivalent to
any of the 5th-order equations given in MSS classification [7] where the scalar equations of order
up to 5 are extensively classified with respect to existence of sufficiently many higher conserved
densities for the existence of a formal symmetry.

From the recursion operator point of view, the order of the recursion operator R(4,c(x)) in (2.3)
does not match those of the 5th-order equations of Sawada–Kotera and Kaup–Kupershmidt
both of which have recursion operators of order 6. Note that the order of a recursion operator
is preserved by plenty of transformations.

All these facts lead us to reconsider the equation (2.2) for its lower-order symmetries at first.
The result is the following proposition.

Proposition 3.1. The 5th-order equation (2.2) with c′′′(x) = 0 is a higher symmetry of the
3rd-order equation

ut0 =
u′′′

u3
− 9

u′′u′

u4
+ 12

u′3

u5
− 3

2
c′(x) =

(
u−3u′′ − 3u−4u′2 − 3

2
c(x)

)′
. (3.1)

If we further search for symmetries of order higher than 5 we obtain a 7th-order symmetry
before the one at order 9. All these intermediate symmetries suggest existence of a 2nd-order
recursion operator. Indeed, it can be shown (but not needed in view of the results of next
section) that

Proposition 3.2. The 2nd-order operator

R(2,c(x)) =
(
H(7,c(x))D

−3) 1
2 = D2 1

u
D

1

u
D−1 + c(x) +

3

2
c′(x)D−1 (3.2)

is a hereditary recursion operator for equation (3.1).

Since the inverse of D is not uniquely defined, by applying R(2,c(x)) on the r.h.s. of (3.1) we
obtain the following linear combination

ut = F1 + kF0, (3.3)
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where

F1 =

(
u(4)

u5
− 15

u′u′′′

u6
− 10

u′′2

u6
+ 105

u′′u′2

u7
− 105

u′4

u8

+
5

2
c(x)

u′′

u3
− 15

2
c(x)

u′2

u4
+ 5c′(x)

u′

u3
− 5

4

c′′(x)

u2
− 15

8
c(x)2

)′
(3.4)

and F0 is the r.h.s. of equation (3.1). If the arbitrary constant k in (3.3) is chosen to be the
constant

k = −1

4
c′′(x)x2 +

1

2
c′(x)x− 1

2
c(x), c′′′(x) = 0, (3.5)

then the linear combination of symmetries (3.3) becomes (upon taking all the derivatives) exactly
the equation (2.2). So, the F0 part in equation (2.2) is redundant. Rather than equation (2.2)
(with or without the F0 part in it) we can concentrate on its 3rd-order symmetry (3.1) since it
is a lower-order symmetry in the hierarchy which is not of Lie-point type.

Having stepped down to order 3, in the following proposition, we divide the functions c(x)
which are constrained to satisfy c′′′(x) = 0, into three subclasses. For each subclass, equa-
tions (3.1) are mutually inequivalent under contact transformations. We further relate equations
from each subclass with the ones given in literature.

Proposition 3.3. The equation (3.1) for

i) c(x) = c1(x) where c′1(x) = 0, is a special case of the equation (4.1.34) in [7], whose
potentiation is a symmetry in a Riemann hierarchy [8], which by a further hodograph
transformation becomes a linear equation with only a 3rd-order term;

ii) c(x) = c2(x) where c′′2(x) = 0 and c′2(x) 6= 0, is equivalent to

ut =
(
u−3u′′ − 3u−4u′2 − 3x

)′
(3.6)

which is the equation (4.1.23) in [7], through

x 7→
(

2

c′2(x)

) 1
3

x, t 7→
(

2

c′2(x)

)
t;

iii) c(x) = c3(x) where c′′′3 (x) = 0 and c′′3(x) 6= 0, is equivalent to

ut =

(
u−3u′′ − 3u−4u′2 +

3

2
x2
)′

(3.7)

which is the equation (4.1.24) in [7], through

x 7→
(
−2

c′′3(x)

) 1
4

x− c′3(0)

c′′3(x)
, t 7→

(
−2

c′′3(x)

) 3
4

t.

Let us note that under the contact transformations, each of the cases in the above proposition
is an equivalence class. And the three cases exhaust all functions c(x) such that c′′′(x) = 0. These
cases are the cases by which the HO’s of form H(7,c(x)) in Theorem 2.1 are exhaustively divided
into three equivalence class of HO’s too.
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4 Lower-order Hamiltonian operator

The recursion operator R(4,c(x)) is a consequence of the compatible HO’s H(7,c(x)) with c′′′(x) = 0
and D3 as the ratio given in (2.3). Taking its square root we obtained the 2nd-order recursion
operator R(2,c(x)). Also considering the restored missing members of the symmetry hierarchy
as above, it is natural to ask whether R(2,c(x)) has a bi-Hamiltonian factorization too. Upon
assuming the second HO to be again D3, the answer reads

R(2,c(x)) = H(5,c(x))D
−3,

where

H(5,c(x)) = D2 1

u
D

1

u
D2 + c(x)D3 +

3

2
c′(x)D2, c′′′(x) = 0, (4.1)

is the HO given in Remark 3.8 in [6] (denoted by H(5,0,c(x)) there). It is equivalent to a HO
obtained by Cooke in [5].

So, as a summary the hierarchy obtained by H(7,c(x)) with c′′′(x) = 0 and D3 is nothing but
a subset of the hierarchy that the compatible pair of HO’s H(5,c(x)) with c′′′(x) = 0 and D3 gives
rise to. Let us note, for the sake of completeness that the 3th-order equation (3.1) is obtained
by

ut =

(
u−3u′′ − 3u−4u′2 − 3

2
c(x)

)′
= H(5,c(x))δu

∫ (
−x

2

2
u

)
dx

= D3δu

∫ (
1

2u
−
(

3

2
D−2(c(x)) + f(x)

)
u

)
dx

with any function f(x) such that f ′′′(x) = 0. The next symmetry in the hierarchy

ut = H(5,c(x))δu

∫ (
1

2u
−
(

3

2
D−2(c(x)) + f(x)

)
u

)
dx,

is either the equation (3.4) for the choice of the constant f ′′(x) = 0, or the linear combina-
tion (2.2) for the choice f ′′(x) = k where k is the constant given in (3.5).

5 Trivially related Hamiltonian operators

A HO K1 which is obtainable from other compatible HO’s K0 and J as K1 = K0J
−1K0, is

called trivially related in [8] since, as seen here, the pair (K1, J) gives a subset of the structure
of symmetries/conserved quantities that the pair (K0, J) gives. The sequence of operators Kn

obtained by trivially composing compatible HO’s K0 and J as Kn = (K0J
−1)nK0, n = 1, 2, . . .

are proved to be HO in [9]. It can be further shown by constructing trivial compositions(
J +

m∑
n=0

λn
(
K0J

−1)nK0

)
J−1

(
J +

m∑
n=0

λ̄n
(
K0J

−1)nK0

)
,

(
K0J

−1)0 = 1,

of the successive partial sums m = 0, 1, 2, . . . of linear combinations J +
m∑

n=0
λn(K0J

−1)nK0

with arbitrary constants λn, λ̄n and by induction on m that all Kn, n = 0, 1, 2, . . . are mutually
compatible HO’s if so is the HO’s K0 and (formally) invertible J .
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As an example, consider the HO’s H(N,0) and H(M,0) with N = 2n+ 3 ≥ 3, M = 2m+ 3 ≥ 3,
i.e. n,m = 0, 1, 2, 3, . . . , of type (2.1) whose Darboux form was obtained in [10]. Their trivial
compositions

H(2N−M,0) = H(N,0)
(
H(M,0)

)−1
H(N,0) = D2 ·

(
1

u
D

)2s

·D,

where s = 2n−m = 0,±1,±2,±3, . . . are all mutually compatible HO’s.

Trivially related HO’s were first singled out in [8] where the considered equations were of
so-called hydrodynamic type. Equations of this type may possess plenty of Hamiltonian repre-
sentations with more than two compatible HO’s. The 1st-order scalar equations in general [11],
and the Riemann equation as a particular representative thereof [8], is an extreme case in
the number of compatible Hamiltonian formulations admitted. They possess infinitely many
Hamiltonian structures [12] on the same set of variables not only with 1st-order HO’s, even if
the trivially related HO’s are isolated [13].

In deSKW classification [6], all the obtained higher-order HO’s as well as the 5th-order ones
obtained by Cooke in [5] are given in a particular symmetric form which is not only beautiful but
also very suitable to observe possible trivial lower-order decompositions. Taking into account
that

D2B(3,c(x)) = H(5,c(x)), c′′′(x) = 0,

where the operator B(3,c(x)) is given in Theorem 2.1 and H(5,c(x)) in (4.1), we observe

H(7,c(x)) = H(5,c(x))D
−3H(5,c(x)),

which is a trivial composition of the HO’s H(5,c(x)) with c′′′(x) = 0 and D3. A pair of which is
known to be compatible from the classification of 5th-order HO’s.

The fact that H(7,c(x)) is trivially related to the HO’s H(5,c(x)) and D3 has the following
consequence:

Proposition 5.1. The operator of order 7

J(7,c(x)) = H(7,c(x)) + aH(5,c(x)) + bD3,

where H(7,c(x)) is given in Theorem 2.1 and H(5,c(x)) in (4.1) with arbitrary constants a and b is
HO iff c′′′(x) = 0.

Note that the HO H(7,c(x)), being a trivial composition of HO’s H(5,c(x)) and D3, forms
a compatible triple with the latter two. In general, compatibility of one of the HO’s, say J2 of
a compatible pair (J1, J2) with a third one J3 (not proportional to J1 or J2) does not imply
compatibility of the pair (J1, J3). But this property holds automatically for trivially related
HO’s.

The HO H(7,c(x)) is a strict trivial composition of the the pair H(5,c(x)) and D3 in the following
sense:

Proposition 5.2. Let the functions c(x) and f(x) and a constant a be such that c′′′(x) = 0,
f ′′′(x) = 0 and a 6= 0. Then

H(7,f(x)) + aH(5,c(x)) + bD3

is HO only if f(x) = c(x), for any value of constant b.
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Let us proceed with the compatible pair H(7,c(x)) and H(5,c(x)) with c′′′(x) = 0 to obtain the
HO of order 9

J(9,c(x)) = H(7,c(x))

(
H(5,c(x))

)−1
H(7,c(x)) =

(
H(5,c(x))D

−3)2H(5,c(x))

= B∗(3,c(x))

(
D

1

u
D

1

u
D + c(x)D +

1

2
c′(x)− 1

2
c′′(x)D−1

)
B(3,c(x)), c′′′(x) = 0,

where B(3,c(x)) is given in Theorem 2.1. For c′′(x) 6= 0 the HO J(9,c(x)) is an operator with
a nonlocal term D−1 and thus outside of the deSKW classification.

As it was the case with H(7,c(x)), J(9,c(x)) cannot give any new structure of symmetries or
conservation laws other than the ones that the pair H(5,c(x)) with c′′′(x) = 0 and D3 gives
because eventually it is a trivial composition of the latter two which implies the following:

Proposition 5.3. The operator of order 9

J(9,c(x)) + k1H(7,c(x)) + k2H(5,c(x)) + k3D
3

with arbitrary constants k1, k2 and k3 is HO iff c′′′(x) = 0.

The c′′(x) = 0 special case of Proposition 5.3 gives a local HO which agrees with the Theo-
rem 3.11 of deSKW classification of HO’s of order 9 in [6].

At order 11 there is the following trivial composition

J(11,c(x))= H(9,c(x))

(
H(7,c(x))

)−1
H(9,c(x))=

(
H(5,c(x))D

−3)3H(5,c(x))= −P ∗(11,c(x))DP(11,c(x)),

P(11,c(x)) =

(
1

u
D

1

u
D + c(x)− 1

2
c′(x)D−1

)(
1

u
D

1

u
D2 + c(x)D − 1

2
c′(x)

)
, c′′′(x) = 0,

which is a local operator only for the case c′(x)=0. Trivial compositions
(
H(5,c(x))D

−3)nH(5,c(x)),
n = 4, 5, . . . , i.e. at orders 13 and higher are HO’s with nonlocal tail unless c′(x) = 0.

Trivial compositions in the opposite direction
(
D3(H(5,c(x)))

−1)mD3, m = 1, 2, 3, . . . are
pseudodifferential operators of order 1 and lower which are intractable. Therefore, trivial com-
positions of the local pair (H(5,c(x)), D

3) shows us conversely that in those cases with intractable
HO pairs, there may exist an associated tractable, i.e. at least weakly nonlocal [14] or better
local, pair of HO’s which are trivial (de)compositions of the original intractable ones.

6 Discussion

We have shown that a recently introduced 5th-order integrable equation (2.2) is a linear combi-
nation of a 5th-order equation with its 3rd-order symmetry and related through the recursion
operator R(2,c(x)) in (3.2), to the 3rd-order equation (3.1) as a higher symmetry. The equa-
tion (3.1), depending on the form of arbitrary function c(x) in it, is equivalent to three well
known equations. In other words, equation (2.2) is a higher symmetry of equation (3.1) which
is, in a sense, a compact representation of three well known equations in a single expression.

The fact that none of the equations (2.2) is in the MSS list of 5th-order integrable equations
is understandable since, as noted, those 5th-order equations which are higher symmetries of
lower-order equations are omitted in the MSS list of 5th-order equations. Correspondence of
each case in Proposition 3.3 with only one equation in MSS list is in agreement with the fact
that the cases in Proposition 3.3 and the equations in the MSS classification are both divided
according to the equivalence under contact transformations.

Integrable third-order scalar evolution equations were extensively classified using various
definitions of integrability, see e.g. [7, 15] and the references therein. As also noted in [7], equa-
tions (3.6) and (3.7) are related to the KdV and pKdV equations respectively via potentiation
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and hodograph transformation which is not uniquely invertible and thus does not belong to the
class of contact transformations. But if the class of contact transformations is extended, the
ultimate 3rd-order equation is the KdV equation from which all the equations considered here
can be derived [16].

On the side of HO’s, we have explained by using trivial (de)compositions of HO’s that the
5th-order equation (2.2) obtained by the compatible pair (H(7,c(x)), D

3) in deSKW classification
is a higher symmetry in a finer hierarchy constructed by the compatible pair (H(5,c(x)), D

3),
a trivial composition of which is the HO H(7,c(x)). Moreover, as a consequence of using trivial
compositions of lower-order HO’s we have obtained nonlocal generalizations of some of the
higher-order HO’s obtained in deSKW classification.
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