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Abstract. The collection of all projective vector fields on a Finsler space (M,F ) is a finite-
dimensional Lie algebra with respect to the usual Lie bracket, called the projective algebra
denoted by p(M,F ) and is the Lie algebra of the projective group P (M,F ). The projective
algebra p(M,F = α + β) of a Randers space is characterized as a certain Lie subalgebra
of the projective algebra p(M,α). Certain subgroups of the projective group P (M,F ) and
their invariants are studied. The projective algebra of Randers metrics of constant flag
curvature is studied and it is proved that the dimension of the projective algebra of Randers
metrics constant flag curvature on a compact n-manifold either equals n(n+ 2) or at most

is n(n+1)
2 .

Key words: Randers metric; constant flag curvature; projective vector field; projective al-
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1 Introduction

The motion of freely falling particles define a projective structure on spacetime. Mathematically
speaking, this provides a projective connection or an equivalence class of symmetric affine
connections all possessing the same unparameterized geodesic curves. This may be regarded as
a mathematical formulation of the weak principle of equivalence valid both in the Newtonian
and relativistic theory of spacetime and gravity [11]. Many physical considerations require
metric structures on spacetime in liaison to affine connections. A necessary condition for two
such metric structures to have the same (unparameterized) geodesic curves is that their Weyl
projective tensors are identical.

The locally anisotropic space-times are studied in [24] from a geometrical point of view and
thus may include some auspices on the Weyl projective tensor. As we will see in this paper,
certain subgroups of the Lorentz group may be at once a subgroup of the projective group
of the Finsler metric F =

√
ηµνdxµdxν + Aµdx

µ, where η and A denotes the Lorentz metric
and the electromagnetic potential vector of the flat space-time. Some reduced forms of Weyl
projective tensor W have been introduced in [1, 16], which are invariant among projectively
related constant curvature Finsler metrics but not identical among scalar flag curvature metrics.
Any two Finsler metrics possessing the same (unparameterized) geodesics have the same Weyl
projective tensor. Studying Weyl projective vector fields (i.e. those vector fields preserving the
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Weyl projective tensor and also the reduced Weyl projective tensors) and projective vector fields
have such a leading role to obtain projective symmetries which provide some conservation laws
in physical terms. On the other hand, there are many papers devoted on projective symmetry
in metric-affine gravity and cosmology, see for example [9, 7].

Randers metrics are the most popular Finsler metrics in differential geometry and physics
simply obtained by a Riemannian metric α =

√
aij(x)yiyj and β = bi(x)yi as F = α + β and

was introduced by G. Randers in [18] in the context of general relativity. They arise naturally
as the geometry of light rays in stationary spacetimes [8]. One may refer to [5, 6, 14, 19]
for an extensive series of results about the Einstein Randers metrics and the Randers metrics
of constant flag curvature. The present paper is closely related to the problem of projective
relatedness of Randers metrics which is investigated in [20]. To avoid the obscurity, given
a Randers metric α + β, the geometric objects in (M,F ) and (M,α) are denoted respectively
by the prifices “F -” and “α-”, respectively, for instance, an F -projective vector field means
a projective vector field on (M,F ), an α-projective vector field means a projective vector field
on (M,α), an α-Killing vector fields stands for a Killing vector field on (M,α), etc. We use
the usual notations for Randers metrics in [6, 20]. Given any vector field V , its complete lift
to TM0 = TM\{0} is denoted by V̂ and the Lie derivative along V̂ is denoted by LV̂ . One
can benefit [28] for an extensive discussion on the theory of Lie derivatives of various geometric
objects in Finsler spaces. Traditionally we use the notations for the so-called (α, β)-metric

disposal in [21], thereby si◦ = aikskjy
j , where skj =

(
∂bk
∂xj
− ∂bj

∂xk

)
. We characterize the projective

vector fields on a Randers space by proving the following theorem:

Theorem 1. Let (M,F = α + β) be a Randers space and V be a vector field on M . V is
F -projective if and only if V is α-projective and LV̂ {αs

i
◦} = 0.

Determining the dimension of the projective algebra of constant curvature and Einstein spaces
is of interests in physical and geometrical discussions, see [7] and interested readers may be-
nefit [28] for a large discussion on this field. This leads to calculate number of independent
projective vector fields and is closely related to the number of independent Killing vector fields
in each case. It is well known that in an n-dimensional Riemannian space of constant curvature
the dimension of the projective algebra is n(n + 2) and vice-versa, see [7, 28]. This weaves an
overture for an analogue problem for Randers space (M,F = α+β). If we have sij = 0, then the
respective projective algebras p(M,F ) of F and p(M,α) of α coincide. If moreover, F is locally
projectively flat, then α is too and hence, the dimension of the projective algebra p(M,F ) is
n(n + 2). Notice that our discussions are closely related to the algebra k(M,α) of α-Killing
vector fields. The important case is considerable when sij 6= 0 and uncovers a non-Riemannian
feature of Finsler metrics in comparison with the analogue Riemannian case. We summarize the
argument by establishing the following result:

Theorem 2. Let (M,F ) be an n-dimensional (n ≥ 3) Randers space of constant flag curvature
and M is compact. The dimension of the projective algebra p(M,F ) is either n(n + 2) or at

most equals n(n+1)
2 .

The spaces admitting certain vector fields has a long history in Riemannian geometry, see
for example [3, 7, 10, 17, 25, 26, 27]. Existence of some special vector fields on a Riemannian
space may pertain to some global properties of the underlying Riemannian space. We prove the
following result to uncover such an interaction for Randers spaces:

Theorem 3. Let (M,F = α + β) be a Randers space of vanishing S-curvature and dimension
n ≥ 3. If (M,F ) admits a non-α-affine projective vector field V , then (M,F ) is a Berwald
space.
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2 Preliminaries

Let M be a n-dimensional C∞ connected manifold. TxM denotes the tangent space of M
at x. The tangent bundle of M is the union of tangent spaces TM :=

⋃
x∈M TxM . We will

denote the elements of TM by (x, y) where y ∈ TxM . Let TM0 = TM \ {0}. The natural
projection π : TM0 → M is given by π(x, y) := x. A Finsler metric on M is a function
F : TM → [0,∞) with the following properties: (i) F is C∞ on TM0, (ii) F is positively
1-homogeneous on the fibers of tangent bundle TM , and (iii) the Hessian of F 2 with elements
gij(x, y) := 1

2 [F 2(x, y)]yiyj is positive definite matrix on TM0. The pair (M,F ) is then called

a Finsler space. Throughout this paper, we denote a Riemannian metric by α =
√
aij(x)yiyj

and a 1-form by β = bi(x)yi. A globally defined vector field G is induced by F on TM0, which
in a standard coordinate (xi, yi) for TM0 is given by G = yi ∂

∂xi
− 2Gi(x, y) ∂

∂yi
, where Gi(x, y)

are local functions on TM0 satisfying Gi(x, λy) = λ2Gi(x, y), λ > 0. Assume the following
conventions:

Gij =
∂Gi

∂yi
, Gijk =

∂Gij
∂yk

, Gijkl =
∂Gijk
∂yl

.

Notice that the local functions Gijk give rise to a torsion-free connection in π∗TM called the

Berwald connection which is practical in this paper, see [21]. The local functions Gij define

a nonlinear connection HTM spanned by the horizontal frame { δ
δxi
}, where δ

δxj
= ∂

∂xj
−Gij ∂

∂yi
.

The nonlinear connection HTM splits TTM as TTM = kerπ∗ ⊕ HTM , see [21]. A Finsler
metric is called a Berwald metric if Gijk(x, y) are functions of x only at every point x ∈ M ,

equivalently F is a Berwald metric if and only if Gijkl = 0.

For a Finsler metric F on an n-dimensional manifold M the Busemann–Hausdorff volume
form dVF = σF (x)dx1 · · · dxn is defined by

σF (x) :=
Vol(Bn(1))

Vol{(yi) ∈ Rn | F (yi ∂
∂xi
|x) < 1}

.

Assume g = det(gij(x, y)) and define τ(x, y) := ln
√
g

σF (x) . τ = τ(x, y) is a scalar function

on TM0, which is called the distortion [21]. For a vector y ∈ TxM , let c(t), −ε < t < ε, denote
the geodesic with c(0) = x and ċ(0) = y. The function S(y) := d

dt [τ(ċ(t))]|t=0
is called the

S-curvature with respect to Busemann–Hausdorff volume form. A Finsler space is said to be of
isotropic S-curvature if there is a function σ = σ(x) defined on M such that S = (n+ 1)σ(x)F .
It is called a Finsler space of constant S-curvature once σ is a constant. Every Berwald space
is of vanishing S-curvature [21]. The E-curvature of the Finsler space (M,F ) is defined by

Ey = Eij(y)dxi ⊗ dxj , where Eij = 1
2

∂2S
∂yi∂yj

. (M,F ) is called a weakly-Berwald space if E = 0.

It is easy to see that we have Eij = 1
2G

r
irj .

Let (M,α) be a Riemannian space and β = bi(x)yi be a 1-form defined on M such that
‖β‖x := sup

y∈TxM
β(y)/α(y) < 1. The Finsler metric F = α + β is called a Randers metric on

a manifold M . Denote the geodesic spray coefficients of α and F by the notions Giα and Gi,
respectively and the Levi-Civita connection of α by ∇. Define ∇jbi by (∇jbi)θj := dbi − bjθ j

i ,

where θi := dxi and θ j
i := Γ̃jikdx

k denote the Levi-Civita connection forms and ∇ denotes its
associated covariant derivation of α. Let us put

rij :=
1

2
(∇jbi +∇ibj), sij :=

1

2
(∇jbi −∇ibj),

sij := aihshj , sj := bis
i
j , eij := rij + bisj + bjsi.
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Then Gi are given by

Gi = Giα +
(e◦◦

2F
− s◦

)
yi + αsi◦,

where e◦◦ := eijy
iyj , s◦ := siy

i, si◦ := sijy
j and Giα denote the geodesic coefficients of α,

see [21]. Notice that the S-curvature of a Randers metric F = α+ β can be obtained as follows

S = (n+ 1)
{e◦◦
F
− s◦ − ρ◦

}
,

where ρ = ln
√

1− ‖β‖ and ρ◦ = ∂ρ
∂xk

yk. It is well-known that every weakly-Berwald Randers
space is of vanishing S-curvature [21].

Let F be a Finsler metric on an n-manifold and Gi denote the geodesic coefficients of F .
Define Ry = Ki

k(x, y)dxk ⊗ ∂
∂xi
|x : TxM → TxM by

Ki
k := 2

∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj

∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.

The family R := {Ry}y∈TM0 is called the Riemann curvature [21]. The Ricci scalar is denoted
by Ric it is defined by Ric := Kk

k. The Ricci scalar Ric is a generalization of the Ricci tensor
in Riemannian geometry. A Finsler space (M,F ) is called an Einstein space if there is function σ
defined on M such that Ric = σ(x)F 2. D. Bao and C. Robles proved in [5, 19] the following
theorem:

Theorem 4. Let (M,F = α + β) be an n-dimensional Randers space and n ≥ 3. If (M,F ) is
an Einstein space with Ric = (n − 1)K(x)F 2, then it is of constant S-curvature and K(x) is
constant.

The Berwald–Riemannian curvature tensor Ky = Ki
jkl(y) ∂

∂xi
⊗ dxj ⊗ dxk ⊗ dxl and the

Berwald–Ricci tensor Kjl(y)dxj ⊗ dxl are respectively defined by

Ki
jkl :=

1

3

{
∂2Ki

k

∂yj∂yl
−

∂2Ki
l

∂yj∂yk

}
, Kjl := Ki

jil.

Due to a result in [14], every Finsler metric of constant S-curvature on a compact manifold is
of vanishing S-curvature. Therefore, the S-curvature of every Einstein Randers metric on an
n-dimensional (n ≥ 3) compact manifold is vanishing.

Denote the horizontal and vertical covariant derivation of the Berwald connection of F re-
spectively by “|” and “.”. The quit nouvelle non-Riemannian quantity Hy = Hij(y)dxi ⊗ dxj is

simply defined by Hij = Eij|ky
k, see [2, 13, 15]. Consider the following Bianchi identity for the

Berwald connection [2]:

Gijkl|m −G
i
jkm|l = Ki

jkl.m.

After convecting the indices i and k and taking into account the equation Gijil = 2Ejl, we

obtain Gkjkl|m −G
k
jkm|l = 2(E jl|m −E jm|l) = K jl.m. From which it results

yjK jl.m = 0, ylK jl.m = −2Hjm. (1)
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3 Projectively related metrics and projectively invariants

Two Finsler metrics F and F̃ on a manifold M are said to be (pointwise) projectively related if
they have the same geodesics as point sets. Hereby, there is a function P (x, y) defined on TM0

such that G̃i = Gi+Pyi on coordinates (xi, yi) on TM0, where G̃i and Gi are the geodesic spray
coefficients of F̃ and F , respectively. A Finsler metric F on an open subset U ⊆ Rn is called
projectively flat if all geodesics are straight in U. In this case, F and the Euclidean metric on U
are projectively related. A Finsler metric is called locally projectively flat if at any point x ∈M ,
there is a local coordinate (xi, U) in which F is projectively flat. We consider projectively
related Finsler metrics, namely those having the same geodesics as set points. Let F̃ and F be
two projectively related Finsler metrics. Consider a natural coordinate system ((xi, yi), π−1(U)).
There is function P defined on TM0 such that G̃i = Gi+Pyi. Let us put Pi = P.i and Pij = Pi.j .
Observe that we have

G̃ij = Gij + Pjy
i + Pδij , G̃ijk = Gijk + Pjky

i + Pkδ
i
j + Pjδ

i
k, (2)

Ẽij = Eij +
(n+ 1)

2
Pij . (3)

The Berwald–Riemannian curvature and the Berwald–Ricci tensors of F̃ and F are related as
follows

K̃i
hjk = Ki

hjk + yi(Pjh|k − Pkh|j) + δih(Pj|k − Pk|j)

+ δij(Ph|k − PhPk − PPhk)− δik(Ph|j − PhPj − PPhj),

K̃ hk = Khk + (Ph|k − Pk|h) + (n− 1)(Ph|k − PhPk − PPhk)− Phk|◦. (4)

Finally we find out that (K̃ hk − K̃ kh).j = (Khk − Kkh).j + (n + 1)(Ph|k − Pk|h).j . The non-
Riemannian quantity H was introduced in [1, 15] and developed in [13]. We would like to
consider projectively related Finsler metrics with the same E- and H-curvatures. Observe that
according to (2) and (3), H-curvatures of F̃ and F are related as follows

H̃ij = yr
δ̃

δ̃xr
Ẽij − ẼrjG̃

r
i − ẼirG̃

r
j =

(
yr

δ

δxr
− 2Pyr

∂

∂yr

)(
Eij +

(n+ 1)

2
Pij

)
−
(
Erj +

(n+ 1)

2
Prj

)
(Gri + Piy

r + Pδri)−
(
Eir +

(n+ 1)

2
Pir

)
(Grj + Pjy

r + Pδrj)

= Eij|◦ +
(n+ 1)

2
Pij|◦ = Hij +

(n+ 1)

2
Pij|◦, (5)

where δ̃
δ̃xk

= ∂
∂xk
− 2G̃ik

∂
∂yi

and δ
δxk

= ∂
∂xk
− 2Gik

∂
∂yi

. From (5) one may conclude the following
lemma.

Lemma 1. Suppose that F̃ and F are projectively related with projective factor P . Then F̃
and F have the same H-curvature if and only if Pij|◦ = 0.

The Finsler metrics F̃ and F are said to be H-projectively related if they are projectively
related and have the same H-curvature. From (3) it results that if given any x ∈ M the
function P (x, y) is linear with respect to y, in other words Pij = 0, then F and F̃ are H-

projectively related. Hereby the Finsler metrics F̃ and F are said to be specially projectively
related if P (x, y) is linear with respect to y.

Example 1. The Funk metric Θ on the Euclidean unit ball Bn(1) is a Randers metric given by

Θ(x, y) :=

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2
+
〈x, y〉

1− |x|2
, y ∈ TxBn(1) ' Rn,
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where 〈, 〉 and |.| denotes the Euclidean inner product and norm on Rn, respectively. Given
any constant vector a ∈ Rn, the generalized Funk metric Θa is given by Θa := Θ + dϕa, where
ϕa = ln(1 + 〈a, x〉) + C and C is a constant. From the variational point of view this changes
the length function by something which depends only on the end-points, not the path between
them. One may also refer to [21] to find an analytic proof. Θ and Θa are both projectively
flat, H-projectively related of constant S-curvature with σ = 1

2 . It not hard to see that the
projective factor P is P = −1

2dϕa.

Example 2. Given any vector a ∈ Rn, define the Finsler metric F on Bn(1) by

F := (1 + 〈a, x〉)
(
Θ + Θxkx

k
)
.

F is projectively flat with projective factor P = Θ and F is of constant flag curvature K = 0.
Thus F and the Euclidean metric on Bn(1) have the same vanishing H-curvature and are H-
projectively related. This example is borrowed from [22].

3.1 Projectively invariants

Any geometric object which is identical between two projectively related metrics is called
a projective invariant. There are many projectively invariant tensors in Finsler geometry
such as the Douglas tensor Dy = Di

jkl(y) ∂
∂xi
⊗ dxj ⊗ dxk ⊗ dxl and Weyl curvature Wy =

W i
jkl(y) ∂

∂xi
⊗ dxj ⊗ dxk ⊗ dxl. However, the notion of the projective connection in Finsler

geometry encounters some difficulties to be globally projectively invariant. The tensors D and
W are defined as follows

Di
jkl =

∂3

∂yj∂yk∂yl

{
Gi − 1

n+ 1
Gmmy

i

}
,

W i
jkl = Ki

jkl −
1

n2 − 1

{
δij(K̂kl − K̂lk) + (δikK̂jl − δilK̂jk) + yi(K̂kl − K̂lk).j

}
,

where K̂jk = nKjk + Kkj + yrKkr.j . In 1986, H. Akbar-Zadeh introduced a tensor which is
just invariant by a sub-group of projective transformations, not all of them [2]. In fact, this is

a non-Riemannian generalization of Weyl’s curvature. It is denoted by
∗
W i

jkl and is defined by

∗
W i

jkl = Ki
jkl −

1

n2 − 1

{
δik(nKjl +Klj)− δil(nKjk +Kkj) + (n− 1)δij(Kkl −Klk)

}
.

Assume that W i
k = yjylW i

jkl. From (1) W can be written in terms of H-curvature by the
following equation

W i
jkl =

∗
W i

jkl −
2

n2 − 1

{
δilHjk − δikHjl

}
− yi

n+ 1
(Kkl −Klk).j . (6)

One may easily check from (4) and (5) that every two specially projectively related metrics F̃
and F have the same tensors W , H and (Khk −Kkh).j . Observe that from (6) it results that

they have the same tensor
∗
W . There is the following identity for W given in [1, 21]:

W i
jkl =

1

3

{
W i

k.l.j −W i
l.k.j

}
. (7)

Theorem 5. Let (M,F ) be an n-dimensional Finsler manifold (n ≥ 3). W = 0 if and only
if F is of scalar flag curvature.
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Let
∗
W i

k = yjyl
∗
W i

jkl. The following theorem is proved in [1], however, we give a modified
proof for it.

Theorem 6. Let (M,F ) be an n-dimensional Finsler manifold (n ≥ 3).
∗
W = 0 if and only if F

is of constant flag curvature.

Proof. From (7), (6) and ylHjl = 0, it follows that we have W i
k =

∗
W i

k and

W i
jkl =

1

3

{ ∗
W i

k.l.j −
∗
W i

l.k.j

}
.

Now let
∗
W = 0. It follows immediately that W = 0 and from Theorem B. that (M,F ) is of

scalar curvature. But, from (6) it results

2

n2 − 1

{
δilHjk − δikHjl

}
+

yi

n+ 1
(Kkl −Klk).j = 0.

Convecting the index k in yk and applying (1) yields

− 2

n2 − 1
yiHjl +

2

n+ 1
yiHjl =

2(n− 2)

n2 − 1
yiHjl = 0,

and finally Hjl = 0, since n ≥ 3. Now, it results that (M,F ) is of constant flag curvature, since
H = 0. Conversely, suppose that (M,F ) is of constant flag curvature. Then, H = 0, Kkl = Klk

and from (6) it follows that
∗
W = W = 0, since (M,F ) is of constant (scalar) flag curvature. �

Remark 1. Projectively related Finsler metrics certainly have the same Weyl and Douglas
curvatures. In [20], the authors studied projectively related Randers metrics. Their discussion
is closely related to the subject of the present paper.

4 Projective vector fields on Randers spaces

Every vector field V on M induces naturally a transformation under the following infinitesimal
coordinate transformations on TM , (xi, yi) −→ (x̄i, ȳi) given by

x̄i = xi + V idt, ȳi = yi + yk
∂V i

∂xk
dt.

This leads to the notion of the complete lift V̂ (or traditionally denoted by V C , see [28]) of V
to a vector field on TM0 given by

V̂ = V i ∂

∂xi
+ yk

∂V i

∂xk
∂

∂yi
.

Since almost every geometric object in Finsler geometry depend on the both points and velocities,
the Lie derivatives of such geometric objects should be regarded with respect to V̂ . One may
get familiar to the theory of Lie derivatives in Finsler geometry in [28]. It is a notable remark
in the Lie derivative computations that LV̂ y

i = 0 and the differential operators LV̂ , ∂
∂xi

and ∂
∂yi

commute.
A smooth vector field V on (M,F ) is called projective if each local flow diffeomorphism

associated with V maps geodesics onto geodesics. If V is projective and each such map preserves
affine parameters, then V is called affine, otherwise it is said to be proper projective. The
collection of all projective vector fields on M is a finite-dimensional Lie algebra, with respect
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to the usual Lie bracket operation on vector fields, called the projective algebra, and is denoted
by p(M,F ). It is easy to prove that a vector field V on the Finsler space (M,F ) is a projective
if and only if there is a function P defined on TM0 such that

LV̂G
i = Pyi, (8)

and V is affine if and only if P = 0. Whence F is Riemannian, the equation (8) is just
LV̂ Γijk = ωjδ

i
k + ωkδ

i
j , where ωj are the components of a globally defined 1-form on M and

thus, P (x, y) = ωi(x)yi.

Proof of Theorem 1. Suppose that V is F -projective. Hence it preserves the Douglas tensor,
i.e. LV̂D

i
jkl = 0. Let us put T i = αsi◦. The sprays Gi of F and Ĝi = Giα + T i are projectively

related and thus they have the same Douglas tensor, hence

Di
jkl = D̂i

jkl =
∂3

∂yj∂yk∂yl

{
T i − 1

n+ 1
Tmymy

i

}
.

A simple calculation shows that Tmm = 0. From that we have

LV̂D
i
jkl = LV̂ T

i
.j.k.l = LV̂ {αs

i
◦}.j.k.l = 0.

Therefore, there are functions H i(x, y), (i = 1, 2, . . . , n) quadratic in y such that

LV̂ {αs
i
◦} = H i. (9)

Let us put tij = LV̂ aij . Observe that LV̂ {αs
i
◦} = t◦◦

2α s
i
◦ + αLV̂ s

i
◦. Now the equation (9) can

be re-written as follows:

t◦◦s
i
◦ + 2α2LV̂ s

i
◦ = αH i. (10)

Here we emphasis that α2 = aij(x)yiyj , t◦◦s
i
◦ = (tij(x)sik(x))yiykyk and LV̂ s

i
◦ = (LV sik)(x)yk

are polynomials in y1, y2, . . . , yn. Hence the left hand of (10) is a polynomial in y1, y2, . . . , yn

for every i, while the right hand is not. It follows immediately that H i = 0 for every index i
and (9) reads as LV̂ {αs

i
◦} = 0. Recall that the geodesic coefficients of F are of the following

form:

Gi = Giα +
(e◦◦

2F
− s◦

)
yi + αsi◦. (11)

From LV̂ {αs
i
◦} = 0 and LV̂G

i = Pyi it results now, that we have

LV̂G
i = LV̂

{
Giα +

(e◦◦
2F
− s◦

)
yi
}

= Pyi,

and finally we obtain

LV̂G
i
α =

{
P − LV̂

(e◦◦
2F
− s◦

)}
yi,

which shows that V is a α-projective vector field. Conversely suppose that V is α-projective
(i.e. LV̂G

i
α = ω◦y

i, for some 1-forms ω◦ = ωk(x)yk on M) and LV̂ {αs
i
◦} = 0. From (11) it

follows

LV̂G
i = LV̂

{
Giα +

(e◦◦
2F
− s◦

)
yi + αsi0

}
= LV̂G

i
α + LV̂

(e◦◦
2F
− s◦

)
yi

=
{
ω◦ + LV̂

(e◦◦
2F
− s◦

)}
yi,

which proves that V is a F -projective vector field. �
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Let us prove initially the following lemma:

Lemma 2. Let (M,F = α + β) be an n-dimensional Randers space. If si j 6= 0, then V is F-
projective vector field if and only if it is a α-homothety and LV̂ dβ = µdβ, where LV̂ aij = 2µaij.

Proof. Suppose that si◦ 6= 0. By Theorem 1, V is F -projective if and only if it is α-projective
and LV̂ {αs

i
◦} = 0. Let us suppose tij = LV̂ aij and observe that LV̂ {αs

i
◦} = 0 is equivalent to

t◦◦s
i
◦ + 2α2LV̂ s

i
◦ = 0. (12)

It follows that α2 divides t◦◦s
i
◦ for every index i. This equivalent to that sij = 0 or α2 divides

t◦◦ which means that V is a conformal vector field on (M,α), since sij 6= 0. Since V is already α-
projective, it follows that V is an α-homothety and there is a constant µ such that LV aij = 2µaij .
From (12) we obtain LV sij = −µsij . Now observe that

LV sij = LV {aikskj} = (LV aik)skj + aikLV skj = 2µaiks
k
j − µaikskj = µsij . �

Proof of Theorem 2. Let us suppose that M is compact and F = α+ β is a Randers metric
of constant flag curvature and n ≥ 3. Following [5], F is of constant S-curvature and due to
a result about constant S-curvature Finsler spaces in [14], it follows that S = 0. This results
e◦◦ = r◦◦ + 2βs◦ = 0. Now let us suppose that sij 6= 0. By Lemma 2, every F -projective vector
field V is an α-homothety and since M is compact, thus every F -projective vector field V is
α-Killing. Hence in this case we have the inclusion p(M,F ) ⊆ k(M,α), where k(M,α) denotes
the Lie algebra of α-Killing vector fields. It is well-known that the dimension of algebra of
α-Killing vector fields is at most n(n+1)

2 . Therefore dim(p(M,F )) ≤ n(n+1)
2 . Now let us suppose

that sij = 0. In this case we have p(M,F ) = p(M,α) and moreover one conclude that ∇jbi = 0
and F is a Berwald metric. Since F is of constant flag curvature, thus F and α are metrics of
zero flag curvatures. Notice that F is of constant flag curvature, its Weyl curvature vanishes
and since sij = 0, thus F and α are projectively related and hence α has vanishing Weyl
curvature and by Beltrami’s theorem, α has constant sectional curvature. It is well-known that
the dimension of p(M,α) is n(n+ 2). Hence we have dim(p(M,F )) = n(n+ 2). �

The following inclusive result follows from the proof of Theorem 2.

Corollary 1. Let (M,F = α+ β) be a Randers space of constant flag curvature. The following
statements hold:

(a) if β is closed, then p(M,F ) = p(M,α);

(b) if β is not a closed 1-form, then p(M,F ) ⊆ h(M,α), where h(M,α) denotes the Lie algebra
of α-homothety vector fields.

Proof of Theorem 3. To obtain general formulae, let us assume that (M,F = α + β) be
a Randers space of isotropic S-curvature S = (n + 1)σ(x)F and V be a non-affine projective
vector field. Following a result in [23], it results that e◦◦ = 2σ(x)(α2 − β2). Suppose that there
is a function Ψ such that Ψ(x, y) is linear with respect to y such that LV̂G

i = Ψyi. By applying
Theorem 1, we have

LV̂G
i = LV̂ G̃

i + LV̂ (σ(α− β)yi)− LV̂ s◦y
i = Ψyi.

Put tij = LV̂ aij . It is well-known that LV̂ y
i = 0, it follows t◦◦ = LV̂ α

2 and

LV̂ G̃
i + αLV̂ σy

i − βLV̂ σy
i +

t◦◦
2α
cyi − σyiLV̂ β − LV̂ s◦y

i = Ψyi.
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Given any natural coordinate system ((xi, yi), π−1(U)) and x ∈ U , we can regard each terms
of the above equation as a polynomial in y1, y2, . . . , yn. Multiplying the two sides of the last
equation in α, we obtain the following relation:

Rati + α Irrati = 0, i = 1, 2, . . . , n,

where the polynomials Rati and Irrati are given by

Rati = α2LV̂ σy
i +

1

2
t◦◦σy

i,

Irrati = LV̂ G̃
i − (βLV̂ σ + σLV̂ β + LV̂ s◦ + Ψ)yi.

Now let us assume S = (n + 1)σ(x)F = 0. By Lemma 2, (M,F ) must be locally projectively
flat, otherwise V is a α-homothety which is a contradiction to the assumption that V is non-α-
homothety. Hence sij = 0 and by eij = rij + bisj + bjsi = rij = 0. This is equivalent to ∇ibj = 0
and (M,F ) is a Berwald space. �

By Theorem 2, the following theorems results

Theorem 7. Let (M,F = α+β) be a compact n-Randers space of constant flag curvature. The
following statements hold:

(a) if dim(p(M,F )) = n(n+1)
2 , then α is of constant sectional curvature;

(b) if dim(p(M,F )) > n(n+1)
2 , then F is a locally Minkowski metric.

Proof. Let us suppose dim(p(M,F )) = n(n+1)
2 . Due to the discussions in the proof of Theo-

rem 2, in this case we have p(M,F ) ⊆ k(M,α) and thus,

n(n+ 1)

2
= dim(p(M,F )) ≤ dim(k(M,α)).

Hence (M,α) is of maximum rank n(n+1)
2 and it is well-known that in this case α is of constant

sectional curvature. This proves (a). To prove (b), we notice that if dim(p(M,F )) > n(n+1)
2 ,

then we must have sij = 0, Otherwise, by proof of Theorem 2, we have dim(p(M,F )) ≤ n(n+1)
2 .

Now, sij = 0 and S = 0 results that F is a Berwald metric which is already of constant flag
curvature. F is not Riemannian and Numata’s theorem ensures that K = 0. Finally, Akbar-
Zadeh’s classification theorem entails F is a locally Minkowski metric. �

Example 3. In [6], the authors presented a worthily source of a 1-parameter family of Randers
metric Fκ = ακ + βκ on the Lie group S3 which all are of constant positive flag curvature κ.
Due to their construction, non of the Riemannian metrics ακ is of constant sectional curvature
and hence, by Theorem 7, it follows that dim

(
p(S3, Fκ)

)
< 6.

5 The Lorentz nonlinear connection
and Randers projective symmetry

The stage on which special relativity is played out is a specific four dimensional manifold,
known as Minkowski spacetime. The xµ, µ = 0, 1, 2, 3, are coordinates on this manifold and
conventionally, we set x0 = t. The elements of spacetime are known as events; an event is
specified by giving its location in both space and time. The infinitesimal (distance) between
two points known as the spacetime interval is defined by

ds2 = ηµνdx
µdxν = −dt2 + dx2 + dy2 + dz2.
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The matrices Λ satisfying ΛT ηΛ = η are known as the Lorentz transformations. As a notable
well-known case, consider the celebrated Randers metric of the form F =

√
ηµνdxµdxν +Aidx

i

on the 4-manifold of spacetime, where A is the electromagnetic vectorial potential and F = dA
obtained in the Cartesian coordinates (t, x, y, z) as

Fµν =


0 −Ex −Ey Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0

 .

Notice that F = 0 if and only if F is locally projectively flat. Hence, the presence of a proper
electromagnetic field, entails non-locally projectively flatness of F . Consider a Lorentz transfor-
mation Λ which maps the coordinates (t, x, y, z) onto (t̄, x̄, ȳ, z̄). Λ changes F =

√
ηµνdxµdxν +

Aidx
i to F̄ =

√
ηµνdxµdxν + Āidx

i. Following an extensive discussion on projectively related
Randers metrics in [20], we conclude that the Lorentz transformation Λ is F -projective if and
only if ΛTFΛ = F. The collection of all such Lorentz transformation forms a subgroup of the
Lorentz group which is at once a subgroup of projective group P (M,F ). Theory of Finsler
spaces with (α, β)-metrics was studied by such famous geometers as M. Matsumoto, D. Bao
and many others as a natural extension of the theory of Randers spaces. Associated to any
(α, β)-metric F = F (α, β) one may consider a nonlinear connection called Lorentz connection
which has physical applications in the study of gravitational and electromagnetic fields [12].
In this section, we uncover some results about its projective symmetry in a Finsler space with
a Randers metric.

Let F = F (α, β) be an (α, β)-metric on the manifold M . Through a variational approach,
Lorentz equations are derived using Euler–Lagrange equations in the following form:

d2xi

ds2
+ Γijk

dxj

ds

dxk

ds
+ σ

(
x,
dx

ds

)
sij

dxj

ds
= 0,

where ds2 = α2(x, dxdt )dt
2 and σ = αF 2

β/F
2
α. The Lorentz nonlinear connection

◦
Gij is now

defined by

◦
Gij(x, y) = Γijk(x)yk + σ(x, y)sij .

Every geometric object associated to the Lorentz connection will be denoted by the sign “◦” on
top. Notice that the Lorentz nonlinear connection is determined by the Finsler–Lagrange metric

F = F (α, β) only. Notice that the autoparallel curves of the nonlinear connection
◦
Gij , in the

natural parameterizations (i.e. α(x, dxds ) = 1), coincide with the integral curves of the canonical
semispray S given by

S = yi
∂

∂xi
− 2

◦
Gi

∂

∂yi
, where 2

◦
Gi = Γijky

jyk + αsi◦.

Akbar-Zadeh in [4] considers the Berwald connection of the semispray
◦
Gi to obtain a covariant

derivative and derived a unified formulation for electromagnetism and gravity. However, it
encounters physical consistency: all the formulation require being invariant under the Lorentz
group in flat space-time. This is not satisfied generally. It can be shown that the only Lorentz

transformation which preserve the spray
◦
Gi are those satisfying ΛTFΛ = F.
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