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Abstract. Let F denote a field, and fix a nonzero q ∈ F such that q4 6= 1. The univer-
sal Askey–Wilson algebra is the associative F-algebra ∆ = ∆q defined by generators and
relations in the following way. The generators are A, B, C. The relations assert that each of

A+
qBC − q−1CB

q2 − q−2
, B +

qCA− q−1AC

q2 − q−2
, C +

qAB − q−1BA

q2 − q−2

is central in ∆. In this paper we discuss a connection between ∆ and the F-algebra U =
Uq(sl2). To summarize the connection, let a, b, c denote mutually commuting indeterminates
and let F[a±1, b±1, c±1] denote the F-algebra of Laurent polynomials in a, b, c that have all
coefficients in F. We display an injection of F-algebras ∆→ U ⊗F F[a±1, b±1, c±1]. For this
injection we give the image of A, B, C and the above three central elements, in terms of the
equitable generators for U . The algebra ∆ has another central element of interest, called
the Casimir element Ω. One significance of Ω is the following. It is known that the center
of ∆ is generated by Ω and the above three central elements, provided that q is not a root
of unity. For the above injection we give the image of Ω in terms of the equitable generators
for U . We also use the injection to show that ∆ contains no zero divisors.
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1 Introduction

The Askey–Wilson polynomials were introduced in [4] and soon became renown for their alge-
braic, analytic, and combinatorial properties [7, 11]. In his study [20] of the “hidden symmetry”
of these polynomials, A. Zhedanov introduced the Askey–Wilson algebra AW(3). This alge-
bra is defined by generators and relations. The relations involve a nonzero parameter q and 5
additional parameters. The algebra is infinite dimensional and noncommutative. Zhedanov’s
original presentation involves three generators; however one generator is a q-commutator of the
other two and is sometimes eliminated. The remaining two generators satisfy a pair of relations
often called the Askey–Wilson relations [18]. These relations describe the Askey–Wilson poly-
nomials in the following way. Let {pn}∞n=0 denote a sequence of Askey–Wilson polynomials in
a variable λ. These polynomials are eigenvectors for a certain q-difference operator, known as
the Askey–Wilson operator and denoted for the moment by A. Let B denote the linear operator
that sends p(λ) 7→ λp(λ) for all polynomials p(λ). The operator B acts on the basis {pn}∞n=0 in an
irreducible tridiagonal fashion, reflecting the fact that {pn}∞n=0 satisfy a three-term recurrence.
In [20] Zhedanov showed that A, B satisfy a pair of Askey–Wilson relations.

Although the Askey–Wilson relations are slightly complicated, over time their significance
became clear as they found applications to integrable systems [5, 13, 19], quantum groups [6],
linear algebra [15, 18], quantum mechanics [14], and the double affine Hecke algebra [12, 8]. We
now describe the two applications most relevant to the present paper.
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Our first application concerns a linear algebraic object called a Leonard pair. This is a pair of
diagonalizable linear transformations on a finite-dimensional vector space, each of which acts in
an irreducible tridiagonal fashion on an eigenbasis for the other one [15, Definition 1.1]. In [18]
Vidunas and the present author showed that a Leonard pair satisfies a pair of Askey–Wilson
relations. This example is closely related to the one involving the Askey–Wilson polynomials.
By [16, Section 5] the Leonard pairs correspond to a family of orthogonal polynomials consisting
of the q-Racah polynomials and their relatives. The polynomials in this family are special or
limiting cases of the Askey–Wilson polynomials [11].

Our second application is about quantum groups. Consider the algebra Uq(sl2) with the usual
Chevalley generators e, f , k±1 [10]. Let A denote an arbitrary linear combination of ek−1, f , k−1

and let B denote an arbitrary linear combination of e, fk, k. Then according to Granovskĭı and
Zhedanov [6] the elements A, B satisfy a pair of Askey–Wilson relations. In [19] Wiegmann and
Zabrodin extended this result by displaying an element C in Uq(sl2) such that

qAB − q−1BA = gCC + hC , (1.1)

qBC − q−1CB = gAA+ hA, (1.2)

qCA− q−1AC = gBB + hB, (1.3)

where gA, gB, gC and hA, hB, hC are scalars in the underlying field. The equations (1.1)–(1.3)
are often called the Z3-symmetric Askey–Wilson relations [8]. Upon eliminating C in (1.2), (1.3)
using (1.1) we obtain the Askey–Wilson relations in the variables A, B. Upon substituting C ′ =
gCC+hC in (1.1)–(1.3) we recover the original presentation for AW(3) in the variables A, B, C ′.

We now recall the universal Askey–Wilson algebra ∆ [17]. To motivate this algebra consider
the relations (1.1)–(1.3). They are attractive but one might object that there are too many
parameters. To accomodate this objection we will eliminate all the parameters besides q. We
will do this without significantly reducing the generality of the algebra (although we allow
a minor technical assumption). We first eliminate gA, gB, gC with the following change of
variables. Assume that each of gAgB, gBgC , gCgA is a nonzero square in the underlying field,
and that q4 6= 1. Now in (1.1)–(1.3) replace A, B, C by

AfA
q−2 − q2

,
BfB

q−2 − q2
,

CfC
q−2 − q2

respectively, where

f2
A = gBgC , f2

B = gCgA, f2
C = gAgB, fAfBfC = gAgBgC .

The resulting equations assert that each of

A+
qBC − q−1CB

q2 − q−2
, B +

qCA− q−1AC

q2 − q−2
, C +

qAB − q−1BA

q2 − q−2
(1.4)

is a scalar in the underlying field. We have eliminated gA, gB, gC and are now down to the
three scalar parameters (1.4). To eliminate these we reinterpret them as central elements in
the algebra generated by A, B, C. The resulting algebra is denoted ∆ and called the universal
Askey–Wilson algebra [17]. The formal definition of ∆ is given in Definition 2.1 below.

In [17] we investigated ∆ from a ring theoretic point of view. Our results include the following.
We displayed a faithful action of the modular group PSL2(Z) on ∆ as a group of automorphisms
[17, Theorems 3.1, 3.13]. We found several linear bases for ∆ [17, Theorems 4.1, 7.5]. We
described the center Z(∆) under the assumption that q is not a root of unity. For such q we
found that Z(∆) is generated by the three central elements (1.4) together with an element Ω
called the Casimir element [17, Corollary 8.3].
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We now discuss the equitable presentation for Uq(sl2) [9]. This presentation involves genera-
tors x, y±1, z and relations yy−1 = y−1y = 1,

qxy − q−1yx

q − q−1
= 1,

qyz − q−1zy

q − q−1
= 1,

qzx− q−1xz

q − q−1
= 1.

In [1] H. AlNajjar investigated Leonard pairs using the equitable presentation of Uq(sl2). His ap-
proach is summarized as follows. Let V denote a finite-dimensional irreducible Uq(sl2)-module.
Let A denote an arbitrary linear combination of 1, x, y, xy and let B denote an arbitrary linear
combination of 1, y, z, yz. Consider the coefficients. Alnajjar found necessary and sufficient
conditions on the coefficients for A, B to act on V as a Leonard pair [1, Theorem 6.2]. In [2] Al-
najjar described the class of Leonard pairs that result from his construction. He showed that this
class corresponds to a family of orthogonal polynomials consisting of the q-Racah, q-Hahn, dual
q-Hahn, q-Krawtchouk, dual q-Krawtchouk, affine q-Krawtchouk, and quantum q-Krawtchouk
polynomials. For the Leonard pairs A,B in the above class consider the corresponding Askey–
Wilson relations. We use the Z3-symmetric version in view of the Z3-symmetric nature of the
equitable presentation. In the style of Wiegmann and Zabrodin let C denote an arbitrary linear
combination of 1, z, x, zx and consider when A, B, C satisfy some Z3-symmetric Askey–Wilson
relations. Extending the work of Alnajjar one finds that the “most general” solution is described
as follows.

Proposition 1.1. Let F denote a field, and fix a nonzero q ∈ F such that q4 6= 1. Consider the
F-algebra Uq(sl2) with equitable generators x, y±1, z. Let a, b, c denote nonzero scalars in F
and define

A = xa+ ya−1 +
xy − yx
q − q−1

bc−1,

B = yb+ zb−1 +
yz − zy
q − q−1

ca−1,

C = zc+ xc−1 +
zx− xz
q − q−1

ab−1.

Then

A+
qBC − q−1CB

q2 − q−2
=

Λ(a+ a−1) + (b+ b−1)(c+ c−1)

q + q−1
,

B +
qCA− q−1AC

q2 − q−2
=

Λ(b+ b−1) + (c+ c−1)(a+ a−1)

q + q−1
,

C +
qAB − q−1BA

q2 − q−2
=

Λ(c+ c−1) + (a+ a−1)(b+ b−1)

q + q−1
.

Here Λ denotes the normalized Casimir element of Uq(sl2) from Lemma 2.15 below.

Let q, a, b, c be from Proposition 1.1. By that proposition and since Λ is central in Uq(sl2),
there exists an algebra homomorphism ∆ → Uq(sl2) that acts on the ∆-generators A, B, C in
the following way. It sends

A 7→ xa+ ya−1 +
xy − yx
q − q−1

bc−1,

B 7→ yb+ zb−1 +
yz − zy
q − q−1

ca−1,

C 7→ zc+ xc−1 +
zx− xz
q − q−1

ab−1.
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It turns out that this homomorphism is not injective. In order to shrink the kernel we reinterpret
a, b, c as mutually commuting indeterminates, and view the above construction as giving an
algebra homomorphism ∆ 7→ Uq(sl2) ⊗F F[a±1, b±1, c±1]. A main result of the present paper is
that this homomorphism is injective. In another main result we compute the image of Ω under
the injection. We also use the injection to show that ∆ contains no zero divisors.

The paper is organized as follows. In Section 2 we recall some basic facts and then state
our main results, which are Theorems 2.16–2.18 and Corollary 2.19. In Section 3 we establish
some identities involving the equitable generators of Uq(sl2), which will be used repeatedly. In
Section 4 we prove Theorem 2.16. In Section 5 we prove Theorem 2.17. In Sections 6–8 we
establish some slightly technical facts about Uq(sl2), which will be used in Section 9 to prove
Theorem 2.18. In Section 10 we discuss some issues concerning the PSL2(Z) action on ∆ that
we mentioned earlier.

Our proofs for Theorems 2.16–2.18 are essentially self contained and do not assume Proposi-
tion 1.1. We remark that Proposition 1.1 follows from Theorem 2.16.

For the rest of this paper a, b, c denote mutually commuting indeterminates.

2 Statement of results

Our conventions for the paper are as follows. An algebra is meant to be associative and have
a 1. A subalgebra has the same 1 as the parent algebra. We fix a field F. All unadorned tensor
products are meant to be over F. We fix q ∈ F such that q4 6= 1. Recall the natural numbers
N = {0, 1, 2, . . .} and integers Z = {0,±1,±2, . . .}.

Definition 2.1 ([17, Definition 1.2]). Define an F-algebra ∆ = ∆q by generators and relations
in the following way. The generators are A, B, C. The relations assert that each of

A+
qBC − q−1CB

q2 − q−2
, B +

qCA− q−1AC

q2 − q−2
, C +

qAB − q−1BA

q2 − q−2
(2.1)

is central in ∆. The algebra ∆ is called the universal Askey–Wilson algebra.

Definition 2.2 ([17, Definition 1.3]). For the three central elements in (2.1), multiply each by
q + q−1 to get α, β, γ. Thus

A+
qBC − q−1CB

q2 − q−2
=

α

q + q−1
, (2.2)

B +
qCA− q−1AC

q2 − q−2
=

β

q + q−1
, (2.3)

C +
qAB − q−1BA

q2 − q−2
=

γ

q + q−1
. (2.4)

Note that each of α, β, γ is central in ∆.

We mention a few facts about ∆. Recall that the modular group PSL2(Z) has a presentation
by generators ρ, σ and relations ρ3 = 1, σ2 = 1. See for example [3]. By [17, Theorem 3.1], the
group PSL2(Z) acts on ∆ as a group of automorphisms such that ρ sends (A,B,C) 7→ (B,C,A)
and σ sends (A,B, γ) 7→ (B,A, γ). By [17, Theorem 3.13] this action is faithful.

By [17, Theorem 4.1] the following is a basis for the F-vector space ∆:

AiBjCkαrβsγt, i, j, k, r, s, t ∈ N.

There is a related basis [17, Theorem 7.5] that we will use in Section 9 below. This related basis
involves a central element Ω known as the Casimir element [17, Lemma 6.1]. This element is
defined as follows.
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Definition 2.3 ([17, Lemma 6.1]). Define Ω ∈ ∆ by

Ω = qABC + q2A2 + q−2B2 + q2C2 − qAα− q−1Bβ − qCγ.

We call Ω the Casimir element of ∆.

Lemma 2.4 ([17, Theorem 6.2, Corollary 8.3]). The Casimir element Ω is contained in the
center Z(∆). Moreover {Ωiαrβsγt | i, r, s, t ∈ N} is a basis for the F-vector space Z(∆), provided
that q is not a root of unity.

Lemma 2.5 ([17, Theorem 6.4]). The Casimir element Ω is fixed by everything in PSL2(Z).

We will be discussing how ∆ is related to the quantum universal enveloping algebra Uq(sl2).
For this algebra there are two presentations of interest to us; the Chevalley presentation [10,
Section 1.1] and the equitable presentation [9]. We now recall the Chevalley presentation.

Definition 2.6 ([10, Section 1.1]). The F-algebra U = Uq(sl2) is defined by generators e, f ,
k±1 and relations

kk−1 = k−1k = 1, ke = q2ek, kf = q−2fk, ef − fe =
k − k−1

q − q−1
.

We call e, f , k±1 the Chevalley generators for U .

We now briefly discuss some finite-dimensional U -modules. Strictly speaking we will not
use this information; it is included in order to clarify the nature of the Casimir element for U
described below.

Recall the notation

[n]q =
qn − q−n

q − q−1
, n ∈ N.

Lemma 2.7 ([10, Section 2]). For all integers n ≥ 0 and ε ∈ {1,−1} there exists a U -module
L(n, ε) with the following properties. L(n, ε) has a basis {vi}ni=0 such that

kvi = εqn−2ivi, 0 ≤ i ≤ n,
fvi = [i+ 1]qvi+1, 0 ≤ i ≤ n− 1, fvn = 0,

evi = ε[n− i+ 1]qvi−1, 1 ≤ i ≤ n, ev0 = 0.

The U -module L(n, ε) is irreducible provided that q is not a root of unity.

In Definition 2.3 we gave the Casimir element for ∆. We now recall the Casimir element
for U .

Definition 2.8 ([10, Section 2.7]). Define Φ ∈ U as follows:

Φ = ef +
q−1k + qk−1

(q − q−1)2
.

We call Φ the Casimir element of U .

Lemma 2.9 ([10, Lemma 2.7, Proposition 2.18]). The element Φ is contained in the cen-
ter Z(U). Moreover {Φi}i∈N is a basis for the F-vector space Z(U), provided that q is not a root
of unity.
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Lemma 2.10. [10, Lemma 2.7]. On the U -module L(n, ε),

Φ = ε
qn+1 + q−n−1

(q − q−1)2
I.

Here I denotes the identity map.

For notational convenience we now adjust the normalization for Φ.

Definition 2.11. Define

Λ =
(
q − q−1

)2
Φ =

(
q − q−1

)2
ef + q−1k + qk−1. (2.5)

Note that on L(n, ε),

Λ = ε
(
qn+1 + q−n−1

)
I.

We call Λ the normalized Casimir element for U .

We now recall the equitable presentation for U [9].

Proposition 2.12 ([9, Theorem 2.1]). The algebra U is isomorphic to the F-algebra defined by
generators x, y±1, z and relations

yy−1 = y−1y = 1, (2.6)

qxy − q−1yx

q − q−1
= 1, (2.7)

qyz − q−1zy

q − q−1
= 1, (2.8)

qzx− q−1xz

q − q−1
= 1. (2.9)

An isomorphism with the presentation in Definition 2.6 is given by

y±1 7→ k±1, z 7→ k−1 + f
(
q − q−1

)
, x 7→ k−1 − ek−1q−1

(
q − q−1

)
.

The inverse of this isomorphism is given by

k±1 7→ y±1, f 7→ (z − y−1)
(
q − q−1

)−1
, e 7→ (1− xy)q

(
q − q−1

)−1
.

Definition 2.13 ([9, Definition 2.2]). By the equitable presentation of U we mean the presen-
tation given in Proposition 2.12. We call x, y±1, z the equitable generators for U .

Note 2.14. In what follows we identify the copy of U given in Definition 2.6 with the copy
given in Proposition 2.12, via the isomorphism given in Proposition 2.12.

In the equitable presentation of U the normalized Casimir element Λ looks as follows.

Lemma 2.15. The normalized Casimir element Λ is equal to each of the following:

qx+ q−1y + qz − qxyz, q−1x+ qy + q−1z − q−1zyx, (2.10)

qy + q−1z + qx− qyzx, q−1y + qz + q−1x− q−1xzy, (2.11)

qz + q−1x+ qy − qzxy, q−1z + qx+ q−1y − q−1yxz. (2.12)
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Proof. For the data (2.10)–(2.12) let Λ−y , Λ−z , Λ−x denote the expressions in the first column and
let Λ+

y , Λ+
z , Λ+

x denote the expressions in the second column. Consider the expression for Λ given
in (2.5). Writing this expression in terms of x, y, z using the isomorphism in Proposition 2.12
and Note 2.14, we obtain Λ = Λ−y . The element Λ−y − Λ+

z is equal to (q − q−1)x times

1− qyz − q−1zy

q − q−1
. (2.13)

The expression (2.13) is zero by (2.8) so Λ−y = Λ+
z . Similarly one finds Λ−z = Λ+

x and Λ−x = Λ+
y .

The element Λ−y − Λ+
x is equal to

1− qxy − q−1yx

q − q−1
(2.14)

times (q − q−1)z. The expression (2.14) is zero by (2.7) so Λ−y = Λ+
x . Similarly one finds

Λ−z = Λ+
y and Λ−x = Λ+

z . By these comments Λ is equal to each of Λ±x , Λ±y , Λ±z . �

Recall that a, b, c are mutually commuting indeterminates. Let F[a±1, b±1, c±1] denote the
F-algebra of Laurent polynomials in a, b, c that have all coefficients in F.

We now state our main results.

Theorem 2.16. There exists a unique F-algebra homomorphism \ : ∆ → U ⊗ F[a±1, b±1, c±1]
that sends

A 7→ x⊗ a+ y ⊗ a−1 +
xy − yx
q − q−1

⊗ bc−1,

B 7→ y ⊗ b+ z ⊗ b−1 +
yz − zy
q − q−1

⊗ ca−1,

C 7→ z ⊗ c+ x⊗ c−1 +
zx− xz
q − q−1

⊗ ab−1,

where x, y, z denote the equitable generators for U . The homomorphism \ sends

α 7→ Λ⊗
(
a+ a−1

)
+ 1⊗

(
b+ b−1

)(
c+ c−1

)
, (2.15)

β 7→ Λ⊗
(
b+ b−1

)
+ 1⊗

(
c+ c−1

)(
a+ a−1

)
, (2.16)

γ 7→ Λ⊗
(
c+ c−1

)
+ 1⊗

(
a+ a−1

)(
b+ b−1

)
, (2.17)

where Λ denotes the normalized Casimir element of U .

Theorem 2.17. Under the homomorphism \ from Theorem 2.16, the image of Ω is

1⊗
(
q + q−1

)2 − 1⊗
(
a+ a−1

)2 − 1⊗
(
b+ b−1

)2 − 1⊗
(
c+ c−1

)2
− Λ⊗

(
a+ a−1

)(
b+ b−1

)(
c+ c−1

)
− Λ2 ⊗ 1. (2.18)

Here Λ denotes the normalized Casimir element of U .

Theorem 2.18. The homomorphism \ from Theorem 2.16 is injective.

We mention a corollary to Theorem 2.18. For an F-algebraA, an element u ∈ A is called a zero
divisor whenever u 6= 0 and there exists 0 6= v ∈ A such that uv = 0. By [10, Proposition 1.8]
the algebra U contains no zero divisors. For an F-algebra A and indeterminate λ consider the
F-algebra A⊗F[λ, λ−1]. One checks that A contains no zero divisors if and only if A⊗F[λ, λ−1]
contains no zero divisors. Applying this comment three times we see that the algebra U ⊗
F[a±1, b±1, c±1] contains no zero divisors. By this and Theorem 2.18 we obtain the following
result.

Corollary 2.19. The F-algebra ∆ contains no zero divisors.
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3 The elements νx, νy, νz

In this section we record a number of identities involving the equitable generators for U . These
identities will be used in our proof of Theorems 2.16–2.18.

The relations (2.7)–(2.9) can be reformulated as follows:

q(1− yz) = q−1(1− zy), q(1− zx) = q−1(1− xz), q(1− xy) = q−1(1− yx).

Definition 3.1. Let νx, νy, νz denote the following elements in U :

νx = q(1− yz) = q−1(1− zy), (3.1)

νy = q(1− zx) = q−1(1− xz), (3.2)

νz = q(1− xy) = q−1(1− yx). (3.3)

Note 3.2. We have

e =
νz

q − q−1
, f = −q

−1y−1νx
q − q−1

, νz =
(
q − q−1

)
e, νx = −q

(
q − q−1

)
kf.

Lemma 3.3. The following relations hold in U :

xy = 1− q−1νz, yx = 1− qνz, (3.4)

yz = 1− q−1νx, zy = 1− qνx, (3.5)

zx = 1− q−1νy, xz = 1− qνy. (3.6)

Proof. These equations are reformulations of (3.1)–(3.3). �

Lemma 3.4. The following relations hold in U :

xy − yx
q − q−1

= νz,
qyx− q−1xy

q − q−1
= 1−

(
q + q−1

)
νz, (3.7)

yz − zy
q − q−1

= νx,
qzy − q−1yz

q − q−1
= 1−

(
q + q−1

)
νx, (3.8)

zx− xz
q − q−1

= νy,
qxz − q−1zx

q − q−1
= 1−

(
q + q−1

)
νy. (3.9)

Proof. For each equation evaluate the left-hand side using Lemma 3.3. �

Lemma 3.5. The following relations hold in U :

xνy = q2νyx, xνz = q−2νzx, (3.10)

yνz = q2νzy, yνx = q−2νxy, (3.11)

zνx = q2νxz, zνy = q−2νyz. (3.12)

Proof. Using νy = q(1 − zx) we find q−1xνy = x − xzx. Using νy = q−1(1 − xz) we find
qνyx = x − xzx. By these comments xνy = q2νyx. The remaining relations are similarly
obtained. �

Lemma 3.6. The following relations hold in U :

νxx = Λ− qy − q−1z, xνx = Λ− q−1y − qz, (3.13)

νyy = Λ− qz − q−1x, yνy = Λ− q−1z − qx, (3.14)

νzz = Λ− qx− q−1y, zνz = Λ− q−1x− qy. (3.15)
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Proof. To verify the equation on the left in (3.13), eliminate νx using νx = q(1 − yz), and
eliminate Λ using the fact that Λ is equal to the expression on the left in (2.11). The remaining
equations are similarly verified. �

Lemma 3.7. The following relations hold in U :

xνx − νxx
q − q−1

= y − z, yνy − νyy
q − q−1

= z − x, zνz − νzz
q − q−1

= x− y.

Proof. For each equation evaluate the left-hand side using Lemma 3.6. �

Lemma 3.8. The normalized Casimir element Λ is equal to each of the following:

qxνx − q−1νxx

q − q−1
+
(
q + q−1

)
z,

qνxx− q−1xνx
q − q−1

+
(
q + q−1

)
y, (3.16)

qyνy − q−1νyy

q − q−1
+
(
q + q−1

)
x,

qνyy − q−1yνy
q − q−1

+
(
q + q−1

)
z, (3.17)

qzνz − q−1νzz

q − q−1
+
(
q + q−1

)
y,

qνzz − q−1zνz
q − q−1

+
(
q + q−1

)
x. (3.18)

Proof. Evaluate each of the displayed expressions using Lemma 3.6. �

Lemma 3.9. The following relations hold in U :

νxνy = 1− q−1Λz + q−2z2, νyνx = 1− qΛz + q2z2, (3.19)

νyνz = 1− q−1Λx+ q−2x2, νzνy = 1− qΛx+ q2x2, (3.20)

νzνx = 1− q−1Λy + q−2y2, νxνz = 1− qΛy + q2y2. (3.21)

Proof. To get the equation on the left in (3.19), observe

νxνy = q−1νx(1− xz) = q−1νx − q−1νxxz = 1− yz − q−1
(
Λ− qy − q−1z

)
z

= 1− q−1Λz + q−2z2.

The remaining equations are similarly verified. �

Lemma 3.10. The following relations hold in U :

qνxνy − q−1νyνx
q − q−1

= 1− z2, (3.22)

qνyνz − q−1νzνy
q − q−1

= 1− x2, (3.23)

qνzνx − q−1νxνz
q − q−1

= 1− y2. (3.24)

Proof. For each equation evaluate the left-hand side using Lemma 3.9. �

4 The proof of Theorem 2.16

In this section we prove Theorem 2.16.
For notational convenience we define some elements in U ⊗ F[a±1, b±1, c±1]:

A\ = x⊗ a+ y ⊗ a−1 + νz ⊗ bc−1, (4.1)

B\ = y ⊗ b+ z ⊗ b−1 + νx ⊗ ca−1, (4.2)
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C\ = z ⊗ c+ x⊗ c−1 + νy ⊗ ab−1 (4.3)

and

α\ = Λ⊗
(
a+ a−1

)
+ 1⊗

(
b+ b−1

)(
c+ c−1

)
, (4.4)

β\ = Λ⊗
(
b+ b−1

)
+ 1⊗

(
c+ c−1

)
(a+ a−1

)
, (4.5)

γ\ = Λ⊗
(
c+ c−1

)
+ 1⊗

(
a+ a−1

)(
b+ b−1

)
. (4.6)

Note that each of α\, β\, γ\ is central in U ⊗ F[a±1, b±1, c±1].

Proof of Theorem 2.16. We first establish the existence of the homomorphism in the theorem
statement. To do this it suffices to show that

A\ +
qB\C\ − q−1C\B\

q2 − q−2
=

α\

q + q−1
, (4.7)

B\ +
qC\A\ − q−1A\C\

q2 − q−2
=

β\

q + q−1
, (4.8)

C\ +
qA\B\ − q−1B\A\

q2 − q−2
=

γ\

q + q−1
. (4.9)

We verify (4.9). Let P denote the left-hand side of (4.9) minus the right-hand side of (4.9). We
show that P = 0. View P as a Laurent polynomial in a, b, c that has coefficients in U . We will
show that in this polynomial each coefficient is zero. To this end, evaluate P using (4.1)–(4.3),
(4.6) and then collect terms. We list below the terms for which the coefficient in P is potentially
nonzero:

ab, ab−1, a−1b, a−1b−1, c, c−1, a−2c, b2c−1. (4.10)

For each of these terms the coefficient in P is listed in the table below, along with a reason why
that coefficient is zero.

term coefficient in P why the coefficient is 0

ab qxy−q−1yx
q2−q−2 − 1

q+q−1 equation (2.7)

ab−1 qxz−q−1zx
q2−q−2 + νy − 1

q+q−1 equation (3.9)

a−1b q(y2+νzνx)−q−1(y2+νxνz)
q2−q−2 − 1

q+q−1 equation (3.24)

a−1b−1 qyz−q−1zy
q2−q−2 − 1

q+q−1 equation (2.8)

c qxνx−q−1νxx
q2−q−2 + z − Λ

q+q−1 equation (3.16)

c−1 qνzz−q−1zνz
q2−q−2 + x− Λ

q+q−1 equation (3.18)

a−2c qyνx−q−1νxy
q2−q−2 equation (3.11)

b2c−1 qνzy−q−1yνz
q2−q−2 equation (3.11)

We have shown that for each term in (4.10) the coefficient in P is zero. Therefore P = 0
and the equation (4.9) holds. The equations (4.7), (4.8) are similarly verified. We have shown
that the homomorphism exists. The homomorphism is unique since A, B, C generate ∆. The
homomorphism satisfies (2.15)–(2.17) by (4.4)–(4.6) and (4.7)–(4.9). �
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5 The proof of Theorem 2.17

In this section we prove Theorem 2.17. Recall the Casimir element Ω from Definition 2.3.

Proof of Theorem 2.17. By Theorem 2.16 the image of Ω is

qA\B\C\ + q2(A\)2 + q−2(B\)2 + q2(C\)2 − qA\α\ − q−1B\β\ − qC\γ\, (5.1)

where A\, B\, C\, α\, β\, γ\ are from (4.1)–(4.6). We show that (5.1) is equal to (2.18). Define Q
to be (5.1) minus (2.18). We show that Q = 0. To do this we proceed as in the proof of
Theorem 2.16. View Q as a Laurent polynomial in a, b, c that has all coefficients in U . We will
show that for this polynomial each coefficient is zero. To this end, evaluate Q using (4.1)–(4.6)
and then collect terms. Below we list the terms for which the coefficient in Q is potentially
nonzero:

a2, a−2, a2b−2, abc−1, ab−1c−1, (5.2)

b2, b−2, b2c−2, bca−1, bc−1a−1, (5.3)

c2, c−2, c2a−2, cab−1, ca−1b−1, (5.4)

abc, a−1b−1c−1, 1. (5.5)

We show that for each term in (5.2)–(5.5) the coefficient in Q is zero. The coefficient of a2

in Q is

qxyνy + q2x2 − qxΛ− qνy + 1. (5.6)

To see that (5.6) is zero, eliminate xy using the equation on the left in (3.4), and evaluate the
result using the equation on the right in (3.20). The coefficient of a−2 in Q is

qyνxx+ q2y2 − qΛy − q−1νx + 1. (5.7)

To see that (5.7) is zero, first eliminate yνx using the equation on the right in (3.11). Evaluate
the result using the equation on the right in (3.4) followed by the equation on the right in (3.21).
The coefficient of a2b−2 in Q is

qxzνy + q2ν2
y − qνy. (5.8)

The expression (5.8) is zero by the equation on the right in (3.6). The coefficient of abc−1 in Q is

q(xyx+ νzyνy) + q2(xνz + νzx)− q(x+ Λνz)− q−1y − qx+ Λ. (5.9)

To see that (5.9) is zero, eliminate yx using the equation on the right in (3.4), and eliminate yνy
using the equation on the right in (3.14). Simplify the result using the equation on the left
in (3.15). The coefficient of ab−1c−1 in Q is

q(xzx+ νzzνy) + q2(xνy + νyx)− qx− q−1z − q(x+ Λνy) + Λ. (5.10)

To see that (5.10) is zero, eliminate xz using the equation on the right in (3.6), and eliminate νzz
using the equation on the left in (3.15). Simplify the result using the equation on the right
in (3.14). We have shown that for each term in (5.2) the coefficient in Q is zero. By Lemma 2.5
Ω is fixed by the automorphism of ∆ that sends (A,B,C) to (B,C,A). Combining this with
the Z3-symmetric nature of (4.1)–(4.6), we see that for each term in (5.3), (5.4) the coefficient
in Q is also zero. We now consider the terms in (5.5). The coefficient of abc in Q is

qxyz − qx− q−1y − qz + Λ. (5.11)
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The expression (5.11) is zero using the left side of (2.10). The coefficient of a−1b−1c−1 in Q is

qyzx− qy − q−1z − qx+ Λ. (5.12)

The expression (5.12) is zero using the left side of (2.11). The constant term in Q is

q
(
νzz

2 + xνxx+ y2νy + νzνxνy
)

+ q2(xy + yx) + q−2(yz + zy) + q2(zx+ xz)

− q(νz + Λy + Λx)− q−1(νx + Λz + Λy)− q(νy + Λx+ Λz)−
(
q + q−1

)2
+ Λ2 + 6.

We show that this constant term is equal to zero. Using Lemma 3.3 and Lemma 3.6 we find

νzz
2 = q−2νx + q2νy + Λz − q − q−1, (5.13)

xνxx = νy + νz + Λx− q − q−1, (5.14)

y2νy = q−2νx + q2νz + Λy − q − q−1. (5.15)

Using the equation on the left in (3.19), followed by (5.13) and the equation on the left in (3.15),
we find

νzνxνy = q−4νx + νy + νz + Λx+ q−2Λy + q−2Λz − q−1Λ2 − q−1 − q−3. (5.16)

By Lemma 3.3,

xy + yx = 2−
(
q + q−1

)
νz, (5.17)

yz + zy = 2−
(
q + q−1

)
νx, (5.18)

zx+ xz = 2−
(
q + q−1

)
νy. (5.19)

Simplifying the constant term of Q using (5.13)–(5.19) we find that this constant term is equal
to zero. We have shown that for each term in (5.2)–(5.5) the coefficient in Q is zero. Therefore
Q = 0 and the result follows. �

6 A Z-grading of U

Our next general goal is to prove Theorem 2.18. To prepare for this proof we obtain some results
about U . In this section we discuss a certain Z-grading of U . In the next section we will use this
Z-grading of U to get a Z-grading of U ⊗F[a±1, b±1, c±1]. The Z-grading of U ⊗F[a±1, b±1, c±1]
will be used in our proof of Theorem 2.18.

Let A denote an F-algebra. By a Z-grading of A we mean a sequence {An}n∈Z consisting of
subspaces of A such that

A =
∑
n∈Z
An (direct sum),

and AmAn ⊆ Am+n for all m,n ∈ Z. Let {An}n∈Z denote a Z-grading of A. For n ∈ Z we
call An the n-homogeneous component of A. We refer to n as the degree of An. An element of A
is said to be homogeneous with degree n whenever it is contained in An. Pick ξ ∈ A and write
ξ =

∑
n∈Z

ξn with ξn ∈ An for n ∈ Z. We call the elements {ξn}n∈Z the homogeneous components

of ξ.

Lemma 6.1 ([10, Theorem 1.5]). The following is a basis for the F-vector space U :

erksf t, r, t ∈ N, s ∈ Z. (6.1)
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For n ∈ Z let Un denote the subspace of U spanned by those elements erksf t from (6.1) that
satisfy r − t = n. By [10, Section 1.9] the sequence {Un}n∈Z is a Z-grading of U . With respect
to this Z-grading the elements e, k, f are homogeneous with degrees 1, 0, −1 respectively.
Moreover the normalized Casimir element Λ from (2.5) is homogeneous with degree 0.

By construction, for n ∈ Z the n-homogeneous component Un has a basis consisting of the
elements erksf t from (6.1) that satisfy r − t = n. There is another basis for Un that is better
suited to our purpose; this basis involves Λ and will be displayed shortly.

Lemma 6.2. For an integer t ≥ 0,

etf t =
t∏
i=1

Λ− q1−2ik − q2i−1k−1

(q − q−1)2
.

Proof. Assume t ≥ 1; otherwise the result is trivial. Using (2.5) and ke = q2ek,

etf t = et−1eff t−1 = et−1 Λ− q−1k − qk−1

(q − q−1)2
f t−1 =

Λ− q1−2tk − q2t−1k−1

(q − q−1)2
et−1f t−1.

The result follows by induction on t. �

Lemma 6.3. For all integers n ≥ 0 the following (i), (ii) hold.

(i) The F-vector space Un has a basis

enksΛt, s ∈ Z, t ∈ N.

(ii) The F-vector space U−n has a basis

ksΛtfn, s ∈ Z, t ∈ N.

Proof. (i) The elements {ks}s∈Z are linearly independent by Lemma 6.1, so they form a basis

for a subalgebra of U which we denote by K. By Lemma 6.1 the sum Un =
∞∑̀
=0

en+`Kf ` is

direct. We have Ke = eK since ke = q2ek, and similarly Kf = fK. Pick an integer t ≥ 0. By

Lemma 6.2 and induction on t we find Λt ∈
t∑̀
=0

e`Kf ` and Λt− (q− q−1)2tetf t ∈
t−1∑̀
=0

e`Kf `. For

the above t and all s ∈ Z we have enksΛt ∈
t∑̀
=0

en+`Kf ` and

enksΛt −
(
q − q−1

)2t
q2sten+tksf t ∈

t−1∑
`=0

en+`Kf `.

The result follows from these comments and the fact that {en+tksf t | s ∈ Z, t ∈ N} is a basis
for Un.

(ii). Similar to the proof of (i) above. �

We now consider the Z-grading {Un}n∈Z from the point of view of the equitable presentation.

Lemma 6.4. The F-algebra U is generated by νx, y±1, νz. Moreover

x = y−1 − q−1νzy
−1, z = y−1 − q−1y−1νx. (6.2)



14 P. Terwilliger

Proof. The equation on the left in (6.2) is a reformulation of the equation on the left in (3.4).
The equation on the right in (6.2) is similarly obtained. The first assertion of the lemma follows
from (6.2) and the fact that x, y±1, z generate U . �

Lemma 6.5. The generators νx, y±1, νz are homogeneous with degree −1, 0, 1 respectively.

Proof. Use Note 3.2 and y = k, along with the comments below Lemma 6.1. �

Lemma 6.6. Pick an integer n ≥ 0. The F-vector space Un has a basis

νnz y
iΛj , i ∈ Z, j ∈ N.

The F-vector space U−n has a basis

yiΛjνnx , i ∈ Z, j ∈ N.

Proof. This is a reformulation of Lemma 6.3, using Note 3.2 and y = k. �

We comment on the homogeneous component U0.

Lemma 6.7. The homogeneous component U0 is the F-subalgebra of U generated by y±1, Λ.
The algebra U0 is commutative. The following is a basis for the F-vector space U0:

yiΛj , i ∈ Z, j ∈ N. (6.3)

Proof. To get the basis (6.3) set n = 0 in Lemma 6.6. The remaining assertions are clear. �

Let λ1, λ2 denote commuting indeterminates.

Corollary 6.8. There exists an F-algebra isomorphism U0 → F[λ1, λ
±1
2 ] that sends Λ→ λ1 and

y → λ2.

Proof. Immediate from Lemma 6.7. �

Definition 6.9. For n ∈ Z define an F-linear map πn : U → U such that (πn − 1)Un = 0 and
πnUm = 0 if m 6= n (m ∈ Z). Thus πn is the projection from U onto Un. Note that for u ∈ U
the element πn(u) is the homogeneous component of u with degree n.

Lemma 6.10. In the table below we list some elements u ∈ U . For each element u we display
the homogeneous component πn(u) for −1 ≤ n ≤ 1. All other homogeneous components of u are
zero.

u π−1(u) π0(u) π1(u)

x 0 y−1 −q−1νzy
−1

y 0 y 0
z −q−1y−1νx y−1 0

νx νx 0 0
νy q−2y−2νx y−1Λ− (q + q−1)y−2 q−2νzy

−2

νz 0 0 νz
Λ 0 Λ 0

Proof. The assertions about y, νx, νz come from Lemma 6.5. The assertions about x, z follow
from (6.2). We mentioned below Lemma 6.1 that Λ is homogeneous with degree 0. To verify
the assertion about νy, in the equation νy = y−1yνy evaluate yνy using the equation on the right
in (3.14), and simplify the result using rows x, z of the above table along with the equation on
the left in (3.11). �
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7 A Z-grading of U ⊗ F[a±1, b±1, c±1]

In the previous section we discussed a Z-grading of U . In the present section we extend this
to a Z-grading of U ⊗ F[a±1, b±1, c±1]. We obtain some results about the Z-grading of U ⊗
F[a±1, b±1, c±1] that will be used to prove Theorem 2.18.

By Lemma 6.4 the elements νx, y±1, νz form a generating set for the F-algebra U . Therefore
the following is a generating set for the F-algebra U ⊗ F[a±1, b±1, c±1]:

νx ⊗ 1, y±1 ⊗ 1, νz ⊗ 1, 1⊗ a±1, 1⊗ b±1, 1⊗ c±1. (7.1)

Consider the Z-grading of U from below Lemma 6.1. This Z-grading of U induces a Z-grading
of U ⊗ F[a±1, b±1, c±1] whose homogeneous components are described as follows. For n ∈ Z
the n-homogeneous component is Un ⊗ F[a±1, b±1, c±1]. With respect to this Z-grading of U ⊗
F[a±1, b±1, c±1] the generators (7.1) are homogeneous with the following degrees:

v νx ⊗ 1 y±1 ⊗ 1 νz ⊗ 1 1⊗ a±1 1⊗ b±1 1⊗ c±1

degree of v −1 0 1 0 0 0

Lemma 7.1. Pick an integer n ≥ 0. The F-vector space Un ⊗ F[a±1, b±1, c±1] has a basis

νnz y
iΛj ⊗ arbsct, i, r, s, t ∈ Z, j ∈ N.

The F-vector space U−n has a basis

yiΛjνnx ⊗ arbsct, i, r, s, t ∈ Z, j ∈ N.

Proof. By Lemma 6.6 and the construction. �

We comment on the homogeneous component U0 ⊗ F[a±1, b±1, c±1].

Lemma 7.2. The homogeneous component U0 ⊗ F[a±1, b±1, c±1] is the F-subalgebra of U ⊗
F[a±1, b±1, c±1] generated by

y±1 ⊗ 1, Λ⊗ 1, 1⊗ a±1, 1⊗ b±1, 1⊗ c±1.

The algebra U0⊗F[a±1, b±1, c±1] is commutative. The following is a basis for the F-vector space
U0 ⊗ F[a±1, b±1, c±1]:

yiΛj ⊗ arbsct, i, r, s, t ∈ Z, j ∈ N.

Proof. By Lemma 6.7 and the construction. �

Let {λi}5i=1 denote mutually commuting indeterminates.

Corollary 7.3. There exists an F-algebra isomorphism

U0 ⊗ F
[
a±1, b±1, c±1

]
→ F

[
λ1, λ

±1
2 , λ±1

3 , λ±1
4 , λ±1

5

]
that sends

Λ⊗ 1 7→ λ1, y ⊗ 1 7→ λ2, 1⊗ a 7→ λ3, 1⊗ b 7→ λ4, 1⊗ c 7→ λ5.

Proof. Immediate from Lemma 7.2. �
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Definition 7.4. For n ∈ Z consider the map

πn ⊗ 1 :
U ⊗ F[a±1, b±1, c±1] → U ⊗ F[a±1, b±1, c±1],

u⊗ f 7→ πn(u)⊗ f.

The map πn ⊗ 1 acts as the identity on the n-homogeneous component of U ⊗ F[a±1, b±1, c±1]
and zero on all other homogeneous components of U ⊗ F[a±1, b±1, c±1]. Therefore πn ⊗ 1 is
the projection from U ⊗ F[a±1, b±1, c±1] onto its n-homogeneous component. We abbreviate
π̃n = πn ⊗ 1. So for v ∈ U ⊗ F[a±1, b±1, c±1] the element π̃n(v) is the homogeneous component
of v that has degree n.

Lemma 7.5. In the table below we list some elements v ∈ U ⊗ F[a±1, b±1, c±1]. For each
element v we display the homogeneous component π̃n(v) for −1 ≤ n ≤ 1. All other homogeneous
components of v are zero.

v π̃−1(v) π̃0(v) π̃1(v)

A\ 0 y ⊗ a−1 + y−1 ⊗ a νz ⊗ bc−1 − q−1νzy
−1 ⊗ a

B\ νx ⊗ a−1c− q−1y−1νx ⊗ b−1 y ⊗ b+ y−1 ⊗ b−1 0

C\ q−2y−2νx ⊗ ab−1 y−1 ⊗ (c+ c−1) + y−1Λ⊗ ab−1 q−2νzy
−2 ⊗ ab−1

−q−1y−1νx ⊗ c −(q + q−1)y−2 ⊗ ab−1 −q−1νzy
−1 ⊗ c−1

Moreover each of α\, β\, γ\, Ω\ is homogeneous with degree zero.

Proof. The elements A\, B\, C\ are from (4.1)–(4.3) and α\, β\, γ\ are from (4.4)–(4.6).
Moreover Ω\ is from (2.18). Evaluate these lines using Lemma 6.10 and the fact that each of
1⊗ a±1, 1⊗ b±1, 1⊗ c±1 is homogeneous of degree 0. �

The following definition is for notational convenience.

Definition 7.6. Define R and L by

R = π̃1(A\) = νz ⊗ bc−1 − q−1νzy
−1 ⊗ a,

L = π̃−1(B\) = νx ⊗ a−1c− q−1y−1νx ⊗ b−1.

Further define

θ = y−1 ⊗ a, ϑ = y−1 ⊗ b−1. (7.2)

Lemma 7.7. The elements R, L, θ, ϑ from Definition 7.6 are all nonzero. Moreover

Rϑ = q2ϑR, Lθ = q−2θL, (7.3)

π̃0(A\) = θ + θ−1, π̃0(B\) = ϑ+ ϑ−1, (7.4)

π̃1(C\) = −q−1Rϑ, π̃−1(C\) = −q−1θL. (7.5)

Proof. The first assertion follows from Lemma 7.1. (7.3) follows from (3.11) and Definition 7.6.
(7.4), (7.5) are readily checked using the table in Lemma 7.5. �

We now give two lemmas of a slightly technical nature.

Lemma 7.8. For an integer i ≥ 0 the homogeneous components of (A\)i, (B\)i, (C\)i are
described as follows.

(A\)i: The homogeneous component of degree n is zero unless 0 ≤ n ≤ i. The homogeneous
component of degree 0 is (θ + θ−1)i and the homogeneous component of degree i is Ri.
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(B\)i: The homogeneous component of degree n is zero unless −i ≤ n ≤ 0. The homogeneous
component of degree −i is Li and the homogeneous component of degree 0 is (ϑ+ ϑ−1)i.

(C\)i: The homogeneous component of degree n is zero unless −i ≤ n ≤ i. The homoge-
neous component of degree −i is (−1)iqi

2
Liθi and the homogeneous component of degree i is

(−1)iq−i
2
Riϑi.

Proof. This is readily checked using Lemma 7.5 and Lemma 7.7. �

Using Lemma 7.7 and Lemma 7.8 we routinely obtain the following result.

Lemma 7.9. Fix nonnegative integers i, j, k and consider the homogeneous components of
(A\)i(B\)j(C\)k. The homogeneous component of degree n is zero unless −j − k ≤ n ≤ i + k.
The homogeneous component of degree −j − k is

(−1)kqk
2
Lj+k

(
q2j+2kθ + q−2j−2kθ−1

)i
θk.

The homogeneous component of degree i+ k is

(−1)kq−k
2
Ri+k

(
q−2kϑ+ q2kϑ−1

)j
ϑk.

8 Some results concerning algebraic independence

In this section we establish some results about algebraic independence that will be used in the
proof of Theorem 2.18.

Let {xi}4i=1 denote mutually commuting indeterminates. Motivated by the form of (2.18)
and (4.4)–(4.6) we consider the following elements in F[x1, x2, x3, x4]:

y1 = x1x2x3x4 + x2
1 + x2

2 + x2
3 + x2

4, (8.1)

y2 = x1x2 + x3x4, y3 = x1x3 + x2x4, y4 = x1x4 + x2x3. (8.2)

Lemma 8.1. The elements {yi}4i=1 in (8.1), (8.2) are algebraically independent over F.

Proof. The following is a basis for the F-vector space F[x1, x2, x3, x4]:

xh1x
i
2x
j
3x
k
4, h, i, j, k ∈ N. (8.3)

An element xh1x
i
2x
j
3x
k
4 in the basis (8.3) will be called a monomial. The rank of this monomial

is defined to be 2h+ i+ j + k. For example, consider the monomials that make up y1 in (8.1).
The monomial x1x2x3x4 has rank 5, and the remaining monomials x2

1, x2
2, x2

3, x2
4 have rank 4,

2, 2, 2 respectively. For 2 ≤ i ≤ 4 consider the two monomials that make up yi in (8.2). In each
case the monomial involving x1 has rank 3 and the other monomial has rank 2. To prove the
lemma, it suffices to show that the following elements are linearly independent over F:

yr1y
s
2y
t
3y
u
4 , r, s, t, u ∈ N. (8.4)

Given integers r, s, t, u ≥ 0 write yr1y
s
2y
t
3y
u
4 as a linear combination of monomials:

yr1y
s
2y
t
3y
u
4 = (x1x2x3x4 + x2

1 + x2
2 + x2

3 + x2
4)r(x1x2 + x3x4)s(x1x3 + x2x4)t(x1x4 + x2x3)u

= (x1x2x3x4)r(x1x2)s(x1x3)t(x1x4)u + sum of monomials that have lower rank

= xr+s+t+u1 xr+s2 xr+t3 xr+u4 + sum of monomials that have lower rank.
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Let us call the monomial xr+s+t+u1 xr+s2 xr+t3 xr+u4 the leading monomial for yr1y
s
2y
t
3y
u
4 . Given

a monomial xh1x
i
2x
j
3x
k
4 in the basis (8.3), consider the following system of linear equations in the

unknowns r, s, t, u:

r + s+ t+ u = h, r + s = i, r + t = j, r + u = k.

Over the rational field Q this system has a unique solution

r =
i+ j + k − h

2
, s =

h+ i− j − k
2

, t =
h− i+ j − k

2
, u =

h− i− j + k

2
.

Therefore xh1x
i
2x
j
3x
k
4 is the leading monomial for at most one element of (8.4). By these comments

the elements (8.4) are linearly independent over F. The result follows. �

Recall the commutative algebra U0 ⊗ F[a±1, b±1, c±1] from Lemma 7.2, and the element θ =
y−1 ⊗ a from (7.2).

Proposition 8.2. The following elements of U0⊗F[a±1, b±1, c±1] are algebraically independent
over F:

θ, Ω\, α\, β\, γ\.

Proof. By Corollary 7.3 the following are algebraically independent over F:

y ⊗ 1, Λ⊗ 1, 1⊗ a, 1⊗ b, 1⊗ c.

Therefore the following are algebraically independent over F:

y−1 ⊗ a, Λ⊗ 1, 1⊗ a, 1⊗ b, 1⊗ c.

Therefore the following are algebraically independent over F:

y−1 ⊗ a, Λ⊗ 1, 1⊗
(
a+ a−1

)
, 1⊗

(
b+ b−1

)
, 1⊗

(
c+ c−1

)
. (8.5)

Abbreviate the sequence (8.5) by X0, X1, X2, X3, X4. By Lemma 8.1 the following are alge-
braically independent over F:

X0, X1X2X3X4 +X2
1 +X2

2 +X2
3 +X2

4 ,

X1X2 +X3X4, X1X3 +X2X4, X1X4 +X2X3.

The above five elements are

θ, 1⊗
(
q + q−1

)2 − Ω\, α\, β\, γ\,

respectively. The result follows. �

Recall the element ϑ = y−1 ⊗ b−1 from (7.2).

Proposition 8.3. The following elements of U0⊗F[a±1, b±1, c±1] are algebraically independent
over F:

ϑ, Ω\, α\, β\, γ\.

Proof. Similar to the proof of Proposition 8.2. �
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9 The proof of Theorem 2.18

In this section we prove Theorem 2.18.

Lemma 9.1 ([17, Theorem 7.5]). The following is a basis for the F-vector space ∆:

AiBjCkΩ`αrβsγt, i, j, k, `, r, s, t ∈ N, ijk = 0. (9.1)

We will be discussing the coefficients when an element of ∆ is written as a linear combination
of the basis elements (9.1). To facilitate this discussion we define a bilinear form 〈 , 〉 : ∆×∆→ F
such that 〈u, v〉 = δu,v for all elements u, v in the basis (9.1). The bilinear form 〈 , 〉 is symmetric,
and the basis (9.1) is orthonormal with respect to 〈 , 〉. For v ∈ ∆,

v =
∑
〈v,AiBjCkΩ`αrβsγt〉AiBjCkΩ`αrβsγt,

where the sum is over all elements AiBjCkΩ`αrβsγt in the basis (9.1). In this sum there are
finitely many nonzero summands.

Proof of Theorem 2.18. Let J ⊆ ∆ denote the kernel of \. We show that J = 0. To do this
we assume J 6= 0 and get a contradiction. Fix 0 6= v ∈ J . Let S = S(v) denote the set of 7-tuples
(i, j, k, `, r, s, t) of nonnegative integers such that ijk = 0 and 〈v,AiBjCkΩ`αrβsγt〉 6= 0. By
construction

v =
∑

(i,j,k,`,r,s,t)∈S

〈v,AiBjCkΩ`αrβsγt〉AiBjCkΩ`αrβsγt.

In this equation we apply \ to both sides and get

0 =
∑

(i,j,k,`,r,s,t)∈S

〈v,AiBjCkΩ`αrβsγt〉(A\)i(B\)j(C\)k(Ω\)`(α\)r(β\)s(γ\)t. (9.2)

For an element (i, j, k, `, r, s, t) ∈ S define its height to be i + k and its depth to be j + k. For
all integers n ≥ 0 let S+

n (resp. S−n ) denote the set of elements in S that have height n (resp.
depth n). By construction {S+

n }∞n=0 (resp. {S−n }∞n=0) is a partition of S. We assume v 6= 0
so S is nonempty. Therefore {S+

n }∞n=0 (resp. {S−n }∞n=0) are not all empty. By construction S
has finite cardinality, so finitely many of {S+

n }∞n=0 (resp. {S−n }∞n=0) are nonempty. Define
N = max{n|S+

n 6= ∅} and M = max{n|S−n 6= ∅}. By construction S+
N and S−M are nonempty.

We now split the argument into two cases.
Case N ≤ M : Recall the projection map π̃−M from Definition 7.4. Apply π̃−M to each

side of (9.2). Pick (i, j, k, `, r, s, t) ∈ S and consider the corresponding summand in (9.2). The
image of this summand under π̃−M is computed using Lemma 7.9, and found to be zero unless
(i, j, k, `, r, s, t) ∈ S−M . The result of the computation is that

0 = LM
∑

(i,j,k,`,r,s,t)∈S−
M

〈v,AiBjCkΩ`αrβsγt〉(−1)kqk
2(
q2Mθ+q−2Mθ−1

)i
θk(Ω\)`(α\)r(β\)s(γ\)t,

where L, θ are from Definition 7.6. By Lemma 7.7 L 6= 0. We mentioned above Corollary 2.19
that U ⊗ F[a±1, b±1, c±1] contains no zero divisors. Therefore

0 =
∑

(i,j,k,`,r,s,t)∈S−
M

〈v,AiBjCkΩ`αrβsγt〉(−1)kqk
2(
q2Mθ + q−2Mθ−1

)i
θk

× (Ω\)`(α\)r(β\)s(γ\)t. (9.3)
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Consider the above equation. We noted earlier that S−M is nonempty. By construction the scalar
〈v,AiBjCkΩ`αrβsγt〉 is nonzero for all (i, j, k, `, r, s, t) ∈ S−M . For (i, j, k, `, r, s, t) ∈ S−M , at least
one of i, j, k is zero since ijk = 0. Moreover j + k = M and i + k ≤ M . For these constraints
on i, j, k the possible solutions for (i, j, k) are

(0, 0,M), (0, 1,M − 1), . . . , (0,M − 1, 1), (0,M, 0), (1,M, 0), . . . , (M − 1,M, 0), (M,M, 0).

For the above values of (i, j, k) the corresponding values of (q2Mθ + q−2Mθ−1)iθk are

θM , θM−1, . . . , θ, 1, q2Mθ + q−2Mθ−1, . . . ,
(
q2Mθ + q−2Mθ−1

)M−1
,
(
q2Mθ + q−2Mθ−1

)M
.

The above line contains a sequence of Laurent polynomials in θ. (9.4) below contains a sequence
of Laurent polynomials in θ. These two sequences are bases for the same vector space.

θM , θM−1, . . . , θ, 1, θ−1, . . . , θ1−M , θ−M . (9.4)

With the above comments in mind, equation (9.3) gives a nontrivial F-linear dependency among

θh(Ω\)`(α\)r(β\)s(γ\)t, `, r, s, t ∈ N, h ∈ Z, −M ≤ h ≤M.

In the above line we multiply each term by θM and obtain a nontrivial F-linear dependency
among

θh(Ω\)`(α\)r(β\)s(γ\)t, h, `, r, s, t ∈ N, h ≤ 2M.

The above linear dependency contradicts Proposition 8.2, for the present case N ≤M .
Case M ≤ N : The argument is similar to the previous case. However the details are slightly

different so we will show them. Apply π̃N to each side of (9.2). Pick (i, j, k, `, r, s, t) ∈ S
and consider the corresponding summand in (9.2). The image of this summand under π̃N is
computed using Lemma 7.9, and found to be zero unless (i, j, k, `, r, s, t) ∈ S+

N . The result of
the computation is that

0 = RN
∑

(i,j,k,`,r,s,t)∈S+
N

〈v,AiBjCkΩ`αrβsγt〉(−1)kq−k
2(
q−2kϑ+ q2kϑ−1

)j
ϑk

× (Ω\)`(α\)r(β\)s(γ\)t,

where R, ϑ are from Definition 7.6. By Lemma 7.7 R 6= 0. We have seen that U⊗F[a±1, b±1, c±1]
contains no zero divisors. Therefore

0 =
∑

(i,j,k,`,r,s,t)∈S+
N

〈v,AiBjCkΩ`αrβsγt〉(−1)kq−k
2(
q−2kϑ+ q2kϑ−1

)j
ϑk

× (Ω\)`(α\)r(β\)s(γ\)t. (9.5)

Consider the above equation. We noted earlier that S+
N is nonempty. By construction the scalar

〈v,AiBjCkΩ`αrβsγt〉 is nonzero for all (i, j, k, `, r, s, t) ∈ S+
N . For (i, j, k, `, r, s, t) ∈ S+

N , at least
one of i, j, k is zero since ijk = 0. Moreover i + k = N and j + k ≤ N . For these constraints
on i, j, k the possible solutions for (i, j, k) are

(0, 0, N), (1, 0, N − 1), . . . , (N − 1, 0, 1), (N, 0, 0), (N, 1, 0), . . . , (N,N − 1, 0), (N,N, 0).

For the above values of (i, j, k) the corresponding values of (q−2kϑ+ q2kϑ−1)jϑk are

ϑN , ϑN−1, . . . , ϑ, 1, ϑ+ ϑ−1, . . . ,
(
ϑ+ ϑ−1

)N−1
,
(
ϑ+ ϑ−1

)N
.
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The above line contains a sequence of Laurent polynomials in ϑ. (9.6) below contains a sequence
of Laurent polynomials in ϑ. These two sequences are bases for the same vector space.

ϑN , ϑN−1, . . . , ϑ, 1, ϑ−1, . . . , ϑ1−N , ϑ−N . (9.6)

By these comments the equation (9.5) gives a nontrivial F-linear dependency among

ϑh(Ω\)`(α\)r(β\)s(γ\)t, `, r, s, t ∈ N, h ∈ Z, −N ≤ h ≤ N.

In the above line we multiply each term by ϑN and obtain a nontrivial F-linear dependency
among

ϑh(Ω\)`(α\)r(β\)s(γ\)t, h, `, r, s, t ∈ N, h ≤ 2N.

This linear dependency contradicts Proposition 8.3, for the present case M ≤ N .
Both cases yield a contradiction under the assumption that J 6= 0. Therefore J = 0 so \ is

injective. �

10 Comments on the PSL2(Z) action

Consider the injection \ : ∆ → U ⊗ F[a±1, b±1, c±1] from Theorem 2.16 and Theorem 2.18.
Below Definition 2.2 we showed how PSL2(Z) acts on ∆ as a group of automorphisms. This
PSL2(Z) action induces a PSL2(Z) action on the image ∆\. It is reasonable to ask whether this
action extends to a PSL2(Z) action on U ⊗ F[a±1, b±1, c±1] as a group of automorphisms. This
extension does not quite work; let us examine what goes wrong.

Recall the generators ρ, σ of PSL2(Z) from below Definition 2.2. We will first consider the
mathematics around σ.

One can readily check using Definition 2.6 that there exists an automorphism of U that sends

e 7→ f, f 7→ e, k±1 7→ k∓1.

More generally, for any nonzero ξ ∈ F there exists an automorphism of U that sends

e 7→ ξf, f 7→ ξ−1e, k±1 7→ k∓1.

The above automorphism swaps Un and U−n for all n ∈ Z, where {Un}n∈Z is the Z-grading of U
from below Lemma 6.1.

With these comments in mind we now consider the algebra U ⊗ F[a±1, b±1, c±1].

Lemma 10.1. There exists an automorphism σ̃ of U ⊗ F[a±1, b±1, c±1] that sends

e⊗ 1 7→ f ⊗ a−1b−1c, f ⊗ 1 7→ e⊗ abc−1, k ⊗ 1 7→ k−1 ⊗ 1, (10.1)

1⊗ a 7→ 1⊗ b, 1⊗ b 7→ 1⊗ a, 1⊗ c 7→ 1⊗ c. (10.2)

Moreover σ̃2 = 1.

Proof. There exists an F-algebra homomorphism σ̃1 : U → U ⊗ F[a±1, b±1, c±1] that sends

e 7→ f ⊗ a−1b−1c, f 7→ e⊗ abc−1, k 7→ k−1 ⊗ 1.

There exists an F-algebra homomorphism σ̃2 : F[a±1, b±1, c±1]→ U ⊗F[a±1, b±1, c±1] that sends

a 7→ 1⊗ b, b 7→ 1⊗ a, c 7→ 1⊗ c.
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Note that σ̃1(u)σ̃2(f) = σ̃2(f)σ̃1(u) for all u ∈ U and f ∈ F[a±1, b±1, c±1]. By these comments
the map

σ̃ :
U ⊗ F[a±1, b±1, c±1] → U ⊗ F[a±1, b±1, c±1],

u⊗ f 7→ σ̃1(u)σ̃2(f)

is an F-algebra homomorphism that satisfies (10.1), (10.2). One checks σ̃2 = 1. Therefore σ̃ is
invertible and hence an automorphism. �

Recall the Z-grading of U ⊗ F[a±1, b±1, c±1] from above Lemma 7.1.

Lemma 10.2. The automorphism σ̃ of U ⊗ F[a±1, b±1, c±1] has the following effect on the Z-
grading. For n ∈ Z, σ̃ swaps the homogeneous components with degree n, −n.

Proof. In (10.1), (10.2) we gave the action of σ̃ on some homogeneous generators for U ⊗
F[a±1, b±1, c±1]. For each generator its image under σ̃ is homogeneous. Moreover the generator
and its image have opposite degree. The result follows. �

We now consider the automorphism σ̃ of U ⊗ F[a±1, b±1, c±1] from the point of view of the
equitable presentation.

Lemma 10.3. In the table below we display some elements v of U ⊗ F[a±1, b±1, c±1]. For each
element v we display the image σ̃(v) under the map σ̃ from Lemma 10.1.

v σ̃(v)

x⊗ 1 y ⊗ 1 + νx ⊗ a−1b−1c

y ⊗ 1 y−1 ⊗ 1
z ⊗ 1 y ⊗ 1 + νz ⊗ abc−1

νx ⊗ 1 −q−1νzy
−1 ⊗ abc−1

νy ⊗ 1 −qνzy ⊗ abc−1 + yΛ⊗ 1− (q + q−1)y2 ⊗ 1− qyνx ⊗ a−1b−1c
νz ⊗ 1 −q−1y−1νx ⊗ a−1b−1c

Λ⊗ 1 Λ⊗ 1

Proof. The images of y ⊗ 1, νx ⊗ 1, νz ⊗ 1 are obtained from Lemma 10.1, using Note 3.2 and
y = k. The images of x ⊗ 1 and z ⊗ 1 are now obtained using (6.2). The image of Λ ⊗ 1 is
found using Lemma 10.1 and (2.5). The image of νy ⊗ 1 is found using row νy in the table of
Lemma 6.10. �

Lemma 10.4. The map σ̃ from Lemma 10.1 sends

α\ 7→ β\, β\ 7→ α\, γ\ 7→ γ\, (10.3)

A\ 7→ B\, B\ 7→ A\. (10.4)

Proof. To verify (10.3), in the equations (4.4)–(4.6) apply σ̃ to each side, and evaluate the
result using Lemma 10.1 and the fact that σ̃ fixes Λ ⊗ 1. To verify (10.4) we refer to rows A\

and B\ of the table in Lemma 7.5. To each term in those rows, apply σ̃ and evaluate the result
using Lemma 10.3. �

Proposition 10.5. The following diagram commutes:

∆
\−−−−→ U ⊗ F

[
a±1, b±1, c±1

]
σ

y yσ̃
∆ −−−−→

\
U ⊗ F

[
a±1, b±1, c±1

]
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Proof. The F-algebra ∆ is generated by A, B, C. By this and (2.4) the F-algebra ∆ is generated
by A, B, γ. Recall that σ swap A, B and fixes γ. By Lemma 10.4 σ̃ swaps A\, B\ and fixes γ\.
The result follows. �

Proposition 10.5 shows that the action of σ on ∆\ extends to an automorphism σ̃ of U ⊗
F[a±1, b±1, c±1] that has order 2. So far so good. We now turn to the mathematics around ρ.

Consider the following variation on U .

Definition 10.6. Define the F-algebra U ′ by generators X, Y , Z and relations

qXY − q−1Y X

q − q−1
= 1,

qY Z − q−1ZY

q − q−1
= 1,

qZX − q−1XZ

q − q−1
= 1.

The above presentation of U ′ resembles the equitable presentation of U , except that the
generator Y −1 is missing.

By construction there exists an F-algebra homomorphism ι : U ′ → U that sends

X 7→ x, Y 7→ y, Z 7→ z.

We will need the fact that ι is injective. We will supply a proof shortly.

Lemma 10.7. The following is a basis for the F-vector space U :

xhyizj , h, j ∈ N, i ∈ Z.

Proof. For all n ∈ N let Vn denote the subspace of U spanned by those elements erksf t

from (6.1) that satisfy r + t = n. By Lemma 6.1 the sum U =
∞∑
n=0

Vn is direct. For all h, j ∈ N

and i ∈ Z let us write xhyizj in terms of e, k, f . By Proposition 2.12 and Note 2.14,

x = k−1 − ek−1q−1
(
q − q−1

)
, y = k, z = k−1 + f

(
q − q−1

)
.

Using this together with ke = q2ek and kf = q−2fk, we find xhyizj ∈
h+j∑
n=0

Vn and

xhyizj − (−1)h
(
q − q−1

)h+j
q−h

2
ehki−hf j ∈

h+j−1∑
n=0

Vn.

The result follows since {ehki−hf j |h, j ∈ N, i ∈ Z} is a basis for U . �

Lemma 10.8. The following is a basis for the F-vector space U ′:

XhY iZj , h, i, j ∈ N. (10.5)

Proof. Using the relations in Definition 10.6 we routinely find that the elements (10.5) span U ′.
The elements (10.5) are linearly independent, since their images under ι are linearly independent
by Lemma 10.7. The result follows. �

Lemma 10.9. The above map ι : U ′ → U is injective.

Proof. For the basis vectors (10.5) their images under ι are linearly independent by Lem-
ma 10.7. �
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Consider the subalgebra of U generated by x, y, z. This subalgebra is the image of U ′ under ι.
Invoking Lemma 10.9 we identify this subalgebra with U ′ via ι. The elements νx, νy, νz are
contained in U ′ by Definition 3.1, and Λ ∈ U ′ by Lemma 2.15. The algebra U ′⊗F[a±1, b±1, c±1]
is the subalgebra of U ⊗ F[a±1, b±1, c±1] generated by

x⊗ 1, y ⊗ 1, z ⊗ 1, 1⊗ a±1, 1⊗ b±1, 1⊗ c±1.

The next result clarifies how U ′ ⊗ F[a±1, b±1, c±1] is related to U ⊗ F[a±1, b±1, c±1].

Lemma 10.10. The following is a basis for the F-vector space U ⊗ F[a±1, b±1, c±1]:

xhyizj ⊗ arbsct, h, j ∈ N, i, r, s, t ∈ Z.

The following is a basis for the F-vector space U ′ ⊗ F[a±1, b±1, c±1]:

xhyizj ⊗ arbsct, h, i, j ∈ N, r, s, t ∈ Z.

Proof. Use Lemma 10.7 and Lemma 10.8. �

By (4.1)–(4.3) the subalgebra U ′ ⊗ F[a±1, b±1, c±1] contains A\, B\, C\. Therefore U ′ ⊗
F[a±1, b±1, c±1] contains ∆\. Consequently we may view \ as an injection \ : ∆ → U ′ ⊗
F[a±1, b±1, c±1].

By Definition 10.6 there exists an automorphism of U ′ that sends (x, y, z) to (y, z, x). This
automorphism fixes Λ in view of Lemma 2.15. There is also an automorphism of F[a±1, b±1, c±1]
that sends (a, b, c) to (b, c, a). Combining these automorphisms we obtain the following.

Lemma 10.11. There exists an automorphism ρ̃ of U ′ ⊗ F[a±1, b±1, c±1] that sends

x⊗ 1 7→ y ⊗ 1, y ⊗ 1 7→ z ⊗ 1, z ⊗ 1 7→ x⊗ 1,

1⊗ a 7→ 1⊗ b, 1⊗ b 7→ 1⊗ c, 1⊗ c 7→ 1⊗ a.

Moreover ρ̃3 = 1.

Lemma 10.12. The automorphism ρ̃ from Lemma 10.11 sends

A\ 7→ B\, B\ 7→ C\, C\ 7→ A\.

Proof. Evaluate (4.1)–(4.3) using Lemma 10.11. �

Lemma 10.13. The automorphism ρ̃ from Lemma 10.11 fixes Λ⊗ 1 and sends

α\ 7→ β\, β\ 7→ γ\, γ\ 7→ α\.

Proof. This is routinely checked using (4.4)–(4.6) and the comment about Λ above Lem-
ma 10.11. �

Proposition 10.14. The following diagram commutes:

∆
\−−−−→ U ′ ⊗ F[a±1, b±1, c±1]

ρ

y yρ̃
∆ −−−−→

\
U ′ ⊗ F[a±1, b±1, c±1]

Proof. The algebra ∆ is generated by A, B, C. Recall that ρ cyclically permutes A, B, C. By
Lemma 10.12 ρ̃ of cyclically permutes A\, B\, C\. The result follows. �
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Proposition 10.14 shows that the action of ρ on ∆\ extends to an automorphism ρ̃ of U ′ ⊗
F[a±1, b±1, c±1] that has order 3. We now show that the automorphism ρ̃ of U ′⊗F[a±1, b±1, c±1]
does not extend to an automorphism of U⊗F[a±1, b±1, c±1]. For the moment assume that such an
extension exists. Since it is an automorphism, it sends invertible elements to invertible elements.
The element y⊗1 is invertible in U ⊗F[a±1, b±1, c±1], with inverse y−1⊗1. The element z⊗1 is
not invertible in U ⊗F[a±1, b±1, c±1], since z is not invertible in U by [9, Lemma 3.5]. This gives
a contradiction since ρ̃ sends y⊗1 to z⊗1. Therefore the automorphism ρ̃ of U ′⊗F[a±1, b±1, c±1]
does not extend to an automorphism of U ⊗ F[a±1, b±1, c±1].

In the above discussion we failed to obtain a PSL2(Z) action on U ⊗F[a±1, b±1, c±1]. Perhaps
we should search instead for a PSL2(Z) action on U ′ ⊗ F[a±1, b±1, c±1]. Our extensions σ̃ and ρ̃
do not give such an action, for the following reason.

Lemma 10.15. The automorphism σ̃ of U ⊗F[a±1, b±1, c±1] does not leave U ′⊗F[a±1, b±1, c±1]
invariant.

Proof. By Lemma 10.3 the map σ̃ sends y ⊗ 1 to y−1 ⊗ 1. By Lemma 10.10 the subalgebra
U ′ ⊗ F[a±1, b±1, c±1] contains y ⊗ 1 but not y−1 ⊗ 1. The result follows. �

Problem 10.16. Find an F-algebra A with the following properties:

(i) There exists an injection of F-algebras ] : U ⊗ F[a±1, b±1, c±1]→ A.

(ii) The algebra A has an automorphism σ̂ of order 2 that makes the following diagram com-
mute:

U ⊗ F[a±1, b±1, c±1]
]−−−−→ A

σ̃

y yσ̂
U ⊗ F[a±1, b±1, c±1] −−−−→

]
A

(iii) The algebra A has an automorphism ρ̂ of order 3 that makes the following diagram com-
mute:

U ′ ⊗ F[a±1, b±1, c±1]
]−−−−→ A

ρ̃

y yρ̂
U ′ ⊗ F[a±1, b±1, c±1] −−−−→

]
A

(iv) There does not exist a proper subalgebra of A that satisfies (i)–(iii) above.

The significance of the above problem is summarized below.

Proposition 10.17. Let A denote an F-algebra that satisfies the four conditions of Prob-
lem 10.16. Then PSL2(Z) acts on A as a group of automorphisms such that ρ acts as ρ̂ and σ
acts as σ̂. Moreover the following diagram commutes for all g ∈ PSL2(Z):

∆
\−−−−→ U ⊗ F[a±1, b±1, c±1]

]−−−−→ A

g

y yg
∆ −−−−→

\
U ⊗ F[a±1, b±1, c±1] −−−−→

]
A

Proof. The PSL2(Z) action on A exists by the construction. Concerning the diagram, without
loss we may assume that g = σ or g = ρ. For g = σ the diagram commutes by Proposi-
tion 10.5 and Problem 10.16(ii). For g = ρ the diagram commutes by Proposition 10.14 and
Problem 10.16(iii). �
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