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Abstract. A Poincaré covariant Lagrange anchor is found for the non-Lagrangian relativis-
tic wave equations of Bargmann and Wigner describing free massless fields of spin s > 1/2
in four-dimensional Minkowski space. By making use of this Lagrange anchor, we assign
a symmetry to each conservation law and perform the path-integral quantization of the
theory.
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1 Introduction

The notions of symmetry and conservation law are of paramount importance for classical and
quantum field theory. For Lagrangian theories both the notions are tightly connected to each
other due to Noether’s first theorem. Beyond the scope of Lagrangian dynamics, this connection
has remained unclear, though many particular results and generalizations are known (see [19]
for a review). In our recent works [14, 16] a general method has been proposed for connecting
symmetries and conservation laws in not necessarily Lagrangian field theories. The key ingre-
dient of the method is the notion of a Lagrange anchor introduced earlier [15] in the context of
quantization of (non-)Lagrangian dynamics. Geometrically, the Lagrange anchor defines a map
from the vector bundle dual to the bundle of equations of motion to the tangent bundle of the
configuration space of fields such that certain compatibility conditions are satisfied. In La-
grangian theories, the two bundles coincide and one can take the identity map as a (canonical)
Lagrange anchor. For non-Lagrangian field equations, these two bundles may be different and it
is a problem by itself to find at least one nontrivial Lagrange anchor, let alone the classification
of all admissible Lagrange anchors.

In this paper, the general concept of Lagrange anchor is exemplified by the Bargmann–Wigner
equations for free massless fields of spin s ≥ 1/2 in the four-dimensional Minkowski space [27].
The choice of the example is not accidental. First of all, it has long been known that the model
admits infinite sets of rigid symmetries and conservation laws. These have been a subject of
intensive studies by many authors during decades, see e.g. [2, 10, 13, 17, 18, 20, 24, 32] and
references therein. However, a complete classification has been obtained only recently, first for
the conservation laws [3] and then for the symmetries [28]. As the field equations are non-
Lagrangian for s > 1/2, there is no immediate Noether’s correspondence between symmetries
and conservation laws. The rich structure of symmetries and conservation laws in the absence
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of a Lagrangian formulation makes this theory an ideal testing area for the concept of Lagrange
anchor.

The main result of the paper is a Poincaré invariant Lagrange anchor for the Bargmann–
Wigner equations. It is well known that each conserved current defines (and is defined by)
some characteristic [4, 16, 26]. We have proved earlier [14] that any Lagrange anchor maps
characteristics to symmetries. For Lagrangian theories endowed with the canonical Lagrange
anchor this map is actually a bijection in accordance with Noether’s first theorem. Generally
the Lagrange anchor map is neither injective nor surjective. The symmetries that do originate
(by the Lagrange anchor map) from characteristics are called characteristic symmetries. In the
considered model of the free massless fields, loosely, the characteristic symmetries cover a “half”
of equation’s symmetries. They also form a subalgebra in the Lie algebra of all the symmetries.
To the best of our knowledge the existence of such an infinite dimensional subalgebra in the
full Lie algebra of symmetries has not been noticed before for these well studied equations.
Furthermore, the pull back of the Lie bracket on characteristic symmetries with respect to the
anchor map gives rise to a Lie bracket on the space of conservation laws such that the anchor
map appears to be a Lie algebra isomorphism. This bracket generalizes the Dickey bracket [8]
of the conserved currents in Lagrangian theory.

For the sake of completeness we also present the quantum probability amplitude on the
space of free massless fields which is determined by the proposed Lagrange anchor, and which
implements the path-integral quantization of the model.

2 Equations, symmetries, and characteristics

2.1 Field equations

We consider the free massless fields of spin s ≥ 1/2 subject to the relativistic wave-equations

T α̇α1...α2s−1
:= ∂αα̇ϕαα1...α2s−1 = 0, (2.1)

ϕα1...α2s(x) being a symmetric, complex-valued spin-tensor on four-dimensional Minkowski spa-
ce R3,1. Hereafter we use the standard notation and conventions of the two-component spinor
formalism [27]. In particular, ∂αα̇ = (σµ)αα̇∂/∂xµ, µ = 0, 1, 2, 3, α, α̇ = 1, 2, and we raise and

lower the spinor indices using the spinor metrics εαβ, εα̇β̇ and their inverse εαβ, εα̇β̇. According
to the spin-statistics theorem [29], the fields of integer spin are considered to be bosonic and
the fields of half-integer spin are treated as fermionic1. Statistics are of no consequence as
long as linear in fields expressions are considered (such as equations of motion or symmetry
transformations); they, however, become crucial when dealing with nonlinear expressions like
quadratic conserved currents.

For s ≥ 1 the field equations (2.1) satisfy the Noether identities

∂α1
α̇ T α̇α1...α2s−1

≡ 0, (2.2)

though there are no gauge symmetries. This indicates that the equations under consideration are
non-Lagrangian save for s = 1/2, as in Lagrangian dynamics there is a one-to-one correspondence
between the gauge symmetries and Noether identities (Noether’s second theorem [19]).

In what follows we will use some terminology of the geometry of jet spaces, though not
systematically. By the pth jet of the field ϕ we mean the following collection of space-time
functions:

jpϕ =
{
xµ, ϕα1...α2s(x), ∂µ1ϕα1...α2s(x), . . . , ∂µ1 · · · ∂µpϕα1...α2s(x)

}
.

1Notice that in [3, 28] all the fields ϕα1...α2s are treated as bosonic ones regardless the value of spin.
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We say that the space-time function F depends on the pth jet of the field ϕ if it is a smooth
function of the elements of jpϕ considered as independent variables, i.e.,

F = F (xµ, ϕα1...α2s(x), ∂µ1ϕα1...α2s(x), . . . , ∂µ1 · · · ∂µpϕα1...α2s(x)).

We will also refer to F as a local function of fields.

2.2 Symmetries

A variational vector field

Z =

∫
d4x

(
Zα1...α2s

δ

δϕα1...α2s(x)
+ c.c.

)
(2.3)

is called a symmetry of order p if its components Zα1...α2s depend on the pth jet of the field ϕ
and the following condition is satisfied:

ZT α̇α1...α2s−1

∣∣∣
Ts=0

= 0, (2.4)

where Ts = 0 is a shorthand notation for (2.1). The last relation means that the variation of
the field equations (2.1) along Z is given by a linear combination of these equations and their
differential consequences. In other words, the local function of fields ZTs vanishes on every
solution to the field equations. A symmetry is called trivial if

Zα1...α2s |Ts=0 = 0.

All the symmetries below are considered modulo trivial ones.

A symmetry Z is called elementary if the functions Zα1...α2s are independent of fields, i.e., they
only depend on x’s. Elementary symmetries correspond to shifts of the field ϕ by a particular
solution of the equations of motion. Clearly, such symmetries have a place in any linear theory.

In [28], it was shown that all non-elementary symmetries of equations (2.1) are generated by
variational vector fields (2.3) whose coefficients Zα1...α2s can be chosen to be linear in fields and
their derivatives. For this reason we refer to these symmetries as linear and denote the space of
all linear symmetries by Sym(Ts). There is an increasing filtration of Sym(Ts) by the subspaces
of linear symmetries of order p, namely,

0 = Sym−1(Ts) ⊂ Sym0(Ts) ⊂ Sym1(Ts) ⊂ · · · ⊂ Sym∞(Ts) = Sym(Ts). (2.5)

It turns out that dim Symp(Ts) < ∞ for all p = 0, 1, . . .. The generators of symmetry trans-

formations Z define (and are defined by) some linear endomorphisms Ẑ of the space of fields.
Linearity of the field equations (2.1) and the condition (2.4) suggest that Ẑ are precisely those
endomorphisms that are interchangeable with the wave operator T̂s of equations (2.1) in the
following sense:

T̂sẐ = ÂT̂s

for some matrix differential operator Â. As a result, the space Sym(Ts) carries the structure of
an associative filtered algebra2 with respect to the composition of endomorphisms underlying
the symmetries. The corresponding product

∗ : Symp(Ts)× Symq(Ts)→ Symp+q(Ts)

2For a general theory of filtered and graded algebras we refer the reader to [25].
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can be written as follows: If Z ′ and Z ′′ are two linear symmetries, then Z ′ ∗ Z ′′ is a linear
symmetry generated by the variational vector field (2.3) with components

Zα1...α2s = Z ′(Z ′′α1...α2s
).

Associated to the filtered algebra (2.5) is the graded algebra

GrSym(Ts) =

∞⊕
p=0

Symp(Ts), Symp(Ts) = Symp(Ts)/Symp−1(Ts).

Although the algebras Sym(Ts) and GrSym(Ts) are not isomorphic to each other, there is an
isomorphism of filtered vector spaces

GrSym(Ts) ' Sym(Ts), (2.6)

where the filtration in GrSym(Ts) is given by the standard filtration of a graded vector space:

GrSymp(Ts) ⊂ GrSymp+1(Ts), GrSymp(Ts) =

p⊕
k=0

Symk(Ts), p = 0, 1, . . . .

The isomorphism (2.6) is far from being canonical, but it implies the equality

dim GrSymp(Ts) = dim Symp(Ts).

As for any associative algebra, we can turn Sym(Ts) into a filtered Lie algebra with respect
to the ∗-commutator

[Z1, Z2] = Z1 ∗ Z2 − Z2 ∗ Z1,

which is actually given by the commutator of variational vector fields. Whereas the closedness
with respect to commutation is an inherent property of the infinitesimal symmetry transfor-
mations, the existence of an associative ∗-product on symmetries is a special property of linear
field equations.

2.3 Conserved currents and characteristics

A conserved current of order p is a real vector-function Φαα̇ that depends on the pth jet of the
field ϕ and satisfies the condition

∂αα̇Φαα̇
∣∣
Ts=0

= 0.

A conserved current Φ is called trivial if, being evaluated on solutions to the field equations, it
is given by the divergence of some bivector field, that is,

Φαα̇ = ∂α̇βΘαβ + c.c. (mod Ts) (2.7)

for some local functions of fields Θαβ = Θβα. The trivial currents, having zero charge, are of no
physical importance. Therefore, we consider the conserved currents modulo trivial ones. It is
easy to see that in each equivalence class of a conserved current there is a representative obeying
the relation

∂αα̇Φαα̇ = T α̇α1...α2s−1
Q
α1...α2s−1

α̇ + c.c., (2.8)
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where Q
α1...α2s−1

α̇ is a local function of fields. The spinor-valued function Q is called the charac-
teristic of the conserved current Φ. We say that a characteristic is of order p if it depends on
the pth jet of the field ϕ.

The existence of the Noether identities (2.2) gives rise to a great number of characteristics of
the form

Q
α1...α2s−1

α̇ = ∂
(α1

α̇ χα2...α2s−1),

where χ is an arbitrary symmetric spin-tensor field. All these characteristics correspond to trivial
conserved currents (2.7) and can be ignored. Another source of triviality is characteristics that
are proportional to the (differential consequence of) field equations. Such characteristics also
result in trivial conserved currents and should be regarded as trivial. Taking the quotient of
the space of all characteristics by the subspace of trivial ones, we get the space of nontrivial
characteristics.

Actually, relation (2.8) gives rise to a one-to-one correspondence between the spaces of non-
trivial conserved currents and characteristics, when either is properly defined. For the non-
degenerate systems of PDEs such an isomorphism has been known for a long time, see e.g. [26].
Its extension to the Lagrangian gauge systems was given in [4], using some previous results on
the local BRST cohomology [9]. A further generalization to the case of arbitrary (i.e., not ne-
cessarily Lagrangian and/or non-degenerate) system of PDEs subject to the standard regularity
conditions [4] was formulated in our recent paper [16]. Thus, for regular PDEs the study of con-
servation laws amounts to the study of characteristics and vice versa. For the Bargmann–Wigner
equations (2.1) this general isomorphism was traced explicitly in [3].

In [28], it was shown that all the nontrivial characteristics for equations (2.1) can be chosen
to be at most linear in fields. Correspondingly, all the nontrivial conserved currents can be
chosen to be at most quadratic in fields. Below we are restricted to the characteristics with
linear dependence of fields. These form the linear space Char(Ts) filtered by the increasing
sequence of finite dimensional subspaces Charp(Ts) constituted by the characteristics of order p,

0 = Char−1(Ts) ⊂ Char0(Ts) ⊂ Char1(Ts) ⊂ · · · ⊂ Char∞(Ts) = Char(Ts).

Taking the successive quotients

Charp(Ts) = Charp(Ts)/Charp−1(Ts),

we define the associated graded space of linear characteristics

GrChar(Ts) =
∞⊕
p=0

Charp(Ts).

As with the symmetries, there is an isomorphism of filtered vector spaces

GrChar(Ts) ' Char(Ts)

with respect to the canonical filtration in GrChar(Ts),

GrCharp(Ts) ⊂ GrCharp+1(Ts), GrCharp(Ts) =

p⊕
k=0

Charp(Ts).

In particular,

dim GrCharp(Ts) = dim Charp(Ts).
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Characteristics form a filtered module over the filtered Lie algebra Sym(Ts). The action of
symmetries on characteristics

� : Symp(Ts)× Charq(Ts)→ Charp+q(Ts)

can be defined as follows. Let Z be a symmetry and let Φ be the conserved current associated
to a characteristic Q. Then Φ′ = ZΦ is a new conserved current and we define Q′ = Z �Q to
be the characteristic corresponding to Φ′. Due to the one-to-one correspondence between the
spaces of nontrivial currents and nontrivial characteristics the above definition is consistent. It
should be noted that the space Char(Ts), being a module over the Lie algebra Sym(Ts), is by
no means a module over the associative algebra (Sym(Ts), ∗).

3 Classif ication results

As was mentioned in the Introduction a complete classification of the rigid symmetries and
conservation laws for purely bosonic fields (2.1) of spin s ≥ 1/2 was given by Anco and Pohjan-
pelto in [3, 28] (see also [32]). Below we give a brief summary of these results and comment on
a difference between the bosonic and fermionic cases. An important part of the classification is
played by the algebra of Killing spinors on the four-dimensional Minkowski space. Therefore we
start with recalling some basic facts concerning this algebra.

3.1 The Killing spinors

By definition, a Killing spinor is a spin-tensor field ξα1...αk
α̇1...α̇l

(x) of type (k, l) which is symmetric
in dotted and undotted indices and obeys the equation

∂
(α
(α̇ξ

α1...αk)
α̇1...α̇l)

= 0.

As above, the round brackets mean symmetrization of the enclosed indices.
Let Kil(k, l) denote the space of all Killing spinors of type (k, l). The Killing spinors form a bi-

graded, associative, commutative algebra Kil =
⊕

k,l∈N Kil(k, l) with respect to the symmetrized
tensor product

• : Kil(k, l)×Kil(k′, l′)→ Kil(k + k′, l + l′).

If ξ ∈ Kil(k, l) and ξ′ ∈ Kil(k′, l′) then ξ ◦ ξ′ is the Killing spinor of type (k + k′, l + l′) with
components

(ξ • ξ′)α1...αk+k′
α̇1...α̇l+l′

= ξ
(α1...αk
(α̇1...α̇l

ξ
′αk+1...αk+k′ )

α̇l+1...α̇l+l′ )
. (3.1)

The complex conjugation of spin-tensor fields, ξ 7→ ξ̄, defines an involution in the algebra Kil
such that Kil(k, l) ' Kil(l, k). The Killing spinor ξ of type (s, s) is called real if ξ̄ = ξ. The
space of all real spinors of type (s, s) will be denoted by KilR(s, s).

In what follows we will be mostly interested in Killing spinors belonging to the following
sequence of vector spaces

Kils =
∞⊕
p=0

Kilps, Kilps = Kil(p, p)⊕Kil(p− 2s, p+ 2s), s =
1

2
, 1,

3

2
, 2, . . . .

Here it is implied that Kil(p − 2s, p + 2s) = 0 whenever 2s > p. It is well known that each
homogeneous subspace of Kils is of finite dimension, namely,

dimC Kil(p− 2s, p+ 2s) = (p− 2s+ 1)(p− 2s+ 2)(p+ 2s+ 1)(p+ 2s+ 2)(2p+ 3)/12.
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Although the space Kils is not a subalgebra with respect to the •-product (3.1), it can be
endowed with the structure of an associative superalgebra with respect to a new product

◦ : Kilps ×Kilqs → Kilp+qs .

The Z2-grading on Kils is defined by the direct sum decomposition

Kils = Kil+s ⊕Kil−s ,

where

Kil+s =
∞⊕
p=0

Kil(p, p), Kil−s =
∞⊕
p=0

Kil(p, p+ 4s).

Then for all ξ, ξ′ ∈ Kil+s and η, η′ ∈ Kil−s we set

ξ ◦ ξ′ = ξ • ξ′, ξ ◦ η = ξ̄ • η, η ◦ ξ = η • ξ, η ◦ η′ = η̄ • η′.

One can easily verify that, being defined in such a way, the ◦-product is associative, though not
commutative. At the same time, its restriction to the even subalgebra Kil+s coincides with the
•-product and is thus commutative. Involving the complex conjugation, the ◦-product is only
R-linear, not C-linear.

As an associative algebra the subalgebra Kil+s is generated by the Killing spinors of type (1, 1),
so that each even element can be represented as a sum of elements of the form

ξ1 ◦ ξ2 ◦ · · · ◦ ξp, ξi ∈ Kil(1, 1). (3.2)

Similarly, each element from the odd subspace Kil−s is given by a linear combination of the
Killing spinors

ξ1 ◦ ξ2 ◦ · · · ◦ ξp ◦Υ, Υ ∈ Kil(0, 4s). (3.3)

Having in mind the standard relation between tensor and spin-tensor fields in four-dimensional
Minkowski space, we refer to type (p, p) Killing spinors as Killing tensors of rank p and to type
(0, 4s) Killing spinor as self-dual Killing–Yano tensors of rank 2s. The Killing tensors of rank 1
are just the Killing vectors.

3.2 Classif ication

A general correspondence between the space of Killing spinors, nontrivial symmetries and cha-
racteristics can be summarized by the diagram of maps

Kils
πs

yy

σs

%%
GrChar(Ts) GrSym(Ts)

with the following properties:

1. The homomorphisms πs and σs are homogeneous of degrees 1 − 2s and 0, respectively.
Hence,

πs : Kilps → Charp−2s+1(Ts), σs : Kilps → Symp(Ts).
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2. σs is an isomorphism of graded associative algebras.

3. πs is a surjection.

Let us first describe the homomorphism σs. By definition, it takes the generators

1 ∈ Kil(0, 0), ξ ∈ Kil(1, 1), Υ ∈ Kil(0, 4s) (3.4)

of the algebra Kils to the variational vector field (2.3) with components

Z[1]α1...α2s = ϕα1...α2s ,

Z[ξ]α1...α2s = ξββ̇∂ββ̇ϕα1...α2s + s∂(α1β̇
ξββ̇ϕβα2...α2s) +

1− s
4

(
∂ββ̇ξ

ββ̇
)
ϕα1...α2s ,

Z[Υ]α1...α2s =
2s∑
p=0

2s− p+ 1

4s+ 1

(
2s

p

)(
∂β̇1(α1
· · · ∂β̇pαpΥβ̇1...β̇4s

)(
∂
β̇p+1
αp+1 · · · ∂

β̇2s
α2s)

ϕ̄β̇2s+1...β̇4s
)
.

Clearly, Z[1] generates the dilatations of the field ϕ and Z[ξ] corresponds to the “conformally
weighted” Lie derivative of ϕ along the Killing vector ξ. By property (2) the homomorphism σs
is uniquely extended from the multiplicative (3.4) to linear generators (3.2), (3.3) of the algebra
Kils:

Z[ξ1 ◦ · · · ◦ ξp] = Z[ξ1] ∗ · · · ∗ Z[ξp],

Z[ζ1 ◦ · · · ◦ ζp−2s ◦Υ] = Z[ζ1] ∗ · · · ∗ Z[ζp−2s] ∗ Z[Υ]. (3.5)

Hereafter we use the Greek letter ζ to denote the real Killing vectors, i.e., elements of KilR(1, 1),
while ξ is used for complex Killing vectors. Notice that the symmetries in the right hand sides
of (3.5) represent elements of the graded vector space GrSym(Ts) and, as elements of GrSym(Ts),
are completely symmetric in permutations of ξ’s and ζ’s. The last fact easily follows from the
commutation relations

[Z[ξ1], Z[ξ2]] = Z[[ξ1, ξ2]], [Z[Υ], Z[ζ]] = Z[LζΥ].

The symmetries (3.5) exhaust all the non-elementary symmetries of the relativistic wave
equation (2.1). The space of symmetries inherits the Z2-grading from the space of Killing
tensors, namely, the even symmetries take the field to field, while the odd symmetries take the
field to its complex conjugate.

Let us now turn to the homomorphism πs. Again, the Z2-grading on the space Kils induces
the same grading on the space of characteristics. As a Z2-graded module over the Lie algebra
of symmetries the space GrChar(Ts) is generated by the even characteristics of order zero

Q[i2sζ1 ◦ · · · ◦ ζ2s−1]α̇1...α̇2s−1
α = (ζ1 ◦ · · · ◦ ζ2s−1)α1...α2s−1α̇1...α̇2s−1ϕαα1...α2s−1 (3.6)

and some odd characteristics of order one or two depending on s. For half-integer spins the
latter characteristics are given by

Q[i2sΥ]α̇1...α̇2s−1
α = Υα̇α̇1...α̇2s−1β̇1...β̇2s∂αα̇ϕ̄β̇1...β̇2s

+
2s+ 1

4s+ 1
∂αα̇Υα̇α̇1...α̇2s−1β̇1...β̇2sϕ̄β̇1...β̇2s (3.7)

and for integer spins they can be written as

Q[ζ ◦Υ] = Z[ζ]Q[Υ] +
1

2
Q[LζΥ]. (3.8)
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Now the space of characteristics for real-valued conserved currents is spanned by the even charac-
teristics

Q[iq+2sζ1 ◦ · · · ◦ ζq+2s−1] = Z[iqζ1 ◦ · · · ◦ ζq]�Q[i2sζq+1 ◦ · · · ◦ ζq+2s−1] (3.9)

and odd characteristics

Q[ζ1 ◦ · · · ◦ ζ2p ◦Υ] = Z[ζ1 ◦ · · · ◦ ζ2p]�Q[Υ], s ∈ N− 1

2
,

Q[ζ1 ◦ · · · ◦ ζ2p+1 ◦Υ] = Z[ζ1 ◦ · · · ◦ ζ2p]�Q[ζ2p+1 ◦Υ], s ∈ N. (3.10)

The characteristics (3.9), (3.10) have the orders q, 2p + 1 and 2p + 2, respectively. Let us
stress again that the expressions in the right hand sides of (3.9) and (3.10) are considered as
representing elements of GrChar(Ts), i.e., modulo characteristics of lower orders. Upon this
interpretation the right hand sides are totally symmetric in ζ’s.

Formulae (3.6)–(3.10) provide a complete description of the homomorphism πs. In particular,
they show that πs is surjective. The kernel of πs is given by the space

Kerπs = Ker+πs ⊕Ker−πs,

where

Ker+πs =

(
2s−2⊕
n=0

Kil(n, n)

)
⊕

( ∞⊕
m=2s−1

imKilR(m,m)

)

and

Ker−πs =



∞⊕
p=0

Kil(2p+ 1, 2p+ 4s+ 1), for s ∈ N− 1
2 ;

∞⊕
p=0

Kil(2p, 2p+ 4s), for s ∈ N.

Introduce the subspace ChKils ⊂ Kils which is complementary to Kerπs:

ChKils = ChKil+s ⊕ ChKil−s ,

where

ChKil+s =
∞⊕

m=2s−1

im+1KilR(m,m)

and

ChKil−s =



∞⊕
p=0

Kil(2p, 2p+ 4s), for s ∈ N− 1
2 ;

∞⊕
p=0

Kil(2p+ 1, 2p+ 4s+ 1), for s ∈ N.

With the definitions above we have the direct sum decomposition

Kils = Kerπs ⊕ ChKils
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and πs becomes an isomorphism when restricted to ChKils. So, we can draw the following
diagram:

ChKils
πs

xx

σs

&&
GrChar(Ts) GrSym(Ts)

(3.11)

where σs is sill an injection. For an obvious reason we refer to ChKils as the space of charac-
teristic Killing tensors. As is seen, no characteristics are assigned to the Killing tensors of rank
< 2s− 1 and only the odd (even) rank tensors of Killing and Yano correspond to characteristics
for integer (half-integer) spins.

Remark 1. The original classification [3] of the quadratic conserved currents was formulated
for purely bosonic fields. It essentially relied on the notion of an adjoint symmetry, see equa-
tion (A.2) of Appendix A. Each Killing spinor ξ ∈ Kilps, p ≥ 2s − 1, was shown to give rise
to an adjoint symmetry and a conserved current. By construction, such currents exhaust all
the quadratic conserved currents, but dependencies are allowed (i.e., some of nontrivial linear
combinations of the conserved currents may give a trivial current). Actually, only a “half” of
the Killing spinors above was shown to generate a basis of the nontrivial conserved currents [3,
Corollary 4.4]. This classification method is directly applicable to the fermionic fields as well,
but the resulting conserved currents are different. For the fermionic fields of half-integer spin,
exactly the complementary “half” of the Killing spinors spans the space of nontrivial quadratic
currents. Expressions (3.9), (3.10) are given for the standard spin-statistics correspondence. An-
other approach to the construction of conserved currents for massless fields has been proposed
in [32]. In that paper, the conserved currents have been defined as contractions of conserved
tensors with appropriate Killing spinors, so that the map πs has appeared in quite a natural
way. However, the dependencies have been unnoticed between the currents, and the kernel of πs
was not studied. With a due account of these dependencies and the statistics, the real-valued
conserved currents found in [32] coincide with those constructed and classified in [3].

4 Lagrange anchor and characteristic symmetries

The Lagrange anchor was first introduced in [15] as a tool for the path-integral quantization of
non-Lagrangian theories. Later, it has been realized [14] that the concept of Lagrange anchor can
also serve in classical theory for establishing a systematic correspondence between conservation
laws and symmetries, providing a generalization of the first Noether’s theorem to non-Lagrangian
dynamics. The latter result admits also a natural cohomological interpretation within the BRST
formalism [16]. In the body of the paper, we do not elaborate on the definition and general
properties of the Lagrange anchor, which are explained from various viewpoints in the cited
works. A brief account of the general notions concerning the Lagrange anchor can be found in
Appendix A.

In this particular model, one can arrive at the Lagrange anchor proceeding from the fol-
lowing simple observation. Since the map πs : ChKils → GrChar(Ts) is an isomorphism, the
diagram (3.11) can be completed uniquely to the commutative triangle diagram

ChKils
πs

xx

σs

&&
GrChar(Ts)

Vs=σsπ
−1
s // GrSym(Ts)

(4.1)
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Now, one can see that the bottom map is given by a universal linear differential operator acting
from the space of characteristics to the space of symmetries. It is the operator that can be
taken as a Lagrange anchor for the field equations (2.1). Explicitly, if Q = (Q

α1...α2s−1

α̇ ) is
a characteristic, then Vs takes it to the symmetry (2.3) with

Zα1...α2s = Vs(Q)α1...α2s = i2s∂(α2α̇2
. . . ∂α2s−1α̇2s−1Q̄

α̇2...α̇2s

α1) . (4.2)

Verification of the defining property of a Lagrange anchor (A.5) is straightforward, see Ap-
pendix B. Actually, formula (4.2), considered for particular representatives of characteristics
and symmetries, defines the map

Vs : Charp(Ts)→ Symp+2s−1(Ts), p = 0, 1, 2, . . . , (4.3)

of the underlying filtered spaces, from which the induced map (4.1) of the associated graded
spaces follows. (By abuse of notation, we denote both the maps by Vs.) The map (4.3), being
defined through the composition of monomorphisms σs and π−1

s , is obviously injective and we
denote its image by ChSymp(Ts). The space ChSym(Ts) = ChSym∞(Ts) is referred to as the
space of characteristic symmetries.

Being independent of fields, the Lagrange anchor Vs is automatically strongly integrable, see
relations (A.7) of Appendix A. The last fact implies that the characteristic symmetries form
a subalgebra in the Lie algebra Sym(Ts). We have

[Vs(Q1), Vs(Q2)] = Vs([Q1, Q2]Vs), ∀Q1, Q2 ∈ Char(Ts), (4.4)

where

[Q1, Q2]Vs := Vs(Q1)�Q2 = −Vs(Q2)�Q1.

The skew-symmetric bracket operation

[ · , · ]Vs : Char(Ts)× Char(Ts)→ Char(Ts)

enjoys the Jacobi identity making Charq(Ts) into a Lie algebra. This is a particular case of the
Lie bracket on characteristics introduced in [14]3. Equation (4.4) says the map (4.3) defines
a homomorphism from the Lie algebra of characteristics to the Lie algebra of characteristic
symmetries. For low spins (s = 1/2, 1) the Lie algebra Char(Ts) contains a finite dimensional
subalgebra which is isomorphic to the Lie algebra of conformal group. The elements of this sub-
algebra correspond to conserved currents that are expressible in terms of the energy-momentum
tensor.

Remark 2. The map (4.3) extends naturally from the space of characteristics to the space
of all adjoint symmetries, keeping the same value area. Actually, this is a general property of
any system of PDEs, and not just a special feature of the Bargmann–Wigner equations (see
relation (A.6) in Appendix A). If one includes the adjoint symmetries of (2.1) to the range of
definition, then the image of Vs will cover all the symmetries of the system, except for a finite
number of symmetries of order ≤ 2s − 1. Although (A.6) has the form of a linear mapping,
it should be better thought of as a universal bilinear map assigning a symmetry Z to any
pair (V, P ) constituted by a Lagrange anchor V and an adjoint symmetry P . The map is
universal as it does not depend on a particular structure of the field equations (A.1). In this
context it is pertinent to mention another universal bilinear map connecting symmetries, adjoint
symmetries, and characteristics [1, 6]. This takes a symmetry Z and an adjoint symmetry P

3For Lagrangian theories endowed with the canonical Lagrange anchor [15] this bracket reproduces the well-
known Dickey’s bracket on conserved currents [8] (see also [5]).
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to a characteristic Q. For each specific choice of P the assignment (Z,P ) 7→ Q defines a linear
mapping from the space of symmetries to the space of characteristics. This map, however,
acts in the opposite direction with respect to the Lagrange anchor map (A.6). Either of the
universal mappings can be regarded as an extension of the classical Noether’s theorem to non-
variational PDEs, though the constructions are not entirely peer entities, in the following sense.
For Lagrangian equations, there is a preferable choice for the Lagrange anchor that immediately
reproduces the standard Noether’s correspondence between symmetries and conservation laws.
It is unlikely that such a canonical choice can exist for the adjoint symmetry of Lagrangian
equations.

5 Probability amplitude for massless fields of spin s ≥ 1/2

In this section, we briefly comment on how the Lagrange anchor above can be used to perform
a consistent path-integral quantization of the massless fields subject to the Bargmann–Wigner
equations.

Recall that in the covariant formulation of quantum field theory one usually deals with the
path integrals of the form

〈O〉Ψ =

∫
[Dφ]O[φ]Ψ[φ], (5.1)

where O is a physical observable and Ψ is a probability amplitude on the configuration space of
fields φi. For a Lagrangian theory with action S[φ] the latter is given by the Feynman amplitude

Ψ = e
i
~S , which can also be defined as a unique (up to a normalization factor) solution to the

Schwinger–Dyson (SD) equation(
δS

δφi
+ i~

δ

δφi

)
Ψ[φ] = 0. (5.2)

After normalization, the integral (5.1) defines the quantum average of a physical observable O
in the theory with probability amplitude Ψ. It is believed that evaluating such integrals for
various observables O one can extract all physically relevant information about the quantum
dynamics of fields (e.g. the scattering matrix).

In [22], the SD equation (5.2) was shown to admit quite a natural generalization to non-
Lagrangian theories endowed with compatible Lagrange anchors. Leaving aside general defini-
tions, we just present the generalized SD equations for the field equations (2.1) and the Lagrange
anchor (4.2). These read(

T α̇α1...α2s−1
− i2s~∂α1α̇1 · · · ∂α2s−1α̇2s−1

δ

δϕ̄α̇α̇1...α̇2s−1

)
Ψ[ϕ] = 0,(

T̄αα̇1...α̇2s−1
− i−2s~∂α1α̇1 · · · ∂α2s−1α̇2s−1

δ

δϕαα1...α2s−1

)
Ψ[ϕ] = 0. (5.3)

As with the usual SD equation (5.2), the first terms in (5.3) are determined by the classical
equations of motion Ts and the second ones, constructed by the Lagrange anchor Vs, involve
the first-order variational derivatives multiplied by the Plank constant. In the classical limit,
~ → 0, the latter terms vanish and the resulting probability amplitude is given by the Dirac
distribution supported at the classical solutions to the field equations. Formally, Ψ|~→0 ∼ δ(Ts)
and one can think of the last expression as a classical probability amplitude. The generalized SD
equations (5.3) are formally consistent since the linear operators determining the left hand sides
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commute to each other4. The general solution to (5.3) admits a nice path-integral representation
in terms of the action functional for the so-called augmented theory. Within the augmentation
approach [21] the original set of fields ϕα1...α2s is extended by the new fields Y

α1...α2s−1

α̇ that
take values in the space dual to the space of equations of motion. The action of the augmented
theory is systematically constructed by the original equations of motion and the corresponding
Lagrange anchor. In the case at hand we find

Saug[ϕ, Y ] =

∫
d4x
(
Y
α1...α2s−1

α̇ T α̇α1...α2s−1

+ i2s2∂α1(α̇1
· · · ∂α2s−1α̇2s−1Y

α1...α2s−1

α̇2s)
∂α2sα̇1 Ȳ α̇2...α̇2s

α2s
+ c.c.

)
.

The least action principle results in the system of decoupled equations

∂αα̇ϕαα1...α2s−1 = 0, ∂(α1α̇Y
α2...α2s)
α̇ = 0.

The dynamics of ϕ’s are seen to be governed by the original equations of motion (2.1). The
equations for the augmentation fields Y are known as the adjoint equations. The latter are the
starting point for the construction of conserved currents by method [3].

Integrating by parts under the path-integral sign, one can easily verify that the functional

Ψ[ϕ] = N

∫
[DY ]e

i
~Saug[ϕ,Y ] (5.4)

does satisfy (5.3) for an arbitrary normalization constant N . Doing the Gaussian integral (5.4),
one can then find an explicit expression for the functional Ψ. As an example, consider the case
s = 1/2. The integral (5.4) takes the form

Ψ[ϕ] = N

∫
[DY ] exp

(
i

~

∫
d4xYα̇T

α̇ − ȲαT̄α + iYα̇∂
αα̇Ȳα

)
.

Making the substitution Yα̇ 7→ Yα̇ − iϕ̄α̇ and integrating by Y ’s, we obtain

Ψ[ϕ] = N ′e
i
~S1/2[ϕ],

where N ′ is some constant and

S1/2[ϕ] = −i
∫
d4xϕ̄α̇∂αα̇ϕ

α

is the usual action for spin-1/2 massless field. Similar computations5 for s > 1/2 result in the

probability amplitude Ψ ∼ e
i
~S , where the exponent S[ϕ] is no longer a local functional. An

explicit expression for the spin-1 non-local action S1[ϕ] can be found in [21].
Notice that the action of the augmented theory is manifestly Poincaré invariant for any spin.

This suggests that the relativistic symmetries presumably survive quantization. It would be
interesting to establish which higher symmetries of the original field equations can be “lifted” to
the augmented theory and then to quantum theory. Another interesting problem is to classify
all nontrivial Lagrange anchors for the Bargmann–Wigner equations (2.1). This problem is
in principle of the same kind as the classification of symmetries or characteristics, though no
explicit examples are known except for the Lagrange anchor considered in the present paper.
This seems to be a unique Lagrange anchor enjoying the Poincaré invariance.

4In fact, it is the requirement of formal compatibility of the generalized SD equations that determines all
possible Lagrange anchors for given equations of motion.

5Notice that the Noether identities (2.2) give rise to certain gauge symmetries in the augmented theory [21],

namely, δεY
α1...α2s−1

α̇ = ∂
(α1
α̇ εα2...α2s−1), δεϕ = 0. Therefore, to compute the Gaussian integral (5.4) for s > 1/2

one should first impose an appropriate gauge fixing condition on Y ’s.
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6 Conclusion

In this paper, we have found a Poincaré invariant Lagrange anchor for the Bargmann–Wigner
equations and applied this anchor for deriving symmetries from conservation laws and for
defining the quantum probability amplitude. Of course, at the level of free fields there is an
equivalent Lagrangian formulation due to Fang and Fronsdal [11, 12]. This formulation allows
one to solve the above problems by standard tools of Lagrangian field theory. The Lagrangian
formulation, however, does not admit consistent interactions, while the non-Lagrangian equa-
tions for interacting higher-spin fields have been proposed by Vasiliev [30, 31]. The Lagrange
anchor for Vasiliev’s equations is still unknown. If the anchor is found, it will allow one to develop
a consistent quantum theory of higher-spin interactions. There are many other non-Lagrangian
models of physical interest for which the concept of Lagrange anchor seems having no alterna-
tives when it comes to quantization or establishing a systematic connection between symmetries
and conservation laws. The procedure of finding the Lagrange anchor in the considered simple
model is quite general and it can be instructive in more complex theories.

A General definition and properties of a Lagrange anchor

To make the paper self-contained, we explain here some basic notions concerning the concept
of Lagrange anchor. A more extended and systematic exposition can be found in the original
papers [14, 15, 21]. To emphasize the algebraic structure underlying the concept, we use De
Witt’s condensed notation [7], which is much more handy and compact than the jet space
formalism, given the context. According to this notation the fields φi(x), leaving on a smooth
manifold X, are interpreted as local coordinates on an infinite dimensional supermanifold M .
The local coordinates x’s on X are treated as continuous indices labeling the fields and included
into a singe superindex “i”, so that φi ≡ φi(x). The repeated superindex implies summation
over its discrete part and integration over X with respect to an appropriate measure. The
partial derivatives with respect to φi are understood as functional ones, that is, ∂i = δ/δφi(x).
The role of the space of smooth functions C∞(M) is played by the space of local functionals of
fields; in so doing, two functionals are considered to be equivalent if they differ by boundary
terms. In particular, the equality S(φ) = 0 implies that the local functional S is given by the
integral of a total divergence. Notice that unlike the smooth functions on a finite dimensional
supermanifold, the local functionals do not form a supercommutative algebra.

With the condensed notation, any system of field equations can be written as

Ta(φ) = 0. (A.1)

As we do not assume the field equations to come from the least action principle, the discrete parts
of the superindices i and a, labelling respectively the components of fields and equations, may
run through completely different sets. For example, the relativistic wave equations (2.1) take
their values in the spin-tensor fields of type (s− 1, 1), while the corresponding fields constitute
a spin-tensor of type (s, 0). In this case, the infinite dimensional supermanifold M of spin-
tensor fields is purely bosonic (i.e., just a manifold) for integer spin and purely fermionic for
half-integer ones. Continuing the geometric interpretation above, one can regard the differential
operators T ’s as components of a section T = {Ta} of some infinite dimensional supervector
bundle E over the base supermanifold M . In [15], it was proposed to call E →M the dynamics
bundle. Then the solutions to the field equations (A.1) are identified with the zero locus Σ ⊂M
of the section T , the shell in the physical terminology. The field equations (A.1) are called
regular if any local function of fields that vanishes on Σ is proportional to the local functions Ta
and their derivatives with respect to the local coordinates on X. Below we assume that the
equations (A.1) are regular. The functional derivative of T ’s gives the operator Jia = ∂iTa
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defining the so-called universal linearization of the equations (A.1). It can also be viewed as
an operator defining a homomorphism J : TM → E from the tangent bundle of the space of
fields M to the dynamics bundle, if one regards ∂i as a covariant derivative associated to a flat
connection in E .

A vector field Z = Zi∂i on M , i.e., a section of the tangent bundle TM , is called a symmetry
of the field equations (A.1) if

J(Z)|Σ = 0 ⇔ ZiJia = AbaTb

for some A’a. The symmetries form a subalgebra in the Lie superalgebra of all vector fields
on M . Let E∗ denote the vector bundle dual to the dynamics bundle E . A section P = {P a}
of E∗ is called an adjoint symmetry if

J∗(P )|Σ = 0 ⇔ JiaP
a = Bb

iTb (A.2)

for some B’s. Among the adjoint symmetries one can extract those originating from the identi-
ties. A section Q of E∗ is said to generate an identity for the equations (A.1) if

TaQ
a = 0. (A.3)

As we have explained above, the last equality should be understood in the sense that the local
functional of fields TaQ

a is given by the integral of a total divergence div j. By definition,
the current j is conserved when evaluated on solutions to (A.1), that is, div j|Σ = 0. Neither
identities nor conserved currents are defined by relation (A.3) uniquely. The equivalence classes
of identities that correspond to equivalence classes of nontrivial conserved currents are called
characteristics. This gives a linear bijection between the spaces of characteristics and nontrivial
conserved currents. Taking the functional derivative of both the sides of equality (A.3), one can
see that each identity Q satisfies the adjoint symmetry condition (A.2).

Consider now a homomorphism V : E∗ → TM , where V is assumed to be defined, like
the universal linearization J , by some matrix differential operator whose coefficients are local
functions of fields. By definition, the homomorphism V is called a Lagrange anchor, if the
following diagram of maps becomes supercommutative upon restriction to Σ:

TM
J // E

E∗
V

OO

J∗ // T ∗M

V ∗

OO (A.4)

For the regular equations (A.1), the last condition can be written explicitly as

V i
a∂iTb − (−1)εaεbV i

b ∂iTa = CdabTd (A.5)

for some C’s. Here εa ∈ Z2 denotes the Grassmann parity of the local function of fields Ta. In
the particular case of Lagrangian equations, Ti = ∂iS = 0, the dynamics bundle coincides with
the cotangent bundle T ∗M and (A.5) is satisfied with the identity map V = id : TM → TM and
all C’s vanishing. This is known as the canonical Lagrange anchor for Lagrangian equations.
Notice that even in the Lagrangian situation the system (A.5) may admit a lot of other (non-
canonical) solutions. Like symmetries and adjoint symmetries, all they form a vector superspace.

By definition, the spaces of symmetries and adjoint symmetries are identified with the on-
shell kernels of the horizontal maps in (A.4). Form the on-shell supercommutativity of the
diagram it then follows that the vector field Z = V (P ) is a symmetry of (A.1) for any adjoint
symmetry P . Thus, each Lagrange anchor V gives rise to a homomorphism

V : AdSym(T )→ Sym(T ) (A.6)

acting from the space of adjoint symmetries to the space of symmetries of the equations (A.1).
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A Lagrange anchor V is said to be strongly integrable6 if the following two conditions are
satisfied

[Va, Vb] = CdabVd, (−1)εaεc
(
CdabC

e
cd + V i

c ∂iC
e
ab

)
+ cycle(a, b, c) = 0. (A.7)

The first equation means that ImV ⊂ TM is an integrable distribution on M . In case KerV = 0,
the second condition in (A.7) follows from the first one by the Jacobi identity for the super-
commutator of the local vector fields Va = V i

a∂i. The integrability conditions (A.7) have a nice
geometric interpretation as defining a Lie superalgebroid over M . For a general discussions of
Lie algebroids we refer the reader to [23]. Upon this interpretation the Lagrange anchor is iden-
tified with the anchor of a Lie superalgebroid V : E∗ → TM and the Lie superalgebra structure
on the sections of E∗ is defined by the bracket

[ea, eb] = Cdabed,

where {ea} are frame sections in E∗. The defining relation (A.5) for the Lagrange anchor can
then be reinterpreted as the closedness condition for the 1-E-form T with respect to the Lie
algebroid differential, dET = 0; in so doing, the integrability condition (A.7) is expressed by
the operator equality d2

E = 0. It is not hard to see [14] that for a strongly integrable Lagrange
anchor the generators of identities (A.3) form a subalgebra in the full Lie algebra of sections
of E∗. The canonical Lagrange anchor of Lagrangian equations gives an example of strongly
integrable Lagrange anchor. It corresponds to the tangent Lie algebroid id : TM → TM .
Although the theory of Lie algebroids and groupoids is a fascinating area of modern differential
geometry, it by no means covers or substitutes the concept of a Lagrange anchor completely,
as the strong integrability condition (A.7) is too restrictive and is not actually needed in many
field-theoretical applications.

B Lagrange anchor for the Bargmann–Wigner equations

Unfolding the condensed notation of Appendix A, one can see that the universal linearization of
the field equations (2.1) and the Lagrange anchor (4.2) are defined by the following operators:

Jββ1...β2s−1,α̇
α1...α2s−1

(x, z) = δ(β1
α1
· · · δβ2s−1

α2s−1
(∂z)α̇β)δ(x− z),

V γ
γ̇1...γ̇2s−1,ββ1...β2s−1(z, y) = (−i)2sδγ(β(∂z)β1γ̇1 · · · (∂z)β2s−1)γ2s−1

δ(z − y). (B.1)

There are also operators corresponding to the complex conjugate equations (2.1). Their integral
kernels are obtained by complex conjugation of (B.1).

Since both the operators in (B.1) are independent of fields, the defining property for the
Lagrange anchor is fulfilled iff the left hand side of (A.5) is equal to zero identically, that is,
all C’s must vanish. This amounts to the equality∫

d4zJββ1...β2s−1,α̇
α1...α2s−1(x, z)V γ

γ̇1...γ̇2s−1,ββ1...β2s−1(z, y)− (i)4s
(
α↔γ, x↔y

)
= 0. (B.2)

On substituting (B.1) into (B.2), we get{
(∂y)γα̇(∂y)α1(γ̇1 · · · (∂

y)α2s−1γ̇2s−1)δ(x− y)− (−1)2s
(
x↔ y

)}
6In [14], we used the term integrable instead of strongly integrable. A more relaxed notion of integrability was

formulated in our recent paper [16]. To distinguish between these two versions of integrability, from now on we
reserve the term integrable for the Lagrange anchors satisfying the relaxed integrability condition in the sense
of [16].
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+

[
2s−1∑
p=1

δγαp(∂
y)βα̇(∂y)βγ̇p(∂

y)α1(γ̇1 · · · (∂
y)αp−1γ̇p−1(∂y)αp+1γ̇p+1 · · · (∂y)α2s−1γ̇2s−1)δ(x− y)

− (−1)2s
(
α↔ γ̇, α̇↔ γ, x↔ y

)]
= 0. (B.3)

Due to the symmetry properties of the derivatives of Dirac’s δ-function, the terms in the braces
cancel each other. Transferring now all the partial derivatives in the square brackets to y’s and
using the identities

(∂y)βα̇(∂y)βγ̇p =
1

2
δα̇γ̇p(∂

y)ββ̇(∂y)ββ̇, (∂y)γβ̇(∂y)αpβ̇ =
1

2
δγαp(∂

y)ββ̇(∂y)ββ̇,

one can bring the left hand side of (B.3) to the form

1

2

{
2s−1∑
p=1

(
δγαpδ

α̇
(γ̇p
− δγαpδ

α̇
(γ̇p

)
(∂y)ββ̇(∂y)ββ̇

× (∂y)α1γ̇1 · · · (∂y)αp−1γ̇p−1(∂y)αp+1γ̇p+1 · · · (∂y)α2s−1γ̇2s−1)δ(x− y)
}
.

The last expression is equal to zero identically, and verification of the defining property (A.5)
for the Lagrange anchor (4.2) is completed.
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