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Abstract. The hidden symmetries of higher dimensional Kerr-NUT-(A)dS metrics are
investigated. In certain scaling limits these metrics are related to the Einstein–Sasaki ones.
The complete set of Killing–Yano tensors of the Einstein–Sasaki spaces are presented. For
this purpose the Killing forms of the Calabi–Yau cone over the Einstein–Sasaki manifold are
constructed. Two new Killing forms on Einstein–Sasaki manifolds are identified associated
with the complex volume form of the cone manifolds. Finally the Killing forms on mixed
3-Sasaki manifolds are briefly described.
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1 Introduction

The usual spacetimes symmetries are represented by isometries connected with the Killing vector
fields. Slightly more generally, the conformal Killing vector field preserve a given conformal class
of metrics. For each of the (conformal) Killing vector fields there exists a conserved quantity
for the (null) geodesic motions.

Besides them a spacetime may also possess hidden symmetries generated by higher order
symmetric or antisymmetric tensor fields. The symmetric Stäckel–Killing tensors give rise to
conserved quantities of higher order in particle momenta. A natural generalization of (con-
formal) Killing vector fields is given by the antisymmetric (conformal) Killing–Yano tensors.
Killing–Yano tensors are also called Yano tensors or Killing forms, and conformal Killing–Yano
tensors are sometimes referred as conformal Yano tensors, conformal Killing forms or twistor
forms.

In physics, Yano tensors play a fundamental role being related to the separability of field
equations with spin, pseudoclassical spinning models, the existence of quantum symmetry ope-
rators, supersymmetries, etc.
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In this paper we want to take a closer look at the Killing forms of Kerr-NUT-(A)dS metrics
which are related to Einstein–Sasaki metrics. An Einstein–Sasaki manifold is a Riemannian
manifold that is both Sasakian and Einstein. In the last time Sasakian manifolds, as an odd-
dimensional analog of Kähler manifolds, have become of high interest. Sasakian manifolds
are contact manifolds satisfying a normality (or integrability) condition. On the other hand
the contact geometry is motivated by classical mechanics, a contact space corresponding to
the odd-dimensional extended phase space that includes the time variable. Recently Einstein–
Sasaki geometries have been the object of much attention in connection with the supersymmetric
backgrounds relevant to the AdS/CFT correspondence. On the other hand a lot of interest
focuses on higher dimensional black hole spacetimes [20]. The search of hidden symmetries
generated by the Killing forms in rotating black hole geometries has an important role for
describing the properties of black holes in various dimensions.

The Kerr-NUT-AdS metrics in all dimensions have been constructed in [16]. The general
Kerr-NUT-AdS metrics have (2n− 1) non-trivial parameters where the spacetime dimension is
(2n + 1) in the odd-dimensional case and (2n) in the even dimensional case. It was also consi-
dered the BPS, or supersymmetric, limits of these metrics. After Euclideanisation, these limits
yield in odd dimensions new families of Einstein–Sasaki metrics, whereas the even-dimensional
metrics result in the Ricci-flat Kähler manifolds. An alternative procedure was proposed in [35]
generalizing the scaling limit of Martelli and Sparks [38]. More precisely, in a certain limit one
gets an Einstein–Kähler metric from an even-dimensional Kerr-NUT-(A)dS spacetime and the
Einstein–Sasaki space is constructed as a U(1) bundle over this metric. On the other hand, per-
forming the scaling limit of the odd-dimensional Kerr-NUT-(A)dS spacetimes one gets directly
the same Einstein–Sasaki space obtained as a U(1) bundle over the Einstein–Kähler metric [35].

The Kerr-NUT-(A)dS metrics possess explicit and hidden symmetries encoded in a series of
rank two Stäckel–Killing tensors and Killing vectors [16]. These symmetries allow one constructs
a set of quantities conserved along geodesics. Moreover they are functionally independent and
in involution and guarantee complete integrability of the geodesic motions [34, 43, 47].

The structure of the hidden symmetries for a Sasaki space is derived from the characteristic
Sasakian 1-form. Killing–Yano tensors alternate closed conformal Killing–Yano tensors as the
rank increases [35]. The corresponding hidden symmetries are purely geometrical, irrespective
of the fact whether the Einstein equations are satisfied or not.

One of the purposes of this paper is to point out the special case of the higher dimensional
Kerr-NUT-(A)dS metrics which are related to the Einstein–Sasaki ones. In this case there
are two additional Killing–Yano tensors taking into account that the metric cone is Calabi–
Yau [46]. These two exceptional Killing forms can be also described using the Killing spinors of
an Einstein–Sasaki manifold [5].

In the main body of the present paper we consider the Killing forms on Einstein–Sasaki
spaces. Let us remark that versions of M -theory could be formulated in spacetimes with various
number of time dimensions giving rise to exotic spacetime signatures [26, 27]. The paraquater-
nionic structures arise in a natural way in modern studies in string theories, integrable sys-
tems [17, 19, 40]. The counterpart in odd-dimensions of a paraquaternionic structure is called
mixed 3-structure which appears in a natural way on lightlike hypersurfaces in paraquaternionic
manifolds. For completeness we extend the study of Killing forms on other more particular
Sasaki structures.

In Section 2 we review some basic facts about the Einstein–Sasaki spaces and their cone
manifolds. In the next section we discuss the Killing forms on Einstein–Sasaki spaces which
proceed from Euclideanised Kerr-NUT-(A)dS metrics in certain scaling limits. We identity two
new Killing forms associated with the complex volume form of the cone manifold. The paper
ends with conclusions in Section 4. In an appendix we briefly discuss the Killing forms on mixed
3-Sasaki manifolds.
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2 Mathematical preliminaries

For convenience, the mathematical concepts and results needed to study the hidden symmetries
on Einstein–Sasaki spaces are summarized in this Section.

2.1 Killing vector fields and their generalizations

A vector field X on a (pseudo-)Riemannian manifold (M, g) is said to be a Killing vector field if
the Lie derivative of the metric g with respect to X vanishes or, equivalently, if the Levi-Civita
connection ∇ of g satisfies

g(∇YX,Z) + g(Y,∇ZX) = 0,

for all vector fields Y , Z on M . A natural generalization of Killing vector fields is given by the
conformal Killing vector fields, i.e. vector fields with a flow preserving a given conformal class
of metrics [51]. On the other hand, a conformal Killing–Yano tensor of rank p on a (pseudo-)
Riemannian manifold (M, g) is a p-form ω which satisfies:

∇Xω =
1

p+ 1
X−| dω −

1

n− p+ 1
X∗ ∧ d∗ω, (1)

for any vector field X on M , where ∇ is the Levi-Civita connection of g, n is the dimension
of M , X∗ is the 1-form dual to the vector field X with respect to the metric g, −| is the operator
dual to the wedge product and d∗ is the adjoint of the exterior derivative d. If ω is co-closed
in (1), then we obtain the definition of a Killing–Yano tensor (introduced by Yano [51]). It is
easy to see that for p = 1, they are dual to Killing vector fields. Moreover, a Killing form ω is
said to be a special Killing form if it satisfies for some constant c the additional equation

∇X(dω) = cX∗ ∧ ω,

for any vector field X on M .

Besides the antisymmetric generalization of the Killing vectors one might also consider higher
order symmetric tensors. A symmetric tensor K(i1...ik) obeying the equation

K(i1...ik;j) = 0,

is called a Stäckel–Killing tensor. For any geodesic with a tangent vector ui the following object

PK = Ki1...iku
i1 · · ·uik ,

is conserved.

These two generalizations of the Killing vectors could be related. Given two Killing–Yano
tensors ωi1,...,ir and σi1,...,ir it is possible to associate with them a Stäckel–Killing tensor of
rank 2:

K
(ω,σ)
ij = ωii2...irσ

i2...ir
j + σii2...irω

i2...ir
j . (2)

Therefore a method to generate higher order integrals of motion is to identify the complete
set of Killing–Yano tensors. The existence of enough integrals of motion leads to complete
integrability or even superintegrability of the mechanical system when the number of functionally
independent constants of motion is larger than its number of degrees of freedom. Let us mention
that when a Stäckel–Killing tensor is of the form (2), there are no quantum anomalies thanks
to an integrability condition satisfied by the Killing–Yano tensors [14].
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2.2 Almost Hermitian manifolds and the complex volume form

An almost (pseudo-)Hermitian structure on a smooth manifold M is a pair (g, J), where g is
a (pseudo-)Riemannian metric on M and J is an almost complex structure on M , which is
compatible with g, i.e.

g(JX, JY ) = g(X,Y ),

for all vector fields X, Y on M . In this case, the triple (M,J, g) is called an almost (pseudo-)-
Hermitian manifold. Moreover, if J is parallel with respect to the Levi-Civita connection ∇
of g, then (M,J, g) is said to be a Kähler manifold (with indefinite metric). We remark that on
a Kähler manifold, the associated Kähler form, i.e. the alternating 2-form Ω defined by

Ω(X,Y ) = g(JX, Y ),

is closed. In local holomorphic coordinates (z1, . . . , zm), the associated Kähler form Ω can be
written as

Ω = igjk̄dz
j ∧ dz̄k =

∑
X∗j ∧ Y ∗j =

i

2

∑
Z∗j ∧ Z̄∗j ,

where (X1, Y1, . . . , Xm, Ym) is an adapted local orthonormal field (i.e. such that Yj = JXj), and
(Zj , Z̄j) is the associated complex frame given by

Zj =
1

2
(Xj − iYj), Z̄j =

1

2
(Xj + iYj).

We also note that the dimension of an almost (pseudo-)Hermitian manifold is necessarily even
(see e.g. [32]) and, in the case of a Kähler manifold, there is an intimate connection between its
Kähler form and the volume form (which is just the Riemannian volume form determined by
the metric) as follows

dV =
1

m!
Ωm,

where dV denotes the volume form of M , Ωm is the wedge product of Ω with itself m times,
m being the complex dimension of M (see [4]). Hence the volume form is a real (m,m)-form
on M .

On the other hand, if the volume of a Kähler manifold is written as

dV = dV ∧ dV̄

then dV is the complex volume form of M . It is now clear that the complex volume form of
a Kähler manifold can be written in a simple way with respect to any (pseudo-)orthonormal
basis, using complex vierbeins ei+Jei. In fact, the complex volume form of a Kähler manifold M
is, up to a power factor of the imaginary unit i, the exterior product of these complex vierbeins.

2.3 The Kähler cone of an Einstein–Sasaki manifold

Let M be a smooth manifold equipped with a triple (ϕ, ξ, η), where ϕ is a field of endomorphisms
of the tangent spaces, ξ is a vector field and η is a 1-form on M . If we have:

ϕ2 = τ(−I + η ⊗ ξ), η(ξ) = 1,

then we say that:
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(i) (ϕ, ξ, η) is an almost contact structure on M , if τ = 1 (cf. [44]).

(ii) (ϕ, ξ, η) is an almost paracontact structure on M , if τ = −1 (cf. [45]).

A (pseudo-)Riemannian metric g on M is said to be compatible with the almost (para)contact
structure (ϕ, ξ, η) if and only if the relation

g(ϕX,ϕY ) = τ [g(X,Y )− εη(X)η(Y )],

holds for all pair of vector fields X, Y on M , where ε = ±1, according as ξ is space-like or
time-like, respectively.

An almost (para)contact metric structure (ϕ, ξ, η, g) is a (para-)Sasakian structure if and only
if the Levi-Civita connection ∇ of the metric g satisfies

(∇Xϕ)Y = τ [g(X,Y )ξ − εη(Y )X], (3)

for all vector fields X, Y on M (see [7]).

A (para-)Sasakian structure may also be reinterpreted and characterized in terms of the
metric cone as follows. The (space-like) metric cone of a (pseudo-)Riemannian manifold (M, g)
is the (pseudo-)Riemannian manifold C(M) = (0,∞)×M with the metric given by

ḡ = dr2 + r2g,

where r is a coordinate on (0,∞). Then M is a Sasaki manifold if and only if its metric
cone C(M) is Kähler [9] and we have a similar characterization for para-Sasakian manifolds [3].
In particular, the cone C(M) is equipped with an integrable complex structure J and a Kähler
2-form Ω, both of which are parallel with respect to the Levi-Civita connection ∇̄ of ḡ. Moreover,
M has odd dimension 2n + 1, where n + 1 is the complex dimension of the Kähler cone. We
note that the Sasakian manifold (M, g) is naturally isometrically embedded into the cone via
the inclusion

M = {r = 1} = {1} ×M ⊂ C(M),

and the Kähler structure of the cone (C(M), ḡ) induces an almost contact metric structure
(φ, ξ, η, g) on M satisfying (3).

A (para-)Einstein–Sasaki manifold is a Riemannian manifold (M, g) that is both (para-)-
Sasaki and Einstein, i.e. a (para-)Sasakian manifold satisfying the Einstein condition

Ricg = λg,

for some real constant λ, where Ricg denotes the Ricci tensor of g. Einstein manifolds with
λ = 0 are called Ricci-flat manifolds. Similarly, an Einstein–Kähler manifold is a Riemannian
manifold (M, g) that is both Kähler and Einstein. The most important subclass of Einstein–
Kähler manifolds are the Calabi–Yau manifolds, which are Kähler and Ricci-flat.

It is also very important to note that the Gauss equation relating the curvature of submani-
folds to the second fundamental form shows that a Sasaki manifold M is Einstein if and only if
the cone metric C(M) is Kähler Ricci-flat. In particular the Kähler cone of an Einstein–Sasaki
manifold has trivial canonical bundle and the restricted holonomy group of the cone is contained
in SU(m), where m denotes the complex dimension of the Kähler cone [10, 49].
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3 Killing forms on Einstein–Sasaki spaces

3.1 Progression from Einstein–Kähler
to Einstein–Sasaki to Calabi–Yau manifolds

Suppose we have an Einstein–Sasaki metric gES on a manifold M2n+1 of odd dimension 2n+ 1.
An Einstein–Sasaki manifold can always be written as a fibration over an Einstein–Kähler
manifold M2n with the metric gEK twisted by the overall U(1) part of the connection [22]

ds2
ES = (dψn + 2A)2 + ds2

EK, (4)

where dA is given as the Kähler form of the Einstein–Kähler base. This can be easily seen when
we write the metric of the cone manifold M2n+2 = C(M2n+1) as

ds2
cone = dr2 + r2ds2

ES = dr2 + r2
(
(dψn + 2A)2 + ds2

EK

)
.

The cone manifold is Calabi–Yau (i.e. Ricci flat and Kähler) and its Kähler form can be written
as

Ωcone = rdr ∧ (dψn + 2A) + r2ΩEK,

and the Kähler condition dΩcone = 0 implies

dA = ΩEK.

The Sasakian 1-form of the Einstein–Sasaki metric is

η = 2A+ dψn,

which is a special unit-norm Killing 1-form obeying for all vector fields X [46]

∇Xη =
1

2
X−| dη, ∇X(dη) = −2X∗ ∧ η.

3.2 Kerr-NUT-(A)-dS space in a certain scaling limit

In recent time new Einstein–Sasaki spaces have been constructed by taking certain BPS [18] or
scaling limits [35, 38] of the Euclideanised Kerr–de Sitter metrics.

In even dimensions, performing the scaling limit on the Euclideanised Kerr-NUT-(A)dS
spaces, the Einstein–Kähler metric gEK and the Kähler potential A are [35]:

gEK =
∆µdx

2
µ

Xµ
+
Xµ

∆µ

n−1∑
j=0

σ(j)
µ dψj

2

,

Xµ = −4
n+1∏
i=1

(αi − xµ)− 2bµ, A =

n−1∑
k=0

σ(k+1)dψk,

with

∆µ =
∏
ν 6=µ

(xν − xµ), σ(k)
µ =

∑
ν1<···<νk
νi 6=µ

xν1 · · ·xνk , σ(k) =
∑

ν1<···<νk

xν1 · · ·xνk .

Here, coordinates xµ (µ = 1, . . . , n) stands for the Wick rotated radial coordinate and lon-
gitudinal angles and the Killing coordinates ψk (k = 0, . . . , n − 1) denote time and azimuthal
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angles with Killing vectors ξ(k) = ∂ψk
. Also αi (i = 1, . . . , n+ 1) and bµ are constants related to

the cosmological constant, angular momenta, mass and NUT parameters [16].
We mention that in the case of odd-dimensional Kerr-NUT-(A)dS spaces the appropriate

scaling limit leads to the same Einstein–Sasaki metric (4).
The hidden symmetries of the Sasaki manifold M2n+1 are described by the special Killing

(2k + 1)-forms [46]:

Ψk = η ∧ (dη)k, k = 0, 1, . . . , n− 1. (5)

A sketch of this assertion is given in the appendix in a more general context.
Semmelmann obtained in [46] that special Killing forms on a Riemannian manifold M are

exactly those forms which translate into parallel forms on the metric cone C(M). Therefore,
the metric cone being either flat or irreducible, the problem of finding all special Killing forms
is reduced to a holonomy problem (see [6]). In the case of holonomy U(n + 1), i.e. the cone
M2n+2 = C(M2n+1) is Kähler, or equivalently M2n+1 is Sasaki, it follows that all special Killing
forms are spanned by the forms Ψk defined above. Besides these Killing forms, there are n
closed conformal Killing forms (also called ∗-Killing forms)

Φk = (dη)k, k = 1, . . . , n.

Moreover, in the case of holonomy SU(n+1), i.e. the cone M2n+2 = C(M2n+1) is Kähler and
Ricci-flat, or equivalently M2n+1 is Einstein–Sasaki, it follows that we have two additional Killing
forms of degree n+1 on the manifold M2n+1. These additional Killing forms are connected with
the additional parallel forms of the Calabi–Yau cone manifold M2n+2 given by the complex
volume form and its conjugate [46].

In order to write explicitly these additional Killing forms, we introduce the complex vierbeins
on the Einstein–Kähler manifold M2n. First of all we shall write the metric gEK in the form

gEK = oµ̂oµ̂ + õµ̂õµ̂,

and the Kähler 2-form

Ω = dA = oµ̂ ∧ õµ̂.

where

oµ̂ =

√
∆µ

Xµ(xµ)
dxµ, õµ̂ =

√
Xµ(xµ)

∆µ

n−1∑
j=0

σ(j)
µ dψj .

We introduce the following complex vierbeins on Einstein–Kähler manifold M2n:

ζµ = oµ̂ + iõµ̂, µ = 1, . . . , n.

On the Calabi–Yau cone manifold M2n+2 we take Λµ = rζµ for µ = 1, . . . , n and

Λn+1 =
dr

r
+ iη.

The standard complex volume form of the Calabi–Yau cone manifold [39] M2n+2 is

dV = Λ1 ∧ Λ2 ∧ · · · ∧ Λn+1.

As real forms we obtain the real respectively the imaginary part of the complex volume form.
For example, writing

Λj = λ2j−1 + iλ2j , j = 1, . . . , n+ 1,
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we obtain that the real part of the complex volume is given by

Re dV =

[n+1
2

]∑
p=0

∑
1≤i1<i2<···<in+1≤2n+2

(C)

(−1)pλi1 ∧ λi2 ∧ · · · ∧ λin+1 , (6)

where the condition (C) in (6) means that in the second sum are taken only the indices
i1, . . . , in+1 such that i1 + · · · + in+1 = (n + 1)2 + 2p and (ik, ik+1) 6= (2j − 1, 2j), for all
k ∈ {1, . . . , n} and j ∈ {1, . . . , n+ 1}.

On the other hand, we obtain that the imaginary part of the complex volume is given by

Im dV =

[n
2

]∑
p=0

∑
1≤i1<i2<···<in+1≤2n+2

(C′)

(−1)pλi1 ∧ λi2 ∧ · · · ∧ λin+1 , (7)

where the condition (C ′) in (7) means that in the second sum are considered only the indices
i1, i2, . . . , in+1 such that i1 + · · ·+ in+1 = (n+ 1)2 + 2p+ 1 and (ik, ik+1) 6= (2j − 1, 2j), for all
k ∈ {1, . . . , n} and j ∈ {1, . . . , n+ 1}.

Finally, the Einstein–Sasaki manifold M2n+1 is identified with the submanifold {r = 1} of
the Calabi–Yau cone manifold M2n+2 = C(M2n+1). In particular Λn+1 confines to its imaginary
part and consequently, on the Einstein–Sasaki manifold M2n+1 we get

λ2n+1 = 0, λ2n+2 = η

and the additional (n + 1)-Killing forms, denoted by Ξ and Υ respectively, are accordingly
acquired as follows:

Ξ =

[n−1
2

]∑
p=0

∑
1≤i1<i2<···<in≤2n

(C1)

(−1)p+1λi1 ∧ λi2 ∧ · · · ∧ λin ∧ η, (8)

where the condition (C1) in (8) means that in the second sum are considered only the indices
i1, i2, . . . , in such that i1 + · · · + in = n2 + 2p + 1 and (ik, ik+1) 6= (2j − 1, 2j), for all k ∈
{1, . . . , n− 1}, j ∈ {1, . . . , n}, and

Υ =

[n
2

]∑
p=0

∑
1≤i1<i2<···<in≤2n

(C′1)

(−1)pλi1 ∧ λi2 ∧ · · · ∧ λin ∧ η , (9)

where the condition (C ′1) in (9) means that in the second sum are taken only the indices i1, . . . , in
such that i1 + · · · + in = n2 + 2p and (ik, ik+1) 6= (2j − 1, 2j), for all k ∈ {1, . . . , n − 1} and
j ∈ {1, . . . , n}.

Moreover, in both relations (8) and (9), we have

λik =

{
oĵ , if ik = 2j − 1,

õĵ , if ik = 2j.

4 Conclusions

In this paper we presented the complete set of Killing forms on Einstein–Sasaki spaces asso-
ciated with Euclideanised Kerr-NUT-(A)dS spaces in a certain scaling limit. The multitude



Hidden Symmetries of Euclideanised Kerr-NUT-(A)dS Metrics 9

of Killing–Yano and Stäckel–Killing tensors makes possible a complete integrability of geodesic
equations. In the case of geodesic and Klein–Gordon equations, the existence of separable
coordinates is connected with Stäckel–Killing tensors. On the other hand from (conformal)
Killing–Yano tensors one can construct first order differential operators which commute with
Dirac operators [15]. In [13, 41] it was shown that the solutions of Dirac equation in general
higher dimensional Kerr-NUT-(A)dS spacetimes can be found by separating variables and the
resulting ordinary differential equations can be completely decoupled. It is interesting to study
separability and eigenvalues of Dirac operators on Einstein–Sasaki manifolds. Let us note also
that in the higher dimensional Kerr-NUT-(A)dS spacetimes the stationary string equations are
completely integrable [36]. An important open question is a separability problem for the gravi-
tational perturbations in higher dimensional rotating black holes spacetimes, some preliminary
results being achieved recently [42].

Another important direction of research is whether the Killing forms are also intrinsically
linked to other higher spin perturbations. It is still an open question whether massless field
equations, e.g. the Maxwell field, allow separation of variables in Kerr-NUT-(A)dS spaces.

These remarkable properties of higher dimensional black hole solutions offer new perspectives
in investigation of hidden symmetries of other spacetimes structures. As a possible extension
of these techniques we present in an appendix the case of spaces with mixed 3-structures which
appear in many modern studies. Finally we mention some recent extensions of the Killing–Yano
symmetry in the presence of skew-symmetric torsion. Preliminary results [24, 25] indicate that
Killing forms in the presence of torsion preserve most of the properties of the standard Killing
forms.

A Killing forms on mixed 3-Sasakian manifolds

The study of 3-Sasakian manifolds was initiated by Kuo [37] and presently there is an extensive
literature on this topic (see for example [11] and references therein). It is well known that these
manifolds are of great interest in physics, owing to their applications in supergravity and M-
theory [1, 2, 23] and there exists a close relationship between quaternionic Kähler and 3-Sasakian
structures [33]. On the other hand, the theory of paraquaternionic Kähler manifolds parallels the
theory of quaternionic Kähler manifolds, but it uses the algebra of paraquaternionic numbers,
in which two generators have square 1 and one generator has square −1 [21]. In what follows
we recall some basic facts concerning this kind of structures, together with their closely linked
counterpart in odd dimension (mixed 3-Sasakian structures).

An almost para-hypercomplex structure on a smooth manifold M is a triple H = (J1, J2, J3)
of (1, 1)-type tensor fields on M satisfying:

J2
α = −ταId, JαJβ = −JβJα = τγJγ ,

for any α ∈ {1, 2, 3} and for any even permutation (α, β, γ) of (1, 2, 3), where τ1 = τ2 = −1 =
−τ3. In this case (M,H) is said to be an almost para-hypercomplex manifold. A semi-Riemannian
metric g on (M,H) is said to be compatible or adapted to the almost para-hypercomplex structure
H = (Jα)α=1,2,3 if it satisfies:

g(JαX, JαY ) = ταg(X,Y ),

for all vector fields X, Y on M and α ∈ {1, 2, 3}. Moreover, the pair (g,H) is called an
almost para-hyperhermitian structure on M and the triple (M, g,H) is said to be an almost
para-hyperhermitian manifold. We note that any almost para-hyperhermitian manifold is of
dimension 4m, m ≥ 1, and any adapted metric is necessarily of neutral signature (2m, 2m). If



10 M. Visinescu and G.E. Vı̂lcu

{J1, J2, J3} are parallel with respect to the Levi-Civita connection of g, then the manifold is
called para-hyper-Kähler.

An almost paraquaternionic Hermitian manifold is a triple (M,σ, g), where M is a smooth
manifold, σ is an almost paraquaternionic structure on M , i.e. a rank 3-subbundle of End(TM)
which is locally spanned by an almost para-hypercomplex structure H = (Jα)α=1,2,3 and g is
a compatible metric with respect to H. If (M,σ, g) is an almost paraquaternionic Hermitian
manifold such that the bundle σ is preserved by the Levi-Civita connection ∇ of g, then (M,σ, g)
is said to be a paraquaternionic Kähler manifold [21]. We note that the prototype of paraquater-
nionic Kähler manifold is the paraquaternionic projective space Pn(H̃) as described by Blažić [8].

The counterpart in odd dimension of a paraquaternionic structure was introduced in [28]
under the name of mixed 3-structure. This concept has been refined in [12], where the au-
thors have introduced positive and negative metric mixed 3-structures. A mixed 3-structure on
a smooth manifold M is a triple of structures (ϕα, ξα, ηα), α ∈ {1, 2, 3}, which are almost para-
contact structures for α = 1, 2 and almost contact structure for α = 3, satisfying the following
compatibility conditions

ηα(ξβ) = 0, ϕα(ξβ) = τβξγ , ϕβ(ξα) = −ταξγ ,
ηα ◦ ϕβ = −ηβ ◦ ϕα = τγηγ , ϕαϕβ − ταηβ ⊗ ξα = −ϕβϕα + τβηα ⊗ ξβ = τγϕγ ,

where (α, β, γ) is an even permutation of (1, 2, 3) and τ1 = τ2 = −τ3 = −1.
Moreover, if a manifold M with a mixed 3-structure (ϕα, ξα, ηα)α=1,3 admits a semi-Rieman-

nian metric g such that:

g(ϕαX,ϕαY ) = τα[g(X,Y )− εαηα(X)ηα(Y )], (10)

for all X,Y ∈ Γ(TM) and α = 1, 2, 3, where εα = g(ξα, ξα) = ±1, then we say that M has
a metric mixed 3-structure and g is called a compatible metric.

In what follows a metric mixed 3-structure will be denoted simply with (ϕα, ξα, ηα, g), leaving
the condition α ∈ {1, 2, 3} understood. We note that if (M,ϕα, ξα, ηα, g) is a manifold with
a metric mixed 3-structure then from (10) it follows

g(ξ1, ξ1) = g(ξ2, ξ2) = −g(ξ3, ξ3).

Hence the vector fields ξ1 and ξ2 are both either space-like or time-like and these force the
causal character of the third vector field ξ3. We may therefore distinguish between positive and
negative metric mixed 3-structures, according as ξ1 and ξ2 are both space-like, or both time-like
vector fields. Because one can check that, at each point of M , there always exists a pseudo-
orthonormal frame field given by {(Ei, ϕ1Ei, ϕ2Ei, ϕ3Ei)i=1,n, ξ1, ξ2, ξ3} we conclude that the
dimension of the manifold is 4n+3 and the signature of g is (2n+1, 2n+2), where we put first the
minus signs, if the metric mixed 3-structure is positive (i.e. ε1 = ε2 = −ε3 = 1), or the signature
of g is (2n+ 2, 2n+ 1), if the metric mixed 3-structure is negative (i.e. ε1 = ε2 = −ε3 = −1).

A manifold M endowed with a (positive/negative) metric mixed 3-structure (ϕα, ξα, ηα, g)
is said to be a (positive/negative) mixed 3-Sasakian structure if (ϕ3, ξ3, η3, g) is a Sasakian
structure, while both structures (ϕ1, ξ1, η1, g) and (ϕ2, ξ2, η2, g) are para-Sasakian, i.e.

(∇Xϕα)Y = τα[g(X,Y )ξα − εαηα(Y )X], (11)

for all vector fields X, Y on M and α = 1, 2, 3.
It is important to note that, like their Riemannian counterparts, mixed 3-Sasakian structures

are Einstein, but now the scalar curvature can be either positive or negative.

Theorem A.1 ([12, 30]). Any (4n+3)−dimensional manifold endowed with a mixed 3-Sasakian
structure is an Einstein space with Einstein constant λ = (4n+ 2)θ, with θ = ∓1, according as
the metric mixed 3-structure is positive or negative, respectively.
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We recall that the canonical example of manifold with negative mixed 3-Sasakian structure is
the unit pseudo-sphere S4n+3

2n+2 ⊂ R4n+4
2n+2, while the pseudo-hyperbolic spaceH4n+3

2n+1 ⊂ R4n+4
2n+2 can be

endowed with a canonical positive mixed 3-Sasakian structure. We also note that the existence
of both positive and negative mixed 3-Sasakian structures in a principal SO(2, 1)-bundle over
a paraquaternionic Kähler manifold has been recently proved in [50].

Remark A.2. It is known [31] that on a mixed 3-Sasakian manifold (M,ϕα, ξα, ηα, g) of di-
mension (4n+ 3) there exists space-like, time-like and light-like Killing vector fields. Moreover,
ηα are conformal Killing–Yano tensors of rank 1 on M , while dηα are strictly conformal Killing–
Yano tensors of rank 2 on M , for α = 1, 2, 3. On the other hand, the wedge products of ηα
and (dηα)k provide Killing (2k + 1)-form, for k = 0, 1, . . . , 2n + 1, since for any vector field X
on M we have

∇X
(
ηα ∧ (dηα)k

)
= ∇Xηα ∧ (dηα)k + ηα ∧∇X (dηα)k

=
1

2
(X−| dηα) ∧ (dηα)k + kηα ∧∇Xdηα ∧ (dηα)k−1

=
1

2(k + 1)
X−| (dηα)k+1 − k

4n+ 2
ηα ∧ (X∗ ∧ d∗(dηα)) ∧ (dηα)k−1

=
1

2(k + 1)
X−| (dηα)k+1 =

1

2(k + 1)
X−| d

(
ηα ∧ (dηα)k

)
.

It follows from a simple computation that the wedge product of ηα and (dηα)k provides
a special Killing form, since it satisfies the additional equation

∇X
(
d
(
ηα ∧ (dηα)k

))
= −2(k + 1)X∗ ∧ ηα ∧ (dηα)k ,

for any vector field X on M . Therefore, as in 3-Sasakian case [46], we obtain that any linear
combination of the forms Ψk1,k2,k3 defined by

Ψk1,k2,k3 =
k1

k1 + k2 + k3

[
η1 ∧ (dη1)k1−1 ] ∧ (dη2)k2 ∧ (dη3)k3

+
k2

k1 + k2 + k3
(dη1)k1 ∧

[
η2 ∧ (dη2)k2−1 ] ∧ (dη3)k3

+
k3

k1 + k2 + k3
(dη1)k1 ∧ (dη2)k2 ∧

[
η3 ∧ (dη3)k3−1 ], (12)

for arbitrary positive integers k1, k2, k3, is a special Killing form on M . The special Killing
forms (5) could be recovered as a particular case of (12) for two vanishing integers ki.

Remark A.3. For the rest of this section we consider that (M̄, σ, ḡ) is an almost paraquater-
nionic Hermitian manifold of dimension (4n + 4) and (M, g) is an orientable non-degenerate
hypersurface of M with g = ḡ|M , such that the normal bundle TM⊥ is generated by a unit
space-like or time-like vector field ξ normal to M . Then for any vector field X on M and any
local basis H = (Jα)α=1,2,3 of σ, we have the decomposition

JαX = ϕαX + FαX,

for α ∈ {1, 2, 3} , where ϕαX and FαX are the tangent part and the normal part of JαX,
respectively. We can remark that, in fact, FαX ∈ Γ(TM⊥) for any vector field X on M , and
therefore we deduce the decomposition

JαX = ϕαX + ηα(X)ξ,
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where

ηα(X) = −εḡ(X, Jαξ), ε = g(ξ, ξ).

If we define now the vector field ξα by

ξα = −ταJαξ,

for α ∈ {1, 2, 3}, then we obtain by direct computations that the paraquaternionic structure σ
on M̄ induces a positive/negative metric mixed 3-structure (ϕα, ξα, ηα, g) on M as follows
(see [29] for the proof in the case of negative metric mixed 3-structure).

Theorem A.4. Let (M, g) be an orientable non-degenerate hypersurface of an almost paraquater-
nionic Hermitian manifold (M̄, σ, ḡ) with the normal bundle TM⊥ spanned by a unit space-like
or time-like normal vector field ξ. Then (ϕα, ξα, ηα, g) defined above is a positive/negative metric
mixed 3-structure on M , according as the generator ξ is a time-like or a space-like vector field.

We recall now that if ∇̄ is the Levi-Civita connection on M̄ and denote by ∇ the Levi-Civita
connection induced on M , then the Gauss and Weingarten formulas are given by

∇XY = ∇XY + h(X,Y )ξ and ∇Xξ = −AX, (13)

for all vector fields X, Y tangent to M , where h is the second fundamental form of M and A
is the fundamental tensor of Weingarten with respect to the unit space-like or time-like normal
vector field ξ.

From (13) we deduce

εh(X,Y ) = g(AX,Y ) (14)

for all X,Y ∈ Γ(TM), where ε = g(ξ, ξ).

Theorem A.5. Let M be an orientable non-degenerate hypersurface of a para-hyper-Kähler
manifold (M̄,H = (J1, J2, J3), ḡ) and let (ϕα, ξα, ηα, g) be the canonical metric mixed 3-structure
on M . Then:

(i) η1, η2, η3 are Killing if and only if

h(X,ϕαY ) = −h(ϕαX,Y ), α = 1, 2, 3;

(ii) ϕ1, ϕ2, ϕ3 are covariant constant, provided that M is a totally geodesic hypersurface of M̄ ;

(iii) ϕα is Killing if and only if h is proportional to ηα⊗ηα, α = 1, 2, 3, provided that J1, J2, J3

are Killing.

Proof. Since each Jα is parallel with respect to the Levi-Civita connection of ḡ, then using (13)
and (14) we obtain

0 = (∇̄XJα)Y = ∇̄XJαY − Jα∇̄XY = ∇̄X(ϕαY + ηα(Y )ξ)− Jα(∇XY + h(X,Y )ξ)

= (∇Xϕα)Y + ταh(X,Y )ξα − ηα(Y )AX + [h(X,ϕαY ) + (∇Xηα)Y ]ξ,

for all vector fields X, Y on M . Taking now the tangential and the normal component of both
sides of the above equation we deduce

(∇Xϕα)Y = −ταh(X,Y )ξα + ηα(Y )AX, (15)

and

(∇Xηα)Y = −h(X,ϕαY ). (16)

The proof of the assertions (i), (ii) and (iii) follows now easily using (15) and (16) with some
standard algebraic manipulations. �
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Next we suppose that M is a non-degenerate totally umbilical hypersurface of a para-hyper-
Kähler manifold (M̄,H = (J1, J2, J3), ḡ), i.e. for all vector fields X, Y on M we have

h(X,Y ) = λg(X,Y ), (17)

for some function λ. Now we are able to prove that the canonical metric mixed 3-structure
on M can be a positive or a negative mixed 3-Sasakian structure in some conditions (compare
with [48] for the corresponding result in quaternionic setting).

Theorem A.6. Let M be an orientable non-degenerate hypersurface of a para-hyper-Kähler
manifold (M̄,H = (J1, J2, J3), ḡ) with the normal bundle TM⊥ spanned by a unit space-like or
time-like vector field ξ. If M is a totally umbilical hypersurface of M̄ , then:

(i) the canonical metric mixed 3-structure (ϕα, ξα, ηα, g) on M is a positive mixed 3-Sasakian
structure if and only if λ = −1 and ξ is time-like;

(ii) the canonical metric mixed 3-structure (ϕα, ξα, ηα, g) on M is a negative mixed 3-Sasakian
structure if and only if λ = −1 and ξ is space-like.

Proof. Using (17) in (15) we obtain

(∇Xϕα)Y = −ταλg(X,Y )ξα + ηα(Y )AX, (18)

for all vector fields X, Y on M .
On the other hand, from (14) and (17) we derive

AX = ελX, (19)

for any vector field X on M .
From (18) and (19) we deduce

(∇Xϕα)Y = −λτα
[
g(X,Y )ξα −

ε

τα
ηα(Y )X

]
, (20)

for all vector fields X, Y on M .
(i) Taking now into account that in the case of a positive metric mixed 3-structure we have

εατα = −1, for α = 1, 2, 3, we obtain that the equation (20) can be rewritten as

(∇Xϕα)Y = −λτα[g(X,Y )ξα + εεαηα(Y )X]. (21)

Comparing (11) with (21) we deduce that the canonical metric mixed 3-structure (ϕα, ξα, ηα, g)
on M is a positive mixed 3-Sasakian structure if and only if λ = −1 and ε = −1, and the
assertion is now clear.

(ii) Since in the case of a negative metric mixed 3-structure we have εατα = 1, for α = 1, 2, 3,
we can rewrite (20) in the following form:

(∇Xϕα)Y = −λτα[g(X,Y )ξα − εεαηα(Y )X]. (22)

Comparing now (11) and (22) we deduce that the canonical metric mixed 3-structure (ϕα, ξα,
ηα, g) on M is a negative mixed 3-Sasakian structure if and only if λ = −1 and ε = 1, and the
conclusion follows. �
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math.DG/0610280.

[20] Emparan R., Reall H.S., Black holes in higher dimensions, Living Rev. Relativ. 11 (2008), 6, 87 pages,
arXiv:0801.3471.
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[38] Martelli D., Sparks J., Toric Sasaki–Einstein metrics on S2 × S3, Phys. Lett. B 621 (2005), 208–212,
hep-th/0505027.

[39] Ohnita Y., Stability and rigidity of special Lagrangian cones over certain minimal Legendrian orbits, Osaka
J. Math. 44 (2007), 305–334.

[40] Ooguri H., Vafa C., Geometry of N = 2 strings, Nuclear Phys. B 361 (1991), 469–518.

[41] Oota T., Yasui Y., Separability of Dirac equation in higher dimensional Kerr–NUT–de Sitter spacetime,
Phys. Lett. B 659 (2008), 688–693, arXiv:0711.0078.

[42] Oota T., Yasui Y., Separability of gravitational perturbation in generalized Kerr–NUT–de Sitter space-time,
Internat. J. Modern Phys. A 25 (2010), 3055–3094, arXiv:0812.1623.

[43] Page D.N., Kubizňák D., Vasudevan M., Krtouš P., Complete integrability of geodesic motion in ge-
neral higher-dimensional rotating black-hole spacetimes, Phys. Rev. Lett. 98 (2007), 061102, 4 pages,
hep-th/0611083.

[44] Sasaki S., On differentiable manifolds with certain structures which are closely related to almost contact
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