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Abstract. We propose a generalization of the algebraic Bethe ansatz to obtain the eigen-
vectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues
and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of
a product of operators acting on a particular vector except that the number of operators is
equal to the length of the chain. We prove this result for the chains with small length. We
obtain also an off-shell equation (i.e. satisfied without the Bethe equations) formally similar
to the ones obtained in the periodic case or with diagonal boundaries.
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1 Introduction

The Heisenberg XXX spin chain of length N with open boundaries is described by the following
Hamiltonian

H =
1

q

(
σz1 + ξ+σ+1 + ξ−σ−1

)
+

N−1∑
n=1

~σn · ~σn+1 +
1

p

(
σzN + η+σ+N + η−σ−N

)
, (1)

where σi stands for the standard Pauli matrix and q, ξ+, ξ−, p, η+, η− are arbitrary parameters
characterizing the boundaries. This model is one of the simplest open integrable models and
finds applications in a wide range of domains such that: condensed matter physics, high energy
physics, mathematical physics, . . . .

The study of the spectral problem associated to this model has started in 1983 with the
Gaudin’s book [21] where the coordinate Bethe ansatz (CBA), introduced by Bethe [7], was
applied for diagonal boundaries (i.e. ξ± = η± = 0). In 1988, the generalization of the algebraic
Bethe ansatz (ABA), developed by Faddeev’s school [36], to deal with open boundaries was in-
troduced by Sklyanin [35] and he recovered Gaudin’s results. The first step in both constructions
is the identification of one particular eigenvector, usually called the pseudo-vacuum.

More importantly, the ABA opens the way to the algebraic study of XXX open integrable
model from the reflection equation [12, 35]

R12(u− v)K1(u)R12(u+ v)K2(v) = K2(v)R12(u+ v)K1(u)R12(u− v), (2)

where R(u) is the rational R-matrix solution of Yang–Baxter equation [3, 38] and K(u) is the
open monodromy matrix. This leads one, using the scalar solution (i.e. acting trivially in the
spin spaces) of the reflection equation found in [16, 22] and the open monodromy matrix, to the
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construction of the transfer matrix t(u) which is the generating function of the Hamiltonian and
the conserved quantities of the model. This allows one to prove the integrability of the XXX
model with generic boundaries.

The integrability for generic boundaries being proven, we expect that the spectral problem can
be solved exactly. However, in this case, there is no obvious pseudo-vacuum for the Hamiltonian
or for the transfer matrix. This is due to the fact that the boundaries break the U(1)-symmetry
(i.e. the total spin is not anymore conserved). This problem is quite general for integrable
models without U(1)-symmetry and led numerous researchers to believe that usual methods
cannot work in this case and to develop different approaches to study their spectrum over the
last 30 years. Basically, one can consider two families of approaches:

• to modify the various Bethe ansatz and parametrize the spectrum by a set of Bethe roots
that must satisfy Bethe equations: CBA [13, 14, 15], ABA [5, 8, 29, 34, 39], T -Q equa-
tions [9, 11, 30, 31] and functional Bethe ansatz [18, 19, 20];

• to obtain the spectrum without use of the Bethe equations: separation of variables [17, 33],
q-Onsager approach [1, 2] and matrix ansatz [23, 28].

Recently, progress on the generalization of T -Q relation formalism has been performed by
Cao, Yang, Shi and Wang [10] where the eigenvalues and the Bethe equations of Hamiltonian (1)
are obtained. The main feature consists in adding a new term in the eigenvalues and the Bethe
equations in comparison to the usual ones obtained for cyclic or diagonal boundaries (see also [24]
for this idea). Then, this result has been simplified by Nepomechie [32] that shows numerical
evidences for the completeness of the spectrum and that the sufficient and necessary number of
Bethe roots is N , the length of the chain1.

Another recent result [5] is the generalization of the ABA for the case with upper triangular
boundary (i.e. η− = ξ− = 0) which is already a case without U(1)-symmetry. The Bethe vectors
introduced in this case are superpositions of the ones, with different total spin, used in the case
with diagonal boundary. This idea to consider a superposition of the vectors of the diagonal
case was used first in the context of the CBA [13, 14, 15] then in the context of the ABA for
the XXZ spin chain [34].

These two results permit us to propose a generalization of the ABA to get the eigenvectors
(see equation (14)) of the Hamiltonian (1) for generic boundaries. The eigenvectors constructed
by ABA is usually a crucial step forward to get the correlation functions of the model (see [6, 27]
for periodic case or [25, 26] for diagonal case). It is also the method which can be the most
simply generalized to obtain the eigenvectors for the s-spin chain. In addition, we show that
the action of the transfer matrix on the Bethe vectors is given by a “wanted” term and an
“unwanted” term (see equation (16)) as in the diagonal case.

The paper is organized as follows. In Section 2, we fix the notations and recall the eigenvalues
and the Bethe equations obtained in [10]. Then, in Section 3, we give our conjecture for the
Bethe vectors of the model and discuss the new technical problems for a general proof of our
result. Section 4 presents the proof for chain with small length N = 1, 2, 3 to support our
conjecture. Finally, in Section 5, we discuss some perspectives and possible generalizations of
our result to other models such that the XXZ spin chain.

2 Transfer matrix and eigenvalues

In this section, we recall the construction of the transfer matrix used to prove the integrability of
the Hamiltonian and fix the notations of the main objects used in this paper. Then, we present
the eigenvalues and the Bethe equations obtained in [10, 32].

1In [10], two other supplementary sets of Bethe roots with dimension [N/2] are also introduced.
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The invariance of the Hamiltonian (1) by conjugation allows one to consider η± = 0 without
loss of generality. Let us emphasize that we study a slightly more general Hamiltonian than the
one studied in [10, 32] (recovered by setting ξ+ = ξ− = ξ) such that the triangular case can be
obtained easily as limit.

The main object in the context of quantum integrable models is the R-matrix, solution of
the Yang–Baxter equation [3, 38]. In the case of XXX spin chain, the associated R-matrix is
called the rational R-matrix and is given by

R(u) = u+ P,

where P is the permutation matrix. This R-matrix is invariant, i.e. [R(u), Q ⊗ Q] = 0 for any
invertible 2 by 2 matrix Q. This invariance allows one to show that Q−1K(u)Q is a solution of
the reflection equation (2) if K(u) is also a solution (one conjugates the reflection equation (2)
for K by Q1Q2 and moves the Q using the invariance of R).

The R-matrix allows one to construct the following transfer matrix [35]

t(u) = Tr0
(
K+

0 (u)K0(u)
)
, K0(u) = T0(u)K−0 (u)T̂0(u), (3)

where the open monodromy matrix is built by Sklyanin dressing procedure with bulk monodromy
matrices

T0(u) = R01(u− θ1) · · ·R0N (u− θN ), T̂0(u) = R0N (u+ θN ) · · ·R01(u+ θ1),

and the K−-matrices, scalar solutions of the reflection equation (2)2, are [16, 22]

K−(u) =

(
p+ u 0

0 p− u

)
, K+(u) =

(
q + u+ 1 ξ+(u+ 1)
ξ−(u+ 1) q − u− 1

)
.

The parameters θ1, . . . , θN are free parameters called inhomogeneity parameters. Two transfer
matrices at different values of their spectral parameter commute (i.e. [t(u), t(v)] = 0). Therefore,
the expansion of the transfer matrix t(u) w.r.t. the spectral parameter u provides a set of
commuting operators among which is the Hamiltonian (1). This proves the integrability of this
Hamiltonian.

In addition to that, the above procedure allows one to construct the main operators necessary
in the context of the algebraic Bethe ansatz as well as to get the exchange relations between
them. Indeed, these operators are the entries of the open monodromy matrix, dressed solution
of the reflection equation (2),

K0(u) =

(
A (u) B(u)
C (u) D(u) + 1

2u+1A (u)

)
. (4)

Then, the transfer matrix (3) may be rewritten3

t(u) =
2(u+ q)(u+ 1)

2u+ 1
A (u) + (u+ 1)

(
ξ−B(u) + ξ+C (u)

)
+ (q − u− 1)D(u). (5)

Since the monodromy matrix K(u) given by (4) satisfies the reflection equation [35], the ex-
change relations between A (u), B(u), C (u) and D(u) can be computed. We gather the ones

2To be precise, K+ is solution of the dual reflection equation.
3Let us emphasize that we choose a different normalization for our operator D in comparison to [10] (where it

is called D̄). Precisely, on get D̄(u) = (2u+ 1)D(u). It explains the discrepancies between some of the relations
given here and the corresponding ones given in [10].
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used in this paper in Appendix A. In addition to that, K− being diagonal, the actions of these
operators on the pseudo-vacuum |Ω〉 (i.e. the vector with all spins up) are the usual ones:

A (u)|Ω〉 = Λ1(u)|Ω〉, D(u)|Ω〉 = Λ2(u)|Ω〉,
C (u)|Ω〉 = 0, B(u)B(λ1) · · ·B(λN )|Ω〉 = 0, (6)

where

Λ1(u) = (u+ p)
N∏
j=1

(
(u+ 1)2 − θ2j

)
and Λ2(u) =

2u

2u+ 1
(p− u− 1)

N∏
j=1

(
u2 − θ2j

)
.

Recently, in [10], using inhomogeneous T -Q equations, the eigenvalues of the transfer mat-
rix (3) have been computed. Then, in [32], supported by numerical evidences for chains of small
length, it is shown that only sub-cases are sufficient to get the complete spectrum. In our
notations, these eigenvalues can be written as follows

Λ(u) = ᾱ(u)Λ1(u)

N∏
j=1

f(u, λj) + δ̄(u)Λ2(u)

N∏
j=1

h(u, λj)

+ ρ
(u+ 1)(2u+ 1)

(u+ p)(p− u− 1)
Λ1(u)Λ2(u)

N∏
j=1

1

(u− λj)(u+ λj + 1)
, (7)

where f and h are defined in (19), ρ = 1−
√

1 + ξ+ξ− and

ᾱ(u) =
2(u+ 1)

2u+ 1
((1− ρ)u+ q), δ̄(u) = q − (u+ 1)(1− ρ). (8)

The set of parameters {λk} are called Bethe roots and must satisfy the Bethe equations to assure
that the residues of Λ(u) at u = λk vanish. One defines4

BEk = −2λkᾱ(λk)Λ1(λk)
N∏
j=1
j 6=k

f(λk, λj) + 2(λk + 1)δ̄(λk)Λ2(λk)
N∏
j=1
j 6=k

h(λk, λj)

+ ρ
(λk + 1)(2λk + 1)

(λk + p)(p− λk − 1)
Λ1(λk)Λ2(λk)

N∏
j=1
j 6=k

1

(λk − λj)(λk + λj + 1)
.

Then, the Bethe equations are

BEk = 0 for k = 1, 2, . . . , N. (9)

For diagonal left boundary (i.e. ξ+ = ξ− = ρ = 0), we recover the eigenvalues, denoted Λdiag(u),

and the Bethe equations, denoted BEdiag
k , computed in [35]. This allows us to rewrite the

eigenvalues and the Bethe equations in a suitable form for the following computations:

Λ(u) = Λdiag(u) + ρΛgen(u) and BEk = BEdiag
k +ρBEgen

k . (10)

4Different normalizations are possible but we chose the most convenient for the following computations.
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3 Algebraic Bethe ansatz

In this section, we give the main results of this letter: the eigenvectors of the transfer matrix (3)
with the eigenvalues (7) using the algebraic Bethe ansatz.

Before that, let recall the usual construction of the Bethe vectors for diagonal boundaries
(i.e. ξ+ = ξ− = 0) [35]. In this case, there is a U(1)-symmetry (the total spin is conserved),
therefore the Hamiltonian can be decomposed into a direct sum of different sectors with a given
spin. In the sector with spin N/2−M , the diagonal Bethe vectors read

|ΦM (λ1, λ2, . . . , λM )〉diag = B(λ1)B(λ2) · · ·B(λM )|Ω〉. (11)

They are the eigenvectors of the transfer matrix if {λ1, λ2, . . . , λM} satisfy the diagonal Bethe
equations. The proof uses the exchange relations of the operators A and D with B as well as
their action on the pseudo-vacuum in order to compute the action of the transfer matrix on the
Bethe vectors. Then, one gets the following result:

tdiag(u)|ΦM (λ1, . . . , λM )〉diag = Λdiag(u)|ΦM (λ1, . . . , λM )〉diag

+

M∑
k=1

F (u, λk) BEdiag
k |ΦM (λ1, . . . , λk−1, u, λk+1, . . . , λM )〉diag, (12)

where

F (u, λ) =
u+ 1

(u+ λ+ 1)(λ− u)(λ+ 1)
. (13)

Let us emphasize that relation (12) is off-shell, i.e. the diagonal Bethe equations are not neces-

sarily satisfied BEdiag
k 6= 0. Then, asking that the λ satisfy them, we see that the Bethe vectors

become eigenvectors.
For ξ+ 6= 0 or ξ− 6= 0, the usual ansatz (11) cannot work since the U(1)-symmetry is broken

and the total spin is not conserved. In spite of this problem, we believed that a generalization
of the usual algebraic Bethe ansatz is still possible to obtain the eigenvectors. Before giving our
proposal (see equation (14)), we recall the different results which lead us to it:

(i) As the total spin is not conserved, the appropriate ansatz must be a linear combination
of Bethe vectors (11) for different values of M . At this point, the problem consists in
computing the coefficients of this linear combination, called transmission coefficients since
it corresponds to a pseudo-particle transmits to a reservoir. Nothing, a priori, guarantees
that the transmission coefficients take a simple form. However, this problem appears
already for triangular boundaries (ξ+ = 0 but ξ− 6= 0) and, in [13], in the context of
the coordinate Bethe ansatz or, in [5], in the context of the algebraic Bethe ansatz, these
coefficients have been successfully computed and are simple.

(ii) The eigenvalues and the Bethe equations obtained in [10] are not so different from the
ones for the diagonal boundaries: they are the sum of the diagonal ones and an additional
term which is a function of the off-diagonal terms (see equations (10)). This indicates
that, maybe, a slight generalization of the algebraic Bethe ansatz is enough to obtain the
eigenvectors.

(iii) As explained previously, one set of N Bethe roots is enough to obtain the complete set
of eigenvalues [32]. This suggests that the ansatz must have a maximum of N operators.
Moreover, our experience on the triangular case [5] taught us that the presence of the
operator C in the transfer matrix requires the superposition of diagonal Bethe vectors
belonging to sectors of spins from N/2 to N/2 −M with M ≤ N . In the general case,
the addition of the operator B in the transfer matrix indicates we need a superposition of
diagonal Bethe vectors from each sector.
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These different points and the investigation of the spin chains with small length lead us to
the following ansatz for the Bethe vectors

|ΦN (λ1, λ2, . . . , λN )〉 = B(λ1)B(λ2) · · ·B(λN )|Ω〉, (14)

where

B(λ) = B(λ) +
ρ

ξ−

(
2λ

2λ+ 1
A (λ)−D(λ)

)
−
(
ρ

ξ−

)2

C (λ). (15)

We claim that the Bethe vectors (14) are the eigenvectors of the transfer matrix with the
eigenvalues Λ(u) (given by (7)) if λ1, λ2, . . . , λN satisfy the Bethe equations (9). We do not have
yet a complete proof of this result but it is supported by the study of the chains of length 1, 2
and 3 where the result holds. We give details of the proof for N = 1, 2, 3 in Section 4. As for
the diagonal boundaries, the Bethe vectors satisfy the following off-shell equation

t(u)|ΦN (λ1, . . . , λN )〉 = Λ(u)|ΦN (λ1, . . . , λN )〉

+

N∑
k=1

F (u, λk)BEk|ΦN (λ1, . . . , λk−1, u, λk+1, . . . , λN )〉, (16)

where F is given by (13).
Let us emphasize that, in this framework, it is straightforward to take the homogeneous limit

(i.e. θi = 0) contrary to the separation of variable method.
At this point, we would like to make different remarks on this result, explain why the Bethe

vector (14) is a reasonable candidate to be an eigenvector and raise technical problems.
At first sight, expression (15) for B(u) seems unnatural. Nevertheless, we show here that

there exists a simple way to obtain it. Firstly, let us diagonalize the left K-matrix

Q−1K+(u)Q = D+(u) =

(
q + (u+ 1)(1− ρ) 0

0 q − (u+ 1)(1− ρ)

)
, Q =

(
ξ+ ρ
−ρ ξ−

)
.

Secondly, thanks to this result and to the fact that the trace is cyclic, the transfer matrix may
be rewritten as follows

t(u) =
(ξ−)2

ξ+ξ− + ρ2
Tr0

(
D+

0 (u)K0(u)
)
, K0(u) =

ξ+ξ− + ρ2

(ξ−)2
Q−10 K0(u)Q0.

Finally, computing the right upper entry of the matrix Q−10 K0(u)Q0, we recover, up to a factor,
the r.h.s. of (15). Let us also focus on the fact that the entries of D+(u) are very similar to the
ones appearing in the eigenvalue via the functions ᾱ and δ̄ (see equation (8)). For completeness
we gives the full set of new generators

K(u) =

(
A (u) B(u)

C (u) D(u) + 1
2u+1A (u)

)
with

A (u) =

(
ξ+

ξ−
+

1

2u+ 1

(
ρ

ξ−

)2
)

A (u)− ρ

ξ−

(
B(u) +

ξ+

ξ−
C (u)

)
+

(
ρ

ξ−

)2

D(u),

D(u) =

(
ξ+

ξ−
− 1

2u+ 1

(
ρ

ξ−

)2
)

D(u) +
2(u+ 1)

2u+ 1

ρ

ξ−

(
B(u) +

ξ+

ξ−
C (u)

)
+

4u(u+ 1)

(2u+ 1)2

(
ρ

ξ−

)2

A (u),
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C (u) =

(
ξ+

ξ−

)2

C (u) +
ξ+

ξ−

(
2u

2u+ 1
A (u)−B(u)

)
−
(
ρ

ξ−

)2

B(u).

One can remark that

A (u)|Ω〉 =
ξ+ξ− + ρ2

(ξ−)2
Λ1(u)|Ω〉 − ρ

ξ−
B(u)|Ω〉,

D(u)|Ω〉 =
ξ+ξ− + ρ2

(ξ−)2
Λ2(u)|Ω〉+

2(u+ 1)

2u+ 1

ρ

ξ−
B(u)|Ω〉

and

t(u) =
(ξ−)2

ξ+ξ− + ρ2
(
ᾱ(u)A (u) + δ̄(u)D(u)

)
.

One knows also that K(u) = Q−1K(u)Q satisfies the reflection equation. Therefore, its
entries satisfy the same relations as the entries of K(u) and in particular one gets[

B(u),B(v)
]

= 0.

This allows us to conclude that the Bethe vector |ΦN (λ1, λ2, . . . , λN )〉 is completely symmetric
on its parameters as in the case with diagonal boundary.

Using exchange relations of Appendix A, the Bethe vectors may be rewritten as follows

|ΦN (λ1, . . . , λN )〉 =
N∑
m=0

∑
1≤i1<···<im≤N

Wi1,...,im(λ1, . . . , λN )B(λi1) · · ·B(λim)|Ω〉, (17)

where the transmission coefficients W can be computed explicitly. Therefore, we see that our
proposal contains vectors with all possible values for the total spin. This feature was expected
as explained above (see remark (iii)).

The computation of the explicit form of functions W may be complicated. Nevertheless, using
the recurrence relations introduced to find the spectrum (see, e.g., [9, 20]), it may possible to
find also some recurrence relations between these functions which would be helpful to compute
them.

The transmission coefficients W contain some Λ1(λj) or Λ2(λj). Therefore, using the Bethe
equations, we can rewrite them differently. Depending on the computations one wants to per-
form, the most suitable form must be chosen to simplify them. Let us remark that the off-shell
equation (16) seems to be valid only for the form obtained by the direct development of (14).

Another point which validates the conjecture is that we recover as a limit the case with
triangular boundary treated in [5]. Indeed, for ξ− = 0 and ξ+ 6= 0, the eigenvalues and the
Bethe equations become independent of ξ+ as expected. For the eigenvectors, one must notice

that lim
ξ−→0

ρ
ξ− = − ξ+

2 . Then, using the Bethe equations, we recover the transmission coefficients

used in [5] at least for the small chains.
We conclude this section by a technical complication due to the fact that the number of Bethe

roots λj is equal to the length of the chain. Indeed, let us notice that the vectors appearing
in (17) with total spin N/2−m are{

B(λi1)B(λi2) · · ·B(λim)|Ω〉
∣∣1 ≤ i1 < i2 < · · · < im ≤ N

}
for m = 0, 1, . . . , N.

By simple enumeration, one shows that they span5 a vector space of dimension
(
N
m

)
which is

exactly the dimension of the sector with total spin N/2 − m. In the algebraic Bethe ansatz
procedure, there are also vectors of the following type which appear

B(u)B(λj2) · · ·B(λjm)|Ω〉 for 1 ≤ j2 < · · · < jm ≤ N.
5These vectors are independent for generic λj i.e. when the λ do not satisfy the Bethe equations.
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These vectors are also in the sector with total spin N/2−m. Therefore, the latter vector is not
independent of the former vectors and we have, for 1 ≤ j2 < · · · < jm ≤ N ,

B(u)B(λj2) · · ·B(λjm)|Ω〉

=
∑

1≤i1<···<im≤N
V i1,...,im
j2,...,jm

(u, λ1, . . . , λN )B(λi1) · · ·B(λim)|Ω〉, (18)

where V are functions to be determined. Let us illustrate this point by taking the particular
case m = N . In this case, one knows that

B(x1)B(x2) . . .B(xN )|Ω〉 = ZN (x1, . . . , xN )|Ω〉

where ZN is the partition function computed in [37] and |Ω〉 is the vector with all spins down.
Therefore, for example, we have

V 1,2,...,N
2,...,N (u, λ1, . . . , λN ) =

ZN (u, λ2, . . . , λN )

ZN (λ1, λ2, . . . , λN )
.

Unfortunately, we do not know the functions V for any m. This point must be solved if one
wants a general proof of our proposal.

4 Cases for chain with small length

In this section, we give some details of the proof that (16) is valid for N = 1, 2, 3.

4.1 Case N = 1

For N = 1, the Bethe vector (14), using relations (6), becomes

|Φ1(λ1)〉 = B(λ1)|Ω〉 =

(
B(λ1) +

ρ

ξ−

(
2λ1

2λ1 + 1
A (λ1)−D(λ1)

)
−
(
ρ

ξ−

)2

C (λ1)

)
|Ω〉

= B(λ1)|Ω〉+W (λ1)|Ω〉,

with

W (λ) =
ρ

ξ−

(
2λ

2λ+ 1
Λ1(λ)− Λ2(λ)

)
.

Now, let us write the action of the transfer matrix (5) on this Bethe vector by using the exchange
relations of Appendix A:

t(u)|Φ1(λ1)〉 = Λdiag(u)B(λ1)|Ω〉+ Udiag(u, λ1)B(u)|Ω〉+ ξ−(u+ 1)W (λ1)B(u)|Ω〉

+
((
ᾱdiag(u)Λ1(u) + δ̄diag(u)Λ2(u)

)
W (λ1) + ξ+(u+ 1)G(u, λ1)

)
|Ω〉

where

ᾱdiag(u) = lim
ρ→0

α(u), δ̄diag(u) = lim
ρ→0

δ(u),

Udiag(u, λ) =
(
ᾱdiag(u)g(u, λ) + δ̄diag(u)n(u, λ)

)
Λ1(λ)

+
(
ᾱdiag(u)w(u, λ) + δ̄diag(u)k(u, λ)

)
Λ2(λ)
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and

G(u, λ) = Λ1(u)
((
m(u, λ) + l(u, λ)

)
Λ1(λ) + p(u, λ)Λ2(λ)

)
+ Λ2(u)

((
q(u, λ) + y(u, λ)

)
Λ1(λ) + z(u, λ)Λ2(λ)

)
.

The function Udiag is exactly the term called unwanted term for the diagonal case and it is
well-known that it is proportional to the diagonal Bethe equation. It reads here

Udiag(u, λ1) = F (u, λ1) BEdiag
1 .

As explained previously, the vectors B(u)|Ω〉 and B(λ1)|Ω〉 are not anymore independent for
N = 1 and we get

B(x)|Ω〉 = Z1(x)|Ω〉 with Z1(x) = 2x(p− θ1).

Then, we can compute, using (10),

(t(u)− Λ(u))|Φ1(λ1)〉 − F (u, λ1) BE1 |Φ1(u)〉

=
[
− ρΛgen(u)Z1(λ1) +

(
−ρF (u, λ1) BEgen

1 +ξ−(u+ 1)W (λ1)
)
Z1(u)

]
|Ω〉

+
[(
ᾱdiag(u)Λ1(u) + δ̄diag(u)Λ2(u)− Λ(u)

)
W (λ1)

+ ξ+(u+ 1)G(u, λ1)− F (u, λ1) BE1W (u)
]
|Ω〉.

Finally, using the explicit expressions of the functions, one can show that the terms in front
of |Ω〉 and |Ω〉 vanish. This proves (16) and validates our proposal for N = 1.

4.2 Case N = 2

For N = 2, the Bethe vector (14) becomes

|Φ2(λ1, λ2)〉 = B(λ1)B(λ2)|Ω〉+W1(λ1, λ2)B(λ1)|Ω〉+W2(λ1, λ2)B(λ2)|Ω〉
+W∅(λ1, λ2)|Ω〉,

where the explicit expressions of the functions W1,W2 and W∅ are

W1(λ1, λ2) =
ρ

ξ−

(
2λ2

2λ2 + 1
Λ1(λ2)f(λ2, λ1)− Λ2(λ2)h(λ2, λ1)

)
,

W2(λ1, λ2) = W1(λ2, λ1)

and

W∅(λ1, λ2) =

(
ρ

ξ−

)2
(
λ1 + λ2 + 2

λ1 + λ2 + 1
Λ2(λ1)Λ2(λ2)−

2λ2
2λ2 + 1

λ1 − λ2 + 1

λ1 − λ2
Λ2(λ1)Λ1(λ2)

− 2λ1
2λ1 + 1

λ2 − λ1 + 1

λ2 − λ1
Λ1(λ1)Λ2(λ2) +

2λ1
2λ1 + 1

2λ2
2λ2 + 1

λ1 + λ2
λ1 + λ2 + 1

Λ1(λ1)Λ1(λ2)

)
.

The computation for N = 2 follows the same lines as the case N = 1 and is very similar to
the usual ones. The crucial point is that the three vectors B(λ1)|Ω〉, B(λ2)|Ω〉 and B(u)|Ω〉 are
not independent. We can show that

B(u)|Ω〉 = V 1(u, λ1, λ2)B(λ1)|Ω〉+ V 2(u, λ1, λ2)B(λ2)|Ω〉,

where

V 1(u, λ1, λ2) =
u(u− λ2)(u+ λ2 + 1)

λ1(λ1 − λ2)(λ1 + λ2 + 1)

and V 2(u, λ1, λ2) = V 1(u, λ2, λ1). Using this relation, we prove that our proposal is valid also
for N = 2.
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4.3 Case N = 3

For N = 3, the proof follows the same line as previously. The new feature lies on the relations
between the vectors. Therefore, one gets

B(u)|Ω〉 = V 1(u, λ1, λ2, λ3)B(λ1)|Ω〉+ V 2(u, λ1, λ2, λ3)B(λ2)|Ω〉
+ V 3(u, λ1, λ2, λ3)B(λ3)|Ω〉,

where

V 1(u, λ1, λ2, λ3) =
u(u− λ2)(u+ λ2 + 1)(u− λ3)(u+ λ3 + 1)

λ1(λ1 − λ2)(λ1 + λ2 + 1)(λ1 − λ3)(λ1 + λ3 + 1)

and V 2(u, λ1, λ2, λ3) = V 1(u, λ2, λ1, λ3), V
3(u, λ1, λ2, λ3) = V 1(u, λ3, λ1, λ2). One gets also the

following relations

B(u)B(λ1)|Ω〉 = V 12
1 (u, λ1, λ2, λ3)B(λ1)B(λ2)|Ω〉+ V 13

1 (u, λ1, λ2, λ3)B(λ1)B(λ3)|Ω〉
+ V 23

1 (u, λ1, λ2, λ3)B(λ2)B(λ3)|Ω〉,

where the functions V in this formula is too long to be displayed here. We used formal math-
ematical software to compute it. Unfortunately, we do not find yet a closed formula for them.
Using these relations, we prove that our proposal is valid also for N = 3.

5 Conclusion

In this paper, we construct the Bethe vectors, thanks to the algebraic Bethe ansatz, for the
Heisenberg spin chain with generic boundaries.

A future task is to prove our conjecture. For that, it should be necessary to obtain the
explicit formulas for the functions V present in (18). Then, we believe that the computation of
the correlation functions would be possible following the same lines as the diagonal case.

The study of the thermodynamic limit (N → ∞) would be also interesting to compute
the ground state energy, the first excited states and the diffusion matrices between them or
on the boundary. For that, it is necessary to identify the solution of the Bethe equations (9)
corresponding to the ground state and to get the integral equations for the density of the Bethe
roots. Then, one should compute the thermodynamic limit for the correlation functions.

We believe also that our proposal may be applied to get the eigenvectors for various other
problems: (i) the twisted closed XXX spin chain has been studied by one of the author [4]; (ii) the
open XXX spin chain with spin s: the difficulty here would be again to compute the equivalent
of the functions V ; (iii) the XXZ spin chains and to study their relation with the asymmetric
simple exclusion process. We expect that our construction can be used directly to study the
case with K− diagonal and K+ general as the method used to study the triangular boundaries
for XXX model [5] has been generalized to XXZ model [34]. However, in the XXZ case, the
R-matrix is not anymore invariant and one cannot diagonalize the K−-matrix. Therefore to
deal with both general boundaries one must generalize our approach but we believe that our
proposal is a first step to get the eigenvectors; (iv) the higher rank spin chains; (v) other type
of integrable models with non diagonal twist or boundary.

A Exchange relations

Using reflection equation (2), we can find the exchange relations between the operators A , B, C
and D . For our calculations, we only need the following ones

[B(u),B(v)] = 0,
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A (u)B(v) = f(u, v)B(v)A (u) + g(u, v)B(u)A (v) + w(u, v)B(u)D(v),

D(u)B(v) = h(u, v)B(v)D(u) + k(u, v)B(u)D(v) + n(u, v)B(u)A (v),

[C (u),B(v)] = m(u, v)A (v)A (u) + l(u, v)A (u)A (v) + q(u, v)A (v)D(u)

+ p(u, v)A (u)D(v) + y(u, v)D(u)A (v) + z(u, v)D(u)D(v),

with

f(u, v) =
(u− v − 1)(u+ v)

(u− v)(u+ v + 1)
, h(u, v) =

(u− v + 1)(u+ v + 2)

(u− v)(u+ v + 1)
,

w(u, v) =
−1

(u+ v + 1)
, g(u, v) =

2v

(2v + 1)(u− v)
,

k(u, v) =
−2(u+ 1)

(u− v)(2u+ 1)
, n(u, v) =

4v(u+ 1)

(u+ v + 1)(2v + 1)(2u+ 1)
, (19)

and

m(u, v) =
2u(u− v + 1)

(2u+ 1)(u+ v + 1)(u− v)
, l(u, v) = − 2u

(2u+ 1)(2v + 1)(u− v)
,

q(u, v) =
(u+ v)

(u+ v + 1)(u− v)
, p(u, v) = − 2u

(2u+ 1)(u− v)
,

y(u, v) = − 1

(u+ v + 1)(2v + 1)
, z(u, v) = − 1

u+ v + 1
.
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[13] Crampé N., Ragoucy E., Generalized coordinate Bethe ansatz for non-diagonal boundaries, Nuclear Phys. B
858 (2012), 502–512, arXiv:1105.0338.

[14] Crampé N., Ragoucy E., Simon D., Eigenvectors of open XXZ and ASEP models for a class of non-diagonal
boundary conditions, J. Stat. Mech. Theory Exp. 2010 (2010), P11038, 20 pages, arXiv:1009.4119.
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