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1 Introduction

Already in 1926, Frenkel observed [20, 21] that variational formulation of relativistic spinning
particle represents a nontrivial problem, if we intend to take into account the conditions which
guarantee the right number of degrees of freedom in the theory. This leads to a rather complex
singular Lagrangians, see [2, 3, 4, 5, 6, 10, 11, 12, 22, 24, 25] and references therein. In the Hamil-
tonian formulation, this implies a theory with Dirac’s first and second-class constraints. Basic
notions of the Dirac theory have their analogs in differential geometry. Second-class constraints
mean that all true trajectories lie on a curved submanifold of the initial phase-space. The Dirac
bracket, constructed on the base of second-class constraints, induces canonical symplectic struc-
ture on the submanifold. Besides, due to the first-class constraints (equivalently, due to local
symmetries), a part of variables have ambiguous evolution. This also can be translated into
geometric language: due to the ambiguity, the submanifold is endowed with a natural structure
of fiber bundle. Physical variables are functions of the coordinates which parameterize the base
of the fiber bundle.

Here we discuss the models where spin is considered as a composed quantity (inner angular
momentum) constructed from non-Grassmann vector-like variable and its conjugated momen-
tum [5, 8, 9, 10, 11, 12, 17, 24, 27]. They lead to the spin fiber bundle shortly described
in [8, 9, 17]. In the present work we start from non-relativistic spinning particle [8] and describe
the corresponding non-relativistic bundle in a more systematic form. Then we represent this in
a manifestly Poincare-covariant form, arriving at the set of constraints which guarantees those
of Frenkel [20] and Bargmann, Michel and Telegdi (BMT) [1] theories. The passage from vector-
like to spin variable is not a change of variables, and acquires a natural interpretation in this
geometric construction. This turns out to be useful in the study of both classical and quantum
mechanics of a spinning particle [12, 16, 26, 28].
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2 Non relativistic spin

2.1 Basic constraints

The Pauli equation involves spin operators which are proportional to the Pauli matrices, Ŝi =
~
2σi. They form SO(3)-algebra with respect to commutator

[Ŝi, Ŝj ]− = i~εijkŜk. (1)

Here εijk is totally antisymmetric tensor with ε123 = 1. Besides, they obey the identity

Ŝ2 = ~2s(s+ 1) =
3~2

4
, (2)

which corresponds to the value of SO(3)-Casimir s = 1
2 .

To construct the corresponding semiclassical model, we look for a classical-mechanics system
which, besides the position variables xi, contains additional degrees of freedom, appropriate
for the description of a spin: in the Hamiltonian formulation the spin should be described, at
the end, by three variables Si which imply (1) and (2) in the course of canonical quantization.
According to this, typical spinning-particle model consist of a point on a world-line and some
set of variables describing the spin degrees of freedom, which form the inner space attached
to that point [25]. In fact, different spinning particles discussed in the literature differ by the
choice of inner space of spin. Exceptional case is the rigid particle which consist of only position
variables, but with the action containing higher derivatives. Recently it has been shown [15],
that this yields the Dirac equation, hence it can be used for description of spin.

We intend to construct spinning particle starting from a proper variational problem. This is
the first task we need to solve, as the formulation of a variational problem in closed form is known
only for the case of a phase space equipped with canonical Poisson bracket, say {ωi, πj} = δij .
The number of variables and their algebra are different from the number of spin operators and
their commutators, (1). To improve this, we need to impose constraints and/or to pass from
the initial to some composed variables. This implies the use of Dirac machinery for constrained
theories [18].

The most natural way to to arrive at the operator algebra (1) is to consider spin variables as
composed quantities,

Si = εijkωjπk, (3)

where ω, π are coordinates of a phase space equipped with canonical Poisson bracket. This
immediately induces SO(3)-algebra for Si

{Si(ω, π), Sj(ω, π)}PB = εijkSk.

Unfortunately, this is not the whole story. First, we need some mechanism which explains why S,
not ω and π must be taken for the description of spin degrees of freedom. Second, the basic
space is six-dimensional, while the spin manifold is two-dimensional (we remind that the square
of spin operator has fixed value, equation (2)). To improve this, we look for variational problem
which, besides dynamical equations, implies the constraints (a and b are given numbers)

ω2 = a2, π2 = b2, ωπ = 0. (4)

Then

S2 = ω2π2 − (ωπ)2 =
3~2

4
, (5)
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if we put b2 = 3~2
4a2

. We point out that this is essentially unique SO(3)-invariant three-dimensional
surface of R6. The same result (5) follows from

ωπ = 0, π2 − a

ω2
= 0, a =

3~2

4
. (6)

These constraints naturally arise in the model of rigid particle, see [15]. Below we discuss
Lorentz-covariant description for both sets.

While S in (3) looks like angular momentum, the crucial difference with orbital angular
momentum is the prsence of local symmetry, which acts on the basic variables ~ω, ~π, while
leaves invariant the spin variable ~S. We refer this as spin-plane symmetry. Using analogy with
classical electrodynamics, ω and π are similar to four-potential Aµ while S plays the role of Fµν .
According to the general theory [7, 18, 23], in this case the coordinates ω of the “inner-space
particle” are not physical (observable) quantities. The only observable quantities are the gauge-
invariant variables S. So our construction realizes, in a systematic form, the oldest idea about
spin as “inner angular momentum”.

2.2 Spin-sector Lagrangian and Hamiltonian

As the Lagrangian which implies the constraints (4), we take the expression Lspin = 1
2g ω̇

2 +
1
2gb

2 − 1
φ

(
ω2 − a2

)
, where ω = (ω1, ω2, ω3). Variation with respect to auxiliary variables g(t)

and φ(t) gives the equations ω̇2 = g2b2 and ω2 = a2, the latter implies ω̇ω = 0. In the
Hamiltonian formulation these equations turn into the desired constraints. We can integrate
out the variable g, presenting Lagrangian in more compact form

Lspin = b
√
ω̇2 − 1

φ

(
ω2 − a2

)
.

This also gives the desired constraints. The last term represents kinematic (velocity-indepen-
dent) constraint which is well known from classical mechanics. So, we might follow the classical-
mechanics prescription to exclude φ as well. But this would lead to lose of manifest rotational
invariance of the formalism. The model is manifestly invariant under rotations Rij . The auxilia-
ry variable φ is a scalar under these transformations. For the ωi we have ω′i = Rijωj . There is
also local (spin-plane) symmetry with the parameter β(t)

δωi = βω̇i, δφ =
1

φ2

(
β

φ

)·
. (7)

Let us consider Hamiltonian formulation of the model. Equations for the conjugate momenta πi
read πi = b ω̇i√

ω̇2
. This implies the primary constraint π2 = b2. Momentum for φ turns out to be

one more primary constraint, πφ = 0. The complete Hamiltonian reads

H =
λ1
2

(
π2 − b2

)
+

1

φ

(
ω2 − a2

)
+ λ2πφ. (8)

We have denoted by λa the Lagrangian multipliers for the primary constraints. Equation (7)
induces [14] the infinitesimal phase-space transformations

δωi = φβπi, δπi = − 2

λ1
βωi,

δφ = φ2
(
β

λ1

)·
, δπφ = 0, δλ1 = −(φβ)·, δλ2 = −(δφ)·.
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They leave invariant the Hamiltonian action

SH =

∫
dtπω̇ + πφφ̇−H. (9)

Finite transformations and their geometric interpretation will be discussed in Section 2.3.
Applying the Dirac procedure, we obtain the following sequence of constraints and equations

for the Lagrangian multipliers: πφ = 0 ⇒ ω2 − a2 = 0 ⇒ (ωπ) = 0 ⇒ λ1 = −2a2

b2φ
. Hence

all the desired constraints (4) appeared. Lagrangian multiplier λ1 can be substituted into (8).
Besides the constraints, the Hamiltonian (8) implies the dynamical equations φ̇ = λφ, π̇φ = 0,

ω̇i = −2a2

b2φ
πi, and π̇i = 2

φωi. Neither equations nor constraints determine the variables λφ and φ,
the latter enters as an arbitrary function into general solution for the variables ω and π. Hence,
the dynamics of these variables is ambiguous. This is in correspondence with invariance of the
action (17) under local transformations (7). According to general theory [7, 18, 23], ω and π
are not observable quantities. The variables Si = εijkωjπk have unambiguous evolution, as it
should be Ṡi = 0. In interacting theory S will precess under torque exercised by magnetic field,
see below. Due to equations (4), the coordinates Si obey (5).

2.3 SO(3) spin surface and associated spin fiber bundle

While our model (17) consists of the basic variables ω and π, quantum mechanics obtained in
terms of spin variables S. The passage from ω, π to S is not a change of variables, and acquires
a natural interpretation in the geometric construction described below. This can be resumed as
follows. All the trajectories ω(t), π(t) belong to the surface (4) of phase space which we identify
with the group manifold SO(3). The map (ω,π) → S determines natural structure of fiber
bundle on SO(3) with the structure group being SO(2). The structure group turn into local
symmetry in dynamical theory and selects S as the physical (observable) variables. Canonical
quantization of the fiber bundle yields the Pauli equation, see the next section. Generalization
on SO(k, n) Lie–Poisson manifold has been presented in [13].

In this section we normalize the basic spin variables in such a way, that the constraints have
the form ω2 − 1 = 0, π2 − 1 = 0 and (ωπ) = 0.

Consider six-dimensional phase space equipped with canonical Poisson bracket

R6 = {ωi, πj ; {ωi, πj}PB = δij},

and three-dimensional spin space R3 = {Si}. Define the map

f : R6 → R3, f : (ωi, πj) → Si = εijkωjπk,

or S = ω × π, rank
∂(Si)

∂(ωj , πk)
= 3. (10)

Poisson bracket on R6 and the map (10) induce SO(3) Lie–Poisson bracket on R3

{Si, Sj} ≡ {Si(ω, π), Sj(ω, π)}PB, {Si, Sj} = εijkSk.

According to previous section, all trajectories ω(t),π(t) lie on SO(3)-invariant surface of R6

T3 = {ω2 − 1 = 0, π2 − 1 = 0, ωπ = 0}. (11)

T3 can be identified with group manifold SO(3). Indeed, given ω, π, consider 3× 3 matrix with
the lines ω, π and ω × π

R =

 ω
π

ω × π

 . (12)
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Equations (11) imply RRT = 1 and detR = 1. The map T3 → SO(3) given by equation (12)
determines diffeomorphism of the manifolds.

When (ω,π) ∈ T3, we have S2 = ω2π2 − (ωπ)2 = 1. So, f maps the manifold T3 onto
two-dimensional sphere of unit radius (spin surface), f(T3) = S2. Denote FS ∈ T3 preimage of
a point S ∈ S2, FS = f−1(S). This set is composed by all pairs (ω,π) which lie on the same
plane and thus related by SO(2) rotations of the plane.

The manifold T3 acquires natural structure of fiber bundle

T3 =
(
S2,F, f

)
, (13)

with base S2, standard fiber F, projection map f and structure group SO(2).
Transformations of structure group read

ω′ = ω cosβ + π sinβ,
π′ = −ω sinβ + π cosβ

⇒

{
δωi = βπi,

δπi = −βωi.
(14)

By construction, they leave inert points of base, δSi = 0.
In the dynamical realization of previous section, the structure group acts independently

at each instance of time and turn into the local spin-plane symmetry. To see this, let us
present the action functional equivalent to (9) and invariant under (14). Consider extended
Hamiltonian action Sext for (9). This obtained adding all the higher-stage constraints (with
their own Lagrangian multipliers) to SH . For the present case this is

Sext =

∫
dtP Q̇− (H + λ3ωπ).

It is known [7, 23] that the theories SH and Sext are equivalent. Sext is invariant (modulo to
total derivative) under local version of the transformation (14), β → β(t), accompanied by the
following transformation of auxiliary variables

g′ab =
(
KgKT

)
ab

+
1

2
β̇δab, λ′2 = −(φ′)·, (15)

where

g =


1

φ

λ3
2

λ3
2

λ1
2

 , K =

(
cosβ sinβ
− sinβ cosβ

)
. (16)

Let (ω,π) ∈ T3, ω3 6= 0. As local coordinates of T3 in vicinity of this point, we can take
S1(ω,π), S2(ω,π), and ω3. The coordinates adjusted with structure of fibration. That is S1, S2
parameterize the base S2 while ω3 parameterizes the fiber F. The spin-plane symmetry deter-
mines physical sector of the theory, and hence play the fundamental role in this construction,
see discussion at the end of Section 2.1.

2.4 Canonical quantization and Pauli equation

To test our procedure, we discuss spinning particle corresponding to the Pauli equation on
a stationary magnetic field1. Consider the action

S =

∫
dt

[
m

2
ẋ2 +

e

c
Aẋ + b

√
(Dω)2 − 1

φ

(
ω2 − a2

)]
, Dωi = ω̇i −

µe

mc
εijkωjBk. (17)

1The case of an arbitrary electromagnetic background [19] represents much more complex problem [16].
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The configuration-space variables are xi(t), ωi(t) and φ(t). Here xi represents the spatial coor-
dinates of the particle with the mass m, the charge e, and magnetic moment µ, B = ∇ ×A.
Second term in equation (17) represent minimal interaction with the vector potential A(x) of an
external electromagnetic field, while the third term contains interaction of spin with a magnetic
field. At the end, it produces the Pauli term in quantum-mechanical Hamiltonian.

Let us construct Hamiltonian formulation for the model. Equations for the conjugated mo-
menta pi and πi reads

pi = mẋi +
e

c
Ai ⇒ ẋi =

1

m

(
pi −

e

c
Ai

)
, πi = b

Dωi√
(Dω)2

. (18)

Equation (18) implies the primary constraint π2 = b2. Momentum for φ turns out to be one more
primary constraint, πφ = 0. The complete Hamiltonian, H = PQ̇ − L + λaΦa, Q = (x,ω, φ),
P = (p,π, πφ), reads

H =
1

2m

(
pi −

e

c
Ai

)2
− µe

mc
εijkBiωjπk +

1

φ

(
ω2 − a2

)
+
λ1
2

(
π2 − b2

)
+ λ2πφ. (19)

We have denoted by λa the Lagrangian multipliers for the primary constraints Φa = (π2−b2, πφ).
Applying the Dirac procedure, we obtain the following sequence of constraints and equations

for the Lagrangian multipliers

π2 − b2 = 0
πφ = 0 ⇒ ω2 − a2 = 0

}
⇒ (ωπ) = 0 ⇒ λ1 = −2a2

b2φ
.

Lagrangian multiplier λ1 can be substituted into (19). Besides the algebraic equations, the
Hamiltonian (19) implies the dynamical equations

φ̇ = λφ, π̇φ = 0,

ẋi =
1

m

(
pi −

e

c
Ai

)
, ṗi =

e

c
ẋj∂iAj +

µe

mc
Sj∂iBj , (20)

ω̇i = −2a2

b2φ
πi +

µe

mc
εijkωjBk, π̇i =

2

φ
ωi +

µe

mc
εijkπjBk.

The variable Si = εijkωjπk have unambiguous evolution, as it should be

Ṡi =
µe

mc
εijkSjBk.

This is the classical equation for precession of spin in an external magnetic field. Due to
equations (4), the coordinates Si obey (5). Equations (20) imply the second-order equation
for xi

mẍi =
e

c
εijkẋjBk +

e

mc
Sk∂iBk. (21)

Since S2 ∼ ~2, the S-term disappears from equation (21) at the classical limit ~ → 0. Then
equation (21) reproduces the classical motion of charged particle subject to the Lorentz force.
Note that in the absence of interaction, the particle does not experience a self-acceleration.

To construct quantum mechanics of the spinning particle, we follow Dirac prescription for
quantization of a system with constraints. The constraints ω2− a2 = 0 and (ωπ) = 0 represent
the second-class system,{

ω2 − a2, (ωπ)
}

= 2ω2 6= 0, (22)
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while Poisson brackets of

πφ = 0, π2 − b2 +
b2

a2
(
ω2 − a2

)
= 0, (23)

with all constraints vanish, so, they are the first-class constraints.
Remind that a theory with second-class constraints, say Φa = 0, {Φa,Φb} = 4ab, det4ab 6= 0,

can not be consistently quantized on the base of Poisson bracket. Indeed, since in classical theory
Φa = 0, one expects that the corresponding operators vanish on physical states, Φ̂aΨ = 0.
Quantizing the theory by means of the Poisson bracket, we obtain (Φ̂aΦ̂b − Φ̂bΦ̂a)Ψ = 4abΨ.
The left-hand side of this expression vanishes, but the right-hand side does not. The problem is
resolved by postulating commutators that resemble the Dirac bracket

{A,B}D = {A,B} − {A,Φa}4−1ab {Φb, B},

instead of the Poisson one. Owing to the property {Φa, A}D = 0, quantum analog of the Dirac
bracket is consistent with the condition Φ̂aΨ = 0. For our case the Dirac bracket reads

{A,B}D = {A,B}+
{
A,ω2

} 1

2ω2
{ωπ, B} − (A↔ B).

For the basic variables this gives

{ωi, ωj} = 0, {ωi, πj} = δij −
ωiωj
ω2

, {πi, πj} = −ωiπj − ωjπi
ω2

.

Due to the property {Φa, A}D = 0, second-class constraints can now be used before computing
the bracket. So, we can omit the third term in the Hamiltonian (19). For the physical variab-
les xi, pi, Si, the Dirac bracket coincides with the Poisson one

{xi, pj}D = δij , {Si, Sj}D = εijkSk. (24)

Now we are ready to complete canonical quantization of the model. We quantize only the
physical variables. As the last two terms in (19) does not contributes into equations of motion
for the physical variables, we omit them. This gives the physical Hamiltonian2

H =
1

2m

(
pi −

e

c
Ai

)2
− µe

mc
BiSi. (25)

The first equation from (24) implies the standard quantization of the variables x and p,
we take x̂i = xi, p̂i = −i~∂i. According to the second equation from (24), we look for the
wave-function space which is representation of the group SO(3). Finite-dimensional irreducible
representations of the group are numbered by spin s, which is related with values of Casimir
operator as follows: S2 ∼ s(s+1). Then equation (5) fixes the spin s = 1

2 , and Si must be quan-

tized by Ŝi = ~
2σi. The operators act on space of two-component complex spinors Ψ. Quantum

Hamiltonian is obtained from equation (25) replacing classical variables by the operators. This
yields the Pauli equation

i~
∂Ψ

∂t
=

(
1

2m

(
p̂− e

c
A
)2
− µe

mc
BŜ

)
Ψ.

In resume, we have constructed non relativistic spinning particle with desired properties on both
the classical and the quantum level.

2Equivalently, we could impose the gauge φ = 1, ω3 = 0 for the first-class constraints (23) and construct the
corresponding Dirac bracket. This does not spoil neither the brackets (24) nor equations of motion for physical
variables. Dealing with the Dirac bracket, all the constraints can be omitted from equation (19), this gives (25).
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3 Lorentz covariant form of spin fiber bundle

In this section we represent SO(3) spin fiber bundle of Section 2.3 in the Lorentz-covariant
form. This yields automatically a set of constraints which underly those determining Frenkel
and BMT models. We remind that our construction involves basic and target spaces: fiber
bundle is a submanifold of the basic space, the base of the fiber bundle is a submanifold of the
target space. First, we extend basic and target spaces in the following way.

Let Λ : ω′ → Λω′ be vector representation of the Lorentz group SO(1, 3), we introduce
diagonal action of the group on space of direct product R8 = R1,3 × R1,3

SO(1, 3) :

(
ω′

π′

)
→
(
ω
π

)
=

(
Λ 0
0 Λ

)(
ω′

π′

)
. (26)

Consider also six-dimensional space R6 with coordinates k′, j′. Lorentz group naturally acts on
the space, it is sufficient to arrange the coordinates into 4× 4 antisymmetric matrix

Jµν [k, j] =


0 k′1 k′2 k′3
−k′1 0 j′3 −j′2
−k′2 −j′3 0 j′1
−k′3 j′2 −j′1 0

 ,

then the transformation

SO(1, 3) : Jµν [k′, j′] → Jµν [k, j] = ΛµαΛνβJ
αβ[k′, j′]. (27)

determines transformation rules of k′ and j′. Next we define a map f from R1,3 × R1,3 into R6

f :
(
ω′µ, π′ν

)
→ Jµν [k′, j′] = 2(ω′µπ′ν − ω′νπ′µ). (28)

This map has rank equals 5, it maps a point from R1,3 × R1,3 to a pair of orthogonal three-
dimensional vectors, (k′, j′) = 0.

If R8 is considered as a symplectic space with canonical Poisson bracket, {ω′µ, π′ν} = ηµν ,
the map f induces SO(1, 3)-Lie–Poisson bracket on R6{

Jµν(ω′, π′), Jαβ(ω′, π′)
}

= 2
(
ηµαJνβ − ηµβJνα − ηναJµβ + ηνβJµα

)
.

By construction, f is compatible with actions (26) and (27) of SO(1, 3): if Jµν [k′, j′] = 2(ω′µπ′ν−
ω′νπ′µ), then Jµν [k, j] = 2(ωµπν − ωνπµ).

3.1 Spin fiber bundle T3

Given a particular coordinate system (ω′µ, π′ν) in the basic space, let us consider the surface

π′2 = a3, ω′2 = a4, ω′π′ = 0, π′0 = 0, ω′0 = 0. (29)

Comparing this with (11) we identify the spin fiber bundle (13), T3 ∼ SO(3), with this surface.
Being restricted to the surface (29), the map f reads

Jµν |f(T3) =


0 0 0 0
0 0 j′3 −j′2
0 −j′3 0 j′1
0 j′2 −j′1 0

 , j′ = 2ω′ × π′. (30)

Comparing equations (28) and (29)–(30) with (10) and (11) we conclude that SO(3)-construction
of previous section is embedded into SO(1, 3).
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5

Figure 1. Identification of spin surface S2 with base of the spin fiber bundle T3.

To write the spin fiber bundle (29) in a manifestly covariant form, we see how this surface
looks like in the coordinate system related with (ω′, π′) by SO(1, 3)-transformation. Since the
surface is already invariant under SO(3) ⊂ SO(1, 3), we consider only boost to the system moving
with velocity v. Using the standard notation for relativistic factors β = v

c and γ = (1−β2)−1/2

we have(
ω′0

ω′

)
=

 γ γβT

γβ I3 +
γ − 1

β2
ββT

(ω0

ω

)
, (31)

Applying the boost to (29) we obtain covariant equations of the surface T3 in an arbitrary
reference frame

T3 = π2 − a3 = 0, T4 = ω2 − a4 = 0, T5 = ωπ = 0,

T6 = Pω = 0, T7 = Pπ = 0. (32)

We have introduced time-like four-vector

Pµ = (m̃γc, m̃γv), then γ =
|P0|√
P2
0 −P2

, β =
P
P0

.

m̃ is an effective mass related with this vector

m̃c =
√
P2
0 −P2.

In the dynamical model this vector appeared as the four-momentum of spinning particle.
Equations (32) determine the spin fiber bundle T3 ∼ SO(3) in a covariant form. Let us

describe its structure (see Fig. 1). The covariant projection map has been already defined
by (28), its form is independent from the choice of coordinates. The image of f(T3) ⊂ R6 is
a base of T3. Due to equations (32), this is given by the following 5 equations

JµνJ
µν = 8

[
(T4 − a4)(T3 − a3)− T 2

5

]
⇒ JµνJ

µν |T3 = 8a3a4, (33)

JµνPν = 0. (34)

The last equation represents the Frenkel-type condition necessary for construction of Frenkel
and BMT equations.



10 A.A. Deriglazov and A.M. Pupasov-Maksimov

As (JµνPµ)Pν ≡ 0, we have 4 independent equations imposed on 6 variables, therefore the
base has dimension 2, as it should be. Denote FS ∈ T3 preimage of a point J of the base,
FJ = f−1(J). This set is composed by all pairs (ω, π) which lie on the same plane and thus
related by SO(2) rotations of the plane. In the result, the manifold T3 acquires structure of
fiber bundle with the base determined by equations (33) and (34), standard fiber F, projection
map f and structure group SO(2).

Let us determine a conventional coordinate system of the base. We write independent among
the equations (33) and (34) explicitly in the vector form

k =
1

P0
[j×P ],

(
j2 − k2

)
= 3~2.

From these equations follows that k is orthogonal to the plane defined by j and P . Excluding k
we obtain a single equation of a quadric surface

j2 − 1

P2
0

[j×P ]2 = 3~2.

Consider a spherical coordinate system in R3 with the zenith direction given by vector P . The
spherical coordinates of vectors j and k read

j = (j, θ, φ) , k =
(
k,
π

2
, φ+

π

2

)
,

where θ and φ are polar and azimuthal angles of j. In the spherical coordinates the equation of
base reads

j2
(
1− sin2(θ)β2

)
= 3~2.

Returning to Cartesian coordinates with the third axis along P , we recognize the equation of
an ellipsoid

j23 +
j22 + j21
γ2

= 3~2,

that is f(T3) ∼ S2. The lengths of j and k are

j = ~

√
3

1− sin2(θ)β2
, k = ~β sin(θ)

√
3

1− sin2(θ)β2
.

In the rest coordinate system, when β = 0 this ellipsoid turns into a sphere.
Finally we introduce BMT four-vector of spin which generalizes (10)

Sµ =
1

m̃c
εµναβPνωαπβ =

1

4
√
−P2

εµναβPνJαβ.

Sµ can be expressed in terms of j and vise a versa

S0 =
γ

2
(βj), S =

1

2

(
1

γ
j + γβ(βj)

)
, j = 2γ(S− β(βS)), k = 2γ[S× β].

Four mutually orthogonal vectors ωµ, πµ, Pµ and Sµ allow us to define uniquely a basis
in R1,3. They determine also the following element of SO(1, 3)

Λµν =


(m̃c)−1Pµ

a
−1/2
4 ωµ

a
−1/2
3 πµ

(2a3a4)
−1/2Sµ

 , ΛµαηαβΛνβ = ηµν .

This is the element (12) of SO(3)-group written in the boosted frame (31).
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3.2 Spin fiber bundle T4

Consider the set of Lorentz-covariant constraints

Pω = 0, Pπ = 0, (35)

ωπ = 0, π2 − a

ω2
= 0. (36)

To see their meaning, we pass to the rest frame of Pµ, that is Pµ = (P0,0). Then equations (35)
mean ω0 = π0 = 0. Taking this into account, the remaining constraints determines the following
surface in R6(ω,π)

T4 =
{
ωπ = 0, π2 − a

ω2
= 0
}
, (37)

that is ω and π represent a pair of orthogonal vectors with ends attached to hyperbole y = a
x .

Besides, the constraints (35) imply JµνPν = 0. In the rest frame this gives J i0 = 0, that is
the spin-tensor has only three components which we identify with non-relativistic spin-vector,
Jij = εijkSk. The constraints (37) then imply that the spin-vector belong to two-dimensional
sphere of radius

√
a

JijJij = 8a, or S2 = a, so we assume a =
3~2

4
.

The chosen value of parameter corresponds to spin one-half particle.
Hence, to describe spin in the rest frame, we have six-dimensional space of basic variables

R6(ω,π), the spin-tensor space R3(Jij ∼ S) and the map

f : R6 → R3, f : (ω,π) → S = ω × π, rank
∂(Si)

∂(ωj , πk)
= 3.

f maps the manifold T4 onto spin surface, f(T4) = S2.
Denote F2

S ∈ T4 preimage of a point S ∈ S2, F2
S = f−1(S). Let (ω,π) ∈ F2

S . Then the
two-dimensional manifold F2

S contains all pairs (kω, 1kπ), k ∈ R+, as well as the pairs obtained
by rotation of these (kω, 1kπ) in the plane of vectors (ω,π). So elements of F2

S are related by
two-parametric transformations

ω′ = ωk cosβ + π
k|ω|
|π|

sinβ, π′ = −ω |π|
k|ω|

sinβ + π
1

k
cosβ. (38)

In the result, the manifold T4 acquires natural structure of fiber bundle

T4 =
(
S2,F2, f

)
,

with base S2, standard fiber F2, projection map f and structure group given by transforma-
tions (38). As local coordinates of T4 adjusted with the structure of fiber bundle we can take k, β,
and two coordinates of the vector S. By construction, the structure-group transformations leave
inert points of base, δSi = 0.

The covariant equations (35)–(36) together with the map Jµν = 2ω[µπν] represent this con-
struction in an arbitrary Lorentz frame.

4 Conclusion

Reparametrization symmetry is known to be crucial for Lorentz-covariant description of a spin-
less particle. To describe a spinning particle on the base of vector-like variable, we need one
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more local symmetry written in equation (7). The spin-plane symmetry appears already in non-
relativistic model. Together with two second-class constraints (22), this guarantees the right
number of degrees of freedom and determines physical sector of the model. Variational formula-
tion of the spinning particle implies a singular Lagrangian which leads to a curved phase-space
endowed with the structure of fiber bundle (13). The local symmetry (7) represents transfor-
mations of structure group (14) acting independently at each instance of time, and has clear
geometric interpretation: this corresponds to rotations of the pair ω, π in the plane formed by
these vectors. Equation (15) suggests that the matrix (16), formed from auxiliary variables of
the model, play a role of gauge field associated with the symmetry.

We have described the spin fiber bundles (4) and (6) in Lorentz-covariant form, T3 and T4.
The resulting sets of covariant constraints (32) and (35)–(36) guarantee the Frenkel-type con-
dition (34), so dynamical realization of T3 gives variational formulation for the Frenkel and
BMT equations [12, 28]. The constraints (36) of the space T4 appeared in the model of rigid
particle [15].

In non-relativistic model (17), the spin-plane symmetry acts only in the spin-sector. Relati-
vistic description of spin can lead to nontrivial transformation law of the position variable xµ [11].
This turns out to be crucial point for various issues including the identification of operators of
the Dirac equation with their classical analogs, and analysis of Zitterbewegung phenomenon. For
instance, the model discussed in [10] indicates that the Zitterbewegung represents an evolution
of gauge non-invariant (hence unobservable) variables.
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