
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 10 (2014), 027, 11 pages

The Structure of Line Bundles

over Quantum Teardrops?

Albert Jeu-Liang SHEU

Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA
E-mail: asheu@ku.edu

Received October 07, 2013, in final form March 15, 2014; Published online March 22, 2014

http://dx.doi.org/10.3842/SIGMA.2014.027

Abstract. Over the quantum weighted 1-dimensional complex projective spaces, called
quantum teardrops, the quantum line bundles associated with the quantum principal U(1)-
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groupoid C∗-algebra.
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1 Introduction

In the theory of noncommutative topology or geometry [6], a generally noncommutative C∗-
algebra A or a dense “core” ∗-subalgebra A∞ of it is viewed respectively as the algebra C(Xq)
of continuous functions or the algebra O(Xq) of coordinate functions on an imaginary spatial
object Xq, called a noncommutative space or a quantum space. In many interesting cases, such
an imaginary nonexistent space Xq is closely related to or actually originated from a classical
counterpart, a well-defined topological space or manifold X, and we view Xq or its “function
algebra” C(Xq) or O(Xq) as a quantization of the classical spatial object X.

There have been very intriguing discoveries that a lot of topological or geometric concepts or
properties of a space X are also carried by (the function algebra of) its quantum counterpart Xq.
For example, the concept of a vector bundle E [12] over a compact space X can be reformulated
in the noncommutative context as a finitely generated projective left modules Γ(Eq) over C(Xq),
viewed as the space of continuous cross-sections of some imaginary noncommutative or quantum
vector bundle Eq over Xq, as suggested by Swan’s work [25]. Beyond the well-known K-theoretic
study of such noncommutative vector bundles up to stable isomorphism, the classification of
them up to isomorphism for C∗-algebras was made popular by Rieffel [18, 19] and completed
for some interesting quantum spaces by him and others [1, 16, 19, 20, 22].

When the spatial objectX is actually a topological groupG, the quantization encompasses the
group structure by requiring C(Gq) or O(Gq) to have an additional Hopf ∗-algebra structure, and
we call Gq or its function algebra a quantum group. Generalizing further, we view a surjective
Hopf ∗-algebra homomorphism O(Gq)→ O(Hq) as giving a quantum subgroup Hq of a quantum
group Gq, and view the coinvariant ∗-subalgebra O(Gq/Hq) of O(Gq) for the canonical coaction

O(Gq)
∆R→ O(Gq)⊗O(Hq) as defining a “quantum homogeneous space” Gq/Hq. More generally,
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given a coaction ∆R : O(Xq) → O(Xq) ⊗ O(Hq) of a compact quantum group Hq on a com-
pact quantum space Xq, the coinvariant ∗-subalgebra O(Xq/Hq) of O(Xq) defines a “quantum
quotient space” Xq/Hq.

Classically some internal structure of a vector bundle E over a space X is often carried by
a principal G-bundle P over X for some structure group G represented on some vector space V
such that E = P ×G V . The concept of quantum principal bundles has evolved and become
well developed through years of study [5, 9]. In a recent work of Brzeziński and Fairfax [3], the
quantization of weighted 1-dimensional complex projective spaces WP(k, l), called teardrops by
Thurston, and of principal bundles over them was studied. In particular, the quantum principal
U(1)-bundles and the associated quantum line bundles over the quantum teardrops WPq(k, l)
were introduced and analyzed by Brzeziński and Fairfax. More concretely, they found a family
of quantum line bundles L[n], n ∈ Z, inside a quantum principal U(1)-bundle C(Lq(l; 1, l)) over
WPq(k, l) and showed that the continuous function C∗-algebra C(WPq(k, l)) is isomorphic to
the unitization (Kl)+ of l copies of the algebra K of compact operators.

In this paper, we first show that each of C(Lq(l; 1, l)) and C(WPq(1, l)) can be realized as
a concrete groupoid C∗-algebra [17], following the groupoid approach to study C∗-algebras as ini-
tiated by Renault [17] and popularized by Curto, Muhly, and Renault [7, 14]. Then we explicitly
identify the completed quantum line bundles L[n] among the well-known classified isomorphism
classes of all finitely generated projective left modules over (Kl)+. This identification exhibits
an interesting connection between “winding numbers” and “ranks”.

2 Projective modules

From the analysis point of view, since the category of isomorphism classes of unital commuta-
tive C∗-algebras is equivalent to the category of homeomorphism classes of compact Hausdorff
spaces, the category of isomorphism classes of C∗-algebras provides a natural context for the
development of noncommutative topology or geometry.

In this context, Swan’s theorem [25] makes it legitimate to call an (isomorphism class of)
finitely generated projective left module E over a unital C∗-algebra A an (isomorphism class of)
noncommutative vector bundle over A or more precisely the (generally imaginary, nonexistent)
underlying quantum space. On the other hand, a projection p in the C∗-algebra Mn(A) defines
a left A-module endomorphism ξ ∈ An 7→ ξp ∈ An on the left free A-module An, and its image
is a finitely generated projective left A-module E := Anp. It is well-known that this association
establishes a bijective correspondence between the unitary equivalence classes of projections p
in M∞(A) :=

⋃∞
n=1Mn(A), where Mn(A) is embedded in Mn+1(A) in the canonical way for

each n, and the isomorphism classes of finitely generated projective left modules E over A [2].
Two finitely generated projective left modules E, F over A are called stably isomorphic if

they become isomorphic after being augmented by the same finitely generated free A-module,
i.e. E ⊕ Ak ∼= F ⊕ Ak for some k ∈ N. The K0-group of A classifies such finitely generated
projective modules up to stable isomorphism. The cancellation problem dealing with whether
two stably isomorphic finitely generated projective left modules are actually isomorphic goes be-
yond K-theory and is in general an interesting but difficult question. It was Rieffel’s pioneering
work [18, 19] that brought the cancellation problem to the attentions and interest of researchers
in the theory of C∗-algebras. Over some basic geometrically motivated quantum spaces, the
finitely generated projective left modules have been successfully classified [1, 16, 19, 20, 22].

As a simple example, we now describe the classification of finitely generated projective left
modules over a fairly elementary C∗-algebra, which is relevant to our main result later.

Let K be the algebra of all compact operators on a separable infinite-dimensional Hilbert
space H, say, `2. Recall that for a C∗-algebra A, we use A+ to denote its unitization, a unital
C∗-algebra equal to A ⊕ C as a vector space and endowed with the algebra multiplication



The Structure of Line Bundles over Quantum Teardrops 3

(a, s)(b, t) := (ab + sb + ta, st) and involution (a, s)∗ := (a∗, s) for (a, s), (b, t) ∈ A ⊕ C. In
particular, (Kl)+ ≡ (⊕ls=1K)+ for l ∈ N denotes the unitization of the direct sum of l copies
of K.

The classification of all isomorphism classes of finitely generated projective left modules
over (Kl)+, or equivalently, all unitary equivalence classes of projections in M∞((Kl)+) is fairly
well understood as summarized below. In the following, we use I to denote the multiplicative
unit of the unital C∗-algebra (Kl)+, and Ir to denote the identity matrix in Mr((Kl)+), while

Pn :=

n∑
i=1

eii ∈Mn(C) ⊂ K

denotes the standard n×n identity matrix in Mn(C) ⊂ K for any integer n ≥ 0 (with M0(C) = 0
and P0 = 0 understood). In particular, ⊕lj=1Pkj ∈ Kl for integers kj ≥ 0.

Proposition 1. The projections ⊕lj=1Pkj ∈M1((Kl)+) with kj ∈ Z≥ :=
{
k ∈ Z : k ≥ 0

}
and

Ir−1 ⊕
(
I −

(
⊕lj=1Pnj

))
⊕
(
⊕lj=1Pmj

)
∈Mr+1

((
Kl
)+)

with r ∈ N and nj ,mj ∈ Z≥ such that njmj = 0 for all j represent all unitarily inequivalent
classes of projections in M∞((Kl)+).

3 Quantum spaces and principal bundles

We recall the definition of a compact quantum group by Woronowicz [28] as a unital sepa-
rable C∗-algebra A with a comultiplication ∆ such that (A⊗ 1) ∆A and (1⊗A) ∆A are dense
in A⊗A. It is known [27, 28] that a compact quantum group A contains a dense ∗-sub-
algebra A∞, forming a Hopf ∗-algebra (A∞,∆,∗ , S, ε), and has a Haar state h ∈ A∗ satisfying
h(1) = 1 and

(id⊗h) ∆a = h(a)1 = (h⊗ id) ∆a.

We denote A∞ by O (Gq) if A is denoted as C (Gq).
For a quantum subgroup Hq of a compact quantum group Gq given by a surjective Hopf ∗-

algebra homomorphism r : O (Gq)→ O (Hq), there is a canonical coaction O (Gq)
∆R→ O (Gq)⊗

O (Hq) given by ∆R := (id⊗r) ∆ for the comultiplication ∆ of O (Gq), and the coinvariant
∗-subalgebra

O (Gq/Hq) :=
{
x ∈ O (Gq) : ∆R(x) = x⊗ 1

}
for the coaction ∆R defines a “quantum homogeneous space” Gq/Hq. A fundamental example is
the quantum odd-dimensional sphere S2n+1

q = SUq(n+ 1)/SUq(n) [26] with q ∈ (0, 1) generated

by z0, . . . , zn subject to the relations
n∑

m=0
zmz

∗
m = 1, zizj = qzjzi for i < j, ziz

∗
j = qz∗j zi for

i 6= j, and ziz
∗
i = z∗i zi +

(
q−2 − 1

) n∑
m=i+1

zmz
∗
m.

More generally, given a coaction ∆R : O(Xq) → O(Xq) ⊗ O (Hq) of a compact quantum
group Hq on a compact quantum space Xq, the coinvariant ∗-subalgebra

O (Xq/Hq) :=
{
x ∈ O(Xq) : ∆R(x) = x⊗ 1

}
defines a “quantum quotient space” Xq/Hq. An interesting example is the quantum weighted
complex projective space WPq(l0, . . . , ln) with q ∈ (0, 1) [3], for pairwise coprime numbers
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l0, . . . , ln ∈ N, which is the quantum quotient space for the coaction of O(Uq(1)) ≡ O(U(1)) =
C [u, u∗] on O(S2n+1

q ) defined by

zi ∈ O
(
S2n+1
q

)
7→ zi ⊗ uli ∈ O

(
S2n+1
q

)
⊗O(U(1)) for i = 0, . . . , n.

As special cases, this includes the quantum complex projective space CPnq when l0 = · · · = ln = 1,
and the so-called quantum teardrop WPq(k, l) with coprime k, l when n = 1.

Brzeziński and Fairfax [3] determined that S3
q is a quantum principal U(1)-bundle over

WPq(k, l), or more precisely, the algebra O(S3
q ) is a principal O(U(1))-comodule algebra over

O(WPq(k, l)), if and only if k = l = 1. This result is consistent with the classical U(1)-action
(z, w) 7→ (ukz, ulw) for u ∈ T on S3. Furthermore they found that the quantum lens space
Lq(l; 1, l) [11] provides the total space of a quantum principal U(1)-bundle over WPq(1, l), where
Lq(l; 1, l) is the quantum quotient space defined by the coaction ρ : O(S3

q ) → O(S3
q ) ⊗ O(Zl)

with ρ(α) = α ⊗ w and ρ(β) = β ⊗ 1 where α := z0 and β := z∗1 generate O(S3
q ) ≡ O(SUq(2)),

and w is the unitary group-like generator of O(Zl) with wl = 1. More explicitly, O(Lq(l; 1, l)) is
the ∗-subalgebra of O(SUq(2)) generated by c := αl and d := β, and a well-defined coaction

ρl : O(Lq(l; 1, l))→ O(Lq(l; 1, l))⊗O(U(1))

with ρl(c) := c ⊗ u and ρl(d) := d ⊗ u∗ makes O(Lq(l; 1, l)) a quantum principal U(1)-bundle
over WPq(1, l).

Corresponding to the irreducible (1-dimensional) representations of U(1) indexed by n ∈ Z,
we have the irreducible corepresentations of O(U(1)) on some left comodules denoted as Wn.
Following the general theory of constructing finitely generated projective modules from quantum
principal bundles and finite-dimensional corepresentations [4], Brzeziński and Fairfax took the
cotensor product of O(Lq(l; 1, l)) with Wn over O(U(1)) to get a finitely generated projective
module L[n] ⊂ O(Lq(l; 1, l)) over O(WPq(1, l)), naturally called a quantum line bundle over
WPq(1, l), and they computed an idempotent matrix E[n] over O(WPq(1, l)) implementing the

projective module L[n] with complicated entries E[n]ij = ω(un)[2]iω(un)[1]j , where ω(un) =∑
i
ω(un)[1]i ⊗ ω(un)[2]i comes from a strong connection

ω : O(U(1))→ O(Lq(l; 1, l))⊗O(Lq(l; 1, l)),

and showed in particular that the O(WPq(1, l))-module L[1] is not free.
Furthermore Brzeziński and Fairfax found the enveloping C∗-algebra of O(WPq(k, l)) as

C(WPq(k, l)) ∼= (Kl)+ and computed its K-groups from the exact sequence

0→ Kl ≡ ⊕lj=1K →
(
Kl
)+ ≡ C (WPq (k, l))→ C→ 0.

It is then a natural and interesting question to identify explicitly the completed quantum line
bundles

L[n] ≡ C (WPq(1, l))⊗O(WPq(1,l)) L[n] =
(
Kl
)+ ⊗O(WPq(1,l)) L[n]

over C(WPq(1, l)) for all n ∈ Z among the finitely generated projective modules over (Kl)+

already well classified.

4 Quantum lens space as groupoid C∗-algebra

In the past, there have been successful studies of the structure of some interesting C∗-algebras [7,
14, 21, 23, 24] by realizing them first as a concrete groupoid C∗-algebra, following the groupoid
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approach to C∗-algebras initiated by Renault [17] and popularized by the work of Curto, Muhly,
and Renault [7, 14]. In this section, we first identify the C∗-algebra C(Lq(l; 1, l)) for q ∈ (0, 1)
with a concrete groupoid C∗-algebra, and then find an explicit description of the structure
of C(Lq(l; 1, l)). We construct the groupoid directly from the irreducible representations of
C(Lq(l; 1, l)) classified by Brzeziński and Fairfax [3]. Our approach should be compared with
the machinery developed by Kumjian, Pask, Raeburn, Renault, and Paterson in [13, 15] that
associates groupoid C∗-algebras to graph C∗-algebras.

By Proposition 2.4 of [3], the faithful ∗-representation π⊕ ≡ ⊕ls=1πs of O(WPq(1, l)) on
⊕ls=1Vs factors through the key ∗-representation π of O(SUq(2)) on V ∼= ⊕ls=1Vs, where each
Vs ∼= `2(Z≥) for Z≥ := {k ∈ Z : k ≥ 0}, and by Proposition 5.1 of [3], π⊕ ≡ ⊕ls=1πs extends to
a faithful ∗-representation of C(WPq(1, l)) identifying C(WPq(1, l)) with (Kl)+.

Using the classification [3] of irreducible ∗-representations of O(Lq(l; 1, l)) ⊂ O(SUq(2)) as πλs
for s = 0, 1, . . . , l and λ ∈ T, we can realize C(Lq(l; 1, l)) as a groupoid C∗-algebra as follows.

For s > 0 and λ ∈ T, each πλs is an irreducible representation of O(Lq(l; 1, l)) on `2(Z≥)
such that πλs (c) for any fixed s is the same weighted unilateral shift independent of λ, with

strictly positive weights
l∏

m=1

√
1− q2(pl+s−m) and different from the (backward) unilateral shift S

on `2(Z≥), that sends the standard basis vector ep of `2(Z≥) to ep−1 (with e−1 := 0), only by
a compact operator, while ⊕ls=1π

λ
s (d) = λ(⊕ls=1π

1
s(d)) with ⊕ls=1π

1
s(d) a compact diagonal

operator on ⊕ls=1`
2(Z≥) with distinct nonzero eigenvalues qpl+s, p ∈ Z≥. Applying functional

calculus to ⊕ls=1π
λ
s (d) to get scaled diagonal matrix units and then composing with powers of

⊕ls=1π
λ
s (c) or its adjoint, we can get all matrix units for each component `2(Z≥) of ⊕ls=1`

2(Z≥)
and hence for each λ ∈ T,

⊕ls=1K
(
`2(Z≥)

)
⊂
(
⊕ls=1π

λ
s

)
(O (Lq (l; 1, l))).

On the other hand, (⊕ls=1π
λ
s )(c) modulo ⊕ls=1K(`2(Z≥)) is the direct sum of l copies of the

same unilateral shift S. So the image C∗-algebra πλs (O(Lq(l; 1, l))) is the standard Toeplitz C∗-
algebra T , with σ(πλs (c)) = idT and σ(πλs (d)) = 0 for all s, where σ : T → C(T) is the standard
symbol map of T , while for the image C∗-algebra of the direct sum ⊕ls=1π

λ
s , we have a short

exact sequence

0→ ⊕ls=1K
(
`2(Z≥)

)
→
(
⊕ls=1π

λ
s

)
(O (Lq (l; 1, l)))→ C (T)→ 0.

Note that each of the one-dimensional irreducible representations πµ0 of O(Lq(l; 1, l)) with
πµ0 (c) = µ ∈ T and πµ0 (d) = 0 factors through each πλs , or more explicitly, πµ0 = ηµ ◦ σ ◦ πλs
for the evaluation character ηµ : C(T) → C with ηµ(f) := f(µ). Hence the T-parameter
family

{
⊕ls=1π

λ
s

}
λ∈T of representations together represent faithfully the enveloping C∗-algebra

C(Lq(l; 1, l)) of O(Lq(l; 1, l)).
More effectively, we can merge the T-parameter family

{
⊕ls=1π

λ
s

}
λ∈T of representations of

O(Lq(l; 1, l)) into one representation ⊕ls=1π̃s on the Hilbert space L2(T) ⊗ (⊕ls=1`
2(Z≥)) or

equivalently on `2(Z) ⊗ (⊕ls=1`
2(Z≥)) via the Fourier transform on T. More precisely, we have

⊕ls=1π̃s(c) = id`2(Z)⊗(⊕ls=1π
1
s(c)) and π̃s(d) = U ⊗ (⊕ls=1π

1
s(d)) for the (backward) bilateral

shift U on `2(Z). Clearly ⊕ls=1π̃s is a faithful representation of O(Lq(l; 1, l)) and extends to
a faithful representation of C(Lq(l; 1, l)). In the following, we denote by π̃⊕ := ⊕ls=1π̃s this
faithful representation of C(Lq(l; 1, l)) on `2(Z)⊗ (⊕ls=1`

2(Z≥)).
Now we consider the (r-discrete) groupoid

G := Z×


Z n

(
l⊔

s=1

Z

)+
∣∣∣∣∣∣( l⊔

s=1
Z≥

)+


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which is the direct product of the group Z and the transformation groupoid Z n
(

l⊔
s=1

Z
)+

restricted to the positive half

(
l⊔

s=1
Z≥
)+

, where

(
l⊔

s=1
Z
)+

is the one-point compactification of

the disjoint union
l⊔

s=1
Z of l copies of Z, and Z acts canonically by translation on each component

Z of
l⊔

s=1
Z ⊂

(
l⊔

s=1
Z≥
)+

while fixing the point at infinity ∞ ∈
(

l⊔
s=1

Z
)+

. More explicitly,

(k,m, p)s
(
k′,m′, p′

)
s

=
(
k + k′,m+m′, p′

)
s

exactly when p = p′ +m′ for k, k′,m,m′ ∈ Z and p, p′ ∈ Z≥, where the subscript s in (k,m, p)s

and (k′,m′, p′)s indicates that p and p′ come from the same s-th component of
l⊔

s=1
Z≥. We

remark that with the group Z2 being amenable, the full groupoid C∗-algebra of G is the same
as its reduced groupoid C∗-algebra by Proposition 2.15 of [14].

Before proceeding further, we introduce an open subgroupoid F of G defined by

F :=

Z×


Z n

(
l⊔

s=1

Z

)+
∣∣∣∣∣∣ l⊔

s=1
Z≥


 ∪ ({0} × (Z n {∞})) ⊂ G.

Let ρ̃ be the representation of the groupoid C∗-algebra C∗(F) induced off the counting mea-

sure µ supported on the set
l⊔

s=1
{0} that generates the dense invariant open subset

l⊔
s=1

Z≥ of the

unit space

(
l⊔

s=1
Z≥
)+

. By Proposition 2.17 of [14] (or by a direct inspection for this fairly simple

r-discrete groupoid), ρ̃ is faithful. We note that the representation space of ρ̃ is isomorphic to

`2

(
Z×

(
l⊔

s=1

Z≥

))
≡ `2 (Z)⊗

(
⊕ls=1`

2(Z≥)
)
,

and that

π̃⊕ (c) = ρ̃

 l∑
s=1

 ∞∑
p=1

(
l∏

m=1

√
1− q2(pl+s−m)

)
δ(0,−1,p)s

 ,

where the argument of ρ̃ is understood as an element of Cc(F) ⊂ Cc (G) with value equal to

lim
p→∞

(
l∏

m=1

√
1− q2(pl+s−m)

)
= 1 (for any s)

at the point (0,−1,∞) ∈ F ⊂ G while vanishing at (k,m,∞) ∈ G for all (k,m) 6= (0,−1). Also
we have

π̃⊕ (d) = ρ̃

 l∑
s=1

 ∞∑
p=0

qpl+sδ(−1,0,p)s

 ,

where the argument of ρ̃ is an element of Cc(F) ⊂ Cc(G) with value equal to lim
p→∞

qpl+s = 0 (for

any s) at the point (k,m,∞) for all (k,m).
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Now via ρ̃−1◦π̃, we can view c, d as elements of Cc(F) ⊂ C∗(F) and hence view C(Lq(l; 1, l)) as
embedded in C∗(F). Applying functional calculus to d∗d, we can get Cδ(0,0,p)s ⊂ C(Lq(l; 1, l)) for
all p ∈ Z≥ and 1 ≤ s ≤ l, and then by composing with c∗ and d∗, we get Cδ(0,1,p)s and Cδ(1,0,p)s

contained in C(Lq(l; 1, l)) for any p ∈ Z≥ and 1 ≤ s ≤ l, which generate the convolution
∗-subalgebra

Cc

F
∣∣∣ l⊔
s=1

Z≥

 ⊂ C∗(F)
ρ̃
⊂ B

(
`2 (Z)⊗

(
⊕ls=1`

2(Z≥)
))

.

On the other hand, for any n ∈ Z, the |n|-th power of c or c∗ provides an element of Cc (F)
having a nonvanishing positive value at every point in

{(0, n, p)s : p ∈ Z≥, 1 ≤ s ≤ l} ∪ {(0, n,∞)}

while vanishing at all other points of F. So the C∗-subalgebra C (Lq (l; 1, l)) of C∗(F) contains
all elements of Cc (F) and hence equals C∗(F).

We summarize:

Theorem 1. C (Lq (l; 1, l)) ∼= C∗(F), where F is the topological groupoid

F =

Z×

Z n

(
l⊔

s=1

Z

)+
∣∣∣∣∣∣( l⊔

s=1
Z≥

)+


 \ [(Z\{0})× (Z n {∞})] .

In the general theory of groupoid C∗-algebras [17], open invariant subsets and their comple-
ments in the unit space of a groupoid give rise respectively to closed ideals and quotients of its
groupoid C∗-algebra, and under suitable conditions the association is bijective which broadens
a result of Gootman and Rosenberg [8] for transformation groups.

Decomposing the base space

(
l⊔

s=1
Z≥
)+

of F into the open invariant subspace
l⊔

s=1
Z≥ and its

closed invariant complement {∞}, we get the closed ideal

C∗

F
∣∣∣ l⊔
s=1

Z≥

 = C∗

(
Z×

(
l⊔

s=1

(Z n Z) |Z≥

))
∼= C (T)⊗Kl

of C∗(F) and the quotient

C∗(F)/C∗

F
∣∣∣ l⊔
s=1

Z≥

 ∼= C∗ (Z n {∞}) ∼= C (T) ,

which can be summarized as follows.

Corollary 1. There is a short exact sequence of C∗-algebras

0→ C(T)⊗Kl → C(Lq(l; 1, l))→ C(T)→ 0.

In fact, from the above analysis, we actually have the following explicit description

C(Lq(l; 1, l)) =
{

(a1, . . . , al) ∈ ⊕ls=1C(T, T ) : σ ◦ a1 = · · · = σ ◦ al constant on T
}

in terms of the standard Toeplitz C∗-algebra T and its symbol map σ : T → C(T).
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5 Line bundles over quantum teardrops

In this section, we identify concretely the quantum line bundles L[n] over C(WPq(1, l)) ∼= (Kl)+

for q ∈ (0, 1). First we recall that the coaction ρl of O(U(1)) on O(Lq(l; 1, l)) gives a Z-grading
of O(Lq(l; 1, l)) with c of degree 1 and d of degree −1, such that O(WPq(1, l)) generated by
b := cd and a := dd∗ is the degree-0 component of O(Lq(l; 1, l)), while L[n] is the degree-n
component of O(Lq(l; 1, l)) for general n ∈ Z [3].

Now we introduce a compatible Z-grading on the convolution ∗-algebra Cc(F), based on the
groupoid structure. We define the homogeneous degree-n component as Cc(F)n := Cc

(
Fn
)

for
the open set

Fn :=

l⊔
s=1

{(k, k − n, p)s : p ∈ Z≥, n− p ≤ k ∈ Z} ∪ {(0,−n,∞)} ⊂ F.

Note that F =
⊔
n∈Z

Fn and Cc(F) = ⊕n∈ZCc(Fn) becomes a Z-graded ∗-algebra with deg(δ(k,m,p)s)

= k−m. Furthermore c ∈ Cc(F1) and d ∈ Cc(F−1) for the generators c, d ∈ O(Lq(l; 1, l)) ⊂ Cc(F)
of O(Lq(l; 1, l)). So this groupoid Z-grading on Cc(F) when restricted to the ∗-subalgebra
O(Lq(l; 1, l)) ⊂ Cc(F) coincides with the original Z-grading on O(Lq(l; 1, l)). So when viewed as
elements of Cc(F), the elements of L[n] ⊂ O(Lq(l; 1, l)) are homogeneous of degree n. That is

L[n] ⊂ Cc(F)n ≡ Cc
(
Fn
)
.

Also note that Cc(F)0 = Cc(F0) where F0 ⊂ F consisting of (0, 0,∞) and elements of the
form (m,m, p)s with p,m + p ∈ Z≥ is an open subgroupoid of F. It is clear that the ∗-algebra
Z-grading structure on Cc(F) makes each Cc(F)n a left Cc(F)0-module.

By the analysis already done on L[0] = O(WPq(1, l)) in [3] or a direct analysis of the gene-
rators a, b of O(WPq(1, l)) ≡ L[0] ⊂ Cc(F0), we get

Cc(F0) ⊂ C(WPq(1, l)) = C∗(F0) ⊂ C∗(F) ≡ C(Lq(l; 1, l)).

In particular, C(WPq(1, l)) is realized as the groupoid C∗-algebra of the subgroupoid F0 of F.

Let L[n] be the completion of L[n] in C∗(F) = C(Lq(l; 1, l)). In the following, we show that

L[n] is a finitely generated projective left module over C(WPq(1, l)) ⊂ C∗(F), and hence we can
make the canonical identification

L[n] ≡ C(WPq(1, l))⊗O(WPq(1,l)) L[n].

It is easy to see that the O(WPq(1, l))-module structure on L[n] by left multiplication in
C(Lq(l; 1, l)) is consistent with the Cc(F)0-module structure on Cc(F)n under the embeddings
of O(WPq(1, l)) ≡ L[0] ⊂ Cc(F)0 and L[n] ⊂ Cc(F)n into C∗(F) = C(Lq(l; 1, l)).

On the other hand, we have Cc(F)n ⊂ L[n] ⊂ C(Lq(l; 1, l)) ≡ C∗(F), using our knowledge of

the |n|-th power of c or c∗ and that Cc(F0) ⊂ L[0]. So

L[n] = Cc(F)n ⊂ C∗(F)

for each n.

Let Xm :=
l⊔

s=1
{(p+m, p)s : p ≥ 0} ⊂ Z×

(
l⊔

s=1
Z≥
)

for m ∈ Z, with

`2

(
Z×

(
l⊔

s=1

Z≥

))
=
⊕
m∈Z

`2(Xm).
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Note that for all m ∈ Z,

ρ̃(c)
(
`2(Xm)

)
, ρ̃(d∗)

(
`2(Xm)

)
⊂ `2(Xm+1)

while

ρ̃(b)
(
`2(Xm)

)
, ρ̃(a)

(
`2(Xm)

)
⊂ `2(Xm).

More generally, for all m ∈ Z,

ρ̃
(
L[n]

)(
`2(Xm)

)
= ρ̃
(
Cc(F)n

)(
`2(Xm)

)
⊂ `2(Xm+n).

Identifying (p + m, p)s ∈ Xm with p in the s-th copy of Z≥ in
l⊔

s=1
Z≥, we get a unitary

operator

um : `2(Xm)→ `2

(
l⊔

s=1

Z≥

)
∼= ⊕ls=1`

2(Z≥)

that intertwines ρ̃(b)|`2(Xm) and ρ̃(a)|`2(Xm) with π⊕(b) and π⊕(a) respectively. More generally,

the operator um◦ρ̃(f)◦u−1
m−n ∈ B(⊕ls=1`

2(Z≥)) for f ∈ Cc(F)n ≡ Cc
(
Fn
)

is independent ofm, and

hence L[n] = Cc(F)n is embedded isometrically into B(⊕ls=1`
2(Z≥)) by ρn,m := um ◦ ρ̃(·) ◦ u−1

m−n
for any m ∈ Z. Note that the L[0]-module structure on L[n] is consistent with the ρ0,0

(
L[0])-

module structure on ρn,0
(
L[n]) under the embedding ρn,0, where

ρ0,0

(
L[0]

)
= C(WPq(1, l)) ∼=

(
⊕ls=1K

)+ ≡ (⊕ls=1K(`2(Z≥))
)+
.

Furthermore, since um ◦ ρ̃(χCn) ◦ u−1
m−n = ⊕ls=1Sn with S the backward unilateral shift on

`2(Z≥) as defined previously, for the characteristic function χCn ∈ Cc
(
Fn
)

of the open and
compact set

Cn := {(0,−n, p)s : n ≤ p ∈ Z≥} ∪ {(0,−n,∞)} ⊂ Fn,

we have

um ◦ ρ̃
(
L[n]

)
◦ u−1

m−n = um ◦ ρ̃
(
Cc
(
Fn
))
◦ u−1

m−n =
(
⊕ls=1K

)
+ C

(
⊕ls=1Sn

)
which is isomorphic, as a left (⊕ls=1K)+-module, to((

⊕ls=1K
)+ ⊕ (⊕ls=1K

)+)(
I1 ⊕

(
⊕ls=1Pn

))
if n ≥ 0, and to(

⊕ls=1K
)+(

I −
(
⊕ls=1P−n

))
if n < 0, where we recall that I1 denotes the identity matrix in M1((⊕ls=1K)+) while I denotes
the identity element of (⊕ls=1K)+, and hence I1 ⊕ (⊕ls=1Pn) ∈M2((⊕ls=1K)+) while

I −
(
⊕ls=1P−n

)
∈
(
⊕ls=1K

)+
= M1

((
⊕ls=1K

)+)
.

As summarized below, we have the modules L[n] identified concretely among the finitely
generated projective left modules over (Kl)+ enumerated earlier in Section 2.
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Theorem 2. L[n] is isomorphic to the projective left module over C(WPq(1, l)) ∼= (Kl)+ for
q ∈ (0, 1) determined by the projection I1 ⊕ (⊕lj=1Pn) ∈M2((Kl)+) if n ≥ 0, and the projection

I − (⊕lj=1P−n) ∈M1((Kl)+) if n < 0.

It is interesting to note that this theorem exhibits some kind of an index relation between
the “winding number” n of the line bundle L[n] and the “rank” of its representative projection
I1 ⊕ (⊕lj=1Pn) or I − (⊕lj=1P−n).

Finally, we mention the classification of isomorphism classes of finitely generated projective
left modules over the quantum 3-sphere by Bach [1] which shows that the projections 1 ⊗ Pk
with k ≥ 0 and Ir with r ∈ N represent all unitarily inequivalent classes of projections in
M∞(C(S3

q )). In view of this classification, we observe that C(S3
q )⊗C(WPq(1,l)) L[n] for all n ∈ Z

is the same rank-1 free module over C(S3
q ), showing that these non-isomorphic quantum line

bundles L[n] over WPq(1, l) pull back to the same quantum line bundles over S3
q via the quotient

map S3
q →WPq(1, l). This phenomenon resembles the well-known classical result that the pull-

back, to the total space P , of a vector bundle P ×GV → X associated with a principal G-bundle
P → X for some G-vector space V is always trivial. In fact, this classical theorem has a general
quantum counterpart [10].
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