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Abstract. We consider the deformation of the Poincaré group in 2+1 dimensions into the
quantum double of the Lorentz group and construct Lorentz-covariant momentum-space
formulations of the irreducible representations describing massive particles with spin 0, 1

2
and 1 in the deformed theory. We discuss ways of obtaining non-commutative versions
of relativistic wave equations like the Klein–Gordon, Dirac and Proca equations in 2+1
dimensions by applying a suitably defined Fourier transform, and point out the relation
between non-commutative Dirac equations and the exponentiated Dirac operator considered
by Atiyah and Moore.
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1 Introduction

It is well-known that the important linear wave equations of relativistic physics can be obtained
by Fourier transforming the irreducible representations of the Poincaré group. The Klein–
Gordon, Dirac and Proca equations, for example, are Fourier transforms of momentum-space
constraints for, respectively, spin 0, 1

2 and 1 in Wigner’s classification of irreducible Poincaré
representations in terms of mass and spin [8, 43].

In this paper, we discuss this picture for the case of (2+1)-dimensional Minkowski space,
and then consider a deformation of it where the Poincaré symmetry is deformed into a non-
cocommutative quantum group, namely the quantum double of the Lorentz group in 2+1 di-
mensions, or Lorentz double for short [6, 7, 26]. The deformation involves a parameter of
dimension inverse mass, and deforms flat momentum space of ordinary special relativity into
anti-de Sitter space; in 2+1 dimensions, this happens to be isometric to the identity component
of the Lorentz group.

The Lorentz double plays an important role in (2+1)-dimensional quantum gravity [6, 7, 33,
34, 40]. In that context, the deformation parameter is related to Newton’s constant. We will
not discuss the gravitational interpretation much in this paper and refer to the review [41] for
details and references. Instead we focus on general, structural features of our (2+1)-dimensional

?This paper is a contribution to the Special Issue on Deformations of Space-Time and its Symmetries. The
full collection is available at http://www.emis.de/journals/SIGMA/space-time.html
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example, treating it as a case study of more general deformations of momentum spaces to curved
manifolds.

Such deformations have been considered in various guises and with different motivations in
the physics literature. Early considerations of curvature in momentum space include the work
of Born [11] on a duality between position and momentum, and also the influential paper by
Snyder [42] where momentum space is taken to be the de Sitter manifold. Majid’s bicrossproduct
construction [28, 29] provides a mathematical framework for deforming spacetime symmetries
which naturally accommodates curved momentum space. The famous deformation of Poincaré
symmetry into the κ-Poincaré algebra [27] was later seen to fit into this framework [30]. In
recent years, phenomenological implications of these ideas have been explored extensively under
the headings of ‘doubly special relativity’ [2] and ‘relative locality’ [3].

In our (2+1)-dimensional theory, position coordinates, which are translation generators in
momentum space, no longer commute. Instead, they satisfy the Lie algebra of the Lorentz group
in 2+1 dimensions and act on the Lorentz group-valued momenta by infinitesimal multiplication
(see [32] for an early discussion of this point and [41] for a review and further references). One
therefore expects that Fourier transforming the irreducible representations of the Lorentz double,
where states are functions on momentum spaces, will lead to covariant wave equations on a non-
commutative spacetime.

In this paper, we take the first steps towards realising that expectation. Our treatment
follows a similar discussion of the Euclidean situation in [31], which is our main reference. As
we shall see, the Lorentzian situation is considerably more involved than the Euclidean case.

We begin, in Section 2, by writing the unitary irreducible representations (UIR’s) of the usual
(2+1)-dimensional Poinaré group in a covariant form that allows us to obtain relativistic wave
equations via Fourier transform. Even though the wave equations we obtain are the standard
Klein–Gordon, Dirac and Proca equation in 2+1 dimensions, our method for obtaining them
does not appear to have been considered in the literature.

A full classification the UIR’s of the Poincaré group in 2+1 dimensions was first given by
Binegar in [10], where he also discusses the possibility – and difficulties – of writing the UIR’s
in terms of fields on Minkowski space obeying covariant wave equations. A complete analysis of
relativistic wave equations in 2+1 dimensions is given in [18] from the point of view of generalised
regular representations. Our approach gives a less general treatment of the Poincaré UIR’s, but
maintains the link via Fourier transform between momentum space and position space. This link
is essential in our derivation of non-commutative wave equations from irreducible representations
of the Lorentz double in subsequent sections.

In Section 3, we review the representation theory of the Lorentz double and then adapt
the covariantisation procedure developed in Section 2 to the irreducible representations of the
Lorentz double, still following the treatment of the Euclidean situation in [31]. Section 4 is
concerned with the translation of the momentum space constraints into a spacetime picture.
We use two different kinds of Fourier transform to obtain wave equations from the covariant
momentum constraints. One is a Fourier transform adapted to quantum groups [24, 29] where
‘plane waves’ are elements of the Lorentz group and the resulting wave equations are defined on
the (suitably completed) universal enveloping algebra of the Lie algebra of the Lorentz group.
The second is a group Fourier transform which, in the model considered here, leads to wave
equations for functions on R3 with a certain ?-product [15, 16, 17, 20, 21, 38, 39]. We discuss
the relationship between the various notions of Fourier transform and point out an interesting
connection with the exponentiated Dirac operator recently proposed by Atiyah and Moore in [5].

As a caveat we should say that our treatment in Section 4 is far from complete; it is designed
to point out interesting questions posed by the results of our Section 3 and to prepare the
ground for tackling them. Examples of such questions are discussed in our final Section 5,
which contains our conclusion and outlook.
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2 Relativistic wave equations in 2+1 dimensions

2.1 Conventions and notation

We denote (2+1)-dimensional Minkowski space by R2,1 and use the ‘mostly minus’ convention
for the Minkowski metric η = diag(1,−1,−1). We write elements of R2,1 as x, y, . . . with
x = (x0, x1, x2) and

η(x, y) = ηabx
ayb = x0y0 − x1y1 − x2y2.

Latin indices range over 0, 1, 2 and summation over repeated indices is implied.

The group of linear transformations of R2,1 that leave η invariant is the Lorentz group L3 =
O(2, 1). It has four connected components. We are mainly interested in the identity component –

the subgroup of proper orthochronous Lorentz transformations, denoted L+↑
3 .

The group of affine transformations that leave the Minkowski distance η(x−y, x−y) invariant
is the semidirect product L3 n R3 of the Lorentz group with the abelian group of translations.
We call it the extended Poincaré group. Its identity component is the Poincaré group, which we
denote as

P3 = L+↑
3 nR3.

For the semidirect product we use the conventions of [31], which allow for an easy extension to
the quantum group deformation in the next section but are different from those mostly used in
the physics literature. In our conventions, the product of (Λ1, a1), (Λ2, a2) ∈ P3 is given by

(Λ1, a1)(Λ2, a2) = (Λ1Λ2,Λ2a1 + a2).

One advantage of this convention is that the ordering of the elements can be interpreted as
a factorisation: (Λ, a) = (Λ, 0)(I, a), where I is the identity in O(2, 1).

The action of (Λ, a) ∈ P3 on the Minkowski space is then the right action

(Λ, a) : x 7→ x / (Λ, a) = Λx+ a.

For a full classification of possible excitations in (2+1)-dimensional relativistic physics, in-
cluding the anyonic ones, one needs to study the projective UIR’s of P3. These are given by
the ordinary UIR’s of the universal covering group of P3, which are studied in detail in [19].
Wave equations for anyonic wave functions with infinitely many components are investigated
in [22]. In this paper, we work with the double cover SL(2,R) of L+↑

3 and hence the double
cover P̃3 = SL(2,R) n R3 of the Poincaré group. The main reason for this is the convenience
of working with 2 × 2 matrices, and an easier link with the existing literature on the Lorentz
double, which mostly uses a formulation based on SL(2,R). Note also that, in 3+1 dimensions,
the double cover of the Poincaré group is the universal cover.

It turns out to be natural and convenient to interpret the translation group R3 as the vector
space sl(2,R)∗ dual to sl(2,R). Then P̃3 = SL(2,R)n sl(2,R)∗, where SL(2,R) acts on sl(2,R)∗

via the coadjoint action. The right-action of (g, a) ∈ P̃3 on Minkowski space sl(2,R)∗ is then
given by

(g, a) : sl(2,R)∗ 3 x 7→ x / (g, a) = Ad∗g x+ a.

This action preserves the Minkowski metric η on sl(2,R)∗.1

1We can think of η as being induced by the Killing form on the dual (sl(2,R)∗)∗, but this is not essential in
the following.
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The Lie algebra p3 = sl(2,R)nsl(2,R)∗ is six dimensional, with translation generators P0, P1

and P2, rotation generator J0 and boost generators J1 and J2. They satisfy the commutation
relations:

[Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcP

c, [Pa, Pb] = 0, a, b = 0, 1, 2, (2.1)

where indices are raised via the inverse Minkowski metric ηab and εabc is the totally antisymmetric
tensor in three dimensions normalised such that ε012 = 1. We are using conventions where the
structure constants in the Lie algebra are real. This has the advantage that we can exponentiate
to obtain group elements without needing to insert the imaginary unit i. Our conventions differ
from those in [31] in this respect.

The vector spaces sl(2,R) and sl(2,R)∗, which make up p3, are in duality, and the natural
pairing between them is invariant and non-degenerate. This pairing plays an important role in
the Chern–Simons formulation of 2+1 gravity [1, 41, 45], where it is normalised via Newton’s
constant G:

〈Ja, Pb〉 =
1

8πG
ηab, 〈Ja, Jb〉 = 〈Pa, Pb〉 = 0. (2.2)

2.2 Irreducible unitary representations of P̃3

The UIR’s of P̃3 are classified in terms of SL(2,R) orbits in (sl(2,R)∗)∗ together with UIR’s of
associated stabiliser groups [8]. Since (sl(2,R)∗)∗ = sl(2,R), these orbits are nothing but adjoint
orbits of SL(2,R). The following is a convenient basis of sl(2,R), whose detailed properties are
summarised in Appendix A:

t0 =
1

2

(
0 1
−1 0

)
, t1 =

1

2

(
1 0
0 −1

)
, t2 =

1

2

(
0 1
1 0

)
. (2.3)

However, we need to be careful about normalisation. The normalisation of {ta}a=0,1,2 is fixed
by the commutation relations (A.3). The normalisation of the basis {P ∗a}a=0,1,2, which is dual
to the basis {Pa}a=0,1,2 used in (2.1), may be different. Therefore, we should allow

P ∗a = λta, a = 0, 1, 2,

where λ is an arbitrary constant of dimension inverse mass. In Section 3, we use the invari-
ant pairing (2.2) to identify sl(2,R)∗ with sl(2,R), and P ∗a with 8πGJa. The commutation
relations (2.1) then fix λ = 8πG.

We denote elements of momentum space sl(2,R) as p, which we expand as

p = paP
∗a = λpat

a.

The adjoint action of SL(2,R) on sl(2,R) leaves invariant the inner product

− 2

λ2
tr(pq) = paq

a. (2.4)

In the following, we take p2 to mean pap
a, not the square of the matrix p.

The orbits of the SL(2,R) adjoint action on p ∈ sl(2,R) are labelled by the value of the
invariant inner product p2. The different cases are naturally distinguished by the timelike (T),
spacelike (S) or lightlike (L) nature of the elements p on a given orbit.

T: There are two disjoint families of orbits, corresponding to the different possible signs of
a real parameter m 6= 0. Starting from the timelike representative element p̂ = λmt0, the orbits

OTm =
{
vλmt0v−1

∣∣ v ∈ SL(2,R)
}

=
{
λpat

a ∈ sl(2,R)
∣∣∣ p2 = m2,

p0
m
> 0
}
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are the ‘forward’ and ‘backward’ sheets of the two-sheeted mass hyperboloid for, respectively,
m > 0 and m < 0. The associated stabiliser group is

NT =
{

exp
(
φt0
)
|φ ∈ [0, 4π)

}
' U(1).

Its UIR’s are labelled by s ∈ 1
2Z; the half-integer values arise because of the range of φ for

elements of the form eφt
0 ∈ SL(2,R).

The parameters |m| and s can be interpreted as the mass and the spin of a particle. We
allow m to be either positive or negative, corresponding to the cases of a particle or antiparticle.
Further note that, in contrast to the 3+1 dimensional case, the spin s can also be either positive
or negative. In fact, spin in 2+1 dimensions violates parity P and time-reversal T unless two
species with opposite spin are included in a theory [12].

S: Picking a typical spacelike representative element p̂ = λµt1, the resulting orbit

OSµ =
{
vλµt1v−1

∣∣ v ∈ SL(2,R)
}

=
{
λpat

a ∈ sl(2,R)
∣∣ p2 = −µ2 < 0

}
is a single-sheeted hyperboloid. The real parameter µ is strictly positive. The associated sta-
biliser is

NS =
{
± exp

(
ϑt1
)
|ϑ ∈ R

}
' R× Z2,

and its UIR’s are labelled by pairs (s, ε), with s ∈ R, ε = ±1. Empirically, particles with
spacelike momenta – so-called tachyons – do not exist in the physical 3+1 dimensions.

L: There are again two possibilities corresponding to the different possible signs of p0. Picking
the lightlike representative elements p̂ = ±E+ = ±(t0 + t2) introduced in (A.5), we obtain the
‘forward’ and ‘backward’ light cones as orbits:

OL± =
{
± vE+v−1 | v ∈ SL(2,R)

}
=
{
λpat

a ∈ sl(2,R) | p2 = 0, ±p0 > 0
}
.

The stabiliser group in both cases is

NL =
{
± exp(zE+) | z ∈ R

}
' R× Z2.

Its UIR’s are again labelled by pairs (s, ε), with s ∈ R, ε = ±1.

V: The ‘vacuum’ orbit {0} consists solely of the origin and the associated stabiliser is the
whole group SL(2,R). The irreducible representations of SL(2,R) can, for instance, be found
in [25].

There are two standard ways of writing down the UIR’s of semidirect product groups like P̃3,
both using the orbits and stabiliser UIR’s listed above. One uses sections of bundles over the
homogeneous space SL(2,R)/N , where N denotes one of the stabiliser groups. The group action
on such sections involves multipliers or cocycles, see [8] for details. The other uses functions
on SL(2,R) satisfying an equivariance condition. This is the formulation we use here, referring
the reader to [7, 8] for a translation between the two approaches.

For a given UIR of P̃3 labelled by an orbit O with representative element p̂, stabiliser group N
and UIR ς of N on a vector space V , the carrier space is

VO,ς =
{
ψ : SL(2,R)→ V |ψ(vn) = ς

(
n−1

)
ψ(v), ∀n ∈ N, ∀ v ∈ SL(2,R)

}
. (2.5)

We also have to impose an integrability condition, which we give in a particular case below. An
element (g, a) ∈ P̃3 acts on ψ ∈ VO,ς via

πO,ς((g, a))ψ(v) = exp
(
ia(Adg−1v(p̂))

)
ψ
(
g−1v

)
.
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As we will subsequently focus on the case of timelike momenta, we give the carrier space for
this case explicitly:

Vms =
{
ψ : SL(2,R)→ C

∣∣ψ(veαt0) = e−isαψ(v), ∀ (α, v) ∈ [0, 4π)× SL(2,R)
}
. (2.6)

The integrability condition is∫
SL(2,R)/NT

|ψ|2(w) dν(w) <∞.

Here, dν is the invariant measure on the homogeneous space SL(2,R)/NT (note that |ψ|2 only
depends on w ∈ SL(2,R)/NT ).

An element (g, a) ∈ P̃3 acts on ψ ∈ Vms via

πms((g, a))ψ(v) = exp
(
ia
(

Adg−1v

(
λmt0

)))
ψ
(
g−1v

)
.

If we introduce the notation

p = λmvt0v−1 (2.7)

for an orbit element, this further simplifies to

πms((g, a))ψ(v) = eia(Adg−1 (p))ψ
(
g−1v

)
. (2.8)

2.3 Covariant momentum constraints

In a field theory, we are usually looking for wave functions that are defined on momentum or
position space and which transform covariantly under the action of the Poincaré group [8, 10].
In our conventions, the required transformation behaviour reads

π((g, a))φ̃(p) = eia(Adg−1 (p))ρ(g)φ̃
(
g−1p

)
,

where ρ is a (preferably finite-dimensional) representation of the full group SL(2,R).
To obtain a covariant description, we employ the technique of [31]. In geometric terms, the

approach taken there can be described as follows. The formulation (2.5) defines elements of the
carrier space of an UIR as functions on the group obeying an equivariance condition. Replacing
SL(2,R) with a general Lie group G and considering a general stabiliser subgroup N , this is
nothing but the equivariant description of sections of vector bundles over G/N . For G = SU(2)
and N = U(1), these are the standard Hermitian line bundles over S2.

The trick used in [31] is to view the bundles above as subbundles of the trivial bundle S2×Cn,
where Cn is the standard n-dimensional UIR of SU(2). In that way, sections become ordinary
functions S2 → Cn obeying a linear constraint. In this construction, the unitarity of the SU(2)
action on Cn is essential for obtaining Hermitian line bundles. By thinking of S2 as embedded
in Euclidean (momentum) 3-space, one arrives at functions R3 → Cn obeying linear constraints.
Applying an ordinary Fourier transform then produces functions on Euclidean (position) 3-space
obeying a linear differential equation.

We would like to treat the Lorentzian situation analogously. However, the standard n-
dimensional irreducible representations of SL(2,R), reviewed in Appendix A, are not unitary,
and therefore the procedure of [31] cannot be used to obtain all UIR’s of P̃3. We shall now show
that it can be implemented for the UIR’s (2.6) labelled by orbits containing timelike momenta.
In that case, the stabiliser group is the U(1) subgroup of SL(2,R) generated by t0.

For a given ψ in (2.6), we define the maps

φ̃ : OTm → C2|s|+1
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via

φ̃(p) = ψ(v)ρ|s|(v)||s|, s〉, (2.9)

where p is related to v via (2.7), and the states ||s|, k〉 form the basis (A.6) of the finite-
dimensional sl(2,R) irreducible representations in which t0 is diagonal. Clearly,

ρ|s|
(
veαt

0)||s|, s〉 = ρ|s|(v)ρ|s|
(
eαt

0)||s|, s〉 = ρ|s|(v)eiαs||s|, s〉.

This cancels the phase picked up by ψ under the right-multiplication by eαt
0
. Hence, φ̃ only

depends on p ∈ OTm, even though both ρ|s|(v) and ψ depend on v.

We now see why this procedure is generally not feasible for UIR’s (2.5) labelled by orbits
containing spacelike or lightlike momenta, where the stabiliser groups are generated by spacelike
and lightlike generators in sl(2,R). Under the right-multiplication by eαt

1
resp. eαt

+
, the ele-

ments of (2.5) pick up a phase that cannot be compensated using one of the finite-dimensional
irreducible representations of SL(2,R), as ρ|s|(t1) has real eigenvalues and ρ|s|(t+) has zero as
the sole eigenvalue.

Similar restrictions were found in [10] for the existence of a finite-dimensional covariant
description. More general covariant descriptions are given in [18]. However, these are not
obtained directly from the standard UIR’s of the Poincaré group. Instead, they are constructed
using generalised regular representations.

The maps φ̃ defined in (2.9) satisfy the constraint(
iρ|s|(ta)pa +ms

)
φ̃(p) = 0, (2.10)

as can be seen by writing (2.7) as pat
a = vmt0v

−1:

ρ|s|(ta)paφ̃(p) = ρ|s|
(
vmt0v−1

)
ρ|s|(v)ψ(v)||s|, s〉 = ψ(v)ρ|s|(v)mis||s|, s〉 = imsφ̃(p),

as required. The equation (2.10) later becomes one of our wave equations and we refer to it as
the spin constraint.

Following the method of [31], we now consider extensions of the function φ̃, defined on the Lie
algebra sl(2,R). This will enable us to employ a standard Fourier transform for switching from
momentum to position space. We embed the timelike orbits OTm into the Lie algebra sl(2,R)
and define

Wms =
{
φ̃ : sl(2,R)→ C2|s|+1

∣∣ (iρ|s|(ta)pa +ms
)
φ̃(p) = 0,

(
p2 −m2

)
φ̃(p) = 0

}
.

We call the condition(
p2 −m2

)
φ̃(p) = 0 (2.11)

the mass constraint; it is the only condition for spin s = 0 and we will see that it is implied by
the spin constraint for the cases s = ±1

2 ,±1.

The spaces Wms carry a representation of P̃3 which we shall give below. However, the mass
constraint does not fix the sign of m. In order to obtain irreducible representations of P̃3, we
therefore still need to impose

Θ
(
−p0
m

)
φ̃(p) = 0, (2.12)

where Θ is the Heaviside step function. We call this condition the sign constraint. We remark
that though Wms are reducible representations of P̃3, they are irreducible representations of



8 B.J. Schroers and M. Wilhelm

a suitable double cover of the extended Poincaré group, which includes time reversal (map-
ping OTm to OT−m).

The action of an element (g, a) ∈ P̃3 on φ̃ ∈Wms is(
πms((g, a))φ̃

)
(p) = eia(Adg−1 p)ρ|s|(g)φ̃

(
Adg−1 p

)
.

It commutes with the constraints (2.10), (2.11) and (2.12), as required.

Before we can claim that this is an UIR, we need to define the inner product with respect
to which the representations are unitary. For spin 0, the invariant inner product on the space
Wm,s=0 is the familiar

(
φ̃1, φ̃2

)
=

∫
OTm∪OT−m

φ̃∗1φ̃2
dp1dp2
|p0|

,

where the integration is with respect to the standard Lorentz-invariant measure on the mass
shell. We will give the inner product for spin ±1

2 and spin ±1 below. For a general discussion
of the construction of the required invariant scalar product, see [8].

In the case s = 1
2 , the spin constraint (2.10) becomes the Dirac equation in momentum space(

itapa +
1

2
m

)
φ̃(p) = 0. (2.13)

Applying (itapa − 1
2m) to this and using (A.4), we see that (2.13) implies the mass con-

straint (2.11) but not the sign constraint (2.12). However, φ̃ can be decomposed into positive
and negative frequency parts φ̃+ and φ̃− using a Foldy-Wouthuysen transformation; see [10] for
details. This is completely analogous to the situation in 3+1 dimensions.

To see that (2.13) is indeed the Dirac equation in momentum space, we note that in 2+1
dimensions, Clifford generators (gamma matrices) satisfying{

γa, γb
}

= γaγb + γbγa = 2ηab id

can be obtained from the sl(2,R) generators (2.3) via

γa = 2ita. (2.14)

Thus we can write (2.13) as

(γapa +m)φ̃(p) = 0. (2.15)

The invariant scalar product on the space Wm,s= 1
2

is

(
φ̃1, φ̃2

)
=

∫
OTm∪OT−m

φ̃†1γ
0φ̃2

dp1dp2
|p0|

.

The Lorentz invariance of φ̃†1γ
0φ̃2 follows from the KAN or Iwasawa decomposition of an element

g ∈ SL(2,R) into g = kv, where k is a rotation (generated by t0 and commuting with γ0) and v
is of the form

v =

(
r x
0 1

r

)
, r > 0, x ∈ R.

It satisfies vtγ0v = γ0.
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For s = 1, φ̃ = φ̃at
a takes values in the adjoint representation of sl(2,R). The constraint (2.10)

then gives the Proca equations in momentum space(
ipa ad(ta) +m

)
φ̃(p) = 0,

or [
pat

a, φ̃(p)
]

= imφ̃(p). (2.16)

Taking the Minkowski product (2.4) with pdt
d gives

paφ̃a(p) = 0. (2.17)

The previous two equations together with the identity

[ξ, [η, ζ]] = (ξaζ
a)η − (ξaη

a)ζ, ξ, η, ζ ∈ sl(2,R), ξ = ξat
a etc.

give the mass constraint (2.11). Like for spin 1
2 , the equation (2.10) implies the mass con-

straint (2.11) but not the sign constraint (2.12).
The invariant scalar product on the space Wm,s=1 is(

φ̃1, φ̃2
)

= −
∫
OTm∪OT−m

φ̃∗1aφ̃
a
2

dp1dp2
|p0|

. (2.18)

This is manifestly Lorentz invariant, but it may not be obvious that (2.18) is indeed positive
definite. This can be seen as follows: due to (2.17) φ̃ is spacelike, and η is negative definite
when restricted to spacelike vectors.

The wave equations for the cases s = −1
2 and s = −1 can be obtained from (2.15) and (2.16)

by changing the sign in front of m, while the respective inner products stay the same.

2.4 Fourier transform to position space

The momentum-space form of the UIR’s of P̃3 in the previous sections were designed to be
amenable to a standard Fourier transform. Defining

φ(x) =

∫
eix(p)φ̃(p) d3p,

the spin constraint (2.10) turns into the first order differential equation(
ρ|s|(ta)∂a +ms

)
φ(x) = 0.

The mass constraint (2.11) becomes the Klein–Gordon equation(
2 +m2

)
φ = 0.

These are the general wave equations for massive particles with spin s ∈ 1
2Z in 2+1 dimensions.

An element (g, a) ∈ P̃3 acts on the wave function φ via

(πms((g, a))φ) (x) = ρ|s|(g)φ
(

Ad∗g x+ a
)
.

The wave equations for low values of the spin are some of the most studied equations of
relativistic physics. For spin 0, the mass constraint is the only constraint, and we obtain the
Klein–Gordon equation as already noted above. For spin 1

2 , the spin constraint (2.15) Fourier
transforms to the Dirac equation in position space:

(iγa∂a −m)φ = 0.

For spin 1, the condition (2.16) becomes the Proca equation

∂a[t
a, φ] = −mφ,

and the constraint (2.17) becomes

∂aφa = 0.
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3 Deforming momentum space

3.1 The quantum double D(SL(2,R)): motivation and definition

We now repeat the analysis in the previous section for the case of the quantum double
D(SL(2,R)) of SL(2,R), or Lorentz double for short. Before summarising the defining properties
of the quantum double of a Lie group, we make a few qualitative remarks which highlight the
relation between the Lorentz double and the Poincaré group, following [7, 40].

The action (2.8) of a Poincaré group element on an element of one of its UIR’s shows that
pure translations act by a multiplication with a special function on the (linear) momentum
space sl(2,R), namely the plane wave ψa(p) = eia(p). In the Lorentz double, this is deformed
and generalised: the momentum space is exponentiated and extended to become the whole
group manifold SL(2,R). The space of functions on momentum spaces is generalised to a suit-
ably well-behaved class, for example the class of continuous functions [26]. This deforms the
translation part of the Poincaré group into something dual to the rotation/boost part: transla-
tions are functions on SL(2,R) and rotations/boost are elements of SL(2,R). By allowing linear
combinations we obtain a Hopf algebra, consisting of two subalgebras which are in duality.

The quantum double of a Lie group is an example of a quantum double, which in turn is
a special class of quantum groups [13, 29]. It can be defined in various ways. Here we use the
form given in [6, 26] for locally compact Lie groups. As a vector space, the quantum double D(G)
of a Lie group G is the space of continuous, complex-valued functions C(G×G). Morally, one
should think of this as the tensor product C(G) ⊗ C(G), with the first factor being the group
algebra and the second factor being the function algebra on G. The product in the first factor
is by convolution and the product in the second factor is pointwise, but twisted by the action
of the first argument. The identity cannot be written as an element of C(G × G). Strictly
speaking it should be added as a separate element, but it is convenient to formally express it as
a delta-function.

In the conventions of [31] (which differ from those in [6, 26]), the product •, coproduct ∆,
unit 1, co-unit ε, antipode S and ∗-structure are as follows

(F1 • F2)(g, u) :=

∫
G
F1

(
z, zuz−1

)
F2

(
z−1g, u

)
dz,

1(g, u) := δe(g),

(∆F )(g1, u1; g2, u2) := F (g1, u1u2)δg1(g2),

ε(F ) :=

∫
G
F (z, e) dz,

(SF )(g, u) := F
(
g−1, g−1u−1g

)
,

F ∗(g, u) := F
(
g−1, g−1ug

)
.

In these equations, all integrals over the group are with respect to the Haar measure and e ∈ G
denotes the identity element. The quantum double is quasitriangular [13], and the expression
for the R-matrix can be found in [6, 26]. We do not require it here.

3.2 Coordinates for SL(2,R)

There are many natural ways to coordinatise the Lie group SL(2,R), see [4] for a recent review in
the context of 2+1 gravity. Here we use two sets of coordinates, one obtained via the exponential
map sl(2,R)→ SL(2,R) and a second which exploits the realisation of SL(2,R) as a submanifold
of R4.

The exponential map exp : sl(2,R) → SL(2,R) is bijective when restricted to a sufficiently
small neighbourhood of 0 ∈ sl(2,R) and id ∈ SL(2,R), but this is not the case globally. In
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fact, it is neither injective nor surjective as we shall see in our discussion of conjugacy classes
below. As before, we write elements of sl(2,R) as p = λpat

a. Using the fact that λpat
a squares

to −λ2

4 p
2 id, one finds:

exp(λpat
a) =


cos
(
λ
√
p2/2

)
id +

pa√
p2/2

sin
(
λ
√
p2/2

)
ta, if p2 > 0,

id +λpat
a, if p2 = 0,

cosh
(
λ
√
−p2/2

)
id +

pa√
−p2/2

sinh
(
λ
√
−p2/2

)
ta, if p2 < 0.

(3.1)

It follows from these formulae that elements u ∈ SL(2,R) with tr(u) < −2 cannot be written
as exponentials. As we shall see in Section 3.3 below, some elements with tr(u) = −2 can also
not be written as exponentials. However, we shall also see that if u is not in the image of the
exponential map, then −u is. This fact will be useful in Section 4.

To realise SL(2,R) as a submanifold of R4, we introduce Cartesian coordinates (P0,P1,P2,P3)
on R4 and expand

u = P3 id +λPata =

(
P3 + 1

2λP1
1
2λP0 + 1

2λP2
−1

2λP0 + 1
2λP2 P3 − 1

2λP1

)
, (3.2)

where Latin indices still take values 0, 1, 2. The condition u ∈ SL(2,R) is then equivalent to

detu = P2
3 +

λ2

4
PaPa = 1. (3.3)

We regard Pa, a = 0, 1, 2, as the independent coordinates with P3 = ±
√

1− λ2

4 PaPa. In the

following, we refer to the subsets of SL(2,R) with P3 ≷ 0 as the upper and lower half of SL(2,R).
Comparing (3.1) and (3.2), we can easily write down a relation between the two coordinate

systems on the intersections of their respective patches. The case p2 > 0 is particularly important
for us. Here one has

P3 = cos
(
λ
√
p2/2

)
, Pa = pa

sin
(
λ
√
p2/2

)
λ
√
p2/2

.

Taking the limit λ → 0 corresponds to the flattening out of momentum space SL(2,R) =
AdS3. It finally rips apart in the hyperplane of P3 = 0, producing not one but two copies of
flat Minkowski momentum space situated at P3 = ±1. They would be identified if we had
worked with L+↑

3 instead of SL(2,R). If, on the other hand, we had worked with the universal

covering group, we would have found a countable infinity of copies. For a discussion of L+↑
3 as

momentum space in (2+1)-dimensional gravity and (2+1)-dimensional non-commutative scalar
field theories, see [39].

This property of momentum space is an important consequence of the transition to the double
cover or universal cover of P3, compounding the more widely known manifestation via the spin
of massive particles, which takes integer values in the case of P3, half-integer values in the case
of P̃3 and real values in the case of the universal cover of P3 (see our discussion in Section 2.1).

3.3 Irreducible representations of D(SL(2,R))

The Lorentz double D(SL(2,R)) is a special example of a transformation group algebra, and its
UIR’s can best be understood in that general context. As shown in [26], they are labelled by
conjugacy classes in SL(2,R) and UIR’s of the associated centraliser or stabiliser groups. As
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emphasised in [7, 40], this should be seen as a deformation of the picture for the semi-direct
product group P̃3. In both cases, the UIR’s are labelled by SL(2,R) orbits in momentum space
and UIR’s of associated stabilisers. The difference is that momentum space is linear for P̃3 and
curved for D(SL(2,R)).

The conjugacy classes of SL(2,R) and their associated stabilisers are classified in [26], and
we list them here in a notation adapted to our needs. From the defining property of SL(2,R) =
{g ∈ GL(2,R) | det(g) = 1} it follows that the (generalised) eigenvalues λ1, λ2 of a given element
multiply to one. They are thus either complex conjugate to each other or both real. The set of
conjugacy classes can be organised according to the different possible eigenvalues. Some but not
all of the conjugacy classes can be obtained from the adjoint orbits in the Lie algebra sl(2,R)
by exponentiation. We have chosen a labelling of the conjugacy classes which mimicks the
conventions we used for the adjoint orbits in the Lie algebra: we use the superscripts T, S
and L for ‘timelike’, ‘spacelike’ and ‘lightlike’ to denote conjugacy classes whose elements can
be obtained via exponentiated timelike, spacelike or lightlike elements of sl(2,R). Our list also
includes the stabiliser group of a representative element in each of the conjugacy classes.

T: For λ1 = ei
θ
2 , λ2 = e−i

θ
2 (0 < θ < 2π), there are two disjoint families of conjugacy

classes, with representative elements ĥ = exp(±θt0) which are exponentials of timelike sl(2,R)
elements. As for the Lie algebra orbits, we introduce a unified notation for the two families,
with θ ∈ (0, 2π) to parametrise one component and θ ∈ (−2π, 0) to parametrise the other:

CT (θ) =
{
v exp

(
θt0
)
v−1 | v ∈ SL(2,R)

}
, θ ∈ (−2π, 0) ∪ (0, 2π). (3.4)

The stabiliser group is

NT = {exp
(
φt0
)
|φ ∈ [0, 4π)} ' U(1),

with UIR’s labelled by s ∈ 1
2Z.

S: There is one family of conjugacy classes with eigenvalues of the form λ1 = e
r
2 , λ2 = e−

r
2

(r ∈ R+). Elements of a given conjugacy class are obtained by exponentiating a spacelike Lie
algebra element:

CS(r) =
{
v exp

(
rt1
)
v−1

∣∣ v ∈ SL(2,R)
}
, r ∈ R+.

It has stabiliser group

NS =
{
± exp

(
ϑt1
)
|ϑ ∈ R

}
' R× Z2,

with UIR’s labelled by pairs (b, ε), with b ∈ R, ε = ±1.
-S: For λ1 = −e

r
2 , λ2 = −e−

r
2 (r ∈ R+), there is likewise one family of conjugacy classes

which we write as −CS(r). Elements are obtained from those of CS(r) by multiplication with
− id; they cannot be written as the exponential of a Lie algebra element. The stabiliser group
is again NS .

L, V: For λ1 = λ2 = 1, we distinguish three conjugacy classes: CV , CL+ and CL−. The
‘vacuum’ conjugacy class CV = {id} has stabiliser SL(2,R), whose UIR’s are discussed in [25].
The lightlike conjugacy classes have representative elements ĥ = exp(±E+), which are the
exponentials of the lightlike elements ±E+:

CL± =
{
v exp(±E+)v−1

∣∣ v ∈ SL(2,R)
}
.

The stabiliser group in both cases is

NL = {± exp(zE+) | z ∈ R} ' R× Z2,

with UIR’s labelled by pairs (b, ε), with b ∈ R, ε = ±1.
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-L, -V: For λ1 = λ2 = −1, we distinguish three conjugacy classes, which are obtained by
multiplying CV , CL+ and CL− by − id. They have the same stabiliser groups as CV , CL+

and CL−. Elements of −CL+ and −CL− cannot be obtained by exponentiation.

The carrier spaces of the irreducible representations of D(SL(2,R)), discussed in [26], are
again given in terms of functions on SL(2,R) satisfying an equivariance condition. The equiva-
riance condition only depends on the stabiliser group of a given conjugacy class, but not di-
rectly on the conjugacy class. Since the same stabiliser groups arise for orbits in sl(2,R) as for
conjugacy classes in SL(2,R), the general form of the carrier spaces (2.5) of UIR’s of P̃3 is un-
changed when replacing P̃3 by D(SL(2,R)). However, the action of the elements of D(SL(2,R))
is different, and does depend on the conjugacy class labelling the representation.

Since we are only able to give covariant forms of momentum constraints in the case of massive
particles, i.e., timelike momenta, we restrict ourselves to the corresponding irreducible represen-
tations of D(SL(2,R)). The relevant conjugacy classes are the conjugacy classes CT (θ) given
in (3.4). Motivated by the application of the Lorentz double to quantum gravity in 2+1 di-
mensions, we identify the angle θ labelling the conjugacy classes with the mass of a particle via
θ = λm. This results in a bounded mass, which is a well-known feature of (2+1)-dimensional
gravity, where 8πGm determines a deficit angle in the conical geometry surrounding a particle
of mass m [7, 41].

Summing up, the irreducible representations of the Lorentz double associated with massive
particles are labelled by a mass parameter

m ∈
(
−2π

λ
, 0

)
∪
(

0,
2π

λ

)
and the spin parameter s ∈ 1

2Z. With the carrier space Vms as defined in (2.6), an element
F ∈ D(SL(2,R)) acts on ψ ∈ Vms as

(Πms(F )ψ) (v) =

∫
SL(2,R)

F
(
z, z−1vemλt

0
v−1z

)
ψ
(
z−1v

)
dz,

where we again used the conventions of [31]. In the next section, we adapt the covariantisation
procedure of Section 2.3 to this representation.

3.4 Deformed covariant constraints

As in Section 2.3, we begin by trading the equivariant function ψ ∈ Vms for a map

φ̃ : CT (λm)→ C2|s|+1

via

φ̃(u) = ψ(v)ρ|s|(v)||s|, s〉,

where the states ||s|, k〉 are again elements of the basis (A.6) and u = vemλt
0
v−1 ∈ CT (λm).

These functions satisfy the analogue of the spin constraint (2.10),(
ρ|s|(u)− eiλms

)
φ̃(u) = 0. (3.5)

This can be shown by a short calculation which is entirely analogous to that following (2.10).
Note that this is a rather natural condition: the value of the function φ̃ at u lies in the eigenspace
of ρ|s|(u) with eigenvalue eiλms.
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We now embed the conjugacy classes CT (λm) into the group SL(2,R). They are charac-
terised by

P3 = cos

(
λm

2

)
,

P0
m

> 0. (3.6)

In analogy to the conditions (2.11) and (2.12), we refer to the first of these equations as the
mass constraint and to the second as the sign constraint. In terms of u, the mass constraint is(

1

2
tr(u)− cos

(
λm

2

))
φ̃(u) = 0. (3.7)

We thus define the carrier spaces

W̃ms =

{
φ̃ : SL(2,R)→ C2|s|+1

∣∣∣∣∣ (ρ|s|(u)− eimλs
)
φ̃(u) = 0,

(
1

2
tr(u)− cos

(
λm

2

))
φ̃(u) = 0

}
, (3.8)

and, as in the undeformed case, we will find that the mass constraint is actually implied by
the spin constraint for spin ±1

2 and spin ±1. An element F ∈ D(SL(2,R)) acts on φ̃ ∈ W̃ms

according to(
Πms(F )φ̃

)
(u) =

∫
SL(2,R)

F
(
z, z−1uz

)
ρ|s|(z)φ̃

(
z−1uz

)
dz.

For spinless particles, the covariant description involves a function φ̃ : SL(2,R) → C. The
spin constraint is empty, and we only have the mass constraint (3.7). Writing it in terms of P3
as in (3.6) and applying (3.3), we arrive at

PaPaφ̃ =

(
sin(mλ/2)

λ/2

)2

φ̃. (3.9)

This is our deformed Klein–Gordon equation in momentum space.
In the case s = 1

2 , we have functions φ̃ : SL(2,R) → C2 and the constraint (3.5) becomes
simply

uφ̃(u) = e
i
2
λmφ̃(u). (3.10)

Inserting u = P3 id +λPata, this is equivalent to

λPataφ̃(u) =
(
e
i
2
λm − P3

)
φ̃(u). (3.11)

However, since the vector (P0, P1, P2) (like (p0, p1, p2)) is timelike in the case under consideration,
the Lie algebra element Pata is conjugate to a rotation and has imaginary eigenvalues. Expanding

e
i
2
λm = cos(λm/2) + i sin(λm/2), the real part of (3.11) is the promised mass constraint P3φ̃ =

cos(λm/2)φ̃, while the imaginary part is(
iPata +

1

2

sin(λm/2)

λ/2

)
φ̃(u) = 0. (3.12)

This is our deformed Dirac equation in momentum space. Using (2.14) to write it in terms
of γ-matrices, we find(

Paγa +
sin(λm/2)

λ/2

)
φ̃(u) = 0. (3.13)
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Applying
(
Paγa − sin(λm/2)

λ/2

)
to (3.13) gives PaPaφ̃ = sin2(λm/2)

λ2/4
φ̃, which is equivalent to the

squared version of the mass constraint. Note that the information whether φ̃ has support on
the upper or lower half of SL(2,R) is not contained in the spin constraint.

For s = 1, we again work with the adjoint representation of SL(2,R) and think of φ̃ as a map
φ̃ : SL(2,R)→ sl(2,R), so we can expand φ̃ = φ̃at

a. Hence, the constraint (3.5) becomes

uφ̃(u)u−1 = eiλmφ̃(u).

Expanding again u = P3 id +λPata, and using the ‘quaternionic’ multiplication rule (A.2) of the
generators ta, we deduce

λP3
[
Pata, φ̃

]
− λ2

2

(
PaPa

)
φ̃+

λ2

2

(
Paφ̃a

)(
Pbtb

)
=
(
eiλm − 1

)
φ̃, (3.14)

where the evaluation at u is understood everywhere. Taking the Minkowski product (2.4)
with Pbtb and using that (eiλm − 1) 6= 0, we conclude that

Paφ̃a = 0.

Inserting this into (3.14) and applying (3.3) yields

λP3
[
Pata, φ̃

]
=
(
eiλm + 1− 2P2

3

)
φ̃. (3.15)

Again we can argue from the representation theory of sl(2,R) reviewed in Appendix A that the
eigenvalues of [Pata, ·] are imaginary. With P3 real and non-vanishing, we deduce that(

cos(λm) + 1− 2P2
3

)
φ̃ = 0,

which is the squared mass constraint(
P2
3 − cos2

λm

2

)
φ̃ = 0.

Inserting P3 = cos λm2 into (3.15), we finally arrive at

−i[Pata, φ̃] =
sin(λm/2)

λ/2
φ̃. (3.16)

This is the deformed Proca equation in momentum space.
The wave equations in momentum space for the cases s = −1

2 and s = −1 can again be
obtained by changing the sign in front of m in (3.13) and (3.16).

4 Towards non-commutative wave equations

4.1 General remarks

The ordinary Fourier transform, as used in Section 2.4, takes the abelian algebra of functions
on a vector space (in our case, momentum space) to the abelian algebra of functions on its dual
(in our case, position space). It establishes the link between the UIR’s of the Poincaré group
and the fundamental wave equations of free, relativistic quantum theory.

Having written some of the irreducible representations of the Lorentz double in terms of
Cn-valued functions on the deformed momentum space SL(2,R) obeying Lorentz-covariant con-
straints, we would now like to use a suitable Fourier transform to obtain wave equations in
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the deformed setting. Our treatment here will be sketchier than in the previous sections, de-
signed to give an overview and to lay the foundation for a future, mathematically more complete
treatment. We consider two kinds of Fourier transform.

One version, called quantum group Fourier transform in the following, takes elements of
a given Hopf algebra to elements of its dual Hopf algebra [24, 29]; it is defined in a rather
general Hopf-algebraic setting and can, in particular, be applied to the Hopf algebra of functions
on a Lie group.

A second version maps functions on a Lie group G to functions on the dual of the Lie
algebra g∗, equipped with a ?-product. This is studied in different guises in [14, 16, 17, 23, 38]
for the case of G being the rotation group in three dimensions (or its cover). It is investigated
in a more general setting of Lie groups satisfying certain technical requirements in [20, 36]. We
call it group Fourier transform in the following2. The paper [17] also includes a discussion of
the relation between these two kinds of Fourier transforms.

4.2 Quantum group Fourier transform

In our deformed theory, momentum space is SL(2,R) and the ‘algebra of momenta’ is the algebra
C(SL(2,R)) of (suitably well-behaved) functions on SL(2,R), with pointwise multiplication. This
is a commutative but not co-commutative algebra. The quantum group Fourier transform maps
elements of this algebra to elements of the dual ‘position algebra’, which can be taken to be
a suitable class of functions on SL(2,R) with multiplication given by convolution (i.e., a suitable
version of the group algebra) or the universal enveloping algebra U(sl(2,R)), with generators

x̂a = iλta

satisfying the sl(2,R) commutation relations[
x̂a, x̂b

]
= iλεabcx̂c.

Note that this non-commutative ‘spin spacetime’ has a long history in the literature of (2+1)-
dimensional quantum gravity, see for example the papers [15, 32, 44]. It is naturally accommo-
dated in the framework of the Lorentz double, for which, in the terminology of [9], U(sl(2,R))
is the ‘Schrödinger representation’.

In [9], the authors consider the Euclidean situation U(su(2)), and go on to develop a bi-
covariant calculus on U(su(2)) and to study the quantum group Fourier transform in this case.
This was used in [31] to derive non-commutative linear differential equations characterising
irreducible representations of the double D(SU(2)). We will now show how most of these results
can be adapted, at least formally, to the Lorentzian setting.

The required quantum group Fourier transform is a map from a suitable class of functions
C(SL(2,R)) to a suitable closure of U(sl(2,R)). This closure should include group elements
u ∈ SL(2,R), viewed as infinite power series in U(sl(2,R)). The fact that the exponential map
is not surjective for SL(2,R) does not pose any difficulties here since all elements of SL(2,R)
can be written as ± exp(ξ) for some ξ ∈ sl(2,R), see our classification of conjugacy classes in
Section 3.3. In order to accommodate the Cn-valued functions in the carrier space (3.8), we
tensor both C(SL(2,R)) and U(sl(2,R)) with Cn.

The ‘plane waves’ used in this quantum group Fourier transforms are simply the group
elements of SL(2,R), viewed as functions of the non-commutative position vector x̂ = (x̂0, x̂1, x̂2)
according to

ψ(u; x̂) := u = ± exp(−ipax̂a) = ± exp(λpat
a) ∈ SL(2,R).

2The name ‘non-commutative Fourier transform’ is also frequently used in the literature, but since non-
commutativity is also a feature of the quantum group Fourier transform we prefer the name ‘group Fourier
transform’ here.
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The quantum group Fourier transform of

φ̃ : SL(2,R)→ Cn (4.1)

is then

φ(x̂) =

∫
SL(2,R)

duψ(u; x̂)φ̃ (u) , (4.2)

where du is the Haar measure on SL(2,R). The expression (4.2) is formal and the analogue of
the corresponding expressions for the Euclidean version used in [17]. Even in that context, it
has not been defined in a mathematically rigorous fashion.

Adapting the bi-covariant calculus developed in [9] to the Lorentzian ‘spin spacetime’
U(sl(2,R)) requires a vector space on which U(sl(2,R)) acts from both the left and the right
(i.e., a bimodule). As for U(su(2)), we can use the space M2(C) of complex 2 × 2 matrices
on which the generators ta of U(sl(2,R)) act via left- and right-multiplication in the funda-
mental representation (A.1). Differential 1-forms are elements of M2(C)⊗ U(sl(2,R)), and the
Lorentzian version of the four-dimensional calculus developed in [9] gives the exterior derivative
of group-like elements as

du =
1

λ
(u− id)⊗ u,

where id is the 2 × 2 identity matrix. Partial derivatives can be computed by expanding the
right-hand side in the basis

e3 = id, ea = −ita, a = 0, 1, 2.

In our coordinates (3.2), we have u = P3 id +λPata and find

∂3u =
1

λ
(P3 − 1)u, ∂au = iPau, a = 0, 1, 2.

Assuming the validity of the Fourier transform (4.2), non-commutative wave equations can
now easily be obtained from our momentum constraints in Section 3.4. The constraint (3.9)
implies the non-commutative Klein–Gordon equation(

∂a∂
a +

(
sin(mλ/2)

λ/2

)2
)
φ = 0. (4.3)

The deformed spin 1
2 constraint (3.13) takes the from of a non-commutative Dirac equation(

i∂aγ
a − sin(λm/2)

λ/2

)
φ = 0, (4.4)

and the deformed Proca constraint (3.16) turns into the non-commutative Proca equation

∂a[t
a, φ] = −sin(λm/2)

λ/2
φ, (4.5)

which implies ∂aφa = 0.
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4.3 Group Fourier transform

We turn to the group Fourier transform of functions of the form (4.1). This time, the image of
the Fourier transform is a certain class of function on ordinary R3, equipped with a ?-product.
As in our discussion of the quantum group Fourier transform, we will sketch the main ideas
here, leaving a careful treatment for future work. Our main references are [14, 16, 17, 23, 38]
which deal with the case of SU(2) and SO(3), and [20, 36] for a more general discussion of
the group Fourier transform. These papers discuss different possibilities of implementing the
group Fourier transform and the associated ?-products. The starting point for each possibility
is a choice of plane wave, which, for a general Lie group G, is a map

ψ? : G× g∗ → C,

satisfying a completeness condition [36]∫
g∗
dxψ(u, x) = δe(u),

where dx is a (suitably normalised) measure on the vector space g∗, and δe is the Dirac delta
distribution at the identity element e ∈ G. Evaluating the plane wave on a given u ∈ G produces
functions on g∗ for which we define a ?-product via

ψ?
(
u(1), x

)
? ψ?

(
u(2), x

)
= ψ?

(
u(1)u(2), x

)
. (4.6)

This induces a ?-product on the space L2
?(g
∗) of all functions on g∗ which can be written as the

group Fourier transform of some φ̃ ∈ C(G):

φ(x) =

∫
G
duψ?(u, x)φ̃(u).

Even for the most studied case G = SU(2), g∗ ' R3, it is not easy to write down a suitable
plane wave. Several options have been considered in the literature, each with its own advantages
and drawbacks.

In [16], the authors study a plane wave which is defined for the quotient SO(3) ' SU(2)/Z2.
This is reviewed in [17], where the authors then go on to treat the case G = SU(2) by extending
it centrally to R+ × SU(2). In [14], plane waves for G = SU(2) are constructed by using
a spinorial parametrisation of R3 (essentially by using x ∈ R3 to parametrise a projection
operator onto SU(2) eigenstates) while in [20] plane waves for SU(2) are constructed using
a parametrisation via the exponential map.

All these constructions can be adapted with different degrees of completeness to the case at
hand, i.e., G = SL(2,R), g∗ ' R3. One way to bring out the similarities is to view SU(2) as
the group of unit quaternions and SL(2,R) as the group of unit pseudo-quaternions, see [35]
for a detailed discussion of this point of view in the context of 2+1 gravity. The parametrisa-
tion (3.2) of u ∈ SL(2,R) is essentially a quaternionic parametrisation, with λta playing the role
of imaginary pseudo-quaternions and id being the identity in the pseudo-quaternions. Then the
central extensions R+ × SU(2) and R+ × SL(2,R) are simply the groups of all quaternions and,
respectively, pseudo-quaternions.

For the purposes of our overview and outlook, we will illustrate these general remarks by con-
sidering two plane waves and using them to Fourier transform the momentum space constraints
of Section 3.4.

The first is defined on L+↑
3 ' SL(2,R)/Z2 and is the analogue of the ‘bosonic’ plane wave

defined on SO(3) [16, 17]. It is the map

ψB? : SL(2,R)/Z2 × R3 → C, ψB? (u, x) = exp(iε(P3)Paxa), (4.7)
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where u ∈ SL(2,R) is again parametrised as in (3.2), ε(P3) is the sign of P3, and x ∈ sl(2,R)∗ '
R3 as in Section 2. The inclusion of the sign of P3 means that the argument of the exponential
is invariant under the Z2 quotient u 7→ −u and therefore a function on the quotient SL(2,R)/Z2.
As in the Euclidean case, it is not defined on the set of measure zero where P3 = 0.

The multiplication via the ?-product (4.6) implies

exp
(
iε
(
P(1)
3

)
P(1)
a xa

)
? exp

(
iε
(
P(2)
3

)
P(2)
a xa

)
= exp

(
iε
(
P(1⊕2)
3

)
P(1⊕2)
a xa

)
,

with P(1⊕2)
3 and P(1⊕2)

a , a = 0, 1, 2, defined via

u(1)u(2) = P(1⊕2)
3 id +λP(1⊕2)

a ta.

Turning now to the covariant momentum space constraints defining irreducible representa-
tions of D(SL(2,R)), we note that momentum space constraints for the bosonic fields (3.9)
and (3.16) make sense for functions φ̃ on SL(2,R) which are invariant under u → −u and thus
defined on SL(2,R)/Z2, while the spin 1

2 constraint (3.12) does not descend to the quotient.
The group Fourier transform

φB? (x) =

∫
SL(2,R)/Z2

duψB? (u, x)φ̃(u)

turns the momentum space constraints for the bosonic fields (3.9) and (3.16) into formally
the same equations as (4.3) and (4.5) for φB? (x), but with ∂a now denoting the usual partial
derivative ∂/∂xa.

The second form of plane wave we want to consider here uses the exponential map to
parametrise SL(2,R). Although the exponential map sl(2,R) → SL(2,R) is not surjective and
therefore cannot be used to parametrise the entire group, its image includes the ‘inside of the
lightcone’

SL(2,R)± =
⋃

λm∈(−2π,0)∪(0,2π)

CT (λm),

on which the elements of massive irreducible representations have their support. For the purpose
of Fourier transforming the momentum space constraints of Section 3.4, it is therefore sufficient
to consider elements in SL(2,R)± for which we can define the ‘exponential’ plane wave

ψE? (u, x) = exp
(
ixapa

)
, u = exp

(
λpat

a
)
∈ SL(2,R)±. (4.8)

The associated group Fourier transform maps this to

φE? (x) =

∫
SL(2,R)±

duψE? (u, x)φ̃(u).

The momentum constraints (3.9), (3.12) and (3.16) on φ̃ imply equations for φE? (x) involving
exponentiated differential operators.

For spin 1
2 , the left hand side of (3.10) produces the exponentiated Dirac operator

e−
λ
2
γa∂aφE? (x),

which was considered in a very different context by Atiyah and Moore in [5]. The authors
considered difference-differential versions of several fundamental equations of physics, including
the Dirac equation, allowing for advanced and retarded as well as advanced-retarded versions.
For spin 1

2 , this involves in an essential way the exponential of the Dirac operator. Their work
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stresses the relation between exponentiated differential operators and difference equations, and
explores the consequences of using such equations in fundamental physics.

The appearance of difference-differential equations in theories with curved momentum space
was also pointed out in [32] in the context of (2+1)-dimensional gravity. However, with few
exceptions [37], this point of view has not received much attention in the context of generalised
Fourier transforms and quantum groups.

5 Conclusion and outlook

In this paper, we studied the consequences of curved momentum space for the spacetime physics
of massive and spinning particles in a particular model. We have kept an open mind about
the motivation for studying curved momentum space. The model considered here comes from
(2+1)-dimensional quantum gravity, and has the added benefit of maintaing (a deformed version
of) Poincaré symmetry. However, as reviewed in the Introduction, curved momentum space
arises in several contexts and has been of theoretical interest at least since Born’s pioneering
considerations in [11].

Our interest in the spacetime description of the particles via relativistic wave equations
stems from the fundamental role such equations play in relativistic quantum mechanics and
quantum field theory. The wave equations, not the equivalent momentum constraints, provide
the standard route for constructing interacting theories, be it via coupling to an external classical
field (as in the Dirac equation for the electron in the hydrogen atom) or in a fully interacting
quantum field theory. It is therefore interesting to see how relativistic wave equations are
modified when momentum space becomes curved.

In Section 4, we gave an overview over different ways of obtaining the wave equations from
the covariant momentum constraints derived earlier via Fourier transforms. Our discussion
there should be viewed as a first step, pulling together relevant approaches in the literature and
preparing the ground for a mathematically precise treatment. At this stage, our findings can be
summarised as follows.

The quantum group Fourier transform is perhaps the most elegant method of Fourier trans-
forming the covariant momentum space constraints, and directly takes us into the realm of
non-commutative geometry. However, this route is strewn with considerable mathematical chal-
lenges. At present, the formula (4.2) leads to equations like (4.4) which are re-interpretations
of mathematically well-defined momentum-space constraints but do not have an independent
mathematically rigorous definition.

The group Fourier transform, by contrast, leads to equations on ordinary R3 which have an
independent mathematical meaning as differential or difference-differential equations. However,
here the nature of the equation depends on the choice of plane wave. We have only considered two
choices of plane waves here, and found conventional wave equations from the ‘bosonic’ plane
wave (4.7) but difference-differential equations from the ‘exponential’ plane wave (4.8). The
latter are suggestive of a discrete spacetime geometry as considered in [32] and are interesting
from the more general viewpoint emphasised in [5].

There are several avenues for developing the work started here. One would like to extend
the set of wave equations to include equations for massless particles and for particles with spins
other than 0, 1

2 and 1. Anyonic excitations are relevant and interesting in this context. They
arise naturally in the context of 2+1 gravity, where the spin is quantised in units which depend
on the mass [7]. To study them one needs to work with the universal cover of SL(2,R).

It would also be interesting to consider both the quaternionic extension R+ × SL(2,R) and
a Lorentzian version of the spinorial description in [14] in future work. This will presumably
lead to yet different types of ‘wave equations’.



Towards Non-Commutative Deformations of Relativistic Wave Equations 21

On general grounds, the choice of coordinates on the group SL(2,R) should not matter, and
one expects plane waves which differ only by different coordinates to lead to equivalent wave
equations after Fourier transform. However, in so far as different plane waves reflect a different
choice of group (e.g. SL(2,R)/Z2 versus SL(2,R) or R+ × SL(2,R)), one would expect the
associated wave equations to be different.

Ultimately, one would like to achieve a systematic understanding of the nature and inter-
relationship of wave equations that can be obtained via Fourier transform of a given curved
momentum space constraint.

A Basis and finite-dimensional representations of sl(2,R)

In the main text, we use the the basis {ta, a = 0, 1, 2} of sl(2,R) with

t0 =
1

2

(
0 1
−1 0

)
, t1 =

1

2

(
1 0
0 −1

)
, t2 =

1

2

(
0 1
1 0

)
. (A.1)

The basis elements satisfy

tatb = −1

4
ηab id +

1

2
εabctc, (A.2)

where id denotes the 2 × 2 identity matrix. As a result, we have the commutation relations[
ta, tb

]
= εabctc (A.3)

and the anticommutation relations{
ta, tb

}
= tatb + tbta = −1

2
ηab id . (A.4)

Finally, we note the orthogonality relations

−2 tr
(
tatb
)

= ηab.

The representation theory of sl(2,R) is best studied in terms of raising and lowering operators

H = t1, E+ = t2 + t0 =

(
0 1
0 0

)
, E− = t2 − t0 =

(
0 0
1 0

)
, (A.5)

with commutation relations

[H,E+] = E+, [H,E−] = −E−, [E+, E−] = 2H.

It is well-known [43] that the finite-dimensional representations of the Lie algebra sl(2,R) are
parametrised by j ∈ 1

2(N∪ 0). For each value of j there is a unique irreducible representation ρj

on Vj ' C2j+1. The standard basis {wj , wj−1, . . . , w1−j , w−j} of Vj is such that

ρj(H)wk = kwk, ρj(E−)wk = (j + k)wk−1, ρj(E+)wk = (j − k)wk+1.

These representations are not unitary. Only ρj(t0) has imaginary eigenvalues and exponentiates
to a unitary matrix. In the main text, we work with an eigenbasis

{|j, j〉, |j, j − 1〉, . . . , |j, 1− j〉, |j,−j〉} (A.6)

of ρj(t0) satisfying ρj(t0)|j, k〉 = ik|j, k〉.
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[1] Achúcarro A., Townsend P.K., A Chern–Simons action for three-dimensional anti-de Sitter supergravity
theories, Phys. Lett. B 180 (1986), 89–92.

[2] Amelino-Camelia G., Doubly-special relativity: facts, myths and some key open issues, Symmetry 2 (2010),
230–271, arXiv:1003.3942.

[3] Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., The principle of relative locality, Phys.
Rev. D 84 (2011), 084010, 13 pages, arXiv:1101.0931.

[4] Arzano M., Latini D., Lotito M., Group momentum space and Hopf algebra symmetries of point particles
coupled to 2+1 gravity, arXiv:1403.3038.

[5] Atiyah M.F., Moore G.W., A shifted view of fundamental physics, arXiv:1009.3176.

[6] Bais F.A., Muller N.M., Topological field theory and the quantum double of SU(2), Nuclear Phys. B 530
(1998), 349–400, hep-th/9804130.

[7] Bais F.A., Muller N.M., Schroers B.J., Quantum group symmetry and particle scattering in (2+1)-
dimensional quantum gravity, Nuclear Phys. B 640 (2002), 3–45, hep-th/0205021.

[8] Barut A.O., Ra̧czka R., Theory of group representations and applications, 2nd ed., World Scientific Pub-
lishing Co., Singapore, 1986.

[9] Batista E., Majid S., Noncommutative geometry of angular momentum space U(su(2)), J. Math. Phys. 44
(2003), 107–137, hep-th/0205128.

[10] Binegar B., Relativistic field theories in three dimensions, J. Math. Phys. 23 (1982), 1511–1517.

[11] Born M., A suggestion for unifying quantum theory and relativity, Proc. R. Soc. Lond. Ser. A 165 (1938),
291–303.

[12] de Sousa Gerbert P., On spin and (quantum) gravity in 2+1 dimensions, Nuclear Phys. B 346 (1990),
440–472.

[13] Drinfel’d V.G., Quantum groups, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2
(Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 798–820.

[14] Dupuis M., Girelli F., Livine E., Spinors and Voros star-product for group field theory: first contact, Phys.
Rev. D 86 (2012), 105034, 5 pages, arXiv:1107.5693.

[15] Freidel L., Livine E.R., 3D quantum gravity and effective noncommutative quantum field theory, Phys. Rev.
Lett. 96 (2006), 221301, 4 pages, hep-th/0512113.

[16] Freidel L., Livine E.R., Ponzano–Regge model revisited. III. Feynman diagrams and effective field theory,
Classical Quantum Gravity 23 (2006), 2021–2061, hep-th/0502106.

[17] Freidel L., Majid S., Noncommutative harmonic analysis, sampling theory and the Duflo map in 2+1
quantum gravity, Classical Quantum Gravity 25 (2008), 045006, 37 pages, hep-th/0601004.
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