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Abstract. P. Mormul has classified the singularities of special multi-flags in terms of “EKR,
class” encoded by sequences ji,. .., ji of integers (see [Singularity Theory Seminar, Warsaw
University of Technology, Vol. 8, 2003, 87-100] and [Banach Center Publ., Vol. 65, Polish
Acad. Sci., Warsaw, 2004, 157-178]). However, A.L. Castro and R. Montgomery have
proposed in [Israel J. Math. 192 (2012), 381-427] a codification of singularities of multi-
flags by RC and RVT codes. The main results of this paper describe a decomposition of
each “EKR” set of depth 1 in terms of RVT codes as well as characterize such a set in terms
of configurations of an articulated arm. Indeed, an analogue description for some “EKR”
sets of depth 2 is provided. All these results give rise to a complete characterization of all
“EKR” sets for 1 < k < 4.
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1 Introduction and results

A special multi-flag of step m > 1 and length k£ > 1 is a sequence
D: D=D,CDp1C---CD;jC---CD1CDy=TM

of distributions of constant rank on a manifold M of dimension (k + 1)m + 1 which satisfies the
following conditions (see [8]):

(i) Dj—1 = [Dj, D;] is the distribution generated by all Lie brackets of sections of Dj;
(ii) D; is a distribution of constant rank (k —j + 1)m + 1;

(iii) each Cauchy characteristic subdistribution L(D;) of D; is a subdistribution of constant
corank one in each Djq for j =1,...,k—1, and L(Dy) = 0;

(iv) there exists a completely integrable subdistribution F' C D; of corank one in D;.

(See Section 2.1 for a more precise definition.)

The notion of special multi-flags is described in [9, 11]. Furthermore, for m > 2, the existence
of a completely integrable subdistribution F' of D; implies property (iii). This result was first
proved in [6] for regular points, and in [2, 14] for the general case. When such a distribution F'
exists, it is then unique (see Remark 2.1). For m = 1, a special multi-flag is a Goursat flag,
and in this case conditions (iii) and (iv) are automatically satisfied but such a distribution F
is not unique. One fundamental result on Goursat flags is the existence of locally universal


mailto:pelletier@univ-savoie.fr
mailto:mslayman@ul.edu.lb
http://dx.doi.org/10.3842/SIGMA.2014.059

2 F. Pelletier and M. Slayman

Goursat distributions proved by R. Montgomery and M. Zhitomirskii in [7]. More precisely,
they define the monster Goursat manifold which is constructed by applying k successive Cartan
prolongations. On the other hand, the kinematic system of a car with & — 1 trailers can be
described by an appropriate Goursat distribution Aj on R? x (SY)*. Moreover, this Goursat
distribution A} is diffeomorphic to the Cartan prolongation of the distribution A,_; on R? x
(SH =1 (see Appendix D of [7] or Theorem 3.3 of [12]).

A special multi-flag can be considered as a generalization of the notion of Goursat flags and
the fundamental result of [2] and [14] is again obtained by Cartan prolongation (see also [9]).
Consequently, in this situation, we can build a monster tower by successive Cartan prolongations
of TR™T! (see [2, 3, 4, 14]):

oo = PP(m) = PP Ym) - - = Pi(m) — .- = PY(m) — P%m) := R™!, (1.1)

where each manifold P7(m) is endowed with a typical distribution Aj, the Cartan prolongation
of Aj_y for 1 <1 < k. In a similar way we can define a natural notion of spherical prolongation,
which also gives rise to a tower of sphere bundles (see Section 2.3):

oo = PE(m) = P* Y (m) -« > PI(m) = -+ = -+ = PY(m) = P(m) := R™*1 (1.2)

Again, each manifold Pj(m) is endowed with a typical distribution Aj which represents the
spherical prolongation of A;_; for j > 1. Notice that we have a canonical 2-fold covering:

Pi(m) — P (m)

for any 5 > 1 and m > 2.

An articulated arm defined in [16] or a system of rigid bars defined in [6] is a kinematic system
which can be described by a special multi-flag. More precisely, the configuration space C*(m)
of such a kinematic system is diffeomorphic to R™*! x (S™)* and this system is characterized
by a distribution Dy which generates a special multi-flag of length k (see Section 3.1). Thus we
obtain a natural tower of sphere bundles

Ck(m) = C*Ym) = --- = Cl(m) = 77 m) = --- = C(m) = CO%(m) :=R™,  (1.3)

where each map C7(m) — C/~!(m) is a sphere bundle, and each manifold C?(m) is endowed with
a typical distribution D; associated with the corresponding articulated arm of length j on R 1
for 1 <1 < k. Note that by convention, C°(m) represents the space R™*! endowed with the
distribution Dy = TR™*! (see Section 3.2).

In this context, we have the following result':
Theorem 1 (see Theorems 3.2 and 3.4(2)).

1. Let Aj be the canonical distribution on Pj(m) obtained after j successive spherical pro-
longations. Then for each m > 2 and 1 < j < k, there exists a diffeomorphism FJ9 from
Pi(m) to C7(m) such that:

(i) ploFI = Fi~Yord, where #7 : Pi(m) — PI=Y(m) and p? : C7(m) — C7=1(m) are the
canonical projections,
(i) Fi(A;) =D;.

'The reader can find this result in [13] with a summarized proof. As all the arguments used to show this
theorem are also essential for proving Theorem 2 and 3 below, thus in this paper we give a complete proof of this
result.
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2. The commutative diagrams

PE(m) — P*Y(m) — --- — PY(m) — P°(m) := R

L [ !
CF(m) — C*1(m) — --- — CY(m) — C°(m) := R™*!
| Voo !

PF(m) — P*Y(m) — .-+ — PY(m) — P%(m) := R™*+!
have the following properties:

(1) in each horizontal tower, the horizontal map between the space number j and the space
number j — 1 (1 < j < k) is a sphere fibration for the first two lines and a projective
space fibration for the last line;

(7i) in each column number j (1 < j < k), each vertical map between the first two lines
is a diffeomorphism which sends the typical distribution over the source space to the
typical distribution over the image space, and each vertical map between the last two
lines is a two-fold covering which has the same property.

The singularities of special multi-flags were first described by P. Mormul in [8, 9]. This
classification was based on a generalization of Cartan prolongation, and on some “operation”
denoted j which produces a new (m + 1)-distribution from the previous one. In this way,
P. Mormul constructs a coding system which labels the singularity classes of germs of special
multi-flags which he calls “extended Kumpera—-Ruiz singularity classes of multi-flags” — in
short “EKR classes” — (for more details see Section 5.1). An EKR class is coded by a sequence
Jis---,Jk such that jj41 < 1+ max{ji,...,5;}. The integer max{ji,...,jr} — 1 is called the
depth of the EKR class.

Recently, A.L. Castro and R. Montgomery proposed, in [4], a codification of singularities of
multi-flags founded on the tower of projective bundles (1.1) using RC and RVT codes. This
codification gives rise to a new classification of the singularities of special multi-flags in terms
of RVT classes. More precisely, in tower (1.1) one can define sub-towers by taking the tower
of Cartan prolongation of any fiber of P/(m) — P7~!'(m). Therefore, we obtain the “baby
monsters” (see [4]). It follows that in each vector space A(p) C T,P¥(m) we have a family of
“critical” hyperplanes, coming from these sub-towers. We can note, that one of these hyperplanes
is the vertical space V,,P¥(m), i.e. the tangent space on a fiber of P*(m) — P*~(m). A point
p € P¥(m) can be written as p = (pr_1, 2), where pp_1 € P*~1(m) and z is a line in Ay_; (pg_1)-
Therefore, p is called wvertical if z is tangent to the fiber at pyp_1, and tangency if z is not vertical
but belongs to one critical hyperplane. Otherwise, p is called reqular. Thus, we can affect to p
a word composed of letters { R, V, T} such that the letter of rank [ is either R, V or T', depending
on whether the projection of p onto P!(m) is regular, vertical, or tangency, respectively.

The main results of this paper are to give a complete description of some EKR sets in terms
of RVT codes, as well as an interpretation of such EKR classes and RVT classes, in terms of the
configurations of an articulated arm. To make it clear, we need to consider further definitions
and notations.

Let w be any word in RVT code. We denote by R" or T" a sub-word of w which is a sequence
of h consecutive letters R or T if h > 0, and no letter R or T, if h = 0 respectively. Consider now
the multi-flag D on the configuration space C*(m) associated to an articulated arm (M, ..., My)
on R™F! of length k& > 1 (see Section 3.1). The EKR set ¥, j, is the set of configurations
q € Ck(m) such that the germ of D at ¢ belongs to the EKR class coded by the sequence
41,-+.,jk. In the same way, the RVT set C, is the set of configurations ¢ € C*(m) whose RVT
code is w. The depth of ¥;, ; is the depth of the EKR class ji...j;. Finally, for any EKR
class of 1-depth we will denote by {i1,...,4,} the set {i € {1,...,k}|j; = 2}. We then have:
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Theorem 2 (see Theorem 5.2). Let (Mo, ..., My) be an articulated arm.

1. Each EKR set Y, . j, of depth 1 is an analytic manifold of codimension v of CF(m).

2. ARVT set C, is contained in 3j, . ;. if and only if w is of type RhovTh RM VT R
and each letter V is exactly at rank i1, ... ,1,. Such set is an analytic submanifold of 3j, . ;.
of codimension Iy + -+ -+ 1.

3. The EKR set Xj, . j, 15 the disjoint union of the RVT sets C,,, where w is any word of type
RV RhRhoyTh R VTl Rhv.

The following result gives an interpretation of EKR sets of depth 1 in terms of orthogonality
properties of an articulated arm:

Theorem 3 (see Theorems 5.2(2) and 5.3). Let (My, ..., M) be an articulated arm.

1. A configuration q € C*(m) of the articulated arm belongs to the EKR set Yji..jx of depth 1
if and only if in this configuration the segments [M;_o, M;_1] and [M;_1, M;] are orthogonal
at M;_1 for alli=1y,...,1,.

2. A configuration q € Xj, . j, belongs to the RVT set Crnoypiy ghy yriv g C 24y, o and
only if, at q, the only orthogonality constraint is that each segment [M;, 11—1, M;, 1] is

—§
orthogonal to the direction on R™*! generated by M;, —oM;, 1 for alll = 0,...,1\ and
A=1,...,v.

This paper is self-contained and organized as follows.

We first recall, in Section 2.1, the context and the essential results about special multi-flags
which will be used in this paper. We present a summary on Cartan prolongation and tower of
projective bundles in Section 2.2. Spherical prolongations, tower of sphere bundles and their
properties are developed in the last Section 2.3.

Section 3 is devoted to the configurations of an articulated arm of length k& > 1 in R™*!. The
space C*(m) of such configurations is presented in Section 3.1. The relation between the tower
of sphere bundles (1.2) and the tower (1.3) of configuration spaces C¥(m) is given in Section 3.2.
Finally we present the hyperspherical coordinates on C*(m) in Section 3.3. The reader can find
the proof of Theorem 1(1) in Section 3.2 and Theorem 1(2) in Section 3.3.

In Section 4.1, we present a summary of the RC and RVT codes defined in [4], and we adapt
these codes to the context of tower of sphere bundles. Section 4.2 gives some interpretations
of the property of verticality in terms of configurations of an articulated arm. In an analogous
maner, some interpretations of the property of tangency are given in the last Section 4.3.

Section 5 is devoted to the relation between EKR sets of depth 1 and RVT sets. In Sec-
tion 5.1, we summarize the definition and the results concerning EKR classes based on [8, 9].
Section 5.2 gives a global description of EKR sets in terms of RVT sets. Section 5.3 presents
an interpretation of EKR sets (of depth at most 1) and RVT sets in terms of the configurations
of an articulated arm. Finally, in Section 5.4 a characterization for some EKR sets of depth 2
in terms of articulated arms is given. In this paragraph, we also give, for 1 < k < 4, the de-
composition of EKR sets of depth at most 2 in RVT sets and the corresponding interpretation
in terms of configurations of an articulated arm. The reader can find the proof of Theorems 2
and 3 in Sections 5.2 and 5.3 respectively.

2 Preliminaries

2.1 Special multi-flags

A distribution D on a manifold M is an assignment D : x € M — D, C TM where D, is a linear
subspace of the tangent space T, M. A local vector field X on M is tangent to D if X (z) belongs
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to D, for all x in the open set on which X is defined. The distribution D is smooth if there
exists a set X" of local vector fields such that D, is generated by the set {X(x), X € X'} for all x
in some open set U. We then say that D is generated by X on U.

In this paper, all distributions are smooth and we denote by I'(D) the set of all local vector
fields which are tangent to D. A distribution will be called a distribution of constant rank if D
defines a subbundle of T'M. According to [2] and [14], any pair (M, D) where D is a distribution
of constant rank on a smooth manifold M is called a differential system. Given two differential
systems (M, D) and (N,A) and two points x € M and y € N, we will say that (M, D,z) is
locally equivalent to (N, A, y) if there exists a diffeomorphism ¢ from an open neighborhood U
of z in M to a neighborhood V' of y in NV such that y = ¢(z) and ¢.(D|y) = Ay .

Given a distribution D’ on M such that D! C D, for all z € M, we denote by [D’, D] the
distribution generated by the sets I'(D) and {[X,Y]| X € I'(D’), Y € I'(D)}. The Lie square of
a distribution D is the distribution D? := [D, D]. The Cauchy characteristic distribution L(D)
of a distribution D is the distribution generated by the set of vector fields {X € I'(D) | [X,Y] €
D, VY € I'(D)}. If L(D) defines a distribution of constant rank, then it is an integrable
distribution.

A special multi-flag of step m > 2 and length k > 1 is a sequence of distributions

D: D=D,CDy1C---CD;C---CD1CDy=TM

all of constant rank on a manifold M of dimension (k + 1)m + 1 which fulfills the following
conditions (see [8]):

(i) Dj1 = (D)),
(ii) Dy is a distribution of constant rank (k — j + 1)m + 1,

(iii) each Cauchy characteristic subdistribution L(D;) of D; is of constant corank one in
each Djq, for j=1,...,k—1, and L(Dy) = 0,

(iv) there exists a completely integrable subdistribution F' C D; of corank one in D;.

In the sequel, a flag D which satisfies conditions (i) and (ii) without conditions (iii) and (iv)
will just be called a multi-flag of step m and we say that D is generated by D.

The necessary and sufficient condition for a multi-flag to be a special multi-flag is given by
the following result (see [2, Proposition 1.3] and [14, Theorem 6.2]):

Theorem 2.1 (see [2, 14]). For k > 2 and m > 1 consider a multi-flag of step m:
D: D=D,CDp1C---CDjC---CD1 CDy=TM.

D is a special multi-flag if and only if there exists a completely integrable subbundle F of Dy of
corank 1. Moreover, if the subbundle F exists, then it is unique.

Remark 2.1. The existence of the subbundle F' in the previous theorem is crucial and is
uniquely determined by the distribution D;. In fact, for any subbundle D of T'M, the subbun-
dle F of D was firstly defined by Kumpera and Rubin in [5]. Let us give some details about
this fundamental fact (all the following affirmations are proved in [1, 5]).

Let D+ C T*M be the annihilating Pfaffian system of D, the polar system Pol(Dt) of the
Pfaffian system (D) is defined by

Pol (DL)(aj) ={ac TiM/DH(z) |aAdw=0,Vwe DL},

where § : D+ — A%2(T*M/D') is the Martinet tensor characterized by dw = dw (mod D).

—

Then, the covariant system DL associated with D+ is ¢~ (Pol(D1)) € T*M where g : T*M —
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T*M /D" is the canonical projection. It can be proved that, @E announced subdistribution
F C D is the distribution whose annihilating Pfaffian system is D1 (see [1]). When the corank
of D is at most 2 and if D* = TM, then any such distribution F has corank 1 in D and F is
completely integrable (see [1, 5]).

According to the previous definition of a special multi-flag, we obtain the following sandwich
flag:

Dy, C Dp_ [@GEEENE Dj c---C Dy ¢ Dy=TM
@) @] U U
L(Dkfl) C L(Dk,2> c---C L(Dj_l) c---C F

All vertical inclusions in this diagram are of codimension one, while all horizontal inclusions
are of codimension m. From these inclusions, we can extract the following “squares subdiagrams”
called “sandwiches”, indexed by number j which corresponds to the upper left vertices D;:

Dj C Djfl
U U
L(Dj—1) < L(Dj-2)

This subdiagram is called a sandwich of rank j.

Given a sandwich of rank j, and a point € M, we can look for the relative positions of the m
dimensional subspace L(D;_2)/L(D;j_1)(x) and the 1-dimensional subspace D;/L(D;_1)(z) in
the (m + 1)-dimensional vector space D;_i/L(Dj—1)(xz). One (and only one) of the following
situations then occurs:

(i) L(Dj-2)/L(Dj-1)(x) ® D;/L(Dj-1)(x) = Dj—1/L(Dj-1)(x),
(ii) D;/L(Dj-1)(x) C L(Dj-2)/L(Dj-1)(x).
Definition 2.1. A point x € M is called a Cartan point if kK = 1 or if, for k > 2, the previous

situation (i) is true in each sandwich of rank j, for j = 2,... k. Otherwise z is called a singular
point.

2.2 Cartan prolongation and tower of projective bundles

Consider a distribution D of constant rank m + 1 on a manifold M of dimension n. Classically
the Grassmannian bundle G(D, 1, M) over M is the set

G(D,1,M) = | J P(D(x),1),
reM

where P(D(x),1) is the projective space of the vector space D(z). Thus we have a bundle
7 : G(D,1,M) — M whose fiber m7~!(x) is diffeomorphic to the projective space RP™. The
rank one Cartan prolongation of the distribution D is the distribution D) defined as follows:
given a point (z,\) € G(D,1, M), we set
1 -
D, = dn T (\) € T G(D,1, M),
where ) is a direction of D(z). Then DM is a distribution on G(D,1, M) of constant rank

m + 1. Let M be a manifold of dimension m + 1. According to [14], for any m > 2 and k > 1
starting with D = T M, we obtain inductively a tower of bundles

P*(M) - P*Y (M) — - —» PY(M) — P°(M) := M, (2.1)
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where the sequences (P7 (M))j=o,...k and (Aj)j=o,...r are defined inductively by
PY(M)=M  and Ag=TM,
PI(M)=G(Aj_1,1,PP7Y(M)) and Aj= (A, )Y for j=1,...,k

Notice that P7(M) is a manifold of dimension (j + 1)m + 1 for j =0,..., k.
In the particular case of M = R™*! we denote by P’(m) the manifold PJ(R™*!) for j =
0,...,k, and we obtain the corresponding tower of bundles:

P*(m) — P*Y(m) = ... = PY(m) — P°(m) := R™*1,
Then we have the following result:
Theorem 2.2 (see [14]).

1. On P*(m), the distribution Ay generates a special multi-flag of step m and length k.

2. Given x € M and a special multi-flagld : D = Dy, C Dj_y C---C D; C---C Dy C Dy =
TM of step m > 2 and length k > 1, there exists y € P*(m) for which the differential
systems (P¥(m), Ay, y) and (M, D, x) are locally equivalent.

Remark 2.2. Theorem 2.2(2) can be found precisely in [14] and is called the “Drapeau the-
orem”. However, according to the definition of a special multi-flag, we can easily deduce this
result from the following theorem of [9]:

Theorem 2.3 (see [9]). Suppose that D is a (m + 1)-dimensional distribution on a (s + m)-
dimensional manifold M such that the two following conditions are satisfied:

1) Dy =[D, D] is a (2m + 1)-dimensional distribution on M,

2) there exists a 1-codimensional involutive subdistribution E C D that preserves Dy, i.e.
[E, Dl] C Ds.

Then D is locally equivalent to the Cartan prolongation (D1/E)M) of the reduction (Dy/E) of Dy
modulo E.

2.3 Spherical prolongation, Cartan prolongation and tower of sphere bundles

Consider a distribution D of constant rank m 4 1 on a manifold M of dimension n. Choose any
Riemannian metric g on M, and denote by S(D, M, g) the unit sphere bundle of D associated
with the induced Riemannian metric on D. Then we obtain a bundle 7 : S(D, M, g) — M (see
Fig. 1).

Consider the antipodal action of Zs on S(D, M, g). Clearly, the quotient of S(D, M, g) by
this action can be identified with G(D,1, M) and the associated projection 7 : S(D,M,g) —
G(D, 1, M) is both a bundle morphism over M and a two-fold covering. In particular, 7 is a local
diffeomorphism. Consider now the distribution DI on S (D, M, g) defined by

pi . v €TwS(D, M, g)|dr(v) = Av for some A € R},

(zv) "~

where v is a unit vector in D(z).
The distribution D[V is called the rank one spherical prolongation of (M, D, g) (see Fig. 2).

Remark 2.3. The unit sphere bundle associated with D is defined as soon as we fix some
Riemannian metric gp on D. In this case, the distribution D! is well defined and depends
only on the Riemannian metric gp on D. The spherical prolongation D! depends only on the
sub-Riemannian structure (M, D, gp). However, for the sake of simplicity, we always consider
Riemannian metrics on M.
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>

x x

Figure 1. Spherical united bundle.

AV
(1]
Plew) T(0.)S(D, M, g)
dr
T.M

Figure 2. Spherical prolongation on sphere bundle.

Lemma 2.1. With the previous notations we have

(i) 7D =DM and

(7i) there exists a canonical Riemannian metric g on S(D, M, g) which is uniquely defined from
the Riemannian metric g on M.

Proof. First of all we show (i) locally. Choose a chart domain U over which D is trivial. Fix
an orthonormal frame {eq, ..., e} of D over U. Without loss of generality, we can assume that
D|y = R® x R™*! therefore the bundle S(D, M, g)|y is isomorphic to R® xS™, and G(D, 1, M)|y
is isomorphic to R™ x RP™. Then, locally, 7 : R” x §" — R"™ x RP™ is the map (z,v) — (z, [v]),
where [v] is the line bundle generated by v. According to the definition of DE ] ) and DS&’M),

1
T,V

we have 7, (DgC V)) = DS& W) Since 7 is a local diffeomorphism then (i) is proved locally.
The map & : S(D,M,g) — S(D, M, g) given by &(x,v) = (x,—v) is a diffeomorphism which
commutes with 7. According to the definition of DI, we obtain

5 1\ _ pl

6(Diz0)) = Doy
This ends the proof of (i).

For (ii), let g be the canonical Riemannian metric on 7'M associated with g. Since S(D, M, g)

can be considered as a submanifold of T'M, the metric g induces a Riemannian metric § on
S(D,M,yg). |

Consider two Riemannian metrics gg and g1 on M. We denote by S;(D, M) the sphere bundle
(1]

of D associated with the metric g;, and D, the spherical prolongation of (M, D, g;) for i =0, 1.
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Lemma 2.2. There exists a canonical isomorphism of sphere bundles ¢ : So(D, M) — S1(D, M)
such that 1, (D([]l]) = D[ll}

Proof. The set D' := |J [D, \ {0}] is an open submanifold of D C TM on which we consider
zeM
the map ¥ : D° — D° defined by

Vo) = ()

If IT : D — M is the projection bundle, then for any (z,u) € D there exists a neighborhood
U=1"1U)ND° around (z,u) in DY such that TD?U can be identified with U x T, M x D,.
Then we have:

A0 (v, w) = <v,—2[91(“’“’)> . (2.2)

g1 (u, w)]¥?

U is a diffeomorphism from D° onto itself that commutes with IT and sends So(D, M) to
S1(D, M). It follows that the restriction ¢ of ¥ to So(D, M) is a diffeomorphism onto S;(D, M).
Moreover, equation (2.2) shows that for any u in the fiber DO over 2, d¥ maps the linear span
Ru onto itself. Thus we have

v. (DY) = D .

Consider a differential system (M',D’) and ¢ : M — M’ an injetive immersion such that
o«(D,) C D;(x) for any x € M. Any Riemanian metric ¢’ on M’, induces, via ¢, a Riemannian
metric g on M, and we can consider the associated spherical prolongation. This generates the
following lemma:

Lemma 2.3. With the above notations, the map ¢ : S(D, M, g) — S(D', M’,¢') defined by

¢(z,v) = (¢(x), ded(v))

1s a bundle morphism over ¢, which is an injective immersion, and (]3 satisfies the following
properties:

(i) 6. (D) = (6(D)) < (D)1,
Moreover, if ¢ is a diffeomorphism such that ¢.(D) = D', then (ﬁ 18 alsoAa diffeomorphism and

we have qAﬁ* (D[l]) = (D’)m. On the other hand, the Riemannian metric ¢*§’ s nothing else but
the canonical metric § naturally associated with g on M.

Proof. First of all it is clear that ¢3 is smooth and is a bundle morphism over ¢. Moreover, qg
is injective since ¢ is an injective immersion.

Note that the tangent space T, ,)S: of the fiber S, over x of S(D, M, g) can be identified
with

{ve D;|g(v,v) =0}.

Now, any V' € T(,,)S(D, M, g) can be written as V' = (u,v) with v € T,M and v € T(;,)S:-
Consequently we get
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It follows that ¢ is an immersion by equation (2.3).

Indeed, since ¢*g’ = g, the differential d,¢ is an isometry on its range, and then d,¢(S,) is
the fiber over ¢(z) of S(¢s(D), (M), g'). Thus (i) is proved.

Let # : S(D,M,g) — M and 7' : S(D', M',¢') — M’ be the natural projections. Then we
have

d#' o dg = d¢ o d,
which yields
{QE*(DM)}J;(@V) = {dgg(u,v); (u,v) € T(z,)S(D, M, g), dit(u,v) = Av for some \ € R}
= {do(u,v); (u,v) € Tp,)S(D, M, g), do o dit(u) = di’ o dp(u,v) = M (v), A € R}
— [
This ends the proof of (ii).

Assume now that ¢ is a diffeomorphism such that ¢, (D) = D’ and let ¢ = ¢!, According to
the definition of ¢ and ), it follows trivially that 1 o ¢ = Id. Besides, based on the definition of
[¢«(D)]1, and since d,¢ is an isomorphism, we must have {(qﬁ*(D))[l]}d;(m ) = {(D,)m}@(m )
Finally, since ¢ is an isometry from (M, g) to (M’,¢'), d¢ is also an isometry for (T'M, g) and
(TM’,g") if g and g’ are the canonical Riemannian metrics on the tangent bundles induced by ¢

and ¢, respectively. As g and g’ are the restrictions of g and g to S(D,M,g) C TM and
S(D',M', ¢g") C TM', respectively, we obtain the last property and the proof of the lemma. W

Consequently, as in the context of Cartan prolongation, for any m > 2 and k > 1 we can
inductively define a tower of sphere bundles (for a fixed choice of the metric g on a manifold M)
as

PF(M) — P*Y (M) = - = PI(M) — PP~} (M) — - — PY(M) — PO(M) := M, (2.4)

where PJ(M) is a manifold of dimension (j + 1)m + 1 for any j = 0,..., k, and on each P7(M)
we have a canonical distribution A; and a Riemannian metric g;. All these data are inductively

defined by:
e go = ¢ is a given Riemannian metric on PO(M) =M,Ag=TM,
o for 1 < j <k
o PI(M)=S(Aj_1, PI"Y (M), g;—1),
o A;= (&)1,
o g; is the Riemannian metric g;—1 on S(Aj_l, Pi—1(M), gj—1) associated with g;_;.

Note that, if ¢’ is another Riemannian metric on M, according to Lemmas 2.2 and 2.3, we
construct, by induction, a family of diffeomorphisms )’ such that, if

P*(M) — P*Y(M) — .- = P'"(M) — P°(M) := M

is the tower of sphere bundles associated with the chosen metric ¢’ on M we obtain, for all
7=0,...,k:

o WI(PI(A)) = Pi(2),

e 1 is fiber preserving,

o ¥l(A)) =AY
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My
My

M3

My

Figure 3. Articulated arm of length 4.

Therefore, the properties which characterize the tower (2.4) are independent of the choice of the
Riemannian metric g on M.

For the sake of simplicity we write P7(m) := PJ(R™*!) for any j € N. From Theorem 2.2
and Lemma 2.1 we can deduce the following result:

Theorem 2.4. Consider the tower of sphere bundles

PE(m) = P*Y(m) > - = PI(m) —» PP (m) — --- = PY(m) = P°(m) := R™! (2.5)

associated with the canonical metric on R™Y. Then the following properties hold:

1. There exists a canonical two-fold covering 7 : PJ(m) — P7(m) such that 77(A;) = A for

allj=1,... k.
2. On Pj(m), the distribution Aj generates a special multi-flag of step m and length j, for
allj=1,... k.

3. LetD: D =D, CDp_1C---CDjC---C Dy CDy=TM be a special multi-flag of
step m > 2 and lengzﬁh k> 1. Then, for any x € M, there exists y € P¥(m) for which the
differential system (P*(m), Ay, y) is locally equivalent to the differential system (M, D, z).

This tower (2.5) will be called the spherical tower of special multi-flags of step k.

3 Tower of sphere bundles associated with a kinematic system

3.1 A kinematic system for special multi-flags

We set ourselves in the context of [6, 16]. Consider, in R™*1 a family of k segments [M;, M; 1],
where i = 0,...,k — 1 and m > 2, keeping a constant length I; = 1 between M; and M, 1, with
articulation at points M;, fori =1,...,k — 1.

Such a system is called a “k-bar system” in [6] and an “articulated arm of length £” in [16].
The kinematic evolution of the extremity My, under the constraint that the wvelocity of each
point M;, i = 0,...,k — 1, is colinear with the segment [M;, M;11], is completely described in
terms of hyperspherical coordinates in [16], whereas results of flatness and controllability for
such a system are proved in [6] (see Fig. 3).

A special multi-flag of step m > 2 and length k& > 1 is associated with this kinematic system
as explained in the following. We can decompose (R™*1)¥*+1 into the product Ry x ... x
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R x o x Ry Let o = (2. ,x"*1) be the canonical coordinates in the space R}**!
which is equipped with its canonical scalar product (-,-). The space (R™*+1)*+1 is then equipped
with its canonical scalar product too.

Consider an articulated arm of length k denoted by (Mo, ..., My). We define, on (R™+1)k+1

the vector fields

m~+1 o
Zi=> (#f1—af) 5y for =0, k-1
r=1 ¢

Based on our previous assumptions, the kinematic evolution of the articulated arm is described
by the controlled system
m+1

k—1
) 0
qg= E u; Z; + E unJrr—aw2
=0 r=1

with the following constraints: ||x; — z;11|| =1 for i =0,...,k — 1 (see [6] or [16]).
For k > 1, the configuration space C*(m) is the set

{(a}(],...,l'k)’\I/Z‘(:L'(),...,xk):0, Vi:O,...,k:—l},

where U;(zq, ..., 71) = ||7; — zi11||> — 1 and we set C°(m) := R™+L,
For i =0,...,k — 1, the vector field:

m+1
0 0
M= Y (i =) (5o - o)
;( + ) oxj , Oxj

is proportional to the gradient of W;.? It follows that the tangent space Tqu(m) is the subspace
of T,(R™*1)**+1 which is orthogonal to N;(g) for i =0,...,k — 1.
Denote by & the distribution generated by the family of vector fields

0 0
{Z()v”'vzk17ax]£7"'?al‘2n+l}'

Let Dy, be the distribution on C¥(m) defined by Dx(q) = T,C*(m) N E. Thus we have:

Lemma 3.1 (see [16]). Dy is a distribution of constant rank m + 1 generated by
r_or 9 :
(xl—:co)Zo—i—— for r=1,....m+1 if k=1,
ox]
k=2 k-1

0
(h—ai-) | Do I AZi+ 2 |+ 5

i=0 j=i+1 g
where Aj(q) = —(Nj(q), Nj-1(0)) = (2j(q), Nj-1(q)), forj =1,... .k = 1.

Notations 3.1. According to notations of Lemma 3.1, we define

for r=1,....m+1ifk>2

o lezoandYo:Q

i=0 j=i+1

k=2 k-1
efork>2Y,=(> [ AZ|+ 2.

2In fact, we could use the differential d¥; instead of N;; however, this choice is motivated by the use of the
projection II; whose kernel is generated by {N;; i =0,...,k — 1}
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Remark 3.1. According to the previous notations, the inductive relation holds:
Yi=Ax 1Y 1+ Zp_1. (3.1)

Consequently the distribution Dy, is generated by the family

0
(zh — 2 )) Vit = |7 = 1,...,m—|—1}.
{ o2
The properties of Dy are summarized in the following result (see [6, 16]):
Theorem 3.1. The distribution Dy, on C*(m) satisfies the following properties:

1) Dy is a distribution of constant rank m + 1,

2) Dy generates a special multi-flag on C*(m) of step m and length k.

3.2 Articulated arm and spherical prolongation

The following canonical tower of sphere bundles
Ck(m) = C*Ym) — - = CYm) — C%(m) := R™H! (3.2)

is associated with an articulated arm on R™*! (m > 2) of length k > 1, where, for j = 1,...,k,
the projection C?(m) — C/~!(m) is the restriction of the canonical projection

RO x o x RV . XRT—H — RPF < ox R xRle
(.To,...,SUj,l,:Ej) — (St?o,...,xj,l)
According to Theorems 3.1 and 2.4, we know that the differential system (C*(m),Dy)) as-
sociated with an articulated arm of length k on R™*! is locally isomorphic to the canonical

differential system (pk(m), Ak) at some appropriate points. In fact, obtain a stronger result (as
stated in Theorem 1(1)) stated as follows:

Theorem 3.2. For each m > 2 and 1 < j < k, there exists a diffeomorphism FI from Pj(m)
on CI(m) such that:

(i) pl o FI = Fi=l o 73, where #7 : Pi(m) — PI~Y(m) and p/ : C/(m) — CI='(m) are the
canonical projections, and

(i) FI(A;) =D;.
Therefore, according to Theorems 2.4 and 3.2 we can obtain:

Theorem 3.3. LetD: D =Dy, CDp_1C---CDjC---C Dy CDyg=TM be a special multi-
flag of step m > 2 and length k > 1. Then, for any x € M, there exists y € C¥(m) for which the
differential system (C*(m), Dy, y) is locally equivalent to the differential system (M, D,x).

The end of this subsection is devoted to the proof of Theorem 3.2 and thus the proof of
Theorem 1(1). Before doing so, we need some auxiliary results.

Lemma 3.2. For k > 1, consider the natural decomposition:

(TR 1)1 — TC*(m) @ [TC*(m)]" on C*(m),

Ck(m)

where [TCF(m)]* is the orthogonal of TC¥(m), and denote by I} the orthogonal projection of
[T(Rm+1)k+1]|ck(m) onto TC*(m). Finally, denote by Ly, the vertical bundle defined by the natural
fibration of C¥(m) over Ck=1(m). We then obtain the following:
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1. The family of vector fields {Hk (%) ,r=1,...,m-+ 1} generates L.
2. The distribution Dy, is generated by Ly and the vector field Xy = Y, + Vi, where

m+1 8
Vi = Ty — x5 ) =——.
k ;( k k 1)3$Z

3. The distribution Dy is also generated by the family of vector fields

0
($2—$2—1)Xk+ﬂk< >, r=1,...,m+1.

Oxy,
Proof. Denote by $;, the subdistribution of &, generated by the family of vector fields

0
oz,

It follows that £, ()7TC*(m) is a distribution on C*(m) which is contained in Dy. In fact, we
have

r—l,...,m—i—l}.

Ly =kerd¥j_, ﬂf)k; = [T (9g)-

Therefore, the distribution Ly, is spanned by the family of vector fields

0
{Hk (3:6’,;) ‘r—l,...,m—l—l}.

On the other hand, §; is the vertical bundle of the canonical projection,

m+1 m+1 m+1 m+1
Ry X e X RY - Ry X X R

3.3
(w0, ..y T, TR) > (w0, -+ Th—1) (3:3)

It follows that L£j is the vertical bundle of the induced projection of C¥(m) onto C*~!(m).
Moreover, the fiber over ¢ € C*~1(m) of the previous fibration is the unit sphere S, =
{(a,zk) | ¥k—1(q, zx) = 0}, which proves (1).

m+41
Furthermore, the vector field Vi, = > (xz — xz_l) % is vertical for the projection (3.3)
k

s=1
and is orthogonal to each S;. Since ||V|| = 1, we thus have
0 d
gyl =— ) = — (x}, — o}, . 3.4
k <6:n2> oa7 (#h = 25_1) Vi (3.4)

From Remark 3.1 the distribution Dy, is generated by the family

0
{(xi—xi_l)Yk—i—M r= 1,...,m+1}.
m—+1
Therefore the vector field X, =Y, + > (z} — 962—1)% is tangent to Dy, but clearly this vector
r=1
field is not tangent to L. Since Dj is a distribution of constant rank m + 1 and £; is an
(integrable) subdistribution of rank m, then Dy is generated by Ly and X}, which proves (2).

Finally, according to the relation (3.4), each vector field (2}, —x}_;)Yi+ % can be written as
k

T T 8
s ()

Therefore from Lemma 3.1, we obtain (3). [
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Proposition 3.1.

1. There exists a bundle isomorphism W : Dy, — C¥(m) x R™ ! over the identity of C*(m).

2. Let ~y; be the Riemannian metric on the bundle Dy such that the morphism U s an
isometry between Dy and CF(m) x R™TL where the bundle CF(m) x R™ is given by
the canonical Riemannian metric induced by the canonical Fuclidean metric on each fiber
{q} x R™*L. Then UF induces a diffeomorphism UF : S(Dy,C*(m),vp) — C*1(m) which
fulfills the following properties:

(i) Wk commutes with the canonical projections S(Dy,CF(m),v) — C*(m) and C*+1(m)
— Cf(m),
(it) WL[(Dx)M] = Dy

Proof. From Remark 3.1, the bundle D, has m + 1 non-zero global sections

0
W, = (2 —2f_) Ve + =— for r=1,...,m+1
Oz},

Thus Dy, is a trivial bundle. This global trivialization gives rise to an isomorphism Uk . Dy —
C¥(m) x R™*! characterized by

m+1

\i/k ((L‘(), vy T, Z I/TWT((L‘(), cee ,:L'k)> = (1‘0, cee ,xk,y),
r=1

where v = (v!,...,v™*1) and so U satisfies point (1).

)

Put on Dy the Riemannian metric v, = g g, where g is the canonical Euclidean metric on
the trivial bundle C¥(m) x R™*1. Tt follows that the global basis {W, |r =1,...,m + 1} is an
orthonormal family, and then the set S(Dy,C*(m),vx) is:

m—+1
{(mo, e, Tk Z V' Wy (xo, . .. ,xk)) ‘ (xoy...,xk) € Ck(m), (1/1)2 4+ 4 (Vm+l)2 = 1} ,
r=1

and the fiber over (zg,...,x;) € C¥(m) is equal to
m+1
{Z VWi (g, ..., xr) ’ (y1)2 4t (Vm+1)2 = 1} .
r=1

From the choice of the metric ~, the restriction T* of UF to S(Dy,C*(m),y) is then a dif-
feomorphism onto C¥(m) x S™. Moreover, by construction, we have the following commutative
diagram:
T
S(Dy, C*(m), vp) —— CF(m) x S™

.| [

Ck(m) ——— C*(m)
Id

where the vertical maps are the canonical projections. Consider now the map

T C*(m) x R™ = CF(m) x R™H!
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defined by ’f(xo, coy T, 2) = (20, ..., Tk, Tk + 2). This map induces a diffeomorphism
T : CF(m) x S™ — k1l (m).

We set U* = T o U* and obtain a diffeomorphism ¥* : S(Dy,C*(m), ) — C*+1(m) which
commutes with the canonical projections of the sphere bundles 7 : S(Dy,C*(m),v) — CF(m)
and pF*1l: CFHl(m) — Ck(m).

Given a vector field W on C*(m), for any lift W of W on C*¥*'(m), the vector field W =
(TUF)~Y(W) is a vector field on the manifold Dy such that T (W) = W. Moreover, TU* sends
ker(T'r) onto ker(Tp**!). Denote by W, the vector field on C*(m) x R™*+! defined by

0, 0
Oy~ Oy g

Wr(x(% sy $k,l’k+1> = (x}; - xZ—l)Yk +

Notice that W, (xo, ..., Tr, Txi1) is actually tangent to C¥T1(m), and we have T'pex (W) = W,.
We set W, = (T¥F)~1(W,.).

Now, given a point (zo, ..., z;) € C¥(m), the spherical prolongation (D;)!!l of Dy, at a point
m—+1 m+1

<:c0,...,wk, > V"Wr(:co,...,wk» is generated by > v"W,(xg,...,x) and by the tangent
r=1 r=1
space to the fiber through this point. This implies that the space \I'f((Dk)[l]) over the point
m+1
(o, ..., Tk, Tk + ), is generated by > v"W,(zo,...,x, x + ) and by the tangent space of
r=1
the fiber at this point.
m+1
But, according to Remark 3.1, this vector field > v"W,(zo,...,x, xx+v) can be written as
r=1
m—+1
T ' T T 8 8
Z V() — ) Ve +v ot T 9ar =AYy + Z + Vit
r=1 k k+1

where g1 = xp+v. According to (3.1) and Lemma 3.2(2), this last expression is exactly X1.
We deduce that the space \I/f((Dk)m) is generated, over the point (zg,..., Tk, Tx+1), by Xgi1
and by the tangent space to the fiber at this point. Lemma 3.2(2) implies that W ((Dy)M)
and Dy, coincide at point (xg,. .., Tk, Trr1)- |

Proof of Theorem 3.2. On the one hand, we have P°(m) = C%(m) = R™*! with Ag = Dy =
TR™*! and, on the other hand, if gg is the canonical Riemannian metric on TR™*!, we got
P'(m) = S(Dy,C%m), go) with A; = (Dg)l!l. Therefore, the result comes from Proposition 3.1
for k = 1.

Assume that there exists a diffeomorphism FJ : P7(m) — C7(m) which satisfies properties
(i) and (ii) of Theorem 3.2.

From Proposition 3.1, we obtain a diffeomorphism W7 : S(D;,C7(m),~;) — C/T1(m) such
that U, [(D;)M] = D;;; and satisfying the following commutative diagram

yJ
S(D;,CI(m), ;) — CIT1(m)

|

C/(m) ——— CI(m)
1d
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According to previous induction at level j, we put on P? (m) the Riemannian metric 5; =
(7)*(;). From Lemma 2.3, we extend F7 : PJ(m) — C/(m) to a diffeomorphism

éj : S(Aj, pj(m), ’_)/j) — S(Dj, Cj(m), ’yj)
such that (:)1[(Aj)m] = (D;)M and satisfying the following commutative diagram

o7
S(Aj,ﬁj(m),ﬁj) — S(,Djvcj(m)?f}/j)

|

A

Pi(m) —— C’(m)
Fi

We put on Pj(m) the Riemannian metric obtained by successive induction on the tower
bundle (2.4) (see Section 2.3 just after (2.4)). According to Lemma 2.2, we also obtain a diffeo-

morphism © : P/ (m) — S(A;, P/(m),7;) such that ©.(A; 1) = Agl] and satisfying the
following commutative diagram

©
ijrl(m) B S(Ajapj(m)vﬁlj)

l l

Pi(m) —— Pi(m)
Id

If we juxtapose the three last diagrams, we obtain the required diffeomorphism F/*! =
UioBlo0. |
Remark 3.2. According to Theorems 2.4 and 3.2, from towers (2.5) and (3.2), we obtain the

following diagram in which each vertical map is a 2-fold covering for k£ > 1:

Ck(m) N Ck_l(m) —_— e — Cl(m) N Co(m) .— Rm+1

R

PF(m) — P*Y(m) — -+ — PY(m) — P°(m) := R™*!

3.3 Hyperspherical coordinates

Consider the natural global diffeomorphism F* : C¥(m) — R™*! x (S™)* given by
fk(l'o,l'l,...,l‘i,...,l'k) = (1'0,1'1 — L0y s Ljy — Lj—1y-e-y3 Lk — :L‘k_l).

Now, according to Theorem 3.2, the map F* o F¥ is a global diffeomorphism from Pk (m) to
Sk(m) = R™*1 x (S™)¥ and, if oF : S¥ — S*~1 is the canonical projection, we have the following
commutative diagram:

Fk fk
PF(m) — C*(m) — S*(m)
lfr’“ lp’“ l@’“ (3.5)
PF1(m) — CF1(m) — S¥~1(m)
Fk—l JT_’k—l
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This global chart identifies, each point ¢ = (zg, x1,...,;, ..., zx) € C*(m) with
< = ‘/—:k(q) = (330,21,. cey Rhy e '72145) € Rm+1 X (Sm)k

We will put on each factor S™ the charts given by hyperspherical coordinates in R™*! defined
as usually by the following relations:

2l = popl(0) = psin @' - - - sin 0™ L sin 4™,
22 = pp?(0) = psin B - - -sin 0™ cos O™,
23 = pp3(0) = psinf' - -sin 6™ % cos H™
2k = pek(0) = psin 6 cos 62,
Zk+1 _ p¢k+1(0> = pcos 91,
where p? = (z21)2 4+ -+ (P2, 0< I <2rand 0< @/ <7 for 1 <j<m— 1.

~ We denote by $ the map from ]0, +00[x[0, 7] x -+ x [0,7] x [0,2n] to R™F! defined by
®(p,0) = pP(0) = z. The jacobian matrix D® of ¢ is

5 ¢ 0¢
Db = s
where ¢ and % are the column vectors of components (¢1, e ¢m+1) and (%, e a‘gz;-rl),
respectively.
The inverse of this matrix is then the transpose of the matrix
( o L 00 1 96 )
a6 1191 3% 11 90m | -
pllzgrl 90 pllgge|| O™
Fori=1,...,k, let S; be the canonical sphere in the i** factor R?"‘H. Given a point « in the

sphere S;, there exists hyperspherical coordinates z; = @i(pi, ;) = pZ-CI%-(QZ-l, .. sz) defined for
0<0F<2rand0< 0{ <m, j=1,...,m—1, where ®;(0,...,0) = a. Therefore, given a point
¢ = (20,21,...,%--,2x) €S, weobtain a chart HF = (Id—zo, (®1)71,..., (®2)~L, ..., () Y)
centered at ¢ such that its restriction to p; = 1, i = 1,...,k, induces a chart of S* (centered

at ().
Note that the map H* = (Id — g, (®1)7", (P2)71,..., (®1)~") is a hyperspherical chart on
Sk(m).

Definition 3.1.
1. For any ¢ € S*(m), every map of type H* around ( is called a hyperspherical chart on
SF(m).

2. For any ¢ = (F*)~71(¢) in C*¥(m), every map of type H* o F* around g is called a hyper-
spherical chart on C*(m).

3. For any p = (F¥ o F*)~1(¢) on ﬁk(m), every map of type H* o F¥ o F* around p is called
a hyperspherical chart on P*(m).
Notations 3.2.

m—+1
e Aj= ) ¢l ¢ fori=1,...,k—1and A; =1,
r=1



Configurations of an Articulated Arm and Singularities of Special Multi-Flags 19

m+1
.ZO_Z¢OamT7
. ZBl O fori=1,. k—l,withBl—zad’{“forz—1 _k—1, and
067, 90;_,
j 1 m+18¢11 'r N
B; :Ila% m > o fori=1,...,k—1land j=2,...,m,
o0 1T L rried
oXli— ‘g“forz—l omand 0 <1<k -1,
A , !
° :Zfl’ZiforOngk—l,Withfl’: [T 4, fori=0,...,0-1,0<1<k—1and
i=0 j=i+1
fl=1.

Remark 3.3. In Lemma 3.1 we already defined a function A;(q) = —(N;(¢),N;j-1(g)). It is
clear that we have the relation A4; o (HF o FF) = Aj.

Theorem 1(2) is obtained from (2) of the following result:
Theorem 3.4. For any k > 1, we have the following properties:

1. In hyperspherical coordinates, on each manifold Sk(m), C*(m) and P*(m), the correspon-
ding typical distributions F*(Dy), Dy, and Ay are generated by {Xk 1,X;_1, LX)
respectively.

2. We have a net of commutative diagrams:

A A

P*(m) — P*Y(m) — - — PY(m) — P°(m) := R™*!

Ck(m) — C*1(m) — --- — Ct(m) — CO(m) := R™H!

Sk(m) — St (m) — -+ — SY(m) — S%(m) := R™H!

Pk(m) — P¥Y(m) — .-+ — PY(m) — P°(m) := R™*!
with the following properties:

e in each horizontal tower, the horizontal map between the space number | and the space
number | — 1 (I > 1) is a spherical fibration and a projective space fibration in the
first three lines and in the last line, respectively.

e In each column number | each vertical map between two consecutive lines among the
first three lines is a diffeomorphism which sends the typical distribution over the source
space on the typical distribution over the image space, and each vertical map between
the two last lines is a two-fold covering which have the same properties.

Proof. In Section 5 of [16], it is proved that, in hyperspherical coordinates, the distribu-
tion FF(Dy) is precisely generated by {X? , X} | ..., X/ }. According to Theorem 3.2,
the diffeomorphism F* : P¥(m) — C*(m) sends the distribution A; onto Dj. This ends the
proof of (1). (2) is a consequence of relation (2.5), Theorem 3.2, diagram (3.5) and (1). [ |

Remark 3.4. All manifolds which appear in the towers (3.6) are analytic manifolds and all
maps in these towers are also analytic.
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4 RC and RVT codes and configurations of an articulated arm

4.1 RC and RVT codes according to [4]

In this subsection the theory of RC and RVT codes introduced in [4] will be adapted to the
context of spherical prolongation.

Consider a distribution D of constant rank on a manifold M fitted with a Riemannian
metric g. We will denote, indistinctly, by P (M, D) the sphere bundle S(M, D, g) or the projective
bundle P(M, D) and by D} the spherical prolongation or the Cartan prolongation of D on
P(M, D). Therefore, we have the associated tower of bundles (see (2.1) and (2.4))

PHM) — PFY M) — - — PHM) — PO(M) = M, (4.1)

where each manifold P7 is equipped with a distribution denoted by ® j such that ®g = T'M and
D; = (D;_1) for 1 <j < k. When M = R™1 PF(m) denotes either P¥(m) or P*(m).

For any 1 < j < k, we denote by 7/ the natural projection of PJ(m) onto P/~1(m). The
tangent bundle to the fiber of 7/ : PJ(m) — PI~1(m) is the vertical bundle denoted by V;, and
at any p € P/ (m), V;(p) C D,(p) by construction.

For any p € P*~1(m), the fiber (7%)~!(p) is denoted by S*(p). Thus, for such a point p, (4.1),
yields a tower of fiber bundles

PLS*(p)) — P (SH(p)) — - — PL(SF(p)) — P (S*(p)) := S*(p) (4.2)

for any 1 <1 < k.

Coming back to our general context, we have again a distribution D? defined inductively on
each P7(S*(p)), by o =V, and D? = [D?_l]{l} for 1 < j < k. Such a tower will be called
a fiber prolongation tower. Of course, we have P'(S*(p)) C P**(m) and Of(q) is an hyperplane
in Dy1(q) for any ¢ € PI(S*(p)). In particular, d5(q) is nothing else but the tangent space
of S¥(p) at q.

On the other hand, for any k > 1 > 0, let 7! be the natural projection of P*(m) onto P'(m)
given by the composition 7% o 7¥~1o ... o 7!+ If p is a point in Pk(M), we denote by p; its
projection p; = 7 (p) € P!(m), and we say that p; is under p, = p. With these notations, for
k > 1, each point py € P¥(m) can be written (pj_1, 2) for some z € S*(pp_1).

It follows that, at each level & > 1 we have the family of hyperplanes D;(p) inside the
space Dg(p), with i + j = k. In fact, each 0] (p) comes from a fiber prolongation of order j of
the tangent space of the fiber S*(p;_1) for i =1,... k.

Recall that a family (£;);.; of hyperplanes of RY is in general position if for every finite

subset J of I the codimension of the intersection [ Ej is exactly equal to the cardinal of J.
ieJ

Theorem 4.1 (see [4]). The family of hyperplanes D;(p) with i + j = k is in general position
inside the space D (p).

Proof. This result is proved in [4] for Cartan prolongation (Theorem 6.1). If p is a point
in P*(m), we denote by p its projection 7%(p) in P¥(m) (see Theorem 2.4). According to
Theorem 2.4, each hyperplane D; (p) in D (p) projects, via 7%, onto a hyperplane D; (p) in Ag(p)
corresponding to the previous process of fiber prolongation in the equation (2.4). The proof in
the context of spherical prolongations is then a consequence of Theorem 6.1 in [4]. |
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According to [3, 4] we have the following definitions:
Definition 4.1.

1. Any hyperplane 0; (p) with ¢ + j = k in the space Dg(p) is called a critical hyperplane
at p. A direction [ or a vector v in Dy(p) is called critical if it lies in at least one critical
hyperplane. Otherwise [ or v is called reqular. Moreover, a critical direction [ or a vector v
in D (p) is called vertical or tangency if the singular hyperplane containing this direction
is Vi(p) = 0&(p) or D; (p) for j > 0, respectively.

2. A point p = (pr_1,2) € PF¥(m) is called regular, critical, vertical or tangency if z €
Dj_1(pr—_1) is regular, critical, vertical or tangency respectively.

Remark 4.1.

1. Let p € P¥(m) and p = 7%(p) € P¥(m). It follows from Theorem 2.4 that p is regular,
critical, vertical or tangency if and only if p is respectively regular, critical, vertical or
tangency. Conversely, for any p € P¥(m), each point in 7%(p) € P¥(m) has the same
previous qualification as p.

2. We can consider, inside any fiber prolongations tower given by equation (4.2), a fiber
prolongation tower from some fiber of the projection P'(S*(p)) — P=1(S*(p)) and look
for the corresponding critical hyperplane in Df(q). Then such a critical hyperplane is in
fact an intersection of type 2F(q) N D;(q) with ¢ > k and k41 =i+ j (see Proposition 6.2
in [4]).

3. If a point p = (pp_1,2) € P¥(m) is critical, then z may belong to the intersection of several
critical hyperplanes and not only to one critical hyperplane.

The RC code of a point p € P¥(m) is a word o = o1 ...0y...0, whose letter o; is R or C
if the point p; under p is regular or critical respectively. Note that, by convention, the first
letter is always R. Let o be the RC code of a point p € Pk(m) The RVT code of p is a word
W=wi...w...wg obtained from ¢ in the following way:

[ ] wi:RifUz‘:R,
e w; =V if o; = C and the point p; under p is vertical,

e w; =T if o0; = C and the point p; under p is tangency.
Remark 4.2.

1. According to Remark 4.1, the RC or RVT code of any point p € Pk(m) is the same as
the RC or RVT code of its projection p = 7%(p) € P¥(m), respectively.

2. The RC code gives rise to a partition of P¥(m) into 25~! sets of points which have the

same RC code o. Let C, or C, be the set of point p € pk(m) or p € P¥(m) whose RC
code is o respectively. Then 7%(C,) = C, and (7%)~1(C,) = C,.

3. Remark 4.1(2) implies that if p; is tangency, then p; must lie in a fiber tower prolongation
for some p; under p;. Therefore, if ¢ is the level at which the first letter C' appears in
a RC word, then the associated point p; must be vertical.

4. Each RC code o generates theoretically 2" RVT codes w if n, is the number of letters C
in 0. However, from (3), a letter 7' cannot immediately follow a letter R in such a code
because each tangency point must lies in a prolongation tower of some point p; under p;.
Consequently, after a letter R, there must appear at least a letter V before any letter T
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5. According to Remark 4.1(3), for any critical point p = (px_1,2) € P*(m), z may belong to
the intersection of several critical hyperplanes. Therefore, the RVT code generated by the
RC code may not be well defined. In this case, when z is not vertical and belongs to only
one of them, we need to be more clear in the code about the possible letters “T” that may
be written 11,75, ...,7T,. Moreover, much more complicated codification is needed if z
belongs to the intersection of several critical hyperplanes. For instance, if this intersection
is a line, we can use a codification by letters Ly, Lo, ... as is proposed in [3, 4].

In the RVT code, according to Remark 4.2(5) and [3, 4], we will use the following conventions:

e If 2 belongs to only one critical hyperplane we will use the letters V, 11,75, ... in the RVT
code.

e If z belongs to the intersection between exactly two critical hyperplanes referenced 7; and
T; we will use letters of type 7;; in the RVT code. Moreover, we adopt the following
convention: Tq is always relative to a vertical hyperplane and Ty, for i > 0, is relative to
a critical hyperplane which is not vertical.

e More generally, if 2z belongs to the intersection of exactly n critical hyperplanes referenced
To=Vand 1;,,...,T;, , or T;,,...,T;, withi;...i, # 0 we will use letters of type To;, i,

or T;,. ;. in the RVT code.

Note that, in a RVT code, a letter Ty always means “vertical” and each letter T; with i > 0
means “tangency”.

Definition 4.2. We will say that a word w (resp. a class C,) in RVT code is of depth d if this
word w contains at least one letter of type T;,. ;, with i; > 0.

For instance, for m = 3 and 1 < k < 4 the different RVT codes which may appear are the
following (compare with [4] before Corollary 4.48):

k=1: R,

k=2: RR, RV,

k=3: RRR, RRV, RVV, RVR, RVT, RIyIu,
k=4: RRRR, RRRV,

RRV R, RRVV, RRVT, RRTyTo

RVRR, RVRV, RVVR, RVVV, RVVT, RVIyloyi,

RVTR, RVTV, RVTT, RTyT — 1T,

RToTo1 R, RToT01V, RToToi Ty, RIoTo1 T, RToToiTor, RToT01T02, R1pTo1T12-

All the words RToTol, RRT()T()l, RVT()T(H, RToTlT()l, RTnglR, RTOT01 V, RTOT01T1, RTOT01T2,
RIyTy1To1, RIoTy1Toe and RTyTo1T12 are of depth 2. The other ones are of depth 1.

4.2 Vertical points and configurations of articulated arms

Consider a point ¢ = (2o, ...,z;) € C¥(m) and let p = (F¥)~1(¢) € P*(m). For 0 <1 < k, we
denote by ¢, = F'(p;) € C*(m), where p; is any point under p. In fact, according to Theorem 3.2,
we have q; = (20,...,7;) = p¥o---0p"(q) = pP=1(q), where pF : C¥(m) — C¥~(m) is the
natural projection (see Theorem 3.2). We also say that q;, [ = 0,...,k — 1 are points under q.
Moreover, we can write ¢ = (qx_1, ) for zx € (p¥)~!(qr_1) and, by Theorem 3.2, p = (F¥)~1(q)
is vertical if and only if the direction generated by xj —x_1 is vertical according to the projection
Pk CF(m) — CF1(m).

More generally we can transpose the qualification of points of P*(m) onto points of C*(m):
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Definition 4.3. Consider a point ¢ = (F¥)(p) € C¥(m).
1. qis called regular, critical, vertical or tangency if p is regular, critical, vertical or tangency
respectively.

2. The code of g will be the code of the corresponding point p.

First of all, we have the following characterization of vertical points in C*(m):
Proposition 4.1. Fiz some point ¢ € C*(m).

1. For all 2 <1<k —1, we have the following equivalent properties:

(a) Consider the sandwich of rank l:

[Drli C  [Drli1
U U
L([Dgli-1) C L([Dkli-2)

associated with Dy. Then [Dy];(q) is contained in L([Dg)i—2)(q)-

(b) Ai—1(g) = 0.

(¢) The configuration q of the articulated arm (M, ..., My) is such that the segments
[Mj_9, M;_1] and [M;_1, M;] are orthogonal at M;_;.

(d) q is vertical.

2. q is a Cartan point if and only if each point q; under q is reqular for 1 <1 <k —1.

Remark 4.3. According to our definition of a singular points (see Definition 2.1), Proposi-
tion 4.1 implies that a point ¢ € C¥(m) is singular if and only if there exists a point ¢ under ¢
which is vertical.

A consequence of Proposition 4.1 is the following:
Theorem 4.2.

1. For k > 2, the set Cs of singular points of C*(m) is a subanalytic set of codimension 1. In
particular, the set C&(m) = C¥(m) \ Cs of Cartan points is an open dense set.

2. Let w be a word of length k in letters R and V' and denote by {i1,...,i,} the set of index
{i e{l,...,k}|w; =V}. We have the following properties:

(i) The set C, of points ¢ € C*(m) whose RVT code is w is an analytic submanifold of
C¥(m) of codimension v.

(ii) The configuration of an articulated arm (Mo, ..., My) belongs to Cy if and only if
the unique consecutive segments [M;_o, M;_1] and [M;_1, M;] which are orthogonal at

point M;_1 occur for i =11,...,1y.
Remark 4.4.
1. From the definition of a Cartan point (see Definition 2.1) it follows that for £ = 1 all
points are Cartan points and the set Cg is empty in this case.

2. Definition 2.1 of a Cartan point is somewhat different from the definition given in [3, 4].
However Proposition 4.1(2) proves the equivalence of these definitions.

3. The result of Theorem 4.2(1) is well known (see [3, 4, 6, 8, 15]).

4. Theorem 4.2(2) is also proved in [15] but with an another notation for this set.



24 F. Pelletier and M. Slayman

The proof of Proposition 4.1 needs the following lemma:
Lemma 4.1. For 2 <1 < k consider the sandwich of rank [:

[Drls C  [Drlia
U U
L([Dgli-1) < L([Dgli-2)-

Then A;—1(q) = 0 if and only if [Dxli(q) C L([Dgi—2)(q), and also q; is vertical if and only if
Al_l(q) = 0

Proof. Let us use Notations 3.2.

By a simple computation (see the proof of Proposition 6.1 in [16]), we conclude that the dis-
tribution [Dy]; of the multi-flag associated with Dy, is generated, in hyperspherical coordinates,
by the union of the sets {Xlofl,‘Xllfl, XM and {X] |j=1,....m, 1-2<i<k-—1}, and
L([Dk]i—2) is generated by {X/[j=1,...,m, | —2<i<k—1}.

We also get

XP =A0X) o+ 7.

By construction, each Z;_; belongs to L([Dg];—2), and hence, if A;_1(q) = 0, it follows that
[Drli(q) € L([Dg)i—2)(q). Since {X?_Q,Xll_Q,...,Xﬁgl} is a basis of D;_1 at ¢—1 and Z;_;
is a linear combination of {Xll_2, . ,Xﬁ;l} we then have X} ,(¢) # 0. Thus, [Dgi(q) C
L([Dk)i—2)(¢) if and only if A;_1(¢) = 0. According to Remark 3.3, this ends the proof of the
first equivalence in Lemma 4.1.

Consider now the diffeomorphism ¥!'=! from S(D;_1,C'"1(m),~_1) onto C'(m) given in
Proposition 3.1. We can write ¥~!(g) = (¢;_1,w;) where w; is a vector of norm 1 in D;_(q;_1).

The family {(:L“;;l -] )Y+ # ‘ r=1,...,m+ 1} of vector fields (see Lemma 3.2) spans
-1
D;_1, and is orthonormal relative to the metric ;_;. Therefore, we can write

m+1

0
w; = Z 2] ((xfl —3?;2)}/2—1 + BT ) .
r=1 T1_1

Moreover, according to this decomposition and from the definition of ¥!~! in the proof of
Proposition 3.1, we have

g1, wy) = (0, w1, 11 + 21),

where ¢;_1 = (z9,...,2;-1) and z; = (zll, .. .,zlm‘*'l).

Since {Hl_1 (ﬁ), r=1,...,m+ 1} spans the tangent space to each fiber of the projection

m+1
C'=1(m) — C'=2(m), the point ¢ is vertical if and only if Y (2 — 2] ) (z]_; — 2] _,) =0.
r=1

But the first member of the previous relation is exactlyi.Al_l(q). According to Remark 3.3,
this ends the proof of the Lemma 4.1. |

Proof of Proposition 4.1. Proposition 4.1(1) is a direct consequence of Lemma 4.1.

Now, ¢ is a Cartan point if and only if [D];(¢) is not contained in L([Dg];—2)(gq) for all
2 <1 < k (see the end of Section 2.1). We claim that if ¢ is a Cartan point, no point ¢; under ¢
is vertical. If this was not true, there would exist some point ¢; under ¢ which is tangency. This
would mean that p; = (F')~!(q) € P'(m) must be tangency. Then, from Remark 4.2(3), there
must exist a point p; under p; which is vertical. Therefore, from Proposition 4.1(1), ¢ cannot be
a Cartan point. We conclude that any point ¢; under ¢ is regular. The converse comes clearly
from (1) of the same proposition. [
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Proof of Theorem 4.2. If ¢ is singular, from Proposition 4.1(2), there must exist ¢; under ¢
k—1

which is vertical. It follows that the equation of the set Cg is [] A; = 0.
I=1

Note that at a point ¢ we have

0A
! =z — T for r=1,...,m+1
ox]
I+1
Taking into account the constraint ||z; — z;_1||> = 1, we must have 24 (q) # 0 for some

oz,
1 <r <m+1. According to Remark 3.4, it follows that Cg is a subanalytic subset of C¥(m) of
codimension 1, which ends the proof of (1).
According to the definition of the set {i1,...,4,} a point ¢ belongs to C, if and only if each
point g;,,...,q, under ¢ is vertical. From Proposition 4.1(b), the equations of C(w) are then

Ai(q)=0  for i=i;—1,...,0,—1, (4.3)

where each A; depends only on the variables z; 1, x; and x;,1. Thus, since 82“741 (q) # 0 for
I+1

some 1 < r < m+1, the equations in (4.3) are independent. According to Remark 3.4, it follows
that C, is an analytic submanifold of C*(m) of codimension .
Theorem 4.2(2) is a direct consequence of Proposition 4.1(c). [ |

4.3 Tangency points and configurations of articulated arms

We will prove the fundamental following results for tangency points g € C*(m)
Theorem 4.3.

1. Assume that g € C*(m) is a tangency point. Then there ewists 2 < i < k — 1 such that the
point q; under q is vertical. We define

Il =sup{2 <i <k —1 such that ¢; is vertical}.

Then, if | <k, for any l < j <k, the point q; under g must be tangency.

2. Denote by R"VT' a word of length h 41+ 1 < k in letters R, T, V., where R" denotes h
consecutive letters R and T' denotes | consecutive letters T. Then the set Cpnyp1 of points
q € C"HY(m) whose RVT code is R*VT' is an analytic submanifold of C"*1(m) of
codimension 14+1. The fiber of the projection of Cpnypi onto (CH(m))c over g, € (C"(m))c
is the set FPHFL(PLSIHL(q))).

3. To each q = (x0,...,7x) € C¥(m) and 0 < h < k we associate a field of directions K, (q)
on R™1 defined by Kj,(q) generated by xpq — xp,. Given a configuration ¢ € CF(m)
of an articulated arm (Moy,...,My), the configuration qni1+1 of the induced articulated
arm (Mo, ..., Mpi141) belongs to Cruypi if and only if, each segment [Mp i, Mpiit1] is
orthogonal to the direction Kp(q) for alli =0,...,1 and no other orthogonality constraint.

For the proof we need some intrinsic characterization of F*H+1(PH(SH1(g,))) in ChHH1 (m)
and the critical hyperplane F**+1(281) in Dy, ;.

Given any vertical point ¢ = (g5, w) € C"*'(m), for 1 < h < k, denote by Cé’”“(m—l) the set
FhHi(Pi(ShHL(g))) of CH it (m) fori = 1,...,k—h—1, and call it a critical manifold. For i = 0
we set C'H(m—1) = S"+1(g,). Let 67" be the singular hyperplane F** (/) € D), ;11 on

m+1
ChHl(m—1),fori=0,...,k—h—1. Weset VI, = > (a5, —a}) 52— fori =0,..., k—h—1.

-1 xi+i+1
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Proposition 4.2. Consider a point ¢ € CF(m) such that the point g1 = (zo, ..., Th, Thit)
under q is vertical. Fori=0,...,k — h — 1, the following properties hold:
(i) the manifold CI 1 (m — 1) is the subset of point (qn, Tha1, - - - Thyiv1) € C"HH(m) such
that:
l|xht1 —an|| =1 and (xj41 —xj,xp11 —xp) =0 forallj=h+2,...,h+i—1,

(ii) if i > 0 the vertical space associated with the fibration C)T (m — 1) — CIHi(m — 1) is
generated by

0
{(‘33:” — (@ht1 — 2V — @hain — T Vw7 =1, ,m+ 1} , (4.4)
hetit1

(iii) the vector field Xpyit1 is tangent to CIHH(m — 1),

(iv) the distribution 5?“ is the intersection between Dpy,+1 and the tangent space to
Ch+i+1<m _ 1)'
an

Proof. For i = 0, the set C/*!(m — 1) is the sphere S"+1(qy,) and the distribution 62+ is the
tangent space to this sphere. Moreover, since gp,11 is vertical, then A (gp+1) = 0. Therefore, we
have Xp,41 = Zj, + Vip1 which is tangent to $"t1(gs) in gup1. Thus the properties (i), (iii) and
(iv) of Proposition 4.2 are true for i = 0. Assume now that for all 0 < j < i these last properties
are true. According to our assumption, cﬁlff is generated by the family:

0 .
{Xh+1,a($2+1$h)Vh+1‘7“=1,---,m+1} for =1,
Thi1

0 ,
{Xh-;-i, Frranie (The1 — xh)V{LL_H- — (:cZ_H — J:h+i_1)Vh+i r=1,...,m-+ 1} for 7> 1.

h+i
rzl,...,m—i—l}.

Therefore on C(’};L “(m — 1) the distribution 6/ is the intersection between Djy; and the
m+1
kernel of the differential form 21 () —xp)(dof ; —dxf ;).
S=

Recall that Dy ; is generated by:

0
Xhtis F (2h4i — Thaio1) Vit
Lhti

According to our assumption, we can see that 5f_+11 is generated by the family

9 h
h+1
m—+1
According to the proof of Proposition 3.1, a point (qh, Thals- - Thais O I/TWT) belongs to
=1
bl . ' m—+1
the manifold &, if and only if (gn, Zh41,. - ., Thys) belongs to C+i(m — 1) and Zl ZNC I
r=
xp) = 0.

Note that at such a point we have:

m-+1 m—+1 m+1 m+1

Z VU, = Z VW, — Z V' (2h o — ) Vi = Z V" (4.5)
r=1 r=1 r=1
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Consider the submanifold (5!, Ci*+i(m — 1), 444) of S(Dpyi,C"(m), Yp4:). According

to the proof of Proposition 3.1 WA+ (S(5/H ]!, Ch+i ~;, ;) is a submanifold of C"**1(m) which is

fibered on C+/(m—1). Moreover the restriction of U+ to S(6/, Ch+i(m—1),v,4;) commutes

with the canonical projections of S6/"*!, Ci+i(m —1), v44;) and T+ (S(SMH, Chti(m—1),y444))

onto CI"H(m — 1) respectively.

Now according to (4.5), the manifold S(5/"*!, ClHi(m — 1), yp44) is the set of points

m=1
(q}H Th41s -+ Lhtiy Z VTWT) € S(Dh+i7 Ch—H(m)a 7h+i)
r=1

with the following constraints:

A m+1 ) m+1
(thxh-i-l:"'a'rh-i-i) ecg:_l(m_l)v Z (l/r) :17 ZI/T(JL‘ZJrl—.TZ) =0.
r=1 r=1

Since ChHHL(m) = Ch*i(m) x S™, then Wi (S(3!4!,CI+i(m — 1), yp,4¢)) is a submanifold of
Cé‘h‘H(m — 1) x §™ defined by the equation

m-+1
Z (Thisr = Thi) (Thar — 23) = 0. (4.6)

r=1

But from the construction of FR+i+1 phtitl(pi(§htl(g,)) is equal to Uh+ (S (511}, ChHi(m—
1),Yn+i)), which is precisely the set Cg; “1(m — 1). Therefore is proved (i). This implies that
the vertical bundle associated with the fibration Cél;r”l(m -1)— C(}I‘;i(m — 1) is generated by
the family (4.4).

Let U, be the vector field on C"*(m) x R™*! defined by

U 0
h
U, = ($7};+1 - l‘2+i,1)Yh+i + F (:UZJFZ — x7I:L+’L'71)Vh+’L. + P
hoti kit
The vector field U, (x, ..., Thii, Thiis1) is actually tangent to Cél;riﬂ(m) and U, projects

onto U,.
Therefore as in the proof of Proposition 3.1, we set U, = (TU"*H)~1(TU,). The distribu-
tion [677']1) is generated by the vertical bundle of the fibration S(677,CiH (m — 1), yp1i) —

1—17¥qp
. m+1
Cglf ‘(m — 1) and the vector field > v"U,. According to equation (4.6), the vector field
r=1

. mAl ) _
TY (S v"U,) is nothing else but Xp4i41 on C2HF(m). Moreover, since U, is tangent to
r=1

Céﬁf”l(m), then X141 is also tangent to Cé‘:‘i“(m). Finally the distribution W/+#([s"+11) is
generated by X411 and the vertical bundle of the fibration C/F+! (m—1) — CI(m—1). Since
this vertical bundle is the intersection between the vertical bundle of the fibration C¥+7+1(m) —
C"*(m) and the tangent space to C)-""!(m —1) then Uhti([577 1) is the intersection between
Dpyi1 and the tangent space to Cé‘}f “*+1(m — 1). But according to the definition of the family
of distributions {571}, and the construction of F" i+ we get Wi+i([§1 1) = §h+1. This
ends the proof. ]

Proof of Theorem 4.3. Fix some tangency point ¢ € C¥(m). According to Remark 4.2(3),
there must exist a vertical point ¢; under gq. Let ¢; be the last vertical point under ¢ then
A;—1(¢) = 0. In fact, given ¢;—1 = (x0,...,x;—1), this relation characterizes the vertical points
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q = (zo,...,x_1,2;) € C(m). FY(S'(q_1)) is exactly the set of points (g_1,x;) € C'(m) such
that Aj_1(q—1,7;) = 0.

Now, if [ + 1 < k, then ¢ 11 cannot be vertical and the point ¢;11 is no more regular, since
otherwise the existence of a vertical point between ¢;11 and ¢ would contradict the definition
of [. Tt follows that ¢;11 must be a tangency point.

We proceed by induction. Assume that for [ < i < k the point ¢; is tangency. By the same
arguments as previously, ¢;+1 must also be a tangency point. It follows that, by induction, we
obtain (1).

We shall now prove (2). For each 0 <i < j <k —1 we set

.Aj’i(l'o, e ,.%'k) = <.2L'j+1 — :L'j, Ti+1 — l’z>

Note that A;; is defined on any C"**1(m) for 0 <i < j < h+1.

For | = 0, the point g4 is vertical if and only if Api1 4(gh+1) = 0, i.e., if and only if gp44
belongs to Cgfl(m — 1) from Proposition 4.2(1). Therefore (2) is true for [ = 0. Assume that
for all 0 < i < [ the point gj4i11 belongs to Cruypi if and only if A;p(gnyj+1) = 0 for all
j=h+1,...,h+i By definition, the point gxy;+1 belongs to Cpryp if and only if gn4i41 is
tangency. From (1) each point gpy;41 under gp4;11 must be tangency for i = 0,...,/ — 1. In
particular this means that gp; belongs to C(’;h*l(m —1). It follows that gj,4;41 is tangency if and
only if the direction generated by zj4;11 — xp4; belongs to 5;‘(qh+l) and according to the proof
of Proposition 4.2 we get the relation (xp4i11 — Thii, Thiy1 — xp) = 0. Therefore if gj4; belongs
to Crayi-1 then gpny41 belongs to Crryp if and only if Ay pn(gnyi41) = 0.

Crry i then is defined by the equations

Ajp=0, j=h+1,... h+l, (4.7)

in Ch+l+1(m). It is clear that these equations are independent. In particular, gn4;41 belongs to
ChHt (m — 1) = FMHF(Pi(S" 1 (qy)) for all i = 0,...,k—h—1—1. This ends the proof of (2).
(3) is an interpretation of the equations (4.7) in terms of orthogonality. [ |

5 Relation between EKR . classes of depth at most 1,
RVT codes and articulated arms

5.1 Mormul EKR coding according to [8, 9]

In [8, 9], P. Mormul has constructed a coding system for labeling singularity classes of germs
of special multi-flag which he called “extended Kumpera—Ruiz” (“EKR” in short). Mormul’s
codes are finite sequences in N. We now summarize how P. Mormul defines this coding system.

Given a coordinate system (y',...,y®) on R® consider a distribution D defined on a neigh-
bourhood of 0 € R®* by m + 1 vector fields Z1,..., Z11. A new distribution D’ is associated
with D on a neighbourhood of 0 € R¥*™ relatively to a coordinate system (y*, ..., 9% zt, ..., 2™)
by an operation denoted j where j takes values in {1,2,...,m + 1} in the following way: for
a fixed value j of j, the distribution D’ is generated by

{Z{ =2'Zi+ -+ 2+ Zi+ (7 + D) Z 4+ (2™ + )

0 0

where ¢/, ..., c™ are constants that may or may not be equal to zero.
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For instance, when m = 2, D’ is a distribution of rank 3 generated by

Zi+ (2t + ) Zo+ (22 + )23 for j=1,
Z1 =R 2 721 + Zo + (12 + 02)23 for j=2,
2 7y + 227y + Z3 for j=3,

and Zh = 22, 74 = 2

9zt 922"

This procedure is initiated for D) generated by {ZSO) = 8%1’ ceey ZSBA = WQH} on Rm+1

and we obtain by a first operation j; a new distribution DO of rank m+1 on a neighborhood of
0 € R?™*1 generated by the produced vector fields {Z{l), e Zgil}. By induction on the com-
position of consecutive operations j1,j2,- .., Jjk for each word j1j2 ... jk, we obtain a distribution
Aj; .. j. on a neighborhood of 0 € RE+HD)mM+1 generated by the associated produced (m+1) vector
tields {zM, zP, ... 2% 1.

We have then the following result:

Theorem 5.1 (see [8, 9]). Consider a differential system D which spans a special multi-flag on
a manifold M of dimension (k+ 1)m + 1. Every point x € M the differential system (M, D, x)
is locally equivalent to some differential system (Ajljz___jk,R(kH)mH,O). Moreover, the value of
jij2 ... jx can be chosen such that j1 = 1 and, in the case where jiy1 > max(j1,j2,...,J1) then
we have ji11 = 14+sup(j1,j2,.-.,J1) forl =1,...,k—1 (the rule of the least possible new jumps
upwards).

Therefore, with a given germ of distribution (M, D, z) on a manifold M it is associated a well
defined sequence of values ji7jo ... jr which satisfies the rule of least upward jumps. Conversely,
a germ of distribution D determines an unique sequence of operations ji,jo,...,jk satisfying
the rule of least upward jumps (see footnote 6 of [9]). This sequence is called a singularity
class of special multi-flags in [8]. We will say that this a sequence is an EKR class of germ of
distributions which is encoded by the unique associated sequence of integers jija ... ji.

Since Dy generates a special multi-flag of step m > 2 and length & > 1 on C*(m), it is
associated with any point ¢ € C¥(m) a word j1jo . .. ji defined by the germ (Dy,C*(m),q). We
will denote by ¥;,j,..j. the set of configurations ¢ € C¥(m) such that this associated word is
jije - - . jr and called it an EKR set. The integer d = sup{ji,...,jr} — 1 will be called the depth
of ¥j 4, j. (see Fig. 4).

5.2 Stratification of EKR sets of depth at most 1 by RVT codes

According to the notations introduced in Section 1, the following result gives a complete de-
scription of EKR sets of depth at most 1 in terms of RVT sets. This result gives a proof of
Theorems 2 and 3(2):

Theorem 5.2.

1. The EKR set 31,1 is the set of Cartan points. In particular, ¥1.1 is an open dense set
whose complementary is a subanalytic set of C*(m) of codimension 1.

2. LetXj, . j, be an EKR set of depth 1 and {i1,...,i,} be the set of indices i such that j; = 2.
Then ¥j, . j. 15 an analytic submanifold of C*(m) of codimension v. Moreover, q belongs
to ¥j,..5, if and only if the configuration at q of the articulated arm (Mo, ..., My), the
segments [M;_o, M;_1] and [M;_1, M;] are orthogonal at M;_; for all indexi € {i1,...,i,}.

3. In the previous situation we have
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My

Figure 4. EKR set X903 of depth 2 of an articulated arm (Mg, My, M, M3).

(i) A point q belongs to X, j, if and only if, in its RVT code the only letters V are at

rank i1,...,%,.
ii) ARVT setC, is contained in ¥, i, if and only if w is of type RMOVTURM | YV TWRMW
J1---Jk
and each letter V is exactly at rank i1,...,4,. More precisely, Iy +hy = ix;1 —iy—1

fora=1,...,v—1andl, + h, =k —1, — 1. This set is an analytic submanifold of

Y. of codimension ly +---+1,. In particular Cphgy pry v phe 95 an open dense set

of ¥j.j, forhg =11 —1, hy =iyxy1 —ix—1forA=1,...,v—1and h, =k —1i, —1.
(t3i) Xj,..j, 1s the union of all sets of type Cphoyia pha_ yriv phe Which satisfies (ii).

Remark 5.1. The decomposition of ¥;, ;, given in (iii) above into RVT sets is in agreement
with the decomposition of such EKR sets for £ = 3 described by Howard in the appendix of [4].
Therefore, the description in (iii) can be seen as a generalization of Howard’s result.

For the proof of this theorem we need the following proposition which will be used in Sec-
tion 5.4.

Proposition 5.1. Consider a configuration q which belongs to some EKR set ¥, j, of depth d.

1. If d > 2, we have jp, > 2 if and only if Ap,_1 = 0.
2. If d > 2 there exists a rank h such that j, = 3 and the letter of rank h in the RVT code
of q is of type Ty; with i > 1.

3. Assume that the RVT code of q is a word which contains a letter of type T,s. Then this
word contains also a letter of type To; for some rank | < h with i > 1. If the letter of
rank h is To; with ¢ > 1, then 2 < 5, < 3. If ji, = 2 there exists a letter of type Th1 at
some rank | < h with j; = 3. In particular d > 2.

4. If d = 2, assume that the letter of rank h is Ty; and h is the first index h such that jp = 3.
Then i =1 and we have one and only one of the following situations:
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e jhi1 = 2 if and only if the letter of rank h+ 1 is V or Tpe,
e jnr1 = 3 if and only if the letter of rank h + 1 is Ty .

Proof. According to the definition of the operation j, a point ¢; is regular if and only if j; = 1,
and according to the proof of Lemma 4.1, ¢; is regular if and only if A;_1(g;) # 0. Therefore,
since the depth of ¥;, ;, is at most 2, then j; > 2 if and only if A4;_; = 0. This ends the proof
of (1).

Now based on Proposition 4.2 and the convention in the RVT code, note that if the letter of
rank h is of type T;s, there exists o < [ such that the direction generated by = — z;_1 belongs
only the critical hyperplanes 52*0‘*1 and (52_6 ~!1 Therefore from Proposition 4.2 the point ¢y
satisfies the following constraints:

Ajh—a—2=0 for h—a<I<h and Ajp—p-—2=0 for h—p<l<h. (51)

Assume that there exists an index h such that j; > 3. The rule of least upward jumps assumes
that there exists a rank I < h such that j; = 3. Therefore we may assume that j, = 3. In this
case, the point gy is critical and based on Lemma 4.1 we get Ap_1(qp) = 0. The definition of
the operation j implies that the projection of Xj(gp) on Chil(m) is contained in an hyperplane
of 5871 at gp_1. It follows that g, belongs to some critical manifold C[;l (m — 1) so that the point
qi+1 under gy, is vertical. In particular we have [ < h — 2. Based on our our convention on the
RVT code, the letter of rank h is of type Tp; with ¢ > 1. This ends the proof of (2).

Assume now that the letter of rank h is T;.;. As we have already seen, there exists o < 3
such that the direction generated by x;, — x5,_1 belongs to 6"~*~! and (52_5_1. Equations (5.1)

imply that the direction generated by xj,_o —Th_a—_1 belongs to 53*“*1 and 52:570‘71. Thus the
letter of rank h — « is of type Tp; with ¢ > 1. Let v be the first rank such that the corresponding
letter in the RVT code is of type Tp;. From our conventions on the RVT code this letter must
be Tp1. Assume that the direction generated by z, — x,_1 belongs to (5’6_1 and 514_”_1.

From equations (5.1) for v — v < j < v and ¢,—~, the point ¢; must be tangency and ¢,
must be vertical. This implies that j,_- > 2. But from the choice of v it follows that each letter
of rank smaller than v — 1 is of type R, V, T'. It follows that j,_, = 2. Therefore ¢; is tangency
for v —v < j < v and the two points g, and g, are vertical. According to the choice of v, the
letter of rank v —~ is V and if v > 1 all letters of rank v — vy < [ < v are equal to T'. Again from
the choice of v, 5y =1for h —v <l <vif v > 1. We get now, at point ¢, the two relations

<$1/ —Ty—1,Ly—-1 — xl/72> =0 and <'1"I/ — Ty—1,Ty—y — xuf'yfl> =0.

For a given fixed point gp_1 we get two independent linear relations in x, — z,_1. Now from
the choice of v, each j; belongs to {1,2} for 1 <[ < v. Therefore from the definition of the
operation j and the rule of least upward jumps it follows that j, = 3. This ends the proof of (3).

Finally assume that the letter of rank h is Tp; and h is the first index h such that j, = 3.
Note that if Ap(gr+1) = 0, again from Theorem 4.3(1) this implies that there exists o > 0 such
that the point g, is vertical and g; is tangency for h —a < j < h. In particular g belongs to
Cé‘hﬂkl (m—1).

On the one hand assume that j,11 = 2. This condition is equivalent to Ap(gp+1) = 0 and
the projection of Xp41(gr+1) onto C*(m) must not be tangent to CJ, _~ (m—1) at g, otherwise
Jn+1 = 3. This implies that g1 is vertical but the letter of rank A+ 1 can not be Tp; otherwise
the projection of Xp11(gn+1) onto C"(m) must be tangent to C, ~ (m—1) at g,. Assume that
the letter of rank h + 1 is of type T, of course we have T,.s # Tp;. Now from the proof of (2),
the letter of rank h 4+ 1 and the previous must be of type Ty; with ¢ > 1. Taking into account
our convention on the RVT code we get T;.; = Tpo
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Conversely if the letter of rank h + 1 is V then we get jnp+1 = 2. If this letter is Ty, this
means that Ap, p—2(gn+1) # 0 but Ap(gr+1) = 0. It follows that the projection of Xp11(gn41)
onto C"(m) is not tangent to Cghw*l (m —1) and so we have jpy1 = 2.

On the other hand assume that j 1 = 3. This implies that Ay (gp+1) = 0 and the letter of
rank h 4+ 1 must be of type T,s. Suppose that T,.; # Tp1, by the same argument as previously,
we obtain T,s = Ty which implies that j,,1 = 2 and gives rise to a contradiction. Therefore we
must have T,.; = Ty1. Conversely if the letter of rank h + 1 is Ty1, as we have already seen, we
have jp+1 = 3. |

Proof of Theorem 5.2. (1) and (2) are consequences of Propositions 5.1(1), 4.1 and Theo-
rem 4.2(1). Now from the convention on the RVT code and Proposition 5.1(2) the RVT code
of a point in an EKR set of depth 1 contains only letters in {R,V,T}. Therefore property (i)
in (3) is a consequence of Propositions 4.1 and 5.1(1).

We now focus on property (ii). If w is of type RFOVTHRM .. VT RM then the letters V'
are exactly at rank iy,...,4, with the relations [y + hy =iy;1 —iy—1for A=1,...,v —1 and
ly+h, = k—1i,—1, so the set Cproypiy ghy_y7iw ghe Must be contained in the set X, j, from (i).
Consider any word w in a RVT code such that each letter of rank iy,...,4, is V, and take any
q € C, C C¥(m). If iy = iy + 1 the RVT code of ¢;,_1 is of type RPOVTH RM with I} = hy = 0.
Assume now that io—i; > 1. If for all iy < j < i3 each point g; is regular and then the RVT code
of ¢;,_1 is of type RPVTH R™ with I; = 0. Now suppose that there exists some gj under ¢ with
i1 < j < iz which is critical. The point ¢; must be tangency by Theorem 4.3(1), and, moreover,
for i1 < j° < j, the point gy must also be tangency. We set l; = max{j — i1|qg; tangency}.
Then, for i1 +1; < j < iz, the point ¢; must be regular otherwise from the previous argument g;
must be tangency which contradicts the defintion of /1. It follows that the RVT code of g;,—1
is of type RPVTHh RM . By induction on 1 < i < v, the same arguments shows that w must be
of type RPOVTURM | VT R,

Finally, from the proof of Theorem 4.2(2), it follows that equations of Cphgy iy gy ypiv gho 18
the union of v systems of type (4.7), and so we get a set of v+1;+- - -+, independent equations.
It follows that Cpngyqis ghi yriw ghe 1S an analytic submanifold of C*(m) of codimension v +
li +---+1,. On the other hand, the equations of ¥, j are A;_; = 0 for A = 1,...,v.
These equations are exactly the first equations of the v systems of type (4.7) which define
CrhoyTl1 ph1_ vTiv phv - Lhis ends the proof of property (ii).

First of all from Proposition 5.1(3), if d = 1 then the depth of any word in RVT code is 1.
Therefore property (iii) is a direct consequence of properties (i) and (ii). [ |

5.3 EKR sets of depth 1, RVT codes and configurations
of an articulated arms

We will now give a complete interpretation of the previous result in terms of configurations of
an articulated arm as stated in Theorem 3(2):

Theorem 5.3. Let %, j, be an EKR set of depth 1 in C*(m) and {i,...,i,} the set {i €
{2,...,k}|ji=2}.
A configuration q € Xj,. 5, belongs to the RVT set Cpnoyrii pha yvriw e C 2415, o and
only, at q, the only orthogonality constraint is that each segment [M;, yi—1, M;, 4] is orthogonal
; ; m—+1 _ —
to the direction on R generated by M;, _oM;, 1 for alll =0,...,ly and A\=1,...,v.

Remark 5.2. The property (i

i) of Theorem 4.3 is a particular case of Theorem 5.1. Note that
we can find a similar result in [1

5] with more restricted context.

For the proof of this result, we need the notion of “induced articulated arm”.
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Given two integers 7 and s such that 0 < r < s < k, we can look for the motion of an induced
articulated arm, which consists of segments of the original articulated arm joining M, to Mj.
We can then study the induced articulated arm (M,,..., Ms). We define kK = s — r, and we
denote by C"*(m) the image of C¥(m) by the canonical projection ¢"* from Ry x ... x R
onto R™H1 x ... x RM+L

In fact, we have: C"*(m) = {qvs = (s, Try1,-..2s) | ¢ = (T0,...,2%) € C¥(m)}.
Taking into account Section 3.1, let &5 be the distribution on (R™*1)**+1 spanned by
0 0
Z’r‘7 ceey ZS—17 871'%7 SRR W

and let D, be the distribution induced by &, on C™*(m).

In terms of Notations 3.2, the mechanical system describing the evolution of an induced arm
(M,, ..., Ms) is a controlled system on R™*1 x (S™)* = C%(m) naturally associated with the
distribution D,.

Consider a word RMOVTHRM | VTWRM of k letters in a RVT code, and associate with
this word the sequences rg,...,r, and sg,..., s, defined by

° S(]Ihoand’l“o:(),
e s, =8, 1+hi+l;+1=ho+h1+l1+1+---+h;+l;+1andr;, =s;_1—1fori=1,...,v.

We get then the following characterization:

Lemma 5.1. The configuration g € C*(m) of an articulated arm (Mo, ..., My) belongs to the
set Crhoyis gh1 vriv ghe 4 and only if the induced articulated arm associated with the pair of
integers (74, 8;) is such that 0"**(q) belongs to the set Cpn, C CT0%0(m) = C*°(m) for i = 0 and
belongs to the set Cpyrph, ghy C CTi%(m) for alli=1,...,v.

Proof. For any ¢ € C¥(m) we denote as usual by ¢ any point of C'(m) under ¢, and we fix
a configuration ¢ € C¥(m) of the articulated arm (My, ..., My). First of all, for i = 0, the
induced articulated arm associated with (g, so) has the induced configuration ¢s,. The RVT
code of ¢4, consists of hg first letters of the RVT code of q. Therefore, these first hg letters
are R" if and only if the RVT code of gs, 1s Rho,

Assume that the first s; letters of the RVT code of ¢ are ROVTh RM | VTUHRM if and
only if the RVT code of the configuration g,,s, = 0"*(q) of the associated induced articulated
arm is R™ for i = 0 and RVT“R™ for all 1 < i < 1 —1 < v. Consider the configuration
Qrys, = 07" (q) € C™*1(m) of the associated induced articulated arm. Denote by ¢, the
configuration under ¢;,s, for r, <1 <s,, and set r, = s, —r,. By convention, the RVT code
of ¢;,r,+1 is R. Now, according to Proposition 4.1, g, +2 is vertical in C"™*+(m) = C"(m) if
and only if

m+1

Z (xiuw - $iﬂ+1) (xiu—&-l - l’iﬂ) =0.
j=1

This is equivalent to A,,11(¢) = 0. It follows that g, , is vertical if and only if ¢,,,, is
vertical. Finally, the letter of rank 2 in the RVT code of g,s, is V if and only if the letter of
rank s, +1=ho+h1 +li +1+---+h,+1,+2is also V. Consider now an integer r, + 2 +1
with 0 <1 < [,. Either g ;1142 is critical or it is regular. If qr,r,+1+2 were vertical, then,
from the previous argument, g, 4;+2 would also be vertical, which contradicts the definition of
the set {i1,...,4,}. Assume that Qr,r,+1+2 18 tangency. Then Qrpry+l+2 18 also tangency for all
0 <!’ < 1. We have this property if and only if the following relations hold (see 4.7):

<x7“u+l/+3 - xru+l/+2,xm+1 - xm> =0 forall O < l/ < l.
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According to our assumption and the equations of C gy 71, ghy  yptu—i ghu—1 (see proof of prop-
erty (ii) in Theorem 5.2), gr,r,,, ., is tangency if and only if ¢,, 412 is also tangency.

Now, ¢y, 1s regular if and only if (Try+143 = Tr, 4142, T, 41 — Ty) 7 0. On the one hand,
if g, 1142 is regular we must have (acm+l+3 = Ty, 41425 Try+1 —xm) # 0 and 0 gr,r, ., is regular.
On the other hand, according to the choice of the set {i1,...,4,}, if g, 4142 is critical then it
must be tangency. From the definition of the RVT code, since Ty, +1+3 — Tr,+i+2 belongs to
one and only one critical hyperplane then <a:m+l+3 = Ty, 4142, Tyl — mm> = 0 and therefore
qr,r,+1+2 can not be regular. g, ,,,, is regular if and only if ¢, , is regular.

It follows that our assumption is then true for the integer u. |

Proof of Theorem 5.3. Based on Theorem 4.3(3), for each induced articulated arm associated
with a pair (r;, s;), there exists a family of directions {K;(q)} in R™*! for ¢ € C"i%(m) generated
by @, 41—, such that the configuration g,, s, belongs to the set Cpv 1, pr; C C™%(m) if and only
if this configuration fulfills the following property: each segment [M,, 147, M, +24] is orthogonal
at My, 1141 to Ki(qr,s;), for 1 =0,...,1; and there is no other orthogonality constraint.

The theorem is then a consequence of Lemma 5.1. |

5.4 EKR sets of depth 2, RVT codes and configurations
of an articulated arm for 1 < k <4

The combination of all possible RVT codes of depth 2 has an exponential growth relatively to
the length £ of a special multi-flag. Therefore, in this subsection we only describe the relations
between EKR sets of 2-depth, RVT codes and configurations of articulated arms for k = 4. In
fact, this situation corresponds to the results of [3, 4, 10].

First of all, for £k = 3, we have only X193, which is an EKR set of depth 2, and for k = 4
we have fourteen EKR sets (of depth 2) whose numerical codes are (see for instance [10]) 1111,
1112, 1121, 1122, 1123, 1211, 1212, 1213, 1221, 1222, 1223, 1231, 1232, 1233.

Therefore, for 1 < k < 4, the other EKR sets for 1 < k < 4 are of depth 1.

Recall that at the end of Section 4.1 we have seen that for £k = 3 we have only one RVT set
of depth 2 (i.e. RTyTp1) but we have ten RVT sets for k£ = 4. All other RVT sets are of depth
at most 1.

Notice that the decomposition of EKR sets of depth 1 into RVT sets are of depth 1 can be
found in Theorem 5.2, and the corresponding interpretation in terms of configurations of an
articulated arm can also be found in Theorem 5.1. This is why we have given such results only
for EKR sets of depth 2 previously enumerated.

For this purpose, we need the following characterizations of some EKR sets of depth 2 which
is an easy consequence of Proposition 5.1:

Proposition 5.2. Let X, j, be an EKR set of depth 2 in C¥(m) with k > 3. Consider an
integer 2 < h < k. Assume that j; € {1,2} for all1 <1 < h—1 and denote by {i1,...,i,} the
set of indezxes i € {1,...,h — 1} such that j; = 2.

L. jn = 3 if and only if the letter of rank h of the RV'T code of any q € ¥j, _j, 1s To1 where
T1 refers to the singular hyperplane 52_1”_1.
2. if jn = 3 then we have one and only one of the following situations:
e jni1 = 1 if and only if the letter of rank h + 1 belongs to the set {R, Ty, T, T12},

® jni1 =2 if and only if the letter of rank h + 1 belongs to the set {V,Tpa},
® jni1 = 3 if and only if the letter of rank h + 1 is To;.
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For k = 4, we can easily get the decomposition of an EKR set of depth at most 2 into RV'T
sets as given in the following table by application of the previous proposition. For k < 3, the
results are particular cases of Theorem 5.2.

Decomposition of EKR classes into RVT classes

EKR class RVT class
1111 RRRR
1112 RRRV
1121 RRVR, RRVT
1122 RRVV
1123 RRTyTy
1211 RVRR, RVTR, RVIT
1212 RVRV, RVTV
1213 RITW T
1221 RVVR, RVVT
1222 RVVV
1223 RVITyTo:
1231 RIYTo1 R, RIyTo1 1y, RVIyTo 15, RVIgTo T
1232 RIyTy1V, RTyTo1Toe,
1233 RITo1T01.

For 1 < k < 4, we only give an interpretation of RVT sets in terms of configurations
of articulated arm when the RVT code contains a letter of type T;;. The other cases are
particular cases of Theorem 5.1. The proof of the following descriptions are obtained from
the decomposition of each EKR set in RVT sets given in the previous table and by an easy
interpretation in terms of orthogonality of the equations of type A;; = 0 of each such sets (see
the proof of Theorem 4.3). These proofs are left to the reader.

Let ¢ = (o, ...,xk) be a configuration of an articulated arm (My, ..., My) with k < 4. We
have the following characterizations:

q belongs to X123 = Crry1y, if and only if [M;_o, M;_1] and [M;_1, M;] are orthogonal at
M;_ for i = 2,3, [Ma, M3] is orthogonal to the direction generated by MyM; and no other
orthogonality in the configuration q.

q belongs to Y1123 = Crrry1y, if and only if [M;_o, M;_1] and [M;_1, M;] are orthogonal
at M;_y for i = 3,4, [Ms, My] is orthogonal to the direction generated by M;Ms and no
other orthogonality in the configuration gq.

q belongs to Crrymy1,, = L1213 if and only if [M;_o, M;_1] and [M;_1, M;] are orthogonal
at M;_y for i = 2,4, [Ms, M,] is orthogonal to the direction generated by MyM; and no
other orthogonality in the configuration q.

q belongs to X1223 = Crvry1y, if and only if [M;_9, M;_;] and [M;_1, M;] are orthogonal
at M;_1 for i = 2,3,4, [Ms, My] is orthogonal to the direction generated by MyM; and no
other orthogonality in the configuration gq.

n 21231:

(i) ¢ belongs to Crryry,r if and only if [M;_o, M;_1] and [M;_1, M;] are orthogonal
at M;_q for i = 2,3, [My, M3] is orthogonal to the direction generated by MyM;
and no other orthogonality in the configuration q.

(ii) ¢ belongs to Crrym, 1, (resp. Crry1y, 1) if and only if the previous constraints hold,

— —
[M3, M,] is orthogonal to the direction generated by MjMs (resp. MyM;) and no
other orthogonality in the configuration q.
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(iii) ¢ belongs to Crr,1y, 1y, if and only if we have the previous constraints of (ii) hold,
[M3, M,] is orthogonal at the directions generated by MyM; and by M;Ms and no
other orthogonality in the configuration q.

e in 212321

(i) ¢ belongs to Crry1y,,v if and only if [M;_o, M;_1] and [M;_1, M;] are orthogonal
at M;_q for i = 2,3,4, [Ms, M3] is orthogonal to the directions generated W
and no other orthogonality in the configuration q.

(ii) ¢ belongs to Crry1y, 10, if and only if [M;_o, M;_;] and [M;_;, M;] are orthogonal at
M; 1 for i =2,3,4, [MQ, Ms) and [M3, My) are orthogonal at the direction generated
by MyM; and M7 M> respectively and no other orthogonality in the configuration q.

e The point ¢ belongs to Crry1y,1,, = X1233 if and only if [M;_9, M;_;] and [M;_1, M;] are
orthogonal at M;_; for i = 2,3,4, [Ma, M3] and [Ms3, M,] are orthogonal at the direction
generated by MyM; and no other orthogonality in the configuration q.

Proof of Proposition 5.2. (1) is established in the proof of Proposition 5.1(3). In (2) the last
two situations correspond to Proposition 5.1(4). The first situation is an elementary computa-
tion in terms of critical hyperplane and is left to the reader. |

Main notations

eD:D=D,CDyp_1C---CD;C---C D1 C Dy=TM: special multi-flag of step m > 2
and length k£ > 1 (Section 2.1).

D]’ C D];l

o U U : sandwich of rank j (Section 2.1).
L(Dj1) € L(Dy-s)
e P¥(m) — P*1(m) — --- — P'(m) — P%m) := R™*L: tower of projective bundles

(Section 2.2).
e A;: typical distribution on P?(m) which is the Cartan prolongation of A;_; (Section 2.2).

e S(D,M,gq): sphere bundle in the distribution D associated with Riemannain metric g
(Section 2.3).

e P¥(m) — P*(m) - --- — P'(m) — P%(m) := R™*!: tower of sphere bundles (Sec-
tion 2.3).

. Aj: typical distribution on P7(m) which is the spherical prolongation of Aj,l (Section 2.3).
o (My,..., M) articulated arm or system of rigid bars in R™*! of length k (Section 3.1).

e C*(m): configuration space of an articulated arm in R™*! of length k (Section 3.1).

o q=(x1,...,x1) € C*(m): configuration of an articulated arm where 2; = (le, R

x;”'H) fori=0,...,k.

e Dy: typical distribution on C¥(m) associated with an articulated arm of length k (Sec-
tion 3.1).
m+1
o Zi= > (al,,— xf)% for i =0,...,k —1 (Section 3.1).
r=1 ¢

m+1
o A= > (tfzcgJrl — x:) (a:;" — :L‘;"_l) fori =0,...,k—1 (Section 3.1).

r=1
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m+1
Aji = X (¢ — af) (¢}, —af) for i = 0,...,k —1 and i < j < k (in proof of
r=1
Theorem 4.3).

k=2 k-1
Y. = < Z H AJZZ) 4+ Zp1 = A1 Y1 + 2 (Section 3.1).
i=0 j=i+1
m+1
X =Ye+ Y (2} —2%_;)52 (Section 3.1).
r=1 k

Dy, is spanned by (Section 3.1):

o {(w,ﬁ—m%_l)Yk—}-a%z,Tzl,...m—i—l},
° {(x;—x;_l)XkJer (%),rzl,...m—kl},

o {Xk,Hk (8%2) cr=1,...,m+ 1}, where I, : T(R™T1)*+1 5 TCF(m) is orthogo-

nal projection.

W : S(D;,CI(m),~;) — CI1(m) such that WL((D;)V) = DIt! (Section 3.2).

Fi . Pi(m) — C7(m) such that Fi(A;) = D; (Section 3.2).

FF . CF(m) — SF(m) = R x (S™F with F*(xo,...,zx) = (x0, 1 — T0,. .., Tk — Th—1)
(Section 3.2).

2t = ppl(0) = psinf ... sin™ Lsino™,
22 = pgp?(0) = psin @' ---sin ™ ! cos 9™,
23 = pgp?(0) = psinf - - - sin ™2 cos "1,
2F = p*(0) = psin 6! cos 62,

2L = ppFt1(0) = pcosh?,

hyperspherical coordinates (Section 3.2).

PJ(m): either P7(m) or Pi(m) (Section 4.1).

D,: the typical distribution on P7(m) (i.e. either A; or A]) (Section 4.1).

D; with j + 4 = k: family of singular hyperplanes inside Dy, (Section 4.1).

RVT code (Section 4.1).

C,: set of configurations ¢ € C*(m) whose RVT code is the word w (Section4.1).
operation j (Section 5.1).

EKR class (Section 5.1).

Y.t set of configuration ¢ € C¥(m) for which the germ of the distribution Dy in g
belongs to the EKR class coded by 71 ... jk.
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