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Abstract. For a perfect Lie algebra h we classify all Lie algebras containing h as a subalgebra
of codimension 1. The automorphism groups of such Lie algebras are fully determined as
subgroups of the semidirect product h n (k∗ × AutLie(h)). In the non-perfect case the
classification of these Lie algebras is a difficult task. Let l(2n + 1, k) be the Lie algebra
with the bracket [Ei, G] = Ei, [G,Fi] = Fi, for all i = 1, . . . , n. We explicitly describe
all Lie algebras containing l(2n + 1, k) as a subalgebra of codimension 1 by computing all
possible bicrossed products k ./ l(2n + 1, k). They are parameterized by a set of matrices
Mn(k)4 × k2n+2 which are explicitly determined. Several matched pair deformations of
l(2n+ 1, k) are described in order to compute the factorization index of some extensions of
the type k ⊂ k ./ l(2n+ 1, k). We provide an example of such extension having an infinite
factorization index.
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1 Introduction

The theory of Lie algebras is among the most developed fields in algebra due to his broad appli-
cability in differential geometry, theoretical physics, quantum field theory, classical or quantum
mechanics and others. Besides the purely algebraic interest in this problem, the classification
of Lie algebras of a given dimension is a central theme of study in modern group analysis of
differential equations – for further explanations and an historical background see [21]. The
Levi–Malcev theorem reduces the classification of all finite-dimensional Lie algebras over a field
of characteristic zero to the following three subsequent problems: (1) the classification of all
semi-simple Lie algebras (solved by Cartan); (2) the classification of all solvable Lie algebras
(which is known up to dimension 6 [8]) and (3) the classification of all Lie algebras that are
direct sums of semi-simple Lie algebras and solvable Lie algebras.

Surprisingly, among these three problems, the last one is the least studied and the most
difficult. Only in 1990 Majid [16, Theorem 4.1] and independently Lu and Weinstein [15,
Theorem 3.9] introduced the concept of a matched pair between two Lie algebras g and h.
To any matched pair of Lie algebras we can associate a new Lie algebra g ./ h called the
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bicrossed product (also called double Lie algebra in [15, Definition 3.3], double cross sum in [17,
Proposition 8.3.2] or knit product in [19]). In light of this new concept, problem (3) can be
equivalently restated as follows: for a given (semi-simple) Lie algebra g and a given (solvable)
Lie algebra h, describe the set of all possible matched pairs (g, h, /, .) and classify up to an
isomorphism all associated bicrossed products g ./ h. Leaving aside the semi-simple/solvable
case this is just the factorization problem for Lie algebras – we refer to [1] for more details and
additional references on the factorization problem at the level of groups, Hopf algebras, etc.

The present paper continues our recent work [3, 4] related to the above question (3), in its
general form, namely the factorization problem and its converse, called the classifying comple-
ment problem, which consist of the following question: let g ⊂ L be a given Lie subalgebra of L.
If a complement of g in L exists (that is a Lie subalgebra h such that L = g+h and g∩h = {0}),
describe explicitly, classify all complements and compute the cardinal of the isomorphism classes
of all complements (which will be called the factorization index [L : g]f of g in L). Our starting
point is [4, Proposition 4.4] which describes all Lie algebras L that contain a given Lie algebra h
as a subalgebra of codimension 1 over an arbitrary field k: the set of all such Lie algebras L is
parameterized by the space TwDer(h) of twisted derivations of h. The pioneer work on this sub-
ject was performed by K.H. Hofmann: [12, Theorem I] describes the structure of n-dimensional
real Lie algebras containing a given subalgebra of dimension n − 1. Equivalently, this proves
that the set of all matched pairs of Lie algebras (k0, h, /, .) (by k0 we will denote the Abelian Lie
algebra of dimension 1) and the space TwDer(h) of all twisted derivations of h are in one-to-one
correspondence; moreover, any Lie algebra L containing h as a subalgebra of codimension 1 is
isomorphic to a bicrossed product k0 ./ h = h(λ,∆), for some (λ,∆) ∈ TwDer(h). The clas-
sification up to an isomorphism of all bicrossed products h(λ,∆) is given in the case when h
is perfect. As an application of our approach, the group AutLie(h(λ,∆)) of all automorphisms
of such Lie algebras is fully described in Corollary 3.3: it appears as a subgroup of a certain
semidirect product h n (k∗ × AutLie(h)) of groups. At this point we mention that the clas-
sification of automorphisms groups of all indecomposable real Lie algebras of dimension up to
five was obtained recently in [11] where the importance of this subject in mathematical physics
is highlighted. For the special case of sympathetic Lie algebras h, Corollary 3.5 proves that,
up to an isomorphism, there exists only one Lie algebra that contains h as a Lie subalgebra
of codimension one, namely the direct product k0 × h and AutLie(k0 × h) ∼= k∗ × AutLie(h).
Now, k0 is a subalgebra of k0 ./ h = h(λ,∆) having h as a complement: for a 5-dimensional
perfect Lie algebra all complements of k0 in h(λ,∆) are described in Example 3.7 as matched
pair deformations of h. Section 4 treats the same problem for a given (2n + 1)-dimensional
non-perfect Lie algebra h := l(2n+ 1, k). Theorem 4.2 describes explicitly all Lie algebras con-
taining l(2n+ 1, k) as a subalgebra of codimension 1. They are parameterized by a set T (n) of
matrices (A,B,C,D, λ0, δ) ∈ Mn(k)4 × k× k2n+1: there are four such families of Lie algebras if
the characteristic of k is 6= 2 and two families in characteristic 2. All complements of k0 in two
such bicrossed products k0 ./ l(2n+ 1, k) are described by computing all matched pair deforma-
tions of the Lie algebra l(2n + 1, k) in Propositions 4.4 and 4.8. In particular, in Example 4.6
we construct an example where the factorization index of k0 in the 4-dimensional Lie algebra
m(4, k) is infinite: that is k0 has an infinite family of non-isomorphic complements in m(4, k). To
conclude, there are three reasons for which we considered the Lie algebra l(2n+1, k) in Section 4:
on the one hand it provided us with an example of a finite-dimensional Lie algebra extension
g ⊂ L such that g has infinitely many non-isomorphic complements as a Lie subalgebra in L.
On the other hand, the Lie algebra l(2n + 1, k) serves for constructing two counterexamples in
Remark 4.10 which show that some properties of Lie algebras are not preserves by the matched
pair deformation. Finally, having [2, Corollary 3.2] as a source of inspiration we believe that
any (2n+ 1)-dimensional Lie algebra is isomorphic to an r-deformation of l(2n+ 1, k) associated
to a given matched pair: a more general open question is stated at the end of the paper.
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2 Preliminaries

All vector spaces, Lie algebras, linear or bilinear maps are over an arbitrary field k. The Abelian
Lie algebra of dimension n will be denoted by kn0 . For two given Lie algebras g and h we denote
by AutLie(g) the group of automorphisms of g and by HomLie(g, h) the space of all Lie algebra
maps between g and h. A Lie algebra L factorizes through g and h if g and h are Lie subalgebras
of L such that L = g+ h and g∩ h = {0}. In this case h is called a complement of g in L; if g is
an ideal of L, then a complement h, if it exists, is unique being isomorphic to the quotient Lie
algebra L/g. In general, if g is only a subalgebra of L, then we are very far from having unique
complements; for a given extension g ⊂ L of Lie algebras, the number of types of isomorphisms
of all complements of g in L is called the factorization index of g in L and is denoted by [L : g]f –
a theoretical formula for computing [L : g]f is given in [3, Theorem 4.5]. For basic concepts and
unexplained notions on Lie algebras we refer to [9, 13].

A matched pair of Lie algebras [15, 17] is a system (g, h, /, .) consisting of two Lie algebras g
and h and two bilinear maps . : h × g → g, / : h × g → h such that (g, .) is a left h-module,
(h, /) is a right g-module and the following compatibilities hold for all g, h ∈ g and x, y ∈ h

x . [g, h] = [x . g, h] + [g, x . h] + (x / g) . h− (x / h) . g,

[x, y] / g = [x, y / g] + [x / g, y] + x / (y . g)− y / (x . g).

Let (g, h, /, .) be a matched pair of Lie algebras. Then g ./ h := g × h, as a vector space, is
a Lie algebra with the bracket defined by

{(g, x), (h, y)} :=
(
[g, h] + x . h− y . g, [x, y] + x / h− y / g

)
for all g, h ∈ g and x, y ∈ h, called the bicrossed product associated to the matched pair (g, h, /, .).
Any bicrossed product g ./ h factorizes through g = g× {0} and h = {0} × h; the converse also
holds [17, Proposition 8.3.2]: if a Lie algebra L factorizes through g and h, then there exist an
isomorphism of Lie algebras L ∼= g ./ h, where g ./ h is the bicrossed product associated to the
matched pair (g, h, /, .) whose actions are constructed from the unique decomposition

[x, g] = x . g + x / g ∈ g + h (2.1)

for all x ∈ h and g ∈ g. The matched pair (g, h, /, .) defined by (2.1) is called the canonical
matched pair associated to the factorization L = g + h.

Remark 2.1. Over the complex numbers C, an equivalent description for the factorization of
a Lie algebra L through two Lie subalgebras is given in [5, Definition 2.1] and in [6, Proposi-
tion 2.2], in terms of complex product structures of L, i.e. linear maps f : L → L such that
f 6= ± Id, f2 = f satisfying the integrability conditions

f([x, y]) = [f(x), y] + [x, f(y)]− f
(
[f(x), f(y)]

)
for all x, y ∈ L. The linear map f : g ./ h → g ./ h, f(g, h) := (g,−h) is a complex product
structure on any bicrossed product g ./ h. Conversely, if f is a complex product structure on L,
then L factorizes through two Lie subalgebras L = L+ + L−, where L± denotes the eigenspace
corresponding to the eigenvalue ±1 of f , that is L ∼= L+ ./ L−.

Let (g, h, /, .) be a matched pair of Lie algebras. A linear map r : h→ g is called a deformation
map [3, Definition 4.1] of the matched pair (g, h, ., /) if the following compatibility holds for any
x, y ∈ h

r
(
[x, y]

)
−
[
r(x), r(y)

]
= r
(
y / r(x)− x / r(y)

)
+ x . r(y)− y . r(x). (2.2)
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We denote by DM(h, g|(., /)) the set of all deformation maps of the matched pair (g, h, ., /). If
r ∈ DM(h, g|(., /)) then hr := h, as a vector space, with the new bracket defined for any x, y ∈ h
by

[x, y]r := [x, y] + x / r(y)− y / r(x) (2.3)

is a Lie algebra called the r-deformation of h. A Lie algebra h is a complement of g ∼= g×{0} in
the bicrossed product g ./ h if and only if h ∼= hr, for some deformation map r ∈ DM(h, g|(., /))
[3, Theorem 4.3].

3 The case of perfect Lie algebras

Computing all matched pairs between two given Lie algebras g and h and classifying all associated
bicrossed products g ./ h is a challenging problem. In the case when g := k = k0, the Abelian Lie
algebra of dimension 1, they are parameterized by the set TwDer(h) of all twisted derivations
of the Lie algebra h as defined in [4, Definition 4.2]: a twisted derivation of h is a pair (λ,∆)
consisting of two linear maps λ : h→ k and ∆ : h→ h such that for any g, h ∈ h

λ([g, h]) = 0, ∆([g, h]) = [∆(g), h] + [g,∆(h)] + λ(g)∆(h)− λ(h)∆(g). (3.1)

TwDer(h) contains the usual space of derivations Der(h) via the canonical embedding Der(h) ↪→
TwDer(h), D 7→ (0, D), which is an isomorphism if h is a perfect Lie algebra (i.e. h = [h, h]). As
a special case of [4, Proposition 4.4 and Remark 4.5] we have:

Proposition 3.1. Let h be a Lie algebra. Then there exists a bijection between the set of all
matched pairs (k0, h, /, .) and the space TwDer(h) of all twisted derivations of h given such that
the matched pair (k0, h, /, .) corresponding to (λ,∆) ∈ TwDer(h) is defined by

h . a = aλ(h), h / a = a∆(h) (3.2)

for all h ∈ h and a ∈ k = k0. The bicrossed product k0 ./ h associated to the matched pair (3.2)
is denoted by h(λ,∆) and has the bracket given for any a, b ∈ k and x, y ∈ h by

{(a, x), (b, y)} :=
(
bλ(x)− aλ(y), [x, y] + b∆(x)− a∆(y)

)
. (3.3)

A Lie algebra L contains h as a subalgebra of codimension 1 if and only if L is isomorphic
to h(λ,∆), for some (λ,∆) ∈ TwDer(h).

Suppose {ei | i ∈ I} is a basis for the Lie algebra h. Then, h(λ,∆) has {F, ei | i ∈ I} as a basis
and the bracket given for any i ∈ I by

[ei, F ] = λ(ei)F + ∆(ei), [ei, ej ] = [ei, ej ]h,

where [−,−]h is the bracket on h. Above we identify ei = (0, ei) and denote F = (1, 0) in the
bicrossed product k0 ./ h. Classifying the Lie algebras h(λ,∆) is a difficult task. In what follows
we deal with this problem for a perfect Lie algebra h: in this case TwDer(h) = {0}×Der(h) and
we denote by h(∆) = h(0,∆), for any ∆ ∈ Der(h).

Theorem 3.2. Let h be a perfect Lie algebra and ∆,∆′ ∈ Der(h). Then there exists a bijection
between the set of all morphisms of Lie algebras ϕ : h(∆) → h(∆′) and the set of all triples
(α, h, v) ∈ k × h×HomLie(h, h) satisfying the following compatibility condition for all x ∈ h

v
(
∆(x)

)
− α∆′

(
v(x)

)
= [v(x), h]. (3.4)
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The bijection is given such that the Lie algebra map ϕ = ϕ(α,h,v) corresponding to (α, h, v) is
given by the formula

ϕ : h(∆) → h(∆′), ϕ(a, x) = (aα, ah+ v(x))

for all (a, x) ∈ h(∆) = k0 ./ h. Furthermore, ϕ = ϕ(α,h,v) is an isomorphism of Lie algebras if
and only if α 6= 0 and v ∈ AutLie(h).

Proof. Any linear map ϕ : k × h → k × h is uniquely determined by a quadruple (α, h, β, v),
where α ∈ k, h ∈ h and β : h→ k, v : h→ h are k-linear maps such that

ϕ(a, x) = ϕ(α,h,β,v) = (aα+ β(x), ah+ v(x)).

We will prove that ϕ defined above is a Lie algebra map if and only if β is the trivial map, v is
a Lie algebra map and (3.4) holds. It is enough to test the compatibility

ϕ
(
[(a, x), (b, y)]

)
= [ϕ(a, x), ϕ(b, y)] (3.5)

for all generators of h(∆) = k × h, i.e. elements of the form (1, 0) and (0, x), for all x ∈ h.
Moreover, since h is perfect (i.e. λ = 0) the bracket on h(∆) given by (3.3) takes the form:
{(a, x), (b, y)} = (0, [x, y] + b∆(x) − a ∆(y)). Using this formula we obtain that (3.5) holds for
(0, x) and (0, y) if and only if

β
(
[x, y]

)
= 0, v

(
[x, y]

)
= [v(x), v(y)] + β(y)∆(v(x))− β(x)∆(v(y)).

As h is perfect these two conditions are equivalent to the fact that β = 0 and v is a Lie algebra
map. Finally, as β = 0, we can easily show that (3.5) holds in (1, 0) and (0, x) if and only
if (3.4) holds. Thus, we have obtained that ϕ is a Lie algebra map if and only if v is a Lie
algebra map, β = 0 and (3.4) holds. In what follows we denote by ϕ(α,h,v) the Lie algebra map
corresponding to a quadruple (α, h, β, v) with β = 0. Suppose first that ϕ := ϕ(α,h,v) is a Lie
algebra isomorphism. Then, there exists a Lie algebra map ϕ := ϕ(γ,g,w) : h(∆′) → h(∆) such
that ϕ ◦ϕ(a, x) = ϕ ◦ϕ(a, x) = (a, x) for all a ∈ k, x ∈ h. Thus, for all a ∈ k and x ∈ h, we have

aαγ = a, aγ + v(ag) + v
(
w(x)

)
= x = aαg + w(ah) + w

(
v(x)

)
. (3.6)

By the first part of (3.6) for a = 1 we obtain αγ = 1 and thus α 6= 0 while the second part
of (3.6) for a = 0 implies v bijective. To end with, assume that α 6= 0 and v ∈ AutLie(h).
Then, it is straightforward to see that ϕ = ϕ(α,h,v) is an isomorphism with the inverse given by
ϕ−1 := ϕ(α−1,−α−1v−1(h),v−1). �

Let k∗ be the units group of k and (h,+) the underlying Abelian group of the Lie algebra h.
Then the map given for any α ∈ k∗, v ∈ AutLie(h) and h ∈ h by

ϕ : k∗ ×AutLie(h)→ AutGr(h,+), ϕ(α, v)(h) := α−1v(h)

is a morphism of groups. Thus, we can construct the semidirect product of groups h nϕ (k∗ ×
AutLie(h)) associated to ϕ. The next result shows that AutLie(h(∆)) is isomorphic to a certain
subgroup of the semidirect product of groups hnϕ (k∗ ×AutLie(h)).

Corollary 3.3. Let h be a perfect Lie algebra and ∆,∆′ ∈ Der(h). Then the Lie algebras h(∆)

and h(∆′) are isomorphic if and only if there exists a triple (α, h, v) ∈ k∗ × h × AutLie(h) such
that v ◦∆− α∆′ ◦ v = [v(−), h]. Furthermore, there exists an isomorphism of groups

AutLie(h(∆)) ∼= G(h,∆) := {(α, h, v) ∈ k∗ × h×AutLie(h) | v ◦∆− α∆ ◦ v = [v(−), h]},
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where G(h,∆) is a group with respect to the following multiplication

(α, h, v) · (β, g, w) := (αβ, βh+ v(g), v ◦ w) (3.7)

for all (α, h, v), (β, g, w) ∈ G(h,∆). Moreover, the canonical map

G(h,∆) −→ hnϕ

(
k∗ ×AutLie(h)

)
, (α, h, v) 7→

(
α−1h, (α, v)

)
is an injective morphism of groups.

Proof. The first part follows trivially from Theorem 3.2. Consider now γ, ψ ∈ AutLie(h(∆)).
Using again Theorem 3.2, we can find (α, h, v), (β, g, w) ∈ k∗×h×AutLie(h) such that γ = ϕ(α,h,v)

and ψ = ϕ(β,g,w). Then, for all a ∈ k, x ∈ h we have

ϕ(α,h,v) ◦ ϕ(β,g,w)(a, x) = ϕ(α,h,v)

(
aβ, ag + w(x)

)
=
(
αβa, aβh+ av(g) + v ◦ w(x)

)
= ϕ(αβ,βh+v(g),v◦w)(a, x).

Thus, AutLie(h(∆)) is isomorphic to G(h,∆) with the multiplication given by (3.7). The last
assertion follows by a routine computation. �

Remark 3.4. Let ∆ = [x0,−] be an inner derivation of a perfect Lie algebra h. Then the group
AutLie(h([x0,−])) admits a simpler description as follows

G(h, [x0,−]) = {(α, h, v) ∈ k∗ × h×AutLie(h) | v(x0)− αx0 + h ∈ Z(h)},

where Z(h) is the center of h. Assume in addition that h has trivial center, i.e. Z(h) = {0}; it
follows that there exists an isomorphism of groups

AutLie(h([x0,−])) ∼= k∗ ×AutLie(h),

since in this case any element h from a triple (α, h, v) ∈ G(h, [x0,−]) must be equal to αx0−v(x0).
Moreover, in this context, the multiplication given by (3.7) is precisely that of a direct product
of groups.

A Lie algebra h is called complete (see [14, 22] for examples and structural results on this
class of Lie algebras) if h has trivial center and any derivation is inner. A complete and perfect
Lie algebra is called sympathetic [7]: semisimple Lie algebras over a field of characteristic zero
are sympathetic and there exists a sympathetic non-semisimple Lie algebra in dimension 25. For
sympathetic Lie algebras, Theorem 3.2 takes the following form which considerably improves [4,
Corollary 4.10], where the classification is made only up to an isomorphism of Lie algebras which
acts as identity on h.

Corollary 3.5. Let h be a sympathetic Lie algebra. Then up to an isomorphism of Lie algebras
there exists only one Lie algebra that contains h as a Lie subalgebra of codimension one, namely
the direct product k0 × h of Lie algebras. Furthermore, there exists an isomorphism of groups
AutLie(k0 × h) ∼= k∗ ×AutLie(h).

Proof. Since h is perfect any Lie algebra that contains h as a Lie subalgebra of codimension 1
is isomorphic to h(D), for some D ∈ Der(h). As h is also complete, any derivation is inner. For
an arbitrary derivation D = [d,−] we can prove that h(D)

∼= h(0), where 0 = [0,−] is the trivial
derivation and moreover h(0) is just the direct product of Lie algebras k0× h. Indeed, by taking
(α, h, v) := (1,−d, Idh) one can see that relation (3.4) holds for D = [d,−] and D′ = [0,−], that
is h(D)

∼= h(0). The final part follows from Remark 3.4. �
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Remark 3.6. Let h be a perfect Lie algebra with a basis {ei | i ∈ I}, ∆ ∈ Der(h) a given deriva-
tion and consider the extension k0 ⊆ h(∆) = k0 ./ h(∆). In order to determine all complements
of k0 in h(∆) we have to describe the set of all deformation maps r : h → k0 of the matched
pair (3.2). A deformation map is completely determined by a family of scalars (a)i∈I satisfying
the following compatibility condition for any i, j ∈ I

r
(
[ei, ej ]h

)
= r
(
ai∆(ej)− aj∆(ei)

)
via the relation r(ei) = ai. For such an r = (ai)i∈I , the r-deformation of h is the Lie algebra hr
having {ei | i ∈ I} as a basis and the bracket defined for any i, j ∈ I by

[ei, ej ]r = [ei, ej ]h + aj∆(ei)− ai∆(ej).

Any complement of k0 in h(∆) is isomorphic to such an hr. An explicit example in dimension 5
is given below.

Example 3.7. Let k be a field of characteristic 6= 2 and h the perfect 5-dimensional Lie algebra
with a basis {e1, e2, e3, e4, e5} and bracket given by

[e1, e2] = e3, [e1, e3] = −2e1, [e1, e5] = [e3, e4] = e4,

[e2, e3] = 2e2, [e2, e4] = e5, [e3, e5] = −e5.

By a straightforward computation it can be proved that the space of derivations Der(h) coincides
with the space of all matrices from M5(k) of the form

A =


a1 0 −2a4 0 0
0 −a1 −2a2 0 0
a2 a4 0 0 0
a3 0 a5 a6 a4

0 a5 −a3 −a2 (a6 − a1)


for all a1, . . . , a6 ∈ k. Thus h is not complete since Der(h) has dimension 6. One can show easily
that the derivation ∆ := e11− e41− e22 + e53− e44− 2e55 is not inner, where eij ∈Mn(k) is the
matrix having 1 in the (i, j)th position and zeros elsewhere. For the derivation ∆ we consider
the extension k0 ⊆ k0 ./ h = h(∆) and we will describe all the complements of k0 in h(∆). By
a routine computation it can be seen that r : h → k0 is a deformation map of the matched
pair (3.2) if and only if r := 0 (the trivial map) or r is given by

r(e1) := a, r(e2) := −a−1, r(e3) = 2, r(e4) = r(e5) = 0

for some a ∈ k∗. Thus a Lie algebra C is a complement of k0 in h(∆) if and only if C ∼= h
or C ∼= ha, where ha is the 5-dimensional Lie algebra with basis {e1, e2, e3, e4, e5} and bracket
given by

[e1, e2]a := −a−1e1 + ae2 + e3 + a−1e4, [e1, e3]a := −2e4 − ae5, [e1, e4]a := ae4,

[e1, e5]a := e4 + 2ae5, [e2, e3]a := a−1e5, [e2, e4]a := e5 − a−1e4,

[e2, e5]a := −2a−1e5, [e3, e4]a := 3e4, [e3, e5]a := 3e5

for any a ∈ k∗. Remark that none of the matched pair deformations ha of the Lie algebra h is
perfect since the dimension of the derived algebra [ha, ha] is equal to 3.
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4 The non-perfect case

In Section 3 we have described and classified all bicrossed products k0 ./ h for a perfect Lie
algebra h; furthermore, Remark 3.6 and Example 3.7 describe all complements of k0 in a given
bicrossed product k0 ./ h. In this section we approach the same questions for a given non-perfect
Lie algebra h := l(2n+1, k), where l(2n+1, k) is the (2n+1)-dimensional Lie algebra with basis
{Ei, Fi, G | i = 1, . . . , n} and bracket given for any i = 1, . . . , n by

[Ei, G] := Ei, [G,Fi] := Fi.

First, we shall describe all bicrossed products k0 ./ l(2n + 1, k): they will explicitly describe
all Lie algebras which contain l(2n + 1, k) as a subalgebra of codimension 1. Then, as the
second step, we shall find all r-deformations of the Lie algebra l(2n + 1, k), for two given
extensions k0 ⊆ k0 ./ l(2n+ 1, k). Based on Proposition 3.1 we have to compute first the space
TwDer(l(2n+ 1, k)) of all twisted derivations.

Proposition 4.1. There exists a bijection between TwDer(l(2n+1, k)) and the set of all matrices
(A,B,C,D, λ0, δ) ∈ Mn(k)4 × k × k2n+1 satisfying the following conditions

λ0A = −δ2n+1In, (2 + λ0)B = 0, (2− λ0)C = 0, λ0D = δ2n+1In, (4.1)

where δ = (δ1, . . . , δ2n+1) ∈ k2n+1. The bijection is given such that the twisted derivation
(λ,∆) ∈ TwDer(l(2n+ 1, k)) associated to (A,B,C,D, λ0, δ) is given by

λ(Ei) = λ(Fi) := 0, λ(G) := λ0, (4.2)

∆ :=

A B δ1

C D :
0 0 δ2n+1

 . (4.3)

T (n) denotes the set of all (A,B,C,D, λ0, δ) ∈ Mn(k)4 × k × k2n+1 satisfying (4.1).

Proof. The first compatibility condition (3.1) shows that a linear map λ : l(2n + 1, k) → k of
a twisted derivation (λ,D) must have the form given by (4.2), for some λ0 ∈ k. We shall fix
such a map for a given λ0 ∈ k. We write down the linear map ∆ : l(2n+ 1, k)→ l(2n+ 1, k) as
a matrix associated to the basis {E1, . . . , En, F1, . . . , Fn, G} of l(2n+ 1, k), as follows

∆ =

 A B d1,2n+1

C D :
d2n+1,1..d2n+1,2n+1


for some matrices A,B,C,D ∈ Mn(k) and some scalars di,j ∈ k, for all i, j = 1, . . . , 2n + 1.
We denote A = (aij), B = (bij), C = (cij), D = (dij). It remains to check the compatibility
condition (3.1) for ∆, i.e.

∆([g, h]) = [∆(g), h] + [g,∆(h)] + λ(g)∆(h)− λ(h)∆(g)

for all g 6= h ∈ {E1, . . . , En, F1, . . . , Fn, G}. As this is a routinely straightforward computation
we will only indicate the main steps of the proof. We can easily see that the compatibility
condition (3.1) holds for (g, h) = (Ei, Ej) if and only if d2n+1,i = 0, for all i = 1, . . . , n. In
the same way (3.1) holds for (g, h) = (Fi, Fj) if and only if d2n+1,n+i = 0, for all i = 1, . . . , n.
This shows that ∆ has the form (4.3), that is the first 2n entries from the last row of the
matrix ∆ are all zeros and we will denote the last column of D by (d1,2n+1, . . . , d2n+1,2n+1) =
δ = (δ1, . . . , δ2n+1). It follows from here that (3.1) holds trivially for the pair (g, h) = (Ei, Fj).
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An easy computation shows that (3.1) holds for (g, h) = (Ei, G) if and only if the following
equation holds

(1− λ0)

 n∑
j=1

aj,iEj +

n∑
j=1

cj,iFj

 =

n∑
j=1

aj,iEj −
n∑
j=1

cj,iFj + δ2n+1Ei,

which is equivalent to −λ0A = δ2n+1In and (2− λ0)C = 0, i.e. the first and the third equations
from (4.1). A similar computation shows that (3.1) holds for (g, h) = (G,Fi) if and only if
(2 + λ0)B = 0 and λ0D = δ2n+1In and the proof is finished. �

Let l(2n + 1, k)(A,B,C,D,λ0,δ) be the bicrossed product k0 ./ l(2n + 1, k) associated to the
matched pair given by the twisted derivation

(
A = (aji), B = (bji), C = (cji), D = (dji), λ0,

δ = (δj)
)
∈ T (n). From now on we will use the following convention: if one of the elements

of the 6-tuple (A, B, C, D, λ0, δ) is equal to 0 then we will omit it when writing down the
Lie algebra l(2n + 1, k)(A,B,C,D,λ0,δ). A basis of l(2n + 1, k)(A,B,C,D,λ0,δ) will be denoted by
{Ei, Fi, G,H | i = 1, . . . , n}: these Lie algebras can be explicitly described by first computing
the set T (n) and then using Proposition 3.1. Considering the equations (4.1) which define T (n)
a discussion involving the field k and the scalar λ0 is mandatory. For two sets X and Y we shall
denote by X tY the disjoint union of X and Y . As a conclusion of the above results we obtain:

Theorem 4.2. (1) If k is a field such that char(k) 6= 2 then

T (n) ∼=
(
(k \ {0,±2})× k2n+1

)
t
(
Mn(k)2 × k2n

)
t
(
Mn(k)× k2n+1

)
t
(
Mn(k)× k2n+1

)
and the four families of Lie algebras containing l(2n+ 1, k) as a subalgebra of codimension 1 are
the following:
• the Lie algebra l1(2n+ 1, k)(λ0,δ) with the bracket given for any i = 1, . . . , n by

[Ei, G] = Ei, [G,Fi] = Fi, [Ei, H] = −λ−1
0 δ2n+1Ei,

[Fi, H] = λ−1
0 δ2n+1Fi, [G,H] = λ0H +

n∑
j=1

δjEj +

n∑
j=1

δn+jFj + δ2n+1G

for all (λ0, δ) ∈ (k \ {0,±2})× k2n+1.
• the Lie algebra l2(2n+ 1, k)(A,D,δ) with the bracket given for any i = 1, . . . , n by

[Ei, G] = Ei, [G,Fi] = Fi, [Ei, H] =
n∑
j=1

ajiEj ,

[Fi, H] =

n∑
j=1

djiFj , [G,H] =

n∑
j=1

δjEj +

n∑
j=1

δn+jFj

for all (A = (aij), D = (dij), δ) ∈ Mn(k)×Mn(k)× k2n.
• the Lie algebra l3(2n+ 1, k)(C,δ) with the bracket given for any i = 1, . . . , n by

[Ei, G] = Ei, [G,Fi] = Fi, [Ei, H] = −2−1δ2n+1Ei +

n∑
j=1

cjiFj ,

[Fi, H] = 2−1δ2n+1Fi, [G,H] = 2H +

n∑
j=1

δjEj +

n∑
j=1

δn+jFj + δ2n+1G

for all (C = (cij), δ) ∈ Mn(k)× k2n+1.
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• the Lie algebra l4(2n+ 1, k)(B,δ) with the bracket given for any i = 1, . . . , n by

[Ei, G] = Ei, [G,Fi] = Fi, [Fi, H] =
n∑
j=1

bjiEj − 2−1δ2n+1Fi,

[Ei, H] = 2−1δ2n+1Ei, [G,H] = −2H +

n∑
j=1

δjEj +

n∑
j=1

δn+jFj + δ2n+1G

for all (B = (bij), δ) ∈ Mn(k)× k2n+1.
(2) If char(k) = 2 then

T (n) ∼=
(
Mn(k)4 × k2n

)
t
(
k∗ × k2n+1

)
and the two families of Lie algebras containing l(2n+ 1, k) as a subalgebra of codimension 1 are
the following:
• the Lie algebra l1(2n+ 1, k)(A,B,C,D,δ) with the bracket given for any i = 1, . . . , n by

[Ei, G] = Ei, [G,Fi] = Fi, [Ei, H] =
n∑
j=1

(
ajiEj + cjiFj

)
,

[Fi, H] =

n∑
j=1

(
bjiEj + djiFj

)
, [G,H] =

n∑
j=1

δjEj +

n∑
j=1

δn+jFj

for all (A,B,C,D, δ) ∈ Mn(k)4 × k2n.
• the Lie algebra l2(2n+ 1, k)(λ0,δ) with the bracket given for any i = 1, . . . , n by

[Ei, G] = Ei, [G,Fi] = Fi, [Ei, H] = −λ−1
0 δ2n+1Ei,

[Fi, H] = λ−1
0 δ2n+1Fi, [G,H] = λ0H +

n∑
j=1

δjEj +
n∑
j=1

δn+jFj + δ2n+1G

for all (λ0, δ) ∈ k∗ × k2n+1.

Proof. The proof relies on the use of Propositions 3.1 and 4.1 as well as the equations (4.1)
defining T (n). Besides the discussion on the characteristic of k it is also necessary to consider
whether λ0 belongs to the set {0, 2,−2}. In the case that char(k) 6= 2, the first Lie algebra
listed is the bicrossed product which corresponds to the case when λ0 /∈ {0, 2,−2}. In this
case, we can easily see that

(
A,B,C,D, λ0, δ = (δj)

)
∈ T (n) if and only if B = C = 0,

A = −λ−1
0 δ2n+1In and D = λ−1

0 δ2n+1In. The Lie algebra l1(2n + 1, k)(λ0,δ) is exactly the
bicrossed product k0 ./ l(2n + 1, k) corresponding to this twisted derivation. The Lie algebra
l2(2n + 1, k)(A,D,δ) is the bicrossed product k0 ./ l(2n + 1, k) corresponding to the case λ0 = 0
while the last two Lie algebras are the bicrossed products k0 ./ l(2n + 1, k) associated to the
case when λ0 = 2 and respectively λ0 = −2.

If the characteristic of k is equal to 2 we distinguish the following two possibilities: the Lie
algebra l1(2n+1, k)(A,B,C,D,δ) is the bicrossed product k0 ./ l(2n+1, k) associated to λ0 = 0 while
the Lie algebra l2(2n+ 1, k)(λ0,δ) is the same bicrossed product but associated to λ0 6= 0. �

Let k be a field of characteristic 6= 2 and l1(2n + 1, k)(λ0,δ) the Lie algebra of Theorem 4.2.
In order to keep the computations efficient we will consider λ0 := 1 and δ := (0, . . . , 0, 1) and
we denote by L(2n+2, k) := l1(2n+1, k)(1,(0,...,0,1)), the (2n+2)-dimensional Lie algebra having
a basis {Ei, Fi, G,H | i = 1, . . . , n} and the bracket defined for any i = 1, . . . , n by

[Ei, G] = Ei, [G,Fi] = Fi, [Ei, H] = −Ei, [Fi, H] = Fi, [G,H] = H +G.
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We consider the Lie algebra extension kH ⊂ L(2n + 2, k), where kH ∼= k0 is the Abelian
Lie algebra of dimension 1. Of course, L(2n + 2, k) factorizes through kH and l(2n + 1, k),
i.e. L(2n + 2, k) = kH ./ l(2n + 1, k) – the actions / : l(2n + 1, k) × kH → l(2n + 1, k) and
. : l(2n+ 1, k)× kH → kH of the canonical matched pair are given by

Ei / H := −Ei, Fi / H := Fi, G / H := G, G . H := H (4.4)

and all undefined actions are zero. Next we compute the set DM(l(2n+ 1, k), kH|(., /)) of all
deformation maps of the matched pair (kH, l(2n+ 1, k), ., /) given by (4.4).

Lemma 4.3. Let k be a field of characteristic 6= 2. Then there exists a bijection

DM
(
l(2n+ 1, k), kH|(., /)

) ∼= (kn \ {0}) t (kn × k).
The bijection is given such that the deformation map r = ra : l(2n + 1, k) → kH associated to
a = (ai) ∈ kn \ {0} is given by

r(Ei) := aiH, r(Fi) := 0, r(G) := H, (4.5)

while the deformation map r = r(b,c) : l(2n + 1, k) → kH associated to (b = (bi), c) ∈ kn × k is
given as follows

r(Ei) := 0, r(Fi) := biH, r(G) := cH (4.6)

for all i = 1, . . . , n.

Proof. Any linear map r : l(2n+ 1, k)→ kH is uniquely determined by a triple (a = (ai), b =
(bi), c) ∈ kn × kn × k via: r(Ei) := aiH, r(Fi) := biH and r(G) := cH, for all i = 1, . . . , n. We
need to check under what conditions such a map r = r(a,b,c) is a deformation map. Since kH is
Abelian, equation (2.2) comes down to

r([x, y]) = r
(
y / r(x)− x / r(y)

)
+ x . r(y)− y . r(x), (4.7)

which needs to be checked for all x, y ∈ {Ei, Fi, G | i = 1, . . . , n}. Notice that (4.7) is symmetrical
i.e. if (4.7) is fulfilled for (x, y) then (4.7) is also fulfilled for (y, x). By a routinely computation
it can be seen that r = r(a,b,c) is a deformation map if and only if

aibj = 0, (1− c)ai = 0 (4.8)

for all i, j = 1, . . . , n. Indeed, (4.7) holds for (x, y) = (Ei, Fj) if and only if aibj = 0 and it holds
for (x, y) = (Ei, G) if and only if ai = aic. The other cases left to study are either automatically
fulfilled or equivalent to one of the two conditions above. The first condition of (4.8) divides the
description of deformation maps into two cases: the first one corresponds to a = (ai) 6= 0 and
we automatically have b = 0 and c = 1. The second case corresponds to a := 0 which implies
that (4.8) holds for any (b, c) ∈ kn × k. �

The next result describes all deformations of l(2n+ 1, k) associated to the canonical matched
pair (kH, l(2n+ 1, k), ., /) given by (4.4).

Proposition 4.4. Let k be a field of characteristic 6= 2 and the extension of Lie algebras
kH ⊂ L(2n+ 2, k). Then a Lie algebra C is a complement of kH in L(2n+ 2, k) if and only if
C is isomorphic to one of the Lie algebras from the three families defined below:
• the Lie algebra l(a)(2n+ 1, k) having the bracket def ined for any i = 1, . . . , n by

[Ei, Ej ]a := aiEj − ajEi, [Ei, Fj ]a := −aiFj , [Ei, G]a := −aiG (4.9)

for all a = (ai) ∈ kn \ {0}.
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• the Lie algebra l′(b)(2n+ 1, k) having the bracket def ined for any i = 1, . . . , n by

[Ei, Fj ]b := −bjEi, [Ei, G]b := −Ei,
[Fi, Fj ]b := bjFi − biFj , [Fi, G]b := Fi − biG

for all b = (bi) ∈ kn.
• the Lie algebra l′′(b)(2n+ 1, k) having the bracket def ined for any i = 1, . . . , n by

[Ei, Fj ]b := −bjEi, [Fi, Fj ]b := bjFi − biFj , [Fi, G]b := −biG

for all b = (bi) ∈ kn.
Thus the factorization index [L(2n + 2, k) : kH]f is equal to the number of types of isomor-

phisms of Lie algebras of the set

{l(a)(2n+ 1, k), l′(b)(2n+ 1, k), l′′(b)(2n+ 1, k) | a ∈ kn \ {0}, b ∈ kn}.

Proof. l(2n + 1, k) is a complement of kH in L(2n + 2, k) and we can write L(2n + 2, k) =
kH ./ l(2n+ 1, k), where the bicrossed product is associated to the matched pair given in (4.4).
Hence, by [3, Theorem 4.3] any other complement C of kH in L(2n + 2, k) is isomorphic to
an r-deformation of l(2n+ 1, k), for some deformation map r : l(2n+ 1, k)→ kH of the matched
pair (4.4). These are described in Lemma 4.3. The Lie algebra l(a)(2n+ 1, k) is precisely the ra-
deformation of l(2n+ 1, k), where ra is given by (4.5). On the other hand the r(b,c)-deformation
of l(2n + 1, k), where r(b,c) is given by (4.6) for some (b = (bi), c) ∈ kn × k, is the Lie algebra
denoted by l(b,c)(2n+ 1, k) having the bracket given for any i = 1, . . . , n by

[Ei, Fj ](b,c) := −bjEi, [Ei, G](b,c) := (1− c)Ei,
[Fi, Fj ](b,c) := bjFi − biFj , [Fi, G](b,c) := (c− 1)Fi − biG

for all (b = (bi), c) ∈ kn × k. Now, for c 6= 1 we can see that l(b,c)(2n+ 1, k) ∼= l′(b)(2n+ 1, k) (by

sending G to (c− 1)−1G) while l(b,1)(2n+ 1, k) = l′′(b)(2n+ 1, k) and we are done. �

Remark 4.5. An attempt to compute [L(2n+2, k) : kH]f for an arbitrary integer n is hopeless.
However, one can easily see that l′(0)(2n + 1, k) = l(2n + 1, k) and l′′(0)(2n + 1, k) = k2n+1

0 , the

Abelian Lie algebra of dimension 2n + 1. Thus, [L(2n + 2, k) : kH]f ≥ 2. The case n = 1 is
presented below.

Example 4.6. Let k be a field of characteristic 6= 2 and consider {E,F,G} the basis of l(3, k)
with the bracket given by [E,G] = E and [G,F ] = F . Then, the factorization index [L(4, k) :
kH]f = 3. More precisely, the isomorphism classes of all complements of kH in L(4, k) are
represented by the following three Lie algebras: l(3, k), k3

0 and the Lie algebra L−1 having
{E,F,G} as a basis and the bracket given by

[F,E] = F, [E,G] = −G.

Since char(k) 6= 2 the Lie algebras l(3, k) and L−1 are not isomorphic [9, Exercise 3.2]. For
a ∈ k∗ the Lie algebra l(a)(3, k) has the bracket given by [E,F ] = −aF and [E,G] = −aG.
Thus, l(a)(3, k) ∼= l(1)(3, k), and the latter is isomorphic to the Lie algebra L−1. On the other
hand we have: l′′(0)(3, k) = k3

0 and for b 6= 0 we can easily see that l′′(b)(3, k) ∼= l′′(1)(3, k) ∼= l(3, k).

Finally, l′(0)(3, k) = l(3, k) and for b 6= 0 we have that l′(b)(3, k) ∼= l′(1)(3, k) – the latter is the Lie

algebra having {f1, f2, f3} as a basis and the bracket given by [f1, f2] = −f1, [f1, f3] = f1 and
[f3, f2] = f2 +f3. This Lie algebra is also isomorphic to l(3, k), via the isomorphism which sends
f1 to E, f3 to G and f2 to F −G.
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Let k be a field of characteristic 6= 2 and l2(2n+ 1, k)(A,D,δ) the Lie algebra of Theorem 4.2.
In order to simplify computations we will assume A = D := In and δ := (1, 0, . . . , 0, 1). Let
m(2n + 2, k) := l2(2n + 1, k)(In,In,(1,0,...,0,1)) be the (2n + 2)-dimensional Lie algebra having
{Ei, Fi, G,H | i = 1, . . . , n} as a basis and the bracket defined for any i = 1, . . . , n by

[Ei, G] = Ei, [G,Fi] = Fi, [Ei, H] = Ei, [Fi, H] = Fi, [G,H] = E1 + Fn.

We consider the Lie algebra extension kH ⊂ m(2n + 2, k), where kH ∼= k0 is the Abelian
Lie algebra of dimension 1. Of course, m(2n + 2, k) factorizes through kH and l(2n + 1, k),
i.e. m(2n+2, k) = kH ./ l(2n+1, k). Moreover, the canonical matched pair / : l(2n+1, k)×kH →
l(2n+ 1, k) and . : l(2n+ 1, k)× kH → kH associated to this factorization is given as follows:

Ei / H := Ei, Fi / H := Fi, G / H := E1 + Fn (4.10)

and all undefined actions are zero. In particular, we should notice that the left action . :
l(2n + 1, k) × kH → kH is trivial. Next, we describe the set DM(l(2n + 1, k), kH|(., /)) of all
deformation maps of the matched pair (kH, l(2n+ 1, k), ., /) given by (4.10).

Lemma 4.7. Let k be a field of characteristic 6= 2. Then there exists a bijection

DM
(
l(2n+ 1, k), kH

∣∣(., /)) ∼= (kn \ {0}) t (kn \ {0}) t k.
The bijection is given such that the deformation map r = ra : l(2n + 1, k) → kH associated to
a = (ai) ∈ kn \ {0} is given by

r(Ei) := aiH, r(Fi) := 0, r(G) := (a1 − 1)H (4.11)

the deformation map r = rb : l(2n + 1, k) → kH associated to another b = (bi) ∈ kn \ {0} is
given by

r(Ei) := 0, r(Fi) := biH, r(G) := (bn + 1)H, (4.12)

while the deformation map r = rc : l(2n+ 1, k)→ kH associated to c ∈ k is given by

r(Ei) := 0, r(Fi) := 0, r(G) := cH (4.13)

for all i = 1, . . . , n.

Proof. Any linear map r : l(2n + 1, k) → kH is uniquely determined by a triple (a = (ai),
b = (bi), c) ∈ kn × kn × k via: r(Ei) := aiH, r(Fi) := biH and r(G) := cH, for all i = 1, . . . , n.
We only need to check when such a map r = r(a,b,c) is a deformation map. Since kH is the
Abelian Lie algebra and the left action . : l(2n + 1, k) × kH → kH is trivial, equation (2.2)
comes down to

r([x, y]) = r
(
y / r(x)− x / r(y)

)
. (4.14)

Since (4.14) is symmetrical it is enough to check it only for pairs of the form (Ei, Ej), (Fi, Fj),
(Ei, Fj), (Ei, G), and (Fi, G), for all i, j = 1, . . . , n. It is straightforward to see that (4.14) is
trivially fulfilled for the pairs (Ei, Ej), (Fi, Fj) and (Ei, Fj). Moreover, (4.14) evaluated for
(Ei, G) and respectively (Fi, G) yields ai(a1 + bn − c − 1) = 0 and bi(a1 + bn − c + 1) = 0 for
all i = 1, . . . , n. Therefore, keeping in mind that we work over a field of characteristic 6= 2, the
triples (a = (ai), b = (bi), c) ∈ kn×kn×k for which r(a,b,c) becomes a deformation map are given
as follows: (a = (ai) ∈ kn \ {0}, b = 0, c = a1 − 1), (a = 0, b = (bi) ∈ kn \ {0}, c = bn + 1) and
(a = 0, b = 0, c ∈ k). The corresponding deformation maps are exactly those listed above. �
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The next result describes all deformations of l(2n+ 1, k) associated to the canonical matched
pair (kH, l(2n+ 1, k), ., /) given by (4.10).

Proposition 4.8. Let k be a field of characteristic 6= 2 and the extension of Lie algebras
kH ⊂ m(2n+ 2, k). Then a Lie algebra C is a complement of kH in m(2n+ 2, k) if and only if
C is isomorphic to one of the Lie algebras from the three families defined below:
• the Lie algebra l(a)(2n+ 1, k) having the bracket def ined for any i = 1, . . . , n by

[Ei, Ej ]a := ajEi − aiEj , [Ei, Fj ]a := −aiFj ,
[Ei, G]a := a1Ei − ai(E1 + Fn), [G,Fi]a := (2− a1)Fi

for all a = (ai) ∈ kn \ {0}.
• the Lie algebra l′(b)(2n+ 1, k) having the bracket def ined for any i = 1, . . . , n by

[Fi, Fj ]b := bjFi − biFj , [Ei, Fj ]b := bjEi,

[Ei, G]b := (2 + bn)Ei, [G,Fi]b := bi(E1 + Fn)− bnFi

for all b = (bi) ∈ kn \ {0}.
• the Lie algebra l′′(c)(2n+ 1, k) having the bracket def ined for any i = 1, . . . , n by

[Ei, G]c := (1 + c)Ei, [G,Fi]c := (1− c)Fi

for all c ∈ k.
Thus the factorization index [m(2n + 2, k) : kH]f is equal to the number of types of isomor-

phisms of Lie algebras of the set{
l(a)(2n+ 1, k), l′(b)(2n+ 1, k), l′′(c)(2n+ 1, k) | a, b ∈ kn \ {0}, c ∈ k

}
.

Proof. As in the proof of Proposition 4.4 we make use of [3, Theorem 4.3]. More precisely,
this implies that all complements C of kH in m(2n+ 2, k) are isomorphic to an r-deformation of
l(2n+ 1, k), for some deformation map r : l(2n+ 1, k)→ kH of the matched pair (4.10). These
are described in Lemma 4.7. By a straightforward computation it can be seen that l(a)(2n+1, k)

is exactly the complement corresponding to the deformation map given by (4.11), l′(b)(2n+ 1, k)

corresponds to the deformation map given by (4.12) while l′′(c)(2n+ 1, k) is implemented by the
deformation map given by (4.13). �

Example 4.9. Let k be a field of characteristic 6= 2. Then, the factorization index [m(4, k) :
kH]f depends essentially on the field k. We will prove that all complements of kH in m(4, k)
are isomorphic to a Lie algebra of the form:

Lα : [x, z] = x, [y, z] = αy, with α ∈ k.

Hence, [m(4, k) : kH]f =∞, if |k| =∞ and [m(4, k) : kH]f = (1+pn)/2, if |k| = pn, where p ≥ 3
is a prime number. Indeed, for n = 1, the Lie algebras described in Proposition 4.8 become

l(a)(3, k) : [E,F ]a := −aF, [E,G]a := −aF, [G,F ]a := (2− a)F,

l′(b)(3, k) : [E,F ]b := bE, [E,G]b := (2 + b)E, [G,F ]b := bE,

l′′(c)(3, k) : [E,G]c := (1 + c)E, [G,F ]c := (1− c)F,

a, b ∈ k∗, c ∈ k. To start with, we should notice that the first two Lie algebras l(a) and l′(b) are

isomorphic for all a, b ∈ k∗. The isomorphism γ : l(a) → l′(b) is given as follows

γ(E) := 2−1(b− a)E + 2−1(b− a+ 2)F + 2−1(a− b)G, γ(F ) := E,

γ(G) := 2−1(b− a+ 4)E + 2−1(b− a+ 4)F + 2−1(a− b− 2)G.
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Moreover, the map ϕ : l(a) → L0 given by

ϕ(E) := y + az, ϕ(F ) := x, ϕ(G) := x+ y + (a− 2)z

is an isomorphism of Lie algebras for all a ∈ k∗. Therefore, the first two Lie algebras are both
isomorphic to L0 for all a, b ∈ k∗. We are left to study the family l′′(c). If c = −1 then l′′(−1)

is again isomorphic to L0. Suppose now that c 6= −1. Then the map ψ : l′′(c) → L(c−1)(c+1)−1

given by

ψ(E) := x, ψ(F ) := y, ψ(G) := (c+ 1)z

is an isomorphism of Lie algebras. Finally, we point out here that if α /∈ {β, β−1} then Lα is
not isomorphic to Lβ (see, for instance [9, Exercise 3.2]) and the conclusion follows.

Remark 4.10. We end this section with two more applications. The deformation of a given Lie
algebra h associated to a matched pair (g, h, ., /) of Lie algebras and to a deformation map r
as defined by (2.3) is a very general method of constructing new Lie algebras out of a given Lie
algebra. It is therefore natural to ask if the properties of a Lie algebra are preserved by this
new type of deformation. We will see that in general the answer is negative. First of all we
remark that the Lie algebra h := l(2n+ 1, k) is metabelian, that is [[h, h], [h, h]] = 0. Now, if we
look at the matched pair deformation hr = l(a)(2n+ 1, k) of h given by (4.9) of Proposition 4.4,
for a = (ai) ∈ kn \ {0} we can easily see that l(a)(2n + 1, k) is not a metabelian Lie algebra,
but a 3-step solvable Lie algebra. Thus the property of being metabelian is not preserved by
the r-deformation of a Lie algebra.

Next we consider an example of a somewhat different nature. First recall [18] that a Lie
algebra h is called self-dual (or metric) if there exists a non-degenerate invariant bilinear form
B : h × h → k, i.e. B([a, b], c) = B(a, [b, c]), for all a, b, c ∈ h. Self-dual Lie algebras generalize
finite-dimensional complex semisimple Lie algebras (the second Cartan’s criterion shows that
any finite-dimensional complex semisimple Lie algebra is self-dual since its Killing form is non-
degenerate and invariant). Besides the mathematical interest in studying self-dual Lie algebras,
they are also important and have been intensively studied in physics [10, 20]. Now, h :=
l(2n+ 1, k) is not a self-dual Lie algebra since if B : l(2n+ 1, k)× l(2n+ 1, k)→ k is an arbitrary
invariant bilinear form then we can easily prove that B(Ei,−) = 0 and thus any invariant form
is degenerate. On the other hand, the r-deformation of l(2n+ 1, k) denoted by l′′(0)(2n+ 1, k) in

Remark 4.5 is self-dual since it is just the (2n+ 1)-dimensional Abelian Lie algebra.

5 Two open questions

The paper is devoted to the factorization problem and its converse, the classifying complements
problem, at the level of Lie algebras. Both problems are very difficult ones; even the case
considered in this paper, namely g = k0, illustrates the complexity of the two problems. We end
the paper with the following two open questions:

Question 1. Let n ≥ 2. Does there exist a Lie algebra h and a matched pair of Lie algebras
(gl(n, k), h, /, .) such that gl(n, k) ./ h ∼= gl(n+ 1, k)?

A more restricted version of this question is the following: does the canonical inclusion
gl(n, k) ↪→ gl(n+ 1, k) have a complement that is a Lie subalgebra of gl(n+ 1, k)? Although it
seems unlikely for such a complement to exist we could not find any proof or reference to this
problem in the literature.

Secondly, having [2, Corollary 3.2] as a source of inspiration we ask:
Question 2. Let n ≥ 2. Does there exist a matched pair of Lie algebras (g, h, /, .) such

that any n-dimensional Lie algebra L is isomorphic to an r-deformation of h associated to this
matched pair?
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At the level of groups, question 2 has a positive answer by considering the canonical matched
pair associated to the factorization of Sn+1 by Sn and the cyclic group Cn.
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553–561.

[19] Michor P.W., Knit products of graded Lie algebras and groups, Rend. Circ. Mat. Palermo (2) Suppl. 22
(1990), 171–175, math.GR/9204220.

[20] Pelc O., A new family of solvable self-dual Lie algebras, J. Math. Phys. 38 (1997), 3832–3840,
physics/9709009.

[21] Popovych R.O., Boyko V.M., Nesterenko M.O., Lutfullin M.W., Realizations of real low-dimensional Lie
algebras, J. Phys. A: Math. Gen. 36 (2003), 7337–7360, math-ph/0301029.

[22] Su Y., Zhu L., Derivation algebras of centerless perfect Lie algebras are complete, J. Algebra 285 (2005),
508–515, math.QA/0511550.

http://dx.doi.org/10.1007/s10468-012-9396-5
http://dx.doi.org/10.1007/s10468-012-9396-5
http://arxiv.org/abs/1205.6110
http://arxiv.org/abs/1204.1805
http://dx.doi.org/10.1016/j.jalgebra.2013.06.012
http://arxiv.org/abs/1205.6564
http://dx.doi.org/10.1007/s00605-013-0537-7
http://arxiv.org/abs/1301.5442
http://arxiv.org/abs/math.RA/0402234
http://dx.doi.org/10.1515/form.2005.17.2.261
http://arxiv.org/abs/math.DG/0305102
http://dx.doi.org/10.1080/10586458.2005.10128911
http://arxiv.org/abs/math.RA/0404071
http://dx.doi.org/10.1063/1.531620
http://arxiv.org/abs/hep-th/9506152
http://dx.doi.org/10.1088/1751-8113/46/22/225204
http://dx.doi.org/10.1088/1751-8113/46/22/225204
http://arxiv.org/abs/1303.3376
http://dx.doi.org/10.1006/jabr.1996.0396
http://dx.doi.org/10.1016/0021-8693(90)90099-A
http://dx.doi.org/10.1017/CBO9780511613104
http://arxiv.org/abs/math.GR/9204220
http://dx.doi.org/10.1063/1.532069
http://arxiv.org/abs/physics/9709009
http://dx.doi.org/10.1088/0305-4470/36/26/309
http://arxiv.org/abs/math-ph/0301029
http://dx.doi.org/10.1016/j.jalgebra.2004.09.033
http://arxiv.org/abs/math.QA/0511550

	1 Introduction
	2 Preliminaries
	3 The case of perfect Lie algebras
	4 The non-perfect case
	5 Two open questions
	References

