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1 Introduction

It is a very important and interesting problem in the theory of quantum groups and noncom-
mutative geometry to study ‘quantum symmetries’ of various classical and quantum structures.
Indeed, symmetries of physical systems (classical or quantum) were conventionally modeled by
group actions, and after the advent of quantum groups, group symmetries were naturally gene-
ralized to symmetries given by quantum group actions. In this context, it is natural to think
of quantum automorphism or the full quantum symmetry groups of various mathematical and
physical structures. The underlying basic principle of defining a quantum automorphism group
of a given mathematical structure consists of two steps: first, to identify (if possible) the group
of automorphisms of the structure as a universal object in a suitable category, and then, try to
look for the universal object in a similar but bigger category by replacing groups by quantum
groups of appropriate type. Initiated by S. Wang who defined and studied quantum permu-
tation groups of finite sets and quantum automorphism groups of finite-dimensional algebras,
such questions were taken up by a number of mathematicians including Banica, Bichon (see,
e.g., [1, 6, 27]), and more recently in the framework of Connes’ noncommutative geometry [8]
by Goswami, Bhowmick, Skalski, Soltan, Banica and others who have extensively studied the
quantum group of isometries (or quantum isometry group) defined in [12] (see also [2, 3, 5] etc.).

Most of the examples of noncommutative manifolds are obtained by deforming classical spec-
tral triples. It was shown in [4] that the quantum isometry group of a Rieffel-deformed non-
commutative manifold can be obtained by a similar deformation (Rieffel–Wang, see [26]) of the
quantum isometry group of the original (undeformed) noncommutative manifold.

In the present paper our goal is to generalize Bhowmick–Goswami’s results about Rieffel-
deformation to any cocycle twisted spectral triple. Combining this with the fact (proved in [9])
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that the quantum isometry group of a classical compact, connected, Riemannian manifold is
the same as the classical isometry group of such manifold (i.e. there is no genuine quantum
isometry for such manifold), we have been able to compute the quantum isometry group of non
commutative manifolds obtained from classical manifolds using unitary 2-cocycles.

Let (A∞,H,D) be a spectral triple of compact type, R a positive, invertible operator commu-
ting with D. Given a dual unitary 2-cocycle σ on a quantum subgroup (say Q) of the quantum
isometry group QISO+

R(A∞,H,D) (in the sense of [3]), we construct a spectral triple on the
twisted algebra (A∞)σ on the same Hilbert space H with the same Dirac operator D. Moreover,
we construct a canonical ‘twisted’ operator Rσ commuting with D using the Haar state of Q
and the cocycle σ. The main result of this paper (Theorem 4.16) can now be stated:

Theorem. The quantum isometry group QISO+
Rσ((A∞)σ,H,D) is isomorphic with QISO+

R(A∞,
H,D)σ, i.e. the cocycle twist of the quantum isometry group of the original spectral triple.

In this paper we have also been able to relax the assumption of existence of a dense ∗-algebra
for which the action is algebraic in case of Rieffel deformed manifolds.

Let us mention that after we wrote and uploaded to the internet a preliminary version of this
article, Neshveyev and Tuset posted the article [19] in which they formulated a general theory
of deformation of C∗-algebras by dual unitary 2-cocycles on locally compact quantum groups.
Indeed, our set-up for von Neumann algebraic deformation is closely related to the restriction of
their framework to the simpler case of compact quantum groups and is nothing but an alternative
description of the von Neumann algebra generated by the C∗-algebraic deformation obtained
in [19]. However, there are two important subtle differences between our set-up and that of [19]:
first, we work with universal compact quantum groups rather than those in the reduced form as
in [19], and second, we do not need C∗-algebraic action of the quantum group. Moreover, the
main emphasis of our article is on deformations of spectral triples and their quantum isometry
groups, not just the study of deformed algebras. We plan to re-cast some of our results in the
framework of [19] and also study deformed spectral triples more deeply in a forthcoming paper.

Let us conclude this section with a brief note on the notations to be used in the paper. For
a subset A of a vector space V , SpA denotes the linear span of A. We use ⊕, ⊗alg, and ⊗ to
denote algebraic direct sum, algebraic tensor product and von Neumann algebraic tensor product
respectively (see [23] for the details on tensor product). For a Hilbert space H, K(H) and B(H)
will denote the C∗-algebra of compact operators and the C∗-algebra of bounded operators on H
respectively. ⊗ stands for the exterior tensor product for two Hilbert bimodules (in particular
a Hilbert space H and a C∗-algebra Q) and tensor product of Hilbert spaces. Spatial tensor
products of C∗-algebras will be denoted by ⊗̂. We use the standard Kronecker δij symbol to
denote the function which is 1 if i = j and 0 if i 6= j. The left convolution of an element in
a CQG with a linear functional f will be denoted by f ∗ a (:= (f ⊗ id)∆(a)) and the right
convolution will be denoted by a ∗ f (:= (id⊗ f)∆(a)) for a ∈ Q, ∆ is the coproduct of Q. We
use the standard abbreviations for the strong and weak operator topologies, i.e. SOT and WOT
respectively.

2 Compact quantum groups

2.1 Definition and representation of compact quantum groups

A compact quantum group (CQG for short) is a unital C∗-algebra Q with a coassociative
coproduct (see [16, 28]) ∆ from Q to Q⊗̂Q such that each of the linear spans of ∆(Q)(Q⊗ 1)
and that of ∆(Q)(1⊗Q) is norm-dense inQ⊗̂Q. From this condition, one can obtain a canonical
dense unital ∗-subalgebra Q0 of Q on which linear maps κ and ε (called the antipode and the
counit respectively) are defined making the above subalgebra a Hopf ∗-algebra. In fact, we shall
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always choose this dense Hopf ∗-algebra to be the algebra generated by the ‘matrix coefficients’
of the (finite-dimensional) irreducible non-degenerate representations (to be defined shortly)
of the CQG. The antipode is an anti-homomorphism and also satisfies κ(a∗) = (κ−1(a))∗ for
a ∈ Q0. A morphism from a CQG Q1 to another CQG Q2 is a unital ∗-homomorphism π
such that ∆2 ◦ π = (π ⊗ π) ◦ ∆1, where ∆i denotes the coproduct of Qi (i = 1, 2). If π
is surjective, we say that Q2 is a quantum subgroup of Q1 and write Q2 < Q1. We shall
use standard Swedler notation for Hopf algebras, i.e. we shall write ∆(a) = a(1) ⊗ a(2) and
(∆⊗ id)∆(a) = a(1) ⊗ a(2) ⊗ a(3) for a ∈ Q0.

It is known that there is a unique state h on a CQG Q (called the Haar state) which is
bi-invariant in the sense that (id ⊗ h) ◦ ∆(a) = (h ⊗ id) ◦ ∆(a) = h(a)1 for all a ∈ Q. The
Haar state need not be faithful in general, though it is always faithful on Q0 at least. Given the
Hopf ∗-algebra Q0, there can be several CQG’s which have this ∗-algebra as the Hopf ∗-algebra
generated by the matrix elements of finite-dimensional representations. However there exists
a largest such CQG Qu, called the universal CQG corresponding to Q0. It is obtained as the
universal enveloping C∗-algebra of Q0. We also say that a CQG Q is universal if Q = Qu. For
details the reader is referred to [13]. The C∗-completion Qr of Q0 in the norm of B(L2(h)) (GNS
space associated to h) is a CQG and called the reduced quantum group corresponding to Q. If h
is faithful then Q and Qr coincide. In general there will be a surjective CQG morphism from Q
to Qr identifying the latter as a quantum subgroup of the former.

There is also a von Neumann algebraic framework of quantum groups suitable for develop-
ment of the theory of locally compact quantum groups (see [14, 24] and references therein). In
this theory, the von Neumann algebraic version of CQG is a von Neumann algebra M with
a coassociative, normal, injective coproduct map ∆ from M to M⊗̄M and a faithful, normal,
bi-invariant state ψ onM. Indeed, given a CQG Q, the weak closure Q′′r of the reduced quantum
group in the GNS space of the Haar state is a von Neumann algebraic compact quantum group.

Let H be a Hilbert space. Consider the multiplier algebra M(K(H) ⊗̂Q) which can also be
identified with L(H ⊗ Q), the C∗-algebra of Q linear, adjointable maps on H ⊗ Q (see [15]).
This algebra has two natural embeddings into M(K(H) ⊗̂Q ⊗̂Q). The first one is obtained by
extending the map x 7→ x⊗1. The second one is obtained by composing this map with the flip on
the last two factors. We will write w12 and w13 for the images of an element w ∈M(K(H) ⊗̂Q)
by these two maps respectively. Note that if H is finite-dimensional then M(K(H) ⊗̂Q) is
isomorphic to B(H)⊗Q (we don’t need any topological completion).

Definition 2.1. Let (Q,∆) be a CQG. A unitary representation U of Q on a Hilbert space H
is a unitary element of M(K(H) ⊗̂Q) such that (id⊗∆)U = U12U13.

Identifying M(K(H) ⊗̂Q) with L(H⊗Q), we can also view U as a Q linear map on H⊗Q.
Clearly U is determined by its restriction on the subspace H⊗1 and by a slight abuse of notation
we shall denote the restriction also by U , which is a C-linear map ξ 7→ U(ξ ⊗ q) ∈ H ⊗ Q for
ξ ∈ H, q ∈ Q. This gives an equivalent picture of a unitary representation. This is easy to see
that the restriction U : H → H⊗Q satisfies

1) 〈〈U(ξ), U(η)〉〉 = 〈ξ, η〉1Q for ξ, η ∈ H,

2) (U ⊗ id)U = (id⊗∆)U ,

3) Sp{U(ξ)q : ξ ∈ H, q ∈ Q} is dense in H⊗Q.

Definition 2.2. A closed subspace H1 of H is said to be invariant if U(H1) (≡ U(H1 ⊗ 1Q)) ⊂
H1⊗Q. Equivalently, the orthogonal projection p on H1 satisfies U(p⊗1) = (p⊗1)U . A unitary
representation U of a CQG is said to be irreducible if there is no proper invariant subspace.

It is a well known fact that every irreducible unitary representation is finite-dimensional.



4 D. Goswami and S. Joardar

We denote by Rep(Q) the set of inequivalent irreducible unitary representations of Q. For
π ∈ Rep(Q), let dπ and {qπjk : j, k = 1, . . . , dπ} be the dimension and matrix coefficients of the
corresponding finite-dimensional representation, say Uπ respectively. For each π ∈ Rep(Q), we
have a unique dπ × dπ complex matrix Fπ such that

(i) Fπ is positive and invertible with Tr(Fπ) = Tr(F−1π ) = Mπ > 0 (say),

(ii) h(qπijq
π∗
kl ) = 1

Mπ
δikFπ(j, l).

Corresponding to π ∈ Rep(Q), let ρπsm be the linear functional on Q given by ρπsm(x) =

h(xπsmx), s,m = 1, . . . , dπ for x ∈ Q, where xπsm = (Mπ)qπ∗km(Fπ(k, s)). Also let ρπ =
dπ∑
s=1

ρπss.

Given a unitary representation V on a Hilbert space H, we get a decomposition of H as

H = ⊕π∈Rep(Q),1≤i≤mπH
π
i ,

where mπ is the multiplicity of π in the representation V and V |Hπi is same as the representa-
tion Uπ. The subspace Hπ = ⊕iHπi is called the spectral subspace of type π corresponding to
the irreducible representation π. It is nothing but the image of the spectral projection given by
(id⊗ ρπ)V .

Recall from [21], the modular operator Φ = S∗S, where S is the anti unitary acting on
the L2(h) (where L2(h) is the GNS space of Q corresponding to the Haar state on which Q
has left regular representation) given by S(a.1) := a∗.1 for a ∈ Q. The one parameter modular
automorphism group (see [21]) say Θt, corresponding to the state h is given by Θt(a) = ΦitaΦ−it.
Note that here we have used the symbol Φ for the modular operator as ∆ has been used for the
coproduct. From (ii), we see that

Φ|L2(h)πi
= Fπ for all π and i. (2.1)

In particular Φ maps L2(h)πi into L2(h)πi for all i.

2.2 Action on von Neumann algebras by conjugation
of unitary representation

We now discuss an analogue of ‘action’ (as in [20]) in the context of von Neumann algebra
implemented by a unitary representation of the CQG. Given a unitary representation V of
a CQG Q on a Hilbert space H, often we consider the ∗ homomorphism adV on B(H) or
on some suitable von Neumann subalgebra M of it. We say adV leaves M invariant if (id ⊗
φ)adV (M) ⊂M for every state φ ofQ. Then taking ρπ as above, we defineMπ = Pπ(M), where
Pπ = (id⊗ρπ)◦ adV :M→M is the spectral projection corresponding to the representation π.
Clearly each Pπ is SOT continuous. We define M0 := Sp{Mπ;π ∈ Rep(Q)}, which is called
the spectral subalgebra. Then we have the following:

Proposition 2.3. M0 is dense in M in any of the natural locally convex topologies of M,
i.e. M′′0 =M.

Proof. This result must be quite well-known and available in the literature but we could not find
it written in this form, so we give a very brief sketch. The proof is basically almost verbatim
adaptation of some arguments in [14] and [24]. First, observe that the spectral algebra M0

remains unchanged if we replace Q by the reduced quantum group Qr which has the same
irreducible representations and dense Hopf ∗-algebra Q0. This means we can assume without
loss of generality that the Haar state is faithful. The injective normal map β := adV restricted
toM can be thought of as an action of the quantum group (in the von Neumann algebra setting
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as in [14, 24]) Q′′r (where the double commutant is taken in the GNS space of the Haar state)
and it follows from the results in [24] about the implementability of locally compact quantum
group actions that there is a faithful normal state, say φ, on M such that β is Q′′r -invariant,
i.e. (φ ⊗ id)(β(a)) = φ(a)1 ∀ a ∈ M. We can replace M, originally imbedded in B(H), by
its isomorphic image (to be denoted by M again) in B(L2(φ)) and as the ultra-weak topology
is intrinsic to a von Neumann algebra, it will suffice to argue the ultra-weak density of M0

in M ⊂ B(L2(φ)). To this end, note that Vaes has shown in [24] that β : M → M ⊗ Q′′r
extends to a unitary representation on L2(φ), which implies in particular that M0 is dense in
the Hilbert space L2(φ). From this the ultra-weak density follows by standard arguments very
similar to those used in the proof of Proposition 1.5 of [14], applying Takesaki’s theorem about
existence of conditional expectation. For the sake of completeness let us sketch it briefly. Using
the notations of [24] and noting that δ = 1 for a CQG, we get from Proposition 2.4 of [24]
that Vφ commutes with the positive self adjoint operator ∇φ⊗Q where ∇φ denotes the modular

operator, i.e. generator of the modular automorphism group σφt of the normal state φ. Clearly,
this implies that β := adVφ satisfies the following:

β ◦ σφt = σφt ⊗ τ−t,

where τt is the automorphism group generated by Q−1. Next, as in Proposition 1.5 of [14],
consider the ultra-strong ∗ closure Ml of the subspace spanned by the elements of the form
(id ⊗ ω)(β(x)), x ∈ M , ω is a bounded normal functional on Q′′r . It is enough to prove that
Ml =M, as that will prove the ultra-strong ∗ density (now also the ultra-weak density) of Ml

in M. This is clearly a von Neumann subalgebra as β is coassociative, and σφt (id⊗ ω)(β(x)) =

(id ⊗ ω ◦ τt)(β(σφt (x))). Then by Takesaki’s theorem [23, Theorem 10.1] there exists a unique
normal faithful conditional expectation E from M to Ml satisfying E(x)P = PxP where P
is the orthogonal projection as in [14]. Clearly, the range of P contains elements of the form
(id ⊗ ω)(β(x)). So in particular it contains M0, which is dense in L2(φ). Thus P = 1 and
E(x) = x proving Ml =M. �

From this, it is easy to conclude the following by verbatim adaptation of the arguments of [20]
and [22].

Lemma 2.4.

1. adV |M0 is algebraic, i.e. adV (M0) ⊂M0 ⊗alg Q0.

2. M0 is the maximal subspace over which adV is algebraic, i.e. M0 = {x ∈ M| adV (x) ∈
M⊗alg Q0}.

3. If M1 ⊂ M is SOT dense ∗-subalgebra such that adV leaves M1 invariant, then
Sp{Pπ(M1) |π ∈ Rep(Q)} is SOT dense in M0.

Proof. (1) Recall the linear functionals ρπsm from Section 2.1. Let P πsm := (id ⊗ ρπsm) ◦ ∆ :
Q → Q and Eπsm := (id ⊗ ρπsm)adV : M → M for π ∈ Rep(Q) and s,m = 1, . . . , dπ. Then
P πsm(Q) ⊂ Sp{qπis : i = 1, . . . , dπ}. It follows from the arguments of [20],

EπsmE
π′
ij = δmiδππ′E

π
is (2.2)

for π, π′ ∈ Rep(Q). Let Mπs =
dπ∑
s=1

Eπss(M), we have by (2.2),

Mπ = ⊕dπs=1Mπs. (2.3)
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Let {eπi1}i∈J be a basis for Mπ1 for π ∈ Rep(Q), and eπis := Eπs1(eπi1), s = 1, . . . , dπ,
i ∈ J . Then by (2.2), {eπis}i∈J is a basis for Mπs. Letting Mπ

i = Sp{eπis : s = 1, . . . , dπ} and
using (2.3), we get Mπ = ⊕i∈JMπ

i .
Now

adV (eπis) = (id⊗ (id⊗ ρπss)∆)adV (eπis)

= (id⊗ P πss)adV (eπis) ⊂M⊗ Sp{qπjs; j = 1, . . . , dπ}.

Hence adV (eπis) =
dπ∑
j=1

x(π)i(s)j ⊗ qπjs for some x(π)i(s)j ∈ M. Now applying (id ⊗ ρπks) for

k = 1, . . . , dπ on both sides, we get x(π)i(s)k = eπik, i.e. adV (eπis) =
dπ∑
j=1

eπij ⊗ qπjs proving

adV (M0) ⊂M0 ⊗alg Q0.
(2) Here we reproduce the arguments of [22] for the sake of completeness. For any b ∈ M

such that adV (b) ⊂M⊗alg Q0, we have

adV (b) =
∑

π∈S⊂Rep(Q)

dπ∑
i,j=1

bπij ⊗ qπij ,

where S is a finite subset of Rep(Q). Observe that for each π ∈ S, i, j = 1, . . . , dπ, bπij =
(id⊗ ρπij) ◦ adV (b) ∈M0. As (adV ⊗ id) ◦ adV (b) = (id⊗∆) ◦ adV (b), we have

∑
π∈S⊂Rep(Q)

dπ∑
i,j=1

adV (bπij)⊗ qπij =
∑

π∈S⊂Rep(Q)

dπ∑
i,j,s=1

bπij ⊗ qπis ⊗ qπsj .

Applying (id⊗ id⊗ ρπkl) on both sides, we get

adV (bπkl) =

dπ∑
i=1

bπil ⊗ qπik. (2.4)

Now if we take b′ =
∑
π∈S

dπ∑
i=1

bπii, we get by (2.4), adV (b′) =
∑
π∈S

dπ∑
k=1

bπki ⊗ qπki. So adV (b) = adV (b′)

and as adV is one-one, b = b′ ∈M0.
(3) follows from (2) and the SOT continuity of each Pπ. �

For x ∈ M0, we shall use the natural analogue of Swedler’s notation, i.e. write adV (x) =
x(0) ⊗ x(1).

2.3 Dual of a compact quantum group

Let (Q,∆) be a compact quantum group and Q0 be its canonical dense Hopf ∗-algebra as in
Section 2.1. We define Q̂0 to be the space of linear functionals on Q defined by q → h(aq), for
a ∈ Q0, where h is the Haar state on Q. Then Q̂0 is a subspace of the dual Q′. For π ∈ Rep(Q),
let Fπ be the positive invertible matrix as in Section 2.1. Recall also the linear functionals ρπsm’s
from Section 2.1. Then we have from Lemma 8.1 of [16], ρπpr(q

π
pr) = 1 and ρπpr is zero on all other

matrix elements.
Note that (see [16]) Q̂0 is a ∗-subalgebra of Q′ and as a ∗-algebra it is nothing but the

algebraic direct sum of matrix algebras of the form ⊕π∈Rep(Q)Mdπ where Mdπ is the full matrix
algebra of size dπ × dπ and the matrix unit mπ

pq identified with ρπpq is given by |eπp 〉〈eπq |, where
{eπ1 , . . . , eπdπ} is the standard orthonormal basis. Clearly we get a non-degenerate pairing between
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Q̂0 = ⊕π∈Rep(Q)Mdπ and Q0 given by 〈qπij ,mπ′
ps〉 = δipδjsδππ′ . In fact it can be shown that Q̂0

is a multiplier Hopf ∗-algebra in the sense of [25]. It has a unique C∗ norm and by taking the
completion we get a C∗-algebra. It is called the dual discrete quantum group of Q denoted
by Q̂. It has a coassociative ∗-homomorphism ∆̂ : Q̂ → M(Q̂ ⊗̂ Q̂) called the dual coproduct
satisfying (id⊗ ∆̂)∆̂ = (∆̂⊗ id)∆̂.

Theorem 2.5. Let U be a unitary representation of a CQG Q on a Hilbert space H. Then
ΠU : Q̂ → B(H) defined by ΠU (ω)(ξ) := (id⊗ω)U(ξ) is a non degenerate ∗-homomorphism and
hence extends as a ∗-homomorphism from M(Q̂) to B(H).

Proof. Consider the spectral decomposition H = ⊕π∈I,1≤i≤mπHπi , U |Hπi , i = 1, . . . ,mπ is
equivalent to the irreducible representation of type π. Moreover fix orthonormal basis eπij ,
j = 1, . . . , dπ, i = 1, . . . ,mπ for Hπi such that U(eπij) =

∑
k

eπik ⊗ qπkj for all π ∈ Rep(Q). Now for

a fixed π ∈ Rep(Q), p, r = 1, . . . , dπ observe that ΠU (ρπpr)(ξ) = 0 for all ξ ∈ Hπ′i and for π 6= π′.
Also ΠU (ρπpr)(e

π
ij) = δjre

π
ip, i.e. ΠU (ρπpr)|Hπi is nothing but the rank one operator |eπip〉〈eπir|. This

proves that ΠU (ω) is bounded for ω ∈ Q̂0, and moreover identifying Q̂0 with the direct sum of
matrix algebras ⊕π∈Rep(Q)Mdπ , we see that ΠU is nothing but the map which sends X ∈ Mdπ

to X ⊗ 1Cmπ in B(H). This proves that ΠU extends to a non-degenerate ∗-homomorphism. �

3 Quantum isometry groups

Before defining quantum isometry group, we recall the definition of a spectral triple of compact
type.

Definition 3.1. A triple (A∞,H,D), where H is Hilbert space, A∞ is a unital ∗-subalgebra
of B(H) and D is an unbounded operator on H is called a spectral triple of compact type if

(i) [D, a] ∈ B(H) for all a ∈ A∞,

(ii) D has compact resolvents.

Now let us briefly sketch the formulation of quantum isometry groups of spectral triples given
by Goswami and Bhowmick in [3, 12].

Definition 3.2. Let (A∞,H,D) be a spectral triple of compact type (a la Connes). Consider
the category Q′(D) ≡ Q′(A∞,H,D) whose objects are the triples (Q,∆, U) where (Q,∆) is
a CQG having a unitary representation U on the Hilbert space H such that U commutes with
(D⊗1Q). A morphism from (Q,∆, U) to (Q′,∆′, U ′) is a CQG morphism ψ : Q → Q′ such that
U ′ = (id⊗ ψ)U .

Definition 3.3. For a positive (possibly unbounded) operator R on H which commutes with D,
consider the subcategory Q′R(D) ≡ Q′R(A∞,H,D) whose objects are triples (Q,∆, U) as be-
fore with the additional requirement that adU preserves the functional τR given by τR(x) =
Tr(Rx)(x ∈ ED), in the sense that (τR ⊗ id)adU (x) = τR(x).1Q for x ∈ ED, where ED is the
weakly dense ∗-subalgebra of B(H) spanned by the rank one operators of the form |ξ〉〈η| where ξ
and η are eigenvectors of D.

Remark 3.4. We refer the functional τR as the R-twisted volume and say that any object
of Q′R(D) preserves the R-twisted volume.

Proposition 3.5 ([3, Theorem 2.14]). For a spectral triple of compact type, the universal object

in the category Q′R(D) exists and is denoted by Q̃ISO+
R(A∞,H,D).
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Definition 3.6. The largest Woronowicz subalgebra of Q̃ISO+
R(A∞,H,D) on which adU is faith-

ful (U is the corresponding unitary representation) is called the quantum group of orientation
preserving Riemannian isometry of the R-twisted spectral triple and denoted by QISO+

R(A∞,
H,D) or simply by QISO+

R(D).

Remark 3.7. Q′(D) may not have a universal object in general, but if it exists we shall denote

it by Q̃ISO+(A∞,H,D) and the corresponding largest Woronowicz subalgebra by QISO+(A∞,
H,D) or simply QISO+(D).

Let (Q, V ) be an object in the category Q′R(D). We would like to give a necessary and
sufficient condition on the unbounded operator R so that adV preserves the R-twisted volume.
To this end decompose the Hilbert space H, on which D acts, into finite-dimensional eigenspaces
of the operator D, i.e. let H = ⊕kHk where each Hk is a finite-dimensional eigenspace for D.
Since D commutes with V , V preserves each of the Hk’s and on each Hk, V is a unitary
representation of the compact quantum group Q. Then we have the decomposition of each Hk
into the irreducibles, sayHk = ⊕π∈IkCdπ⊗Cmπ,k , wheremπ,k is the multiplicity of the irreducible
representation of type π onHk and Ik is some finite subset of Rep(Q). Since R commutes with V ,
R preserves direct summands of Hk. Then we have the following:

Theorem 3.8. adV preserves the R-twisted volume if and only if R|Hk = ⊕π∈IkFπ ⊗ Tπ,k, for
some Tπ,k ∈ B(Cmπ,k), where Fπ’s are as in Section 2.1.

Proof. Only if part:
let {ei}dπi=1 and {fj}

mπ,k
j=1 be orthonormal bases for Cdπ and Cmπ,k respectively. Also let

R(ei ⊗ fj) =
∑
s,t
R(s, t, i, j)es ⊗ ft.

We have V ∗(ei ⊗ fj ⊗ 1Q) =
∑
k

ek ⊗ fj ⊗ q∗ik. We denote the restriction of the trace of B(H)

on Cdπ ⊗ Cmπ,k again by Tr. Let a ∈ B(Cdπ ⊗ Cmπ,k) and χ(a) := Tr(a.R). Then we have

(χ⊗ h)adV (a) =
∑
i,j

〈V ∗(ei ⊗ fj ⊗ 1Q), (a⊗ 1)V ∗R(ei ⊗ fj)〉

=
∑

i,j,k,s,t,u

〈ek ⊗ fj ⊗ q∗ik, R(s, t, i, j)a(eu ⊗ ft)⊗ q∗su〉

=
∑

i,j,k,s,t,u

R(s, t, i, j)

Mπ
〈ek ⊗ fj , a(eu ⊗ ft)〉δisFπ(k, u)

=
∑

i,j,k,t,u

R(i, t, i, j)

Mπ
〈ek ⊗ fj , a(eu ⊗ ft)〉Fπ(k, u).

On the other hand

χ(a) = Tr(a.R) =
∑
i,j

〈ei ⊗ fj , aR(ei ⊗ fj)〉 =
∑
k,j,u,t

R(u, t, k, j)〈ek ⊗ fj , a(eu ⊗ ft)〉.

Thus (χ⊗ h)adV (a) = χ(a) implies:∑
i,j,k,t,u

R(i, t, i, j)

Mπ
〈ek ⊗ fj , a(eu ⊗ ft)〉Fπ(k, u) =

∑
k,j,u,t

R(u, t, k, j)〈ek ⊗ fj , a(eu ⊗ ft)〉. (3.1)

Now fix u0, t0 and consider a ∈ B(H) such that a(eu0 ⊗ ft0) = ep ⊗ fq and zero on the other
basis elements. Then from (3.1), we get∑

i,j,k

R(i, t0, i, j)

Mπ
〈ek ⊗ fj , ep ⊗ fq〉Fπ(k, u0) =

∑
k,j

R(u0, t0, k, j)〈ek ⊗ fj , ep ⊗ fq〉,

which gives
∑
i

R(i,t0,i,q)
Mπ

Fπ(p, u0) = R(u0, t0, p, q).
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This proves that R|Hk = ⊕π∈IkFπ ⊗ Tπ,k with some Tπ,k ∈ B(Cmπ,k) given by Tπ,k(t0, q) =∑
i

R(i,t0,i,q)
Mπ

.

The if part is straightforward and was essentially done in [11]. �

Let us note that in case of quantum group of orientation preserving Riemannian isometry,

Q̃ISO+
R(D) really depends on the von Neumann algebra (A∞)′′, not on the algebra A∞ itself.

More precisely, we have the following proposition, which follows from the definition of Q̃ISO+
R(D)

and needs no proof:

Proposition 3.9. Let (A∞,H,D, R) be as in [3]. If we have a SOT dense subalgebra A0 of
(A∞)′′ ⊂ B(H) such that [D, a] ∈ B(H) for all a ∈ A0, then (A0,H,D) is again a spectral triple

and Q̃ISO+
R(A0,H,D) ∼= Q̃ISO+

R(A∞,H,D), and hence QISO+
R(A0,H,D) ∼= QISO+

R(A∞,H,D).

In [12], for a spectral triple satisfying some mild regularity conditions, a noncommutative
analogue of the Hodge Laplacian was constructed which is denoted by L = LD. We denote the
category whose objects are triples (S,∆, α) where (S,∆) is a CQG and α is an action of the CQG
on the manifold commuting with the Laplacian (as in the sense of Definition 2.11 of [12]) by Q′L
and morphism between two such objects is a CQG morphism intertwining the actions (see [12]).

It is shown in [12] that under certain regularity conditions on the spectral triple, universal
object exists in this category and we denote the universal object by QISOL and call it the
quantum isometry group of the spectral triple.

Remark 3.10. Note that both Q̃ISO+
R(D) and QISOL are universal CQG’s in the sense of

Section 2.1.

When the spectral triple is classical, i.e. (C∞(M),H,D) where M is a compact, connected,
Riemannian spin manifold, it was shown in [9] that the quantum isometry group coincides
with the classical isometry group. More precisely we state the following results from [9, Corol-
lary 11.10]:

Proposition 3.11. For a classical spectral triple (C∞(M),H,D), QISOL(C∞(M),H,D) ∼=
C(ISO(M)) and QISO+

I (C∞(M),H,D) ∼= C(ISO+(M)).

4 Cocycle twisting

In Sections 4.1 and 4.2, we recollect some well known facts about cocycle twist of CQG by dual
unitary cocycles. There is nothing new in these two subsections and we mostly state the results
with appropriate references. However, for convenience of the reader, we occasionally sketch a few
proofs and give some details.

4.1 Cocycle twist of a compact quantum group

Let Q be a compact quantum group. Recall from Section 2.1 the dense Hopf ∗-algebra Q0

spanned by the matrix coefficients of its inequivalent irreducible representations. Also recall
the dual discrete quantum group Q̂ of Q. With these notations we have the following

Definition 4.1. By a dual unitary 2-cocycle σ of a compact quantum group Q, we mean
a unitary element of M(Q̂ ⊗̂ Q̂) satisfying

(1⊗ σ)(id⊗ ∆̂)σ = (σ ⊗ 1)(∆̂⊗ id)σ.
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A dual unitary 2-cocycle σ is said to be normalized if (1⊗pε)σ = 1⊗pε and (pε⊗1)σ = pε⊗1,
where pπ’s are the minimal projections of ⊕π∈Rep(Q)Mdπ . Without loss of generality we can
always assume a cocycle to be normalized and hence forth in our paper all dual unitary 2-
cocycles are normalized. This means in particular σ(a, 1) = σ−1(a, 1) = ε(a) for all a ∈ Q0.

Recall from Section 2.3, the discrete quantum group Q̂0 with the coproduct ∆̂ defined by
∆̂(ω)(a ⊗ b) := ω(ab), w ∈ Q̂0 and a, b ∈ Q0. We can deform the discrete quantum group Q̂0

using σ ∈M(Q̂ ⊗̂ Q̂). The ∗-algebraic structure do not change where the coproduct changes by

∆̂σ(·) = σ∆̂(·)σ−1.

Using the cocycle condition of σ, it can be easily shown that ∆̂σ is again coassociative. It can be
shown that (Q̂0σ, ∆̂σ) is again a discrete quantum group. By Proposition 3.12 and discussions
before Proposition 4.5 of [7], we see that we have a CQG dual to the discrete quantum group
(Q̂0σ, ∆̂σ).

Now σ viewed as a linear functional on Q0 ⊗alg Q0 satisfies the cocycle condition (see [17,
p. 64])

σ(b(1), c(1))σ(a, b(2)c(2)) = σ(a(1), b(1))σ(a(2)b(2), c),

for a, b, c ∈ Q0 (Swedler’s notation). We can deform Q0 using σ to obtain a new Hopf ∗-
algebra Qσ0 . Then Qσ0 and Q̂0σ again form a non degenerate pairing. The product, ∗ and κ are
changed by the following formulas whereas the coproduct remains unchanged. For a, b ∈ Q0,

a.σb := σ−1(a(1), b(1))a(2)b(2)σ(a(3), b(3)),

a∗σ :=
∑

v−1(a(1))a
∗
(2)v(a(3)), κσ(a) := W (a(1))κ(a(2))W

−1(a(3)), (4.1)

where

W (a) = σ(a(1), κ(a(2))), v(a) = W−1(a(1))W
(
κ−1(a(2))

)
. (4.2)

We refer the reader to [17, p. 65] for a proof of co-associativity of the new product as well as
other relations of Hopf ∗-algebra.

We note that the unit of the deformed Hopf ∗-algebra remains unchanged. For this note that

(a.σ1) = σ−1(a(1)(1), 1)a(1)(2)σ(a(2), 1).

As the cocycle is normalized,

σ(a, 1) = σ−1(a, 1) = ε(a)

for all a ∈ Q0. So a.σ1 = ε(a(1)(1))a(1)(2)ε(a(2)) = a. Similarly it can be shown that 1.σa = a for
all Q0.

We note that Q0
σ is a dense Hopf ∗-algebra of the compact quantum group which has the

discrete quantum group Q̂0σ as its dual, so we can consider the universal compact quantum
group containing Qσ0 as a dense Hopf ∗-algebra.

Definition 4.2. Call the universal CQG containing Qσ0 as a dense Hopf ∗-algebra to be the
cocycle twist of the CQG by a dual unitary 2-cocycle σ and denote it by (Qσ,∆).

Let us now discuss how one gets a dual unitary 2-cocycle on a CQG from such a dual
unitary 2-cocycle on its quantum subgroup. Given two CQG’s Q1, Q2 and a surjective CQG
morphism π : Q1 → Q2 which identifies Q2 as a quantum subgroup of Q1, i.e. Q2 ≤ Q1, it
can be shown that π maps the Hopf ∗-algebra (Q1)0 onto (Q2)0. By duality we get a map
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say π̂ from (Q2)
′
0 to (Q1)

′
0 and it is easy to check that this indeed maps the dense multiplier

Hopf ∗-algebra ˆ(Q2)0 ⊂ Q̂2 to ˆ(Q1)0. Indeed π̂ lifts to a non degenerate ∗-homomorphism from
M(Q̂2) to M(Q̂1). So given a dual unitary 2-cocycle σ on Q2, we get a dual unitary 2-cocycle
σ′ := (π̂ ⊗ π̂)(σ) ∈ M(Q̂1 ⊗̂ Q̂1). It is easy to check that σ′ is again a dual unitary 2-cocycle
on Q1. We shall often use the same notation for both σ′ and σ, i.e. denote σ′ by σ under slight
abuse of notation for convenience.

Lemma 4.3. Qσ2 is a quantum subgroup of Qσ′1 .

Proof. First we claim that π : (Q1)
σ′
0 → (Q2)

σ
0 is a surjective Hopf ∗-algebra morphism.

Since the coproducts remain unchanged, we only need to check that π is again a ∗-algebra
homomorphism. For that observe that for a, b ∈ (Q1)

σ′
0 ,

π(a.σ′b) = π
[
σ′(a(1), b(1))a(2)b(2)(σ

′)−1(a(3), b(3))
]

= σ′(a(1), b(1))π(a(2), b(2))(σ
′)−1(a(3), b(3))

= σ(π(a(1)), π(b(1)))π(a(2))π(b(2))σ
−1(π(a(3)), π(b(3))) = π(a).σπ(b).

Similarly we can show that π(a∗σ′ ) = (π(a))∗σ . Hence Qσ′1 contains (Q2)
σ
0 as a Hopf ∗-algebra

and hence by the universality of Qσ′1 we conclude that there is a surjective CQG morphism
from Qσ′1 onto Qσ2 . �

Lemma 4.4. For a universal CQG Q with a dual unitary 2-cocycle σ, (Qσ)σ
−1 ∼= Q.

Proof. By the universality ofQ, it is enough to prove the Hopf ∗-algebra isomorphism (Qσ0 )σ
−1∼=

Q0. Again for that it is enough to check the ∗-algebra structure. For that let a, b ∈ Q0.

a(.σ)σ−1b = σ−1(a(1), b(1))a(2).σb(2)σ(a(3), b(3))

= σ−1(a(1)(1), b(1)(1))a(1)(2).σb(1)(2)σ(a(2), b(2))

= σ−1(a(1)(1), b(1)(1))σ(a(1)(2)(1)(1), b(1)(2)(1)(1))a(1)(2)(1)(2)b(1)(2)(1)(2),

σ−1(a(1)(2)(2), b(1)(2)(2))σ(a(2), b(2)) = σ−1(a(1)(1), b(1)(1))σ(a(1)(2), b(1)(2))a(2)(1)b(2)(1),

σ−1(a(2)(2)(1), b(2)(2)(1))σ(a(2)(2)(2), b(2)(2)(2))

= ε(a(1))ε(b(1))a(2)(1)b(2)(1)ε(a(2)(2))ε(b(2)(2)) = ε(a(1))ε(b(1))a(2)b(2) = ab.

Similarly we can show that the ∗-structure is preserved. �

4.2 Unitary representations of a twisted compact quantum group

Let Q be a universal compact quantum group (as in the sense of Section 2.1) with a dual unitary
2-cocycle σ. In this subsection we state (with brief sketches of proofs) a few well-known facts
about the representation and the Haar state of Qσ.

Proposition 4.5.

(i) For π ∈ Rep(Q), there is an irreducible unitary representation πσ of Qσ, which is the same
as π as a linear map.

(ii) Rep(Qσ) = {πσ|π ∈ Rep(Q)}.

Proof. (i) This follows since the C∗ tensor categories of unitary representations of the quantum
groups Q and Qσ are the same [7]. However we give a brief proof using the fact that both Q̂0

and (Q̂0)
σ are ∗-isomorphic to ⊕π∈Rep(Q)Mdπ . Moreover recall the notation mπ

pq and the non-
degenerate pairing discussed in the Section 2.3. We have

〈κσ(qπij)
∗σ ,mπ

pq〉 = 〈qπij ,mπ∗
pq 〉

since the ∗-structure
does not change

= 〈qπij ,mπ
qp〉 = δiqδjp.
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But we know 〈qπji,mπ
pq〉 = δiqjp. Hence by non-degeneracy of the pairing κσ(qij) = q∗σji , i.e. πσ is

again a unitary representation of Qσ. �

Thus, given a unitary representation U (possibly infinite-dimensional) of Q on a Hilbert
space H with the spectral decomposition H = ⊕π∈Rep(Q),iHπi , we get a unitary representation Uσ
of Qσ on H defined uniquely as Uσ|Hπi = πσ for all i. It is clear that U → Uσ is a bijective
correspondence between unitary representations of Q and Qσ.

Proposition 4.6.

(i) The Haar state for the deformed compact quantum group is the same as that of the unde-
formed compact quantum group.

(ii) The operator F σπ corresponding to the twisted CQG Qσ given by

δikF
σ
π (j, l) = Mdπh

(
qπij .σq

π∗σ
kl

)
is related to Fπ by the following F σπ = cπA

∗
πFπAπ, where cπ is some positive constant and

Aπξ := (id⊗ v)πσξ, v is defined by equation (4.2).

Proof. (i) This is a straightforward consequence of the isomorphism of the coalgebra structures
of Q and Qσ. To be more precise, denote the Haar state of Q and Qσ by h and hσ respectively
and observing from Proposition 4.5 that the matrix coefficients of πσ (π ∈ Rep(Q)) are {qπij :
i, j = 1, . . . , dπ}, we have hσ(qπij) = h(qπij) = 0 if π is non trivial and 1 for trivial representation.

(ii) By equation (2.1), we see that the modular operator Φ|L2(h)πi
= F π for all π and i. Let Φσ

be the modular operator for the CQG Qσ and Sσ be the corresponding anti unitary operator.
Then recalling the definition of the deformed ∗ of Qσ (equation (4.1)), we see that Φσ = SC,
where C = AB = BA, A is the operator given by A(a) = (id ⊗ v)∆(a) and B is given by
B(a) = (v−1 ⊗ id)∆(a) for a ∈ Q0. Then the modular operator Φσ = Sσ∗Sσ = A∗B∗ΦBA. We
know Φσ|L2(h)πi

= F σπ for all π and i. As both A and A∗ map L2(h)πi into itself for all π and i,
B∗ΦB also does so. Fix some i and let P πi be the projection onto Sp{qπij : j = 1, . . . , dπ}. It
is clear from the definition of B that B(qπkl) =

∑
m
bπkmq

π
ml and B∗(qπkl) =

∑
m
dπkmq

π
ml, for some

constants bkm and dkm’s. Thus

P πi
(
B∗ΦB(qπij)

)
=

(∑
k

bikdki

)(∑
m

Fπ(j,m)qπim

)
,

where Φ(qπij) =
∑
m
Fπ(j,m)qπim. If we denote

∑
k

bikdki by cπ,i, we have

B∗ΦB|L2(h)πi
= cπ,iΦ|L2(h)πi

.

In particular, taking cπ = cπ,1 and denoting the restrictions of A and A∗ on Sp{qπ1j : 1 ≤ j ≤ dπ}
by Aπ and A∗π respectively, we write F σπ = cπA

∗
πFπAπ and as F σπ is positive invertible, cπ must

be a positive constant. �

4.3 Deformation of a von Neumann algebra by dual unitary 2-cocycles

Let Q be a CQG with a dual unitary 2-cocycle σ. Also assume that it has a unitary rep-
resentation V on a Hilbert space H and choose a dense subspace N ⊂ H on which V is
algebraic, i.e. V (N ) ⊂ N ⊗ Q0. Then the spectral subalgebra M0 is SOT dense in M and
adV (M0) ⊂M0⊗Q0 by Proposition 2.3. Now using the dual unitary 2-cocycle σ ∈M(Q̂ ⊗̂ Q̂),
we can define a new representation of M0 on N by

ρσ(b)(ξ) := b(0)ξ(0)σ
−1(b(1), ξ(1)) for ξ ∈ N ,

where adV (b) = b(0) ⊗ b(1) and V (ξ) = ξ(0) ⊗ ξ(1) with Swedler’s notation.
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Lemma 4.7.

(1) ρσ(b) extends to an element of B(H) for all b ∈M0.

(2) ρσPπ is SOT continuous, where Pπ is the spectral projection corresponding to π ∈ Rep(Q).

Proof. Let adV (b) =
k∑
i=1

bi(0) ⊗ b
i
(1) and V (ξ) =

l∑
j=1

ξj(0) ⊗ ξ
j
(1). Define σi ∈ M(Q̂) by σi(q0) :=

σ−1(bi(1), q0) for all i = 1, . . . , k. By Theorem 2.5, we have ΠV (σi) ∈ B(H) for all i = 1, . . . , k.
By definition of ρσ on N ,

ρσ(b)ξ =
k∑
i=1

bi(0)ΠV (σi)(ξ).

Using the facts that ΠV (σi) and bi(0)’s are bounded operators we can conclude that ρσ(b) ∈ B(H)

for all b ∈M0, which proves (1).
The proof of (2) is very similar and hence omitted. �

Definition 4.8. We call (ρσ(M0))
′′ the deformation of M by σ and denote it by Mσ.

Remark 4.9.

1. If there is a weakly dense C∗-subalgebra C of M such that the restriction of adV leaves C
invariant and also gives a C∗-action on it, then the C∗-algebraic deformation Cσ in the
sense of [19] can be defined. One can prove (which we plan to discuss in a forthcoming
article) that Mσ

∼= (Cσ)′′.

2. It is clear from (2) of Lemma 4.7 that ρσ(B)′′ = ρσ(M0)
′′ if B ⊂ M0 is a SOT dense

∗-subalgebra of M0.

4.4 Deformation of a spectral triple by dual unitary 2-cocycles

Let (A∞,H,D) be a spectral triple of compact type. Also let R be a positive unbounded
operator on H commuting with D. Let σ be a dual unitary 2-cocycle on some CQG in the
category Q′R(D).

Given such a dual unitary 2-cocycle we get corresponding induced dual unitary 2-cocycle

on Q̃ISO+
R(D), which will again be denoted by σ with a slight abuse of notation. Let U be

a unitary representation of Q̃ISO+
R(D) on H. Then U commutes with D. From now onwards we

shall denote the von Neumann algebra (A∞)′′ inside B(H) by M. As in Section 3 (right after
Remark 3.7), decompose H into the eigenspaces Hk, k ≥ 1 and also decompose each Hk into
spectral subspaces, say:

Hk = ⊕π⊂IkC
dπ ⊗ Cmπ,k ,

Ik ⊂ Rep(Q), dπ, mπk are as in Section 3. As (id ⊗ φ)adU (M) ⊂ M for all bounded linear

functionals φ on Q̃ISO+
R(D), the corresponding spectral subalgebra is SOT dense. Also for any

subalgebra A0 of M, on which adU is algebraic, we can deform it by a dual unitary 2-cocycle
as in Section 4.3 to get a new subalgebra in B(H) which we denote by Aσ0 . Thus we have

Theorem 4.10. There is a SOT dense ∗-subalgebra A0 in M such that

(1) adU is algebraic over A0,

(2) [D, a] ∈ B(H) for all a ∈ A0,
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(3) (Aσ0 )′′ =Mσ,

(4) (Aσ0 ,H,D) is again a spectral triple.

Proof. We consider the SOT-dense unital ∗ subalgebra G = {a ∈ M : [D, a] ∈ B(H)} of M.

Let b ∈ G. Then for a state φ of Q̃ISO+
R(D), we have by definition (id⊗ φ)adU (b) ∈M. It also

follows by the commutativity of D and U that

[D, ((id⊗ φ)adU (b))] = (id⊗ φ)adU ([D, b]).

Hence (id ⊗ φ)adU (b) ∈ G for all bounded linear functionals φ of Q̃ISO+
R(D), i.e. G is adU

invariant SOT-dense ∗ subalgebra ofM. Now (1),(2) follow from part (3) of Lemma 2.4, taking
A0 to be the span of the subspaces Pπ(G), π ∈ Rep(Q). We also get (3) by 2 of Remark 4.9.
To prove (4), observe that ∀ a ∈ A0, ρσ(a) ∈ B(H) by the proof of (1) of the Lemma 4.7. So
we only need to check that [D, ρσ(a)] ∈ B(H) for all a ∈ A0. With the notations used before,

consider a ∈ A0 and ξ in the linear span of Hk’s, writing adU (a) =
k∑
i=1

ai(0) ⊗ a
i
(1), we have

[D, ρσ(a)](ξ) = Dρσ(a)(ξ)− ρσ(a)D(ξ) =
k∑
i=1

(
Dai(0)ΠU (σi)(ξ)− ai(0)ΠU (σi)D

)
(ξ)

using the commutativity
of D and U=

k∑
i=1

[D, ai(0)]ΠU (σi)(ξ).

As [D, ai(0)] is bounded for all i = 1, . . . , k, we conclude that [D, ρσ(a)] is bounded for all
a ∈ A0. �

Remark 4.11. We can re-cast the deformed spectral triple (Aσ0 ,H,D) in the framework of
Neshveyev–Tuset [19]. Consider the image K of the representation V viewed as an isometric
Hilbert space operator from H to H⊗L2(Q, h) (where h is the Haar state of Q). It can be shown
that (we plan to discuss this in a forthcoming article) VAσ0V ∗ ⊂ B(H⊗L2(Q, h)) is ∗-isomorphic
with Aσ0 and (VAσ0V ∗,K,D⊗ 1L2(Q,h)|K) is the realisation of the deformed spectral triple in the
Neshveyev–Tuset framework.

4.5 Quantum group of orientation preserving isometries for spectral triple
deformed by a dual unitary 2-cocycle

Fix as in the previous section a spectral triple (A∞,H,D) of compact type and a positive
unbounded operator R on the Hilbert space H commuting with the Dirac operator D. Assume

that there is a dual unitary 2-cocycle σ on some quantum subgroup Q of Q̃ISO+
R(D). Let U , V

be the unitary representations of Q̃ISO+
R(D) and Q respectively on H. Let A0 be any SOT

dense ∗-subalgebra of (A∞)′′ = M satisfying the conditions of (1) of Theorem 4.10. Recall

from Section 4.1, the induced dual unitary 2-cocycle σ′ on Q̃ISO+
R(D). Since adU is algebraic

over A0, so is adV and it is easy to see that Aσ′0 = Aσ0 . Now the category Q′Rσ(Aσ0 ,H,D) for
some unbounded operator Rσ does not depend on the choice of the SOT dense subalgebra A0.
Let us abbreviate it as Q′Rσ(Dσ). We have the following:

Lemma 4.12. (Qσ, Vσ) is an object in the category Q′Rσ(Dσ), where Rσ = ΠV (v)∗RΠV (v)
and v is as in equation (4.2).
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Proof. Recall the decomposition (Section 3) of the Hilbert space

H = ⊕k≥1,π∈Ik⊂Rep(Q)Cdπ ⊗ Cmπ,k ,

where mπ,k is the multiplicity of the irreducible representation π on Hk and Ik is some finite
subset of Rep(Q). By Theorem 4.5, Vσ is again a unitary representation of Qσ on the Hilbert
space H. Also note that adV is algebraic over A0. Let a ∈ A0 and ξ ∈ N , where N is the
subspace of H given by span of Hk’s. Then we have

Vσ(ρσ(a)(ξ)) = Vσ
(
a(0)ξ(0)σ

−1(a(1), ξ(1))
)

= a(0)(0)ξ(0)(0)σ
−1(a(1), ξ(1))⊗ a(0)(1)ξ(0)(1)

= a(0)ξ(0)σ
−1(a(1)(2), ξ(1)(2))⊗ a(1)(1)ξ(1)(1).

On the other hand,

(ρσ ⊗ [.])adV (Vσ(ξ)) = (ρσ(a(0))ξ(0))⊗ a(1).σξ(1)
= a(0)(0)ξ(0)(0)σ

−1(a(0)(1), ξ(0)(1))⊗ σ(a(1)(1)(1), ξ(1)(1)(1))a(1)(1)(2)ξ(1)(1)(2),

σ−1(a(1)(2), ξ(1)(2))

= a(0)ξ(0)σ
−1(a(1)(1)(1), ξ(1)(1)(1))σ(a(1)(1)(2), ξ(1)(1)(2))⊗ a(1)(2)(1)ξ(1)(2)(1),

σ−1(a(1)(2)(2), ξ(1)(2)(2)) = a(0)ξ(0)ε(a(1)(1))ε(ξ(1)(1))a(1)(2)(1)ξ(1)(2)(1)σ
−1(a(1)(2)(2), ξ(1)(2)(2))

= a(0)ξ(0)ε(a(1)(1)(1))ε(ξ(1)(1)(1))⊗ a(1)(1)(2)ξ(1)(1)(2)σ−1(a(1)(2), ξ(1)(2))
= a(0)ξ(0)σ

−1(a(1)(2), ξ(1)(2))⊗ a(1)(1)ξ(1)(1).

So adVσ(ρσ(a))(Vσξ) = Vσ(ρσ(a)ξ) = (ρσ⊗ [.])adV (a)(Vσ(ξ)). By density of N in H we conclude
that

adVσ(ρσ(a)) = (ρσ ⊗ [·])adV (a),

for all a ∈ A0. Also for φ ∈ (Qσ)∗,

(id⊗ φ)adVσ(ρσ(a)) = ρσ(a(0))φ(a(1)) ∈ Aσ0 .

So in particular (id⊗ φ)adVσ(A0) ⊂ (A0)
′′.

Vσ commutes with D since as a linear map Vσ is same as V . By Theorem 3.8, R has the form

⊕π∈Ik,k≥1Fπ ⊗ Tπ,k,

for some Tπ,k ∈ B(Cmπ,k) so that ΠV (v)∗RΠV (v) is of the form ⊕π,kA∗πFπAπ⊗Tπ,k, for some Tπ,k
where Aπ, Fπ’s are as in (ii) of Proposition 4.6. Now by (ii) of Proposition 4.6, we see that
F σπ = cπA

∗
πFπAπ for some positive constant cπ. Then Rσ is of the form ⊕π∈Ik,k≥1F σπ ⊗ c−1π Tπ,k,

which implies by the ‘if part’ of Theorem 3.8 that adVσ preserves the Rσ-twisted volume. �

Remark 4.13. By looking at the proof we can easily conclude that if (Q, V ) is an object in the
category Q′(D), then (Qσ, Vσ) is an object in the category Q′(Dσ).

Now replacing Q by Q̃ISO+
R(D) and using the dual unitary 2-cocycle on Q̃ISO+

R(D) induced
from σ on its quantum subgroup, we get:

Corollary 4.14. Q̃ISO+
R(D)σ ≤ ˜QISO+

Rσ(Dσ).

Thus we have the dual unitary 2-cocycle σ−1 on Qσ ≤ Q̃ISO+
Rσ(Dσ) and can deform Dσ by

it. We have the following:
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Lemma 4.15. (Dσ)σ−1 = D, (Rσ)σ
−1

= R and Q̃ISO+
Rσ(Dσ)σ

−1 ≤ Q̃ISO+
R(D).

Proof. ConsiderM1 = Sp{Pπσ((M0)
′′) : π ∈ Rep(Q)}, where Pπσ = (id⊗ ρπσ)adVσ (recall ρπσ

from Section 2.1). Clearly, ρσ−1 is defined onM1 andM1 the maximal subspace on which adVσ
is algebraic. As adUσ is again a von Neumann algebraic action of Qσ on (A0)

′′ = ρσ(M0)
′′,

we have a SOT dense subalgebra C0 of ρσ(M0)
′′ over which adUσ is algebraic. Then adVσ is

also algebraic over C0. Hence by maximality C0 ⊂ M1. Again by SOT continuity of ρσ−1 on
the image of Pπσ , we have ρσ−1(C0)′′ = ρσ−1(M1)

′′. On the other hand as adVσ is algebraic
over ρσ(M0), we have

ρσ(M0) ⊂M1 ⇒ ρσ−1(ρσ(M0)) ⊂ ρσ−1(M1) ⇒ M0 ⊂ ρσ−1(M1).

By maximality of M0, we conclude that

ρσ−1(C0)′′ =M′′0 = (A∞)′′,

which implies that Q′
(Rσ)σ−1 ((Dσ)σ−1) = Q′R(D). Also observe that Q̃ISO+

Rσ(Dσ)σ
−1

preserves

volume τR and

adU (a) = adUσ(ρσ−1(a)),

for all a ∈ C0.
But by definition (id⊗ φ)adUσ(ρσ−1(a)) ⊂ ρσ−1(C0)′′ = (A∞)′′. �

Combining the above results we are in a position to state and prove the main result of this
paper.

Theorem 4.16. Q̃ISO+
Rσ(Dσ) ∼= (Q̃ISO+

R(D))σ and hence QISO+
Rσ(Dσ) ∼= (QISO+

R(D))σ.

Proof. From Lemma 4.15, we have Q̃ISO+
Rσ(Dσ)σ

−1 ≤ Q̃ISO+
R(D). Then by Lemma 4.3, we

have (Q̃ISO+
Rσ(Dσ)σ

−1
)σ ≤ (Q̃ISO+

R(D))σ. Since quantum isometry groups are universal, by

Lemma 4.4, we can conclude that Q̃ISO+
Rσ(Dσ) ≤ (Q̃ISO+

R(D))σ. Combining this with the
Corollary 4.14, we complete the proof of the main result. �

Recall the category Q′(D) from Section 3. We know that in general we can not say anything
about the existence of the universal object in this category. However by looking at the proofs
in this section, with the notations used in this section we have the following

Corollary 4.17. If QISO+(A∞,H,D) and QISO+(Aσ0 ,H,D) both exist, then

QISO+(A∞,H,D)σ ∼= QISO+(Aσ0 ,H,D).

Remark 4.18. We can also obtain similar result for the Laplacian based approach, i.e. in the
category Q′L, whenever it makes sense. Combining with Proposition 3.11, we conclude that
the quantum isometry groups (QISO+

I and QISOL) for the noncommutative manifolds obtained
by Rieffel deformation of an arbitrary compact, connected Riemannian manifold are similar
deformation of the classical isometry groups.

Remark 4.19. Viewing the Rieffel deformation as a special case of cocycle twist, the above
theorem in fact improves the result [3, Theorem 5.13] obtained by Bhowmick and Goswami
by removing the assumption about a nice dense subalgebra on which the adjoint action of the
quantum isometry group is algebraic. In fact, techniques of this paper have enabled us to prove
existence of such nice algebra in general.
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Remark 4.20. It should be mentioned that our result does not cover the examples constructed
by Neshveyev and Tuset in [18]. In that paper they considered the problem of deforming a spec-
tral triple coming from classical compact Lie groups using a Drinfeld twist. It should be noted
that although 2-cocycle is an example of a Drinfeld twist, our scheme fails for a general Drinfeld
twist. The main problem lies in transporting a unitary Drinfeld twist to a compact quantum
group from its quantum subgroup. We are grateful to Sergey Neshveyev for pointing out this
difficulty which was overlooked mistakenly in the previous version of this paper. However,it
seems that techniques developed in [10] can be adapted to get the main result of this paper for
the spectral triples of [18]. We are working in that direction and hope to report it in another
article.
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