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Abstract. Group elements of SU(2) are expressed in closed form as finite polynomials
of the Lie algebra generators, for all definite spin representations of the rotation group.
The simple explicit result exhibits connections between group theory, combinatorics, and
Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula
are illustrated and discussed.
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1 Introduction

Rotation matrices, worked out by Wigner [15] for all representations, are one of the mainstays of
quantum mechanics. They amount to group elements of SU(2), exponentials eiθ(n̂·J) of suitable
Lie algebra ([Ja, Jb] = iεabcJc) generators. Of course, these are (2j + 1)× (2j + 1) dimensional
matrices for either integral spin, j = 0, 1, 2, 3, . . . or half-integral spin, j = 1

2 , 3
2 , 5

2 , . . . . Here,
θ is the rotation angle around the unit vector axis n̂, and the third component of the matrix
triplet J in standard convention is the diagonal matrix J3 = diag(j, j − 1, j − 2, . . . , 1− j,−j).

By the Cayley–Hamilton theorem, the expansion of this exponential in powers of n̂ · J may
be recast as a finite sum of powers of n̂ · J , the highest power being of order 2j. Such polyno-
mials of Lie generators, in the universal enveloping algebra of su(2), have numerous celebrated
applications in physics.

Nevertheless, beyond standard expressions for j = 1/2, so J = σ/2,

ei(θ/2)(n̂·σ) = I2 cos θ/2 + i(n̂ · σ) sin θ/2,

and the triplet, j = 1, so J3 = diag(1, 0,−1),

eiθ(n̂·J) = I3 + i(n̂ · J) sin θ + (n̂ · J)2(cos θ − 1)

= I3 + (2in̂ · J sin(θ/2)) cos(θ/2) + 1
2(2in̂ · J sin(θ/2))2,

which actually amounts to the vector Rodrigues’ rotation formula [4, 10], such expansions for
higher dimensionality multiplets are relatively rare.
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While van Wageningen [13] and Lehrer–Ilamed [5] made substantial progress and provided
some significant results (also see the less direct algorithms in [14] and [12]), until now there has
not appeared a simple, compact, closed expression illuminating the properties of the expansion
for arbitrary j. Our methods and spirit clearly overlap those of ref [13], although, crucially, our
basic variable is sin(θ/2) and not trigonometric functions of nθ as in this and other treatments.
Because of this, we are able to furnish the ultimate solution of all the algorithms appearing
previously in the literature.

2 New compact results

A formula valid for arbitrary spin j is given by

eiθ(n̂·J) =

2j∑
k=0

ck(θ)

k!

(
2in̂ · J sin(θ/2)

)k
, (1)

where, with use of the floor function,

ck(θ) = (cos(θ/2))εTrunc
bj−k/2c

(
(arcsin

√
x/
√
x)k

(
√

1− x)ε

)
(2)

with x = sin2(θ/2) and

ε(j − k/2) = 2j − k − 2bj − k/2c =
1− (−1)2j−k

2
,

a binary “parity” variable: 0 for even 2j−k, and 1 for odd 2j−k. The effective variable 2j−k is
the descending order of this polynomial (1). Truncn is a Taylor polynomial in x, i.e., it denotes
truncating the infinite series of its arguments to O(xn),

Trunc
n

( ∞∑
m=0

amx
m

)
≡

n∑
m=0

amx
m.

Each term in the Taylor polynomials Truncn of (2) is positive semi-definite.
The compact formula (1) and its essential features are exemplified and analyzed in the sections

to follow. Examples are given in Section 3. Reformulated in descending order, the polynomial
coefficients are discussed and inter-related in Section 4. In Section 5, these coefficients are
organized into compact generating functions, linking different values of j. The machinery needed
to derive the results is presented in Section 6. Concluding commentary with special attention
to the large spin limit is provided in Section 7, and illustrated in an appendix.

3 Basic examples and symmetries

A few low spin j cases of (1) are provided to exemplify the structure of the series.
For the quartet, j = 3/2,

eiθ(n̂·J) = I4 cos(θ/2)
(
1 + 1

2 sin2(θ/2)
)

+ (2in̂ · J sin(θ/2))
(
1 + 1

6 sin2(θ/2)
)

+
1

2!

(
2in̂ · J sin(θ/2)

)2
cos(θ/2) +

1

3!

(
2in̂ · J sin(θ/2)

)3
. (3)

For the quintet, j = 2,

eiθ(n̂·J) = I5 + (2in̂ · J sin(θ/2)) cos(θ/2)
(
1 + 2

3 sin2(θ/2)
)
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+
1

2!
(2in̂ · J sin(θ/2))2

(
1 + 1

3 sin2(θ/2)
)

+
1

3!
(2in̂ · J sin(θ/2))3 cos(θ/2) +

1

4!
(2in̂ · J sin(θ/2))4.

For the sextet, j = 5/2,

eiθ(n̂·J) = I6 cos(θ/2)
(
1 + 1

2 sin2(θ/2 + 3
8 sin4(θ/2)

)
+ (2in̂ · J sin(θ/2))

(
1 + 1

6 sin2(θ/2) + 3
40 sin4(θ/2)

)
+

1

2!
(2in̂ · J sin(θ/2))2 cos(θ/2)

(
1 + 5

6 sin2(θ/2)
)

+
1

3!
(2in̂ · J sin(θ/2))3

(
1 + 1

2 sin2(θ/2)
)

+
1

4!
(2in̂ · J sin(θ/2))4 cos(θ/2) +

1

5!
(2in̂ · J sin(θ/2))5.

For spin j = 5,

eiθ(n̂·J) = I11 + (2in̂ · J sin(θ/2)) cos(θ/2)

×
(
1 + 2

3 sin2(θ/2) + 8
15 sin4(θ/2) + 16

35 sin6(θ/2) + 128
315 sin8(θ/2)

)
+ 1

2!(2in̂ · J sin(θ/2))2

×
(
1 + 1

3 sin2(θ/2) + 8
45 sin4(θ/2) + 4

35 sin6(θ/2) + 128
1575 sin8(θ/2)

)
+ 1

3!(2in̂ · J sin(θ/2))3 cos(θ/2)
(
1 + sin2(θ/2) + 14

15 sin4(θ/2) + 164
189 sin6(θ/2)

)
+ 1

4!(2in̂ · J sin(θ/2))4
(
1 + 2

3 sin2(θ/2) + 7
15 sin4(θ/2) + 328

945 sin6(θ/2)
)

+ 1
5!(2in̂ · J sin(θ/2))5 cos(θ/2)

(
1 + 4

3 sin2(θ/2) + 13
9 sin4(θ/2)

)
+ 1

6!(2in̂ · J sin(θ/2))6
(
1 + sin2(θ/2) + 13

15 sin4(θ/2)
)

+ 1
7!(2in̂ · J sin(θ/2))7 cos(θ/2)

(
1 + 5

3 sin2(θ/2)
)

+ 1
8!(2in̂ · J sin(θ/2))8

(
1 + 4

3 sin2(θ/2)
)

+ 1
9!(2in̂ · J sin(θ/2))9 cos(θ/2)

+ 1
10!(2in̂ · J sin(θ/2))10,

etc.

The trace of each such exponential (2j + 1) × (2j + 1) matrix is the character of this
spin j representation of SU(2), [11, formulas (2.32)–(2.38)], the Gegenbauer and also the 2nd
kind Chebyshev polynomial, C1

2j(cos(θ/2)) = U2j(cos(θ/2)) = sin((2j + 1)θ/2)/ sin(θ/2). One
might note that the above expansions may be expressed as linear combinations of Cheby-
shev polynomials, as well. Thus, the coefficient of (n̂ · J)k, for integer (semi-integer) j is,
respectively,

∑
even (odd) n≤2j

anTn(cos(θ/2)) for k even, and
∑

even (odd) n≤2j
bnVn(cos(θ/2)) for k

odd, where Tn(cos(θ/2)) = cos(nθ/2) (Chebyshev 1st kind) and Vn(cos(θ/2)) = sin(nθ/2) =
sin(θ/2)Un(cos(θ/2)) (Chebyshev 2nd kind).

It is evident by taking k derivatives of (1) with respect to θ and evaluating at θ = 0 that the
(in̂ · J)k term in the series is selected with unit coefficient – all other terms must vanish. It is
also necessary, as manifest above, that the last term is of order 2j.

For a given j, the matrix coefficients of the terms of sin2j(θ/2) and cos(θ/2) sin2j−1(θ/2)
in the expansion, polynomials of order (n̂ · J)2j and (n̂ · J)2j−1 respectively, must vanish for
all eigenvalues of J3 except the extremal ones, ±j. That is, they are proportional to the cha-
racteristic polynomial of J3[j − 1] and hence of n̂ · J [j − 1]. Constraining these coefficients
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to zero, which amounts to projecting out these extremal eigenvalues, necessarily reduces the
expansion of eiθ(n̂·J [j]) to that of eiθ(n̂·J [j−1]). The reverse procedure, recursive construction of
exp(iθ(n̂ · J [j])) out of exp(iθ(n̂ · J [j − 1])) likewise follows.

For example, the spin j = 3/2 expression leads to the spin j = 5/2,

eiθ(n̂·J [5/2]) = eiθ(n̂·J [3/2])
∣∣
[5/2]

+
[
1
5!(2i sin(θ/2))5n̂ · J [5/2] + 1

4! cos(θ/2)(2i sin(θ/2))4
]

×
[(

(n̂ · J [5/2])2 −
(
3
2

)2)(
(n̂ · J [5/2])2 −

(
1
2

)2)]
,

where the first term on the right hand side means the polynomial of (3) evaluated for the spin
j = 5/2, 6× 6 matrices, instead of the 4× 4 ones.

All terms, for integral j are actually periodic functions θ, i.e. they can be recast in trigono-
metric functions of θ, and are thus periodic in 2π. By contrast, for half-integral spin j, all
coefficients cannot (they are only trigonometric functions of θ/2), and and thus have period 4π,
instead.

Note the alternating binary parities ε, even (0), or odd (1 – which inserts a factor cos(θ/2)
in the coefficients and effectively in the denominator of the truncated series to be discussed),
interleave for a given j; and their location shifts by one for a given k, going from integral to
half-integral spins.

Thus, the odd ε = 1 series for k = 0, so then for half-integral spins, truncated to bjc = j−1/2
terms past its leading term 1 is

c0(ε = 1)/ cos(θ/2) = 1 + 1
2x+ 3

8x
2 + 5

16x
3 + · · ·+

(
2j − 1

j − 1/2

)(x
4

)j−1/2
=

1√
π

j−1
2∑

n=0

Γ
(
n+ 1

2

)
Γ (n+ 1)

xn.

Note the contrast to the likewise odd ε = 1 series for k = 1, thus integral spins, truncated to
bj − 1/2c = j − 1 terms past its leading term,

c1(ε = 1)/ cos(θ/2) = 1 + 2
3x+ 8

15x
2 + 16

35x
3 + · · ·+ (j − 1)!(j − 1)!

(2j − 1)!
(4x)j−1

=
√
π

j−1∑
n=0

Γ (n+ 1)

(2n+ 1) Γ
(
n+ 1

2

)xn.
When the large j limit is considered, the resulting expression would be expected to resemble

the expansion of a scalar exponential, as the Cayley–Hamilton theorem applied to higher-order
terms provides dwindling corrections – provided the requisite periodicities are respected! The
leading coefficient (to the identity) of the expansion, c0, is always just 1, for even ε, so then for
all integral spins, large and small.

In striking contrast, for odd ε, large half-integral spins j, the leading term tends to

I2j+1sgn
(
cos(θ/2)

)
,

a square waveform with the required periodicity of 4π. It agrees with the integral spin in [−π, π],
but flips sign outside this interval. (See the first graph in the appendix.)

Similarly, the second term in the expansion linear in the Lie algebra generators, for large
integral spins has odd bimodal parity ε and tends to

in̂ · J
(
θ − 2πb θ2π −

1
2c
)
,

a sawtooth forced to maintain periodicity in 2π. (See the second graph in the appendix.)
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By contrast, for large half-integral spins, even bimodal parity, the limiting triangular wave-
form can be more symmetric, as the slope of the linear function must reverse at the boundary
of [−π, π],

in̂ · Jsgn
(
cos(θ/2)

)(
θ − 2πb θ2π −

1
2c
)
.

Thus, for large j, all coefficients tend to trigonometric series representations [9, 17] as discussed
in the last section and illustrated in the appendix.

4 Equivalent, top-down parameterization
of the series of coefficients

The expansion introduced, (1), may be re-expressed in a descending powers’ sum, with the
powers of sine now incorporated in the coefficients, Ck[j] = ck(i sin(θ/2))k/k!, for convenience,

eiθ(n̂·J [j]) =

2j∑
m=0

C2j−m[j]
(
2n̂ · J [j]

)2j−m
.

The representation index [j] is also displayed explicitly here since, in the next section, different
spins can enter in the same formula; normally this argument may be suppressed when working
within a representation, as has been the case so far.

The top-down coefficients are analytic functions of j and apply to either integer or semi-
integer spin,

C2j [j] = 1
(2j)! (i sin(θ/2))2j , (4)

C2j−1[j] = 1
(2j−1)! (cos(θ/2)) (i sin(θ/2))2j−1 , (5)

C2j−2[j] = 1
(2j−2)! (i sin(θ/2))2j−2

(
1 + 1

3 (j − 1) sin2(θ/2)
)
,

C2j−3[j] = 1
(2j−3)! (cos(θ/2)) (i sin(θ/2))2j−3

(
1 + 1

3j sin2(θ/2)
)
,

C2j−4[j] = 1
(2j−4)! (i sin(θ/2))2j−4

×
(
1 + 1

3(j − 2) sin2(θ/2) + 1
90 (5j + 1) (j − 2) sin4(θ/2)

)
,

C2j−5[j] = 1
(2j−5)! (cos(θ/2)) (i sin(θ/2))2j−5

×
(
1 + 1

3 (j − 1) sin2(θ/2) + 1
90 (5j + 1) j sin4(θ/2)

)
,

etc.
In general then, for any integer n, so long as n ≤ j,

C2j−2n+1[j] =
(i sin (θ/2))2j−2n+1 cos(θ/2)

(2j − 2n+ 1)!
Trunc
n−1

[
1√

1−x

(
arcsin

√
x√

x

)2j−2n+1
∣∣∣∣∣
x=sin2(θ/2)

,(6)

C2j−2n[j] =
(i sin(θ/2))2j−2n

(2j − 2n)!
Trunc

n

[(
arcsin

√
x√

x

)2j−2n
∣∣∣∣∣
x=sin2(θ/2)

, (7)

as ε(2n− 1) = 1, and ε(2n) = 0, respectively. Of course, 1 = Trunc
n

(1) for any n ≥ 0.

Note from these expressions that half of the Cs for a given j are related by a simple derivative
recursive condition between contiguous coefficients,

iC2(j−n)−1[j] = 2
d

dθ
C2(j−n)[j] for n ≥ 0,

that is, derivation of the ε = 0 terms yields the contiguous ε = 1 terms.
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The sequence of coefficients terminates at C0[j], of course, which, on the one hand, for
integer j requires n = j in (7), giving C0[n] = 1.

But, on the other hand, for half integer j, it requires n = j + 1/2 in (6), giving

C0[
2n−1

2 ] = cos(θ/2) Trunc
n−1

(
1√

1− x

)∣∣∣∣
x=sin2(θ/2)

.

Moreover, for half-integral spins, derivation of this leading, ε = 1 term, yields the last, ε = 0
term,

2i
d

dθ
C0[j] = C2j [j]

(
(2j!)

(j − 1/2)!2j−1/2

)2

(−1)j−1/2.

This is the only distinction between integer and semi-integer spins in this analytic top-down
approach, although these two C0s can be compacted to a single expression upon using the
familiar discrete Bose/Fermi index, or spin discriminant, a binary variable,

ε(j) =
(
1− (−1)2j

)
/2 = 2(j − bjc) =

{
0 if j is integer,

1 if j is half-integer.

By use of the same discriminant, the coefficients can be written in a common form for
either an even or an odd number of steps down from 2j. Thus for any descending order m ∈
[0, 1, . . . , 2j], we have ε(m/2) = 1 if m is an odd integer and ε(m/2) = 0 if m is an even integer,
so that

C2j−m[j] =

(
cos(θ/2)

)ε(m/2)(
i sin(θ/2)

)2j−m
(2j −m)!

Trunc
bm2 c

[(
1√

1− x

)ε(m/2)(arcsin
√
x√

x

)2j−m
]
,

where x ≡ sin2(θ/2) and b. . . c is the floor function, with n =
⌊
2n
2

⌋
=
⌊
2n+1

2

⌋
. The interchanged

roles of ascending and descending indices is evident upon comparison with the equivalent for-
mula (1).

5 Generating functions

In some contrast to the previous section, derivatives of ε = 1 coefficients are related to other
coefficients, but, in general, of lower spins j and of both ε = 0 and ε = 1.

For instance, for integer j and integer n, and for C0[0] ≡ 1, C1[0] ≡ 0,

(
2 d
dθ + tan(θ/2)

)
C2n+1[j] =

j−n−1∑
m=0

(
i cos2(θ/2) sin2m(θ/2)C2n[j −m− 1]

+ cos(θ/2) sin2m+1(θ/2)C2n+1[j −m− 1]
)
.

For half-integer j, likewise,

(
2 d
dθ + tan(θ/2)

)
C2n[j] =

j−n−3/2∑
m=0

(
i cos2(θ/2) sin2m(θ/2)C2n−1[j −m− 1]

+ cos(θ/2) sin2m+1(θ/2)C2n[j −m− 1]
)
.
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The top-down coefficients (6), (7) may be encoded systematically in a pair of Generating
functions linking all different spins j, and reliant on the incomplete Gamma function,

Γ (n+ 1, z) ≡
∫ ∞
z

e−ttndt, Γ (n+ 1, 0) = Γ (n+ 1) = n!,

albeit with operator arguments.
Letting j = m/2 and summing over m = 0, 1, 2, . . . ,∞ to cover all spins, both integer and

half integer, the master generating functions are

G2n(t, x) ≡
∞∑
m=0

tmCm−2n[m/2] =
∞∑

m=2n

tmCm−2n[m/2]

= t2n

[
n∑
r=0

xr

r!

dr

dyr
exp

(
t
√
x arcsin

√
y

√
y

)∣∣∣∣∣
y=0

=
1

n!
t2n
[
Γ

(
n+ 1, x

d

dy

)
exp

(
t
√
x arcsin

√
y + x√

y + x

)∣∣∣∣
y=0

and

G2n+1(t, x) ≡
∞∑
m=0

tmCm−2n+1[m/2] =
∞∑

m=2n−1
tmCm−2n+1[m/2]

= t2n−1
√

1− x

[
n−1∑
r=0

xr

r!

dr

dyr

(
1√

1− y
exp

(
t
√
x arcsin

√
y

√
y

))∣∣∣∣∣
y=0

=
1

n!
t2n−1

√
1−x

[
Γ

(
n+ 1, x

d

dy

)(
1√

1−x−y
exp

(
t
√
x arcsin

√
y+x√

y+x

))∣∣∣∣
y=0

.

Thus, for instance,

G0 =
∞∑
m=0

tmCm[m/2] =
∞∑
m=0

tm

m!

(
i sin(θ/2)

)m
= eit sin(θ/2),

yields (4) for each j = m/2;

G1 =
∞∑
m=0

tmCm−1[m/2] =
∞∑
m=1

tmCm−1[m/2]

=

∞∑
m=1

tm

(m− 1)!
(cos(θ/2)) (i sin(θ/2))m−1 = (cos(θ/2)) teit sin(θ/2),

yields (5) for each j = m/2;

G2 =

∞∑
m=0

tmCm−2[m/2] =

∞∑
m=2

tmCm−2[m/2]

=

∞∑
m=2

tm

(m− 2)!
(i sin(θ/2))m−2

(
1 + 1

3

(
m
2 − 1

)
sin2(θ/2)

)
= t2 KummerM

(
sin2(θ/2) + 6

sin2(θ/2)
,

6

sin2(θ/2)
, it sin(θ/2)

)
,

etc., involving hypergeometric functions.
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6 Specification of the series

Calculation of the rotation matrices as spin polynomials can be efficiently carried out in specific
cases using either Lagrange–Sylvester expansions, or the Cayley–Hamilton theorem. These two
methods are tied together by Vandermonde matrix algebra [1]. The expressions for general spin
j given in the first section of this paper can be established using these methods.

Consider functions of an N ×N diagonalizable matrix M with non-degenerate eigenvalues λi,
i = 1, . . . , N . On the span of the eigenvectors, there is an obviously correct Lagrange formula,
as extended to matrices by Sylvester,

f (M) =
N∑
i=1

f (λi)Pi, (8)

where the projection operators – the so-called Frobenius covariants – are given by products,

Pi =

N∏
j=1
j 6=i

M− λj
λi − λj

. (9)

From expanding each such product it is evident that any f(M) reduces to a polynomial of order
N − 1 in powers of M,

f (M) =
N−1∑
m=0

Cm [f ]Mm, (10)

and the function-dependent coefficients can be expressed in terms of the eigenvalues of M by
expanding the projection operators (9) as polynomials in M.

The condition that no two eigenvalues be the same in (9) can be efficiently implemented
using Vandermonde matrix methods. From the polynomial (10) acting on eigenvector |λk〉 we
obtain

f (λk) =

N−1∑
m=0

Cm [f ] (λk)
m .

The action on the full set of N eigenvectors therefore gives an N ×N matrix equation,
f(λ1)
f(λ2)

...
f(λN )

 = V [M]


C0[f ]
C1[f ]

...
CN−1[f ]

 , (11)

where the N ×N Vandermonde matrix of M eigenvalues is

V [M] =


1 λ1 λ21 . . . λN−11

1 λ2 λ22 . . . λN−12
...

...
...

. . .
...

1 λN λ2N . . . λN−1N

 .

As is well-known, for nondegenerate eigenvalues, V is nonsingular [6]. Thus, one may obtain
the coefficients Ck[f ] in the expansion (10) by merely inverting V in (11), into the inverse
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relation,
C0[f ]
C1[f ]

...
CN−1[f ]

 = V −1 [M]


f(λ1)
f(λ2)

...
f(λN )

 , (12)

although one should note that, by our conventions, the row index m runs from 0 to N −1, while
the column index i appears more familiar, running from 1 to N .

For the problem at hand, we are interested in the case where the matrix is M = 2n̂ · J .
Thus for spin j we have a matrix M whose dimension is N = 2j + 1 and whose eigenvalues are
λk = 2(j + 1− k), ordered so that {λ1, λ2, . . . , λN} = {2j, 2j − 2, . . . ,−2j}. The Vandermonde
matrix for spin j is then (2j + 1)× (2j + 1) as given by

V [j] =


1 2j (2j)2 . . . (2j)2j

1 2j − 2 (2j − 2)2 . . . (2j − 2)2j

...
...

...
. . .

...
1 −2j (−2j)2 . . . (−2j)2j

 .

Note here that detV [j] 6= 0, hence V −1[j] exists. In fact,

detV [j] = (−1)b
2j+1

2 c
∏

prime p≤2j
pmp(j),

where mp(j) is the multiplicity of the prime p that occurs in the factorization of detV [j].
Explicitly,

m2(j) =

2j∑
k=1

bln k/ ln 2c∑
m=0

⌊
k

2m

⌋
, and

mp(j) + j (2j + 1) =

2j∑
k=1

bln k/ ln pc∑
m=0

⌊
k

pm

⌋
, for p ≥ 3.

Note that a given prime p > 2 first appears in the factorization of the determinant for fermionic
spin j = p/2, and subsequently appears as a factor in detV [j] for all higher spins.

Returning to the problem at hand, we are interested in the exponential function, exp(αM),
so by (10),

exp (2αn̂ · J) =

2j∑
m=0

Cm[j] (2n̂ · J)m , (13)

where each j dependent coefficient Cm[j] is also implicitly a function of α, to be determined.
Of course, for rotations α = iθ/2. These functions are obtained by (12)) specialized to this case,
namely,

C0[j]
C1[j]

...
C2j [j]

 = V −1[j]


e2jα

e(2j−2)α

...
e−2jα

 . (14)
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Thus the Cks are linear combinations of the 2j + 1 exponentials shown. It remains only to
compute the inverse of the Vandermonde matrix for spin j, and to express the results for the
Cks in a compact form.

One immediate result involves C0 for integer spins: Given our ordering of the eigenvalues,
the first row of V −1[j integer] consists entirely of zeroes, except for a 1 in the middle column
(i.e. the (j + 1)st) corresponding to the obvious fact that the middle row (again the (j + 1)st)
of V [j integer] has a 1 in the first column and zeroes in all subsequent columns (since 0k = 0
for all positive k). But the middle entry in the column of exponentials on the r.h.s. of (14) is
just e0 = 1. Therefore C0 = 1 for all integer j.

All the coefficients Ck satisfy first-order differential relations. Half of these relations are
simply of the form Cn−1 = dCn/dα while the other half are more involved. Above, we presented
an interesting form for the more elaborate cases, where a first-order equation mixed spin j
coefficients with all lower spins of the same type, either all integer or all semi-integer. Here, we
take a different approach, so that different spin coefficients are not mixed ab initio. Nonetheless,
in our labeling of the coefficients as Cm[j], we have chosen to keep track of the spin j in addition
to the power of n̂ · J , as in the previous section, because the form of some key results can be
used to obtain recursion relations relating different spins.

First consider the simplest results which apply to half the coefficients. For clarity, we give
separately the results for the integer and semi-integer cases. For integer j,

d

dα
C2k[j] = C2k−1[j], (15)

where, for spin zero, C0[0] ≡ 1, and C1[0] ≡ 0. For semi-integer j,

d

dα
C2k+1[j] = C2k[j]. (16)

We now describe an approach which applies to all other cases just as well. Differentiating
the coefficients in the expansion of the exponential (13) gives on the one hand,

d

dα
exp (2αn̂ · J) =

2j∑
m=0

d

dα
Cm[j] (2n̂ · J)m , (17)

while, on the other hand, just from differentiating the exponential itself, it follows that

d

dα
exp (2αn̂ · J) = 2n̂ · J exp (2αn̂ · J)

=

2j∑
m=1

Cm−1[j] (2n̂ · J)m + C2j [j] (2n̂ · J)2j+1 . (18)

We obtain first-order differential relations for the coefficients by equating the two expres-
sions (18) and (17). To make further progress, it is necessary to resolve (2n̂ · J)2j+1 as a series
in lower powers of 2n̂ · J .

This resolution can be achieved by applying the Cayley–Hamilton theorem to the spin j > 0
matrices. The final result is straightforward to obtain:

(2n̂ · J)2j+1 =

2j∑
m=0

Am[j] (2n̂ · J)m , (19)

where the coefficients are explicitly encoded in the following polynomial, valid for either integer
or semi-integer spin:

pj (x) ≡ x2j+1 − 1

x2j+1

2j∏
m=0

(
x2 −

(
1+(−1)m+2j

2

)
m2
)

=

2j∑
m=0

Am[j]xm. (20)
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The resolution of (2n̂ · J)2j+1 may also be reduced to a Vandermonde matrix equation when
acting with (19) on the eigenvectors of 2n̂ · J , and leads again to the results encoded in the
pj(x) given in (20).

To connect with existing mathematical literature, it is worthwhile to note the coefficients for
semi-integer spins may be appropriately called fermionic central factorial numbers, i.e. “fcfn”,
but they are actually known in the literature as just central factorial numbers [2]1. Similarly,
the Am[j] for integer spins may be called the bosonic central factorial numbers, i.e. “bcfn”,
but they are known in the mathematics literature as the scaled central factorial numbers2. By
interlacing the rows and columns of the fcfn and bcfn matrices, the coefficients for both integer
and semi-integer cases can be expressed in a unified manner in terms of a single matrix, the
result being effectively a replication of (20).

Combining (18), (17), and (19) leads to

dCm[j]

dα
= Cm−1[j] + C2j [j]Am[j] for m = 0, . . . , 2j (21)

with the convention C−1[j] = 0, which immediately shows two noteworthy features: The sim-
plicity of dC0[j]/dα and dC1[j]/dα for any j. The coefficients of the lowest and highest powers
of (2n̂ · J) are linked by differentiation. For example,

d

dα
C0[j] = (−1)bjc [(2j)!!]2C2j [j] for j semi-integer.

Similarly, since C0[j integer] = 1,

dC1[j]

dα
= 1 + (−1)j−1 [(2j)!!]2C2j [j] for j integer.

Symmetry under the reflection map n̂ · J 7−→ −n̂ · J implies only odd integer m contribute
on the r.h.s. of (19) for integer j, i.e. A2k[j integer] = 0, and only even integer m contribute for
half-integer j, i.e. A2k+1[j half-integer] = 0. This suffices to establish (15) and (16), since (21)
reduces to those simple results for m = 2k and integer j, and for m = 2k+ 1 and semi-integer j,
respectively.

The remaining cases are less trivial, as given by

dC2k+1[j]

dα
= C2k[j] +

1

(2j)!
(sinhα)2j A2k+1[j] for integer j, (22)

dC2k[j]

dα
= C2k−1[j] +

1

(2j)!
(sinhα)2j A2k[j] for semi-integer j, (23)

where we have used the fact that

C2j [j] =
1

(2j)!
(sinhα)2j ,

manifest by inspection of the highest-order term in the Lagrange–Sylvester expansions, (8)–(10).

Given the coefficients Am[j] then, as provided by (20), the coefficients Cm[j] are computed
successively from the lowest to the highest values of m by integration of (22) and (23), or from
highest to lowest values of m, by carrying out the differentiations in those two equations. The
results of this algorithm were given at the beginning of this paper. (For a distinctly different,
albeit presumably equivalent algorithm, see [12].)

1These are presented as triangular matrices in http://oeis.org/A008956.
2These are presented as triangular matrices in http://oeis.org/A182867.

http://oeis.org/A008956
http://oeis.org/A182867
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So far in this section, only a single spin j is involved in each relation. Nevertheless, the
explicit form for the polynomials in (20)) displays how the pj obey recursion relations that
relate different spins, namely,

pj+1(x) = (2j + 2)2x2j+1 +
(
x2 − (2j + 2)2

)
pj(x).

This permits relating Ak[j + 1] and Am[j], and hence relating the derivatives of the Cms for
different spins. This, in turn, opens a route to arriving at all the first-order relations given in
the previous section.

The explicit forms given here for the Cms are, in fact, just the solutions of those first-
order relations. In this way, a rigorous proof of (1) may be obtained, as a reader may readily
verify – and illustrate for a low j. Fortunately, it is not actually necessary to go through the
straightforward but tedious details of such a proof here: Since this paper appeared on the arXiv,
a simplified derivation, based on (21) and closed-form expressions for Am[j] in terms of central
factorial numbers has also appeared [3].

7 Concluding remarks

Rotation matrices for all representations j have been expressed as 2j-order polynomials in the
corresponding spin matrices, equation (1). A plethora of applications [12] of these elementary
results can be easily imagined, across the entire spectrum of quantum mechanical systems,
including problems in atomic, condensed matter, nuclear, and elementary particle physics [7, 16].

Such applications would range from the most straightforward, e.g. using the formula (1) to
compute Wigner’s d functions starting from a specific representation of Jy, to the more esoteric,
e.g., investigation of the large j asymptotics in various contrived matrix models.

Specifically, consider

det (λ1− 2n̂ · J) = 22j+1

π Γ
(
1 + j + 1

2λ
)
Γ
(
1 + j − 1

2λ
)

sinπ
(
1
2λ− j

)
∼

j→∞

1

π
22j+1 (j!)2 sinπ

(
1
2λ− j

)
. (24)

The two Γ factors have poles that terminate the infinite sequence of sinπ(12λ − j) zeroes both
above and below, so that setting the r.h.s. of (24) to zero indeed reproduces the finite set of
eigenvalues: 2j, 2j − 2, . . . ,−2j + 2,−2j, as it should.

Alternatively, with the benefit of Stirling’s formula, (24) becomes

2j∏
n=0

(λ− 2(j − n)) ∼
j→∞

2e−2j(2j)2j+1

{
(−1)j sinπ(12λ) for j integer,

(−1)j+
1
2 cosπ(12λ) for j semi-integer,

and thereby provides a route to reach Euler’s infinite product representation of the sine and
cosine functions.

In particular, as illustrated in Section 3, the large j limit warrants some additional mention
here, since it is intriguingly intuitive even in the completely quantum/noncommutative frame-
work of this work. In the limit j → ∞, the coefficients of the various powers, (2in̂ · J)n/n! in
the expansion of the rotation group element become quasi-classical: if n̂ · J were not a matrix,
but a scalar instead, these coefficients in the exponential series would be just simple monomials,
(θ/2)n.

Remarkably, the coefficients presented in (1) reduce, in this limit, to elegant trigonometric
series [9] for the periodicized monomials – exactly! –

lim
j→∞

ck (θ) sink(θ/2) = (−1)(1+b
θ
2π
− 1

2c)ε(j)
(

1

2

(
θ − 2π − 2π

⌊
θ

2π
− 1

2

⌋))k
.
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Indeed, for finite j, the coefficients are nothing but the Taylor polynomial truncations of these
same trigonometric series. But even in the limit of large j there is always a clear distinction
between the integer and semi-integer spin cases, as given by the fermionic sign flip in this
equation for π < |θ| < 2π. This is illustrated in the appendix.

This appears as an elegant connection between the rotation group and Fourier analysis,
moreover underlain by subtle combinatorial identities involving the central factorial numbers,
as we have explained in the previous section. Thus, the results presented evoke an intriguing
set of linkages between group theory, combinatorics, and analysis.

Extensions to SO(4) and SUq(2) are direct. In fact, the SO(4) case would be of some physi-
cal interest in superintegrable models involving extensions of the Hermann–Bernoulli–Laplace–
Hamilton–Gibbs–Runge–Lenz–Pauli vector to cases of arbitrary spin [8]. Perhaps the results
here can be of use in the analysis of such models.

A Appendix. Periodicized monomials

The remarks in the text about the behavior of the coefficients in the large j limit are illustrated
here for the coefficients of the lowest three powers of the generators with −2π ≤ θ ≤ 2π, for
spins j = 137/2 (shown in blue) and j = 69 (shown in purple). Even in the limit of large j
there is always a clear distinction between the integer and semi-integer spin cases, as given by
a fermionic sign flip for π < |θ| < 2π.
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These plots should be compared to the exact discontinuous functions obtained in the limit,
as given by the last formula in the text. Note the striking absence of Gibbs–Wilbraham phe-
nomena [9] in these figures. Each term in the Taylor polynomials Trunc

n
of (2) is positive

semi-definite.
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