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Abstract. A category of coefficients for Hopf cyclic cohomology is defined. It is shown
that this category has two proper subcategories of which the smallest one is the known
category of stable anti Yetter–Drinfeld modules. The middle subcategory is comprised of
those coefficients which satisfy a generalized SAYD condition depending on both the Hopf
algebra and the (co)algebra in question. Some examples are introduced to show that these
three categories are different. It is shown that all components of Hopf cyclic cohomology
work well with the new coefficients we have defined.
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1 Introduction

A suitable class of coefficients for Hopf cyclic cohomology was first introduced in [6, 7]. These
coefficients generalize modular pairs in involution discovered by Connes–Moscovici for Hopf
cyclic cohomology [4], and are called stable anti Yetter–Drinfeld (SAYD) modules. Hopf cyclic
cohomology is defined for a datum consisting of a symmetry, a space, and a space of coefficients.
The symmetry is defined by a Hopf algebra, the space is defined by an algebra or a coalgebra
on which the Hopf algebra acts or coacts, and the coefficients space is a module and comodule
over the Hopf algebra satisfying two conditions defined merely by the Hopf algebra structure.
One notes that bialgebra cyclic cohomology introduced in [8] extends the Hopf cyclic cohomo-
logy tremendously by relaxing the symmetry to be a bialgebra and the coefficients to be just
stable module-comodule. However for computing the latter cohomology one cannot rely on the
homological algebra of coalgebras and algebras. What we introduce in this paper is a class
of coefficients larger than SAYD modules but still computable in terms of derived category of
(co)algebras. We show that the bialgebra cyclic cohomology for the new coefficients coincide
with their Hopf cyclic cohomology.

Based on examples, we observe that Hopf cyclic cohomology works well with some coefficients
which are not SAYD modules over Hopf algebras. We study these modules and prove that
there are at least three noticeable categories of such coefficients. The idea is to show that the
coefficients not only depend on the Hopf algebra in question but that they may also be related
to the (co)algebra on which the Hopf algebra (co)acts. This observation unties our hands in
situations where the Hopf algebra lacks a large class of SAYD modules. Existence of such a Hopf
algebra is already shown in [15], where it is proved that any finite-dimensional SAYD module
over Connes–Moscovici Hopf algebra is a direct sum of the original modular pair in involution
found in [4].
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We cover two cases of Hopf cyclic cohomology in this paper. For an H-module coalgebra C
we define CH-SAYD modules and for an H-module algebra A we introduce AH-SAYD modules.
We show that SAYD modules are both CH-SAYD modules and AH-SAYD modules for any A
and C, however we give several examples showing that these inclusions of categories are proper.

Next we show that there are examples of coefficients for H-module (co)algebras (C)A which
are not even (CH)AH-SAYD modules, while the correspondent Hopf cyclic complexes are well-
defined. We call these coefficient Hopf cyclic coefficients (HCC). It is not difficult to see that
the cup product in Hopf cyclic cohomology works well with these new coefficients.

One notes that after introducing Hopf cyclic cohomology with coefficients in [6, 7], there
are some generalizations of the theory in [1, 8, 11]. However in all computable examples the
authors had to transform their examples into the original Hopf cyclic complexes of some new
Hopf algebras. As an important example of such, in [8] the coefficients are module/comodules
over bialgebras and do not have to satisfy any YD like condition. However, the author in [8]
proves that if these coefficients are SAYD, when the bialgebra is Hopf algebra, then the Hopf
cyclic cohomology and bialgebra cyclic cohomoloy coincide. We prove that the same result holds
for new coefficients. The proof is a modification of the proof given in [8] for SAYD modules
over Hopf algebras.

Hopf cyclic cohomology generalizes Lie algebra cohomology. One of the most useful features
of Lie algebra cohomology is the induction/restriction functor which simply allows us to use
a subalebra of the Lie algebra in question to calculate the Lie algebra cohomology of the Lie
algebra with coefficients in the induced module in terms of the Lie algebra cohomology of the
subalgebra with coefficients in the given module. This feature is successfully adopted for Hopf
cyclic cohomology in [7]. Thanks to one of the referees some of our examples can be calculated
via the induction procedure.

Notations. In this paper we denote a Hopf algebra by H and its counit by ε. We use
the Sweedler summation notation ∆(h) = h(1) ⊗ h(2) for the coproduct of a Hopf algebra.
Furthermore H(h) = h〈−1〉⊗h〈0〉 and H(h) = h〈0〉⊗h〈1〉 are used for the left and right coactions
of a coalgebra, respectively.

2 Hopf cyclic cohomology coefficients

In this section we introduce two generalized versions of SAYD modules for module coalgebras
and module algebras. Let a Hopf algebra act on an algebra or a coalgebra, this action being
compatible with (co)algebra structure. The main idea here is to show that there are coefficients
by which the Hopf cyclic cohomology of the datum is well-defined where these coefficients are
not only (co)representations of the Hopf algebras but also represent the algebra or coalgebra
in question. Let us recall from [6] that a right-left SAYD module M over a Hopf algebra H is
a right module and a left comodule over H such that

H(mh) = S
(
h(3)

)
m〈−1〉h

(1) ⊗m〈0〉h(2) (AYD condition),

m〈0〉m〈−1〉 = m (stability condition).

Since bicrossed product Hopf algebras will be used repeatedly in this paper, let us recall
this notion here. Let U and F be Hopf algebras and furthermore let U be a right F-comodule
coalgebra. One then forms a cocrossed product coalgebra U I< F that has F ⊗U as underlying
vector space and the following coalgebra structure

∆(f I< u) = f (1) I< u
(1)
〈0〉 ⊗ f

(2)u
(1)
〈1〉 I< u(2), ε(f I< u) = ε(f)ε(u).
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Dually if F is a left U-module algebra, we can endow the underlying vector space F ⊗U with an
algebra structure, to be denoted by F >C U , with 1 >C 1 as its unit and the product given by

(f >C u)(g >C v) = fu(1)g >C u(2)v.

The Hopf algebras U and F as above, with the action and coaction as above, form a matched
pair of Hopf algebras if they satisfy the following compatibility conditions for any u ∈ U , and
any f ∈ F

ε(uf) = ε(u)ε(f), ∆(uf) = u
(1)
〈0〉f

(1) ⊗ u(1)〈1〉
(
u(2)f (2)

)
, H(1) = 1⊗ 1,

H(uv) = u
(1)
〈0〉v〈0〉 ⊗ u

(1)
〈1〉
(
u(2)v〈1〉

)
, u

(2)
〈0〉 ⊗

(
u(1)f

)
u
(2)
〈1〉 = u

(1)
〈0〉 ⊗ u

(1)
〈1〉
(
u(2)f

)
.

One forms a new Hopf algebra F IC U , called the bicrossed product of the matched pair (F ,U);
it has F I< U as underlying coalgebra, F >C U as underlying algebra and the antipode is
defined by

S(f IC u) = (1 IC S(u〈0〉))(S(fu〈1〉) IC 1), f ∈ F , u ∈ U .

Throughout the paper all Hopf algebras are assumed to have invertible antipodes.

2.1 The CH-SAYD modules for module coalgebras

For basics of (co)cyclic modules and their correspondence cyclic (co)homology we refer the
reader to [3] and [12]. If M is a right module and left comodule over a Hopf algebra H,
then for any left H-module coalgebra C one defines the following para-cocyclic structure on
C∗(C,M) := M ⊗ C⊗(n+1)

∂i(m⊗ c̃) = m⊗ c0 ⊗ · · · ⊗ c(1)i ⊗ c
(2)
i ⊗ · · · ⊗ cn,

∂n(m⊗ c̃) = m〈0〉 ⊗ c
(2)
0 ⊗ c1 ⊗ · · · ⊗ cn ⊗m〈−1〉c

(1)
0 ,

σi(m⊗ c̃) = m⊗ c0 ⊗ · · · ⊗ ε(ci)⊗ · · · ⊗ cn,
τn(m⊗ c̃) = m〈0〉 ⊗ c1 ⊗ · · · ⊗ cn ⊗m〈−1〉c0, (2.1)

where c̃ = c0 ⊗ · · · ⊗ cn. In addition, when M is SAYD module over H, it is shown in [5] that
the above para-cocyclic structure is well-defined on CnH(C,M) := M ⊗H ⊗C⊗n+1. Here H acts
on C⊗n+1 diagonally.

However the cyclic structure on C∗H(C,M) can be well-defined for some other types of mo-
dules M which are not SAYD over H.

Definition 2.1. Let C be a left H-module coalgebra. A right-left module-comodule M over H
is called a CH-SAYD module if for any m ∈M , h ∈ H, c ∈ C, d̃ ∈ C⊗• we have

(CH-AYD) (mh)〈−1〉c⊗ (mh)〈0〉 = S
(
h(3)

)
m〈−1〉h

(1)c⊗m〈0〉h(2),

(CH-stability) m〈0〉 ⊗H m〈−1〉d̃ = m⊗H d̃.

Here the action of H on C⊗• is diagonal. We use the symbol CH-SAYD for the category
whose objects are CH-SAYD modules and whose morphisms are H-module and H-comodule
morphisms.

Let us introduce some examples of CH-SAYD modules which are not necessarily a SAYD
module over Hopf algebras. First we generalize the notion of modular pair in involution [4].
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Lemma 2.2. Let C be an H-module coalgebra, δ a character and σ a group-like element for H.
Let (δ, σ) be a modular pair, i.e. δ(σ) = 1 and CH-in involution, i.e.

S2
δ (h)c =

(
σhσ−1

)
c, h ∈ H, c ∈ C,

where Sδ(h) = δ
(
h(1)

)
S
(
h(2)

)
. Then σCδ is a CH-SAYD module via the action and coaction

induced by δ and σ respectively.

Proof. One checks that S−1δ (h) = S−1
(
h(1)

)
δ
(
h(2)

)
. On the other hand we have

S
(
h(3)

)
σh(1)c⊗ δ

(
h(2)

)
= Sδ

(
h(2)

)
σh(1)c⊗ 1 = S2

δ

(
S−1δ

(
h(2)

))
σh(1)c⊗ 1

= σS−1δ
(
h(2)

)
σ−1σh(1)c⊗ 1 = σS−1

(
h(2)

)
δ
(
h(3)

)
h(1)c⊗ 1 = σc⊗ δ(h).

Using the fact that (δ, σ) is a modular pair, the CH-stability condition is obvious. �

For any H-module coalgebra C, the following lemma introduce a one-dimensional DH-SAYD
module for some H-module coalgebra D.

Lemma 2.3. Let (δ, σ) be a modular pair for the Hopf algebra H and C be a left H-module
coalgebra. We define the following subspace of C

I =
{
S2
δ (h)c−

(
σhσ−1

)
c
∣∣ for all h ∈ H, and c ∈ C

}
.

Then I is a coideal of C and D := C
I is an H-module coalgebra. Furthermore σCδ is a DH-SAYD

module.

Proof. Since

S2
δ (h) = δ

(
h(1)

)
S2
(
h(2)

)
δ
(
S
(
h(3)

))
,

is a coalgebra map, for any c ∈ C and h ∈ H we have

∆
(
S2
δ (h)c− σhσ−1c

)
= S2

δ

(
h(1)

)
c(1) ⊗ S2

δ

(
h(2)

)
c(2) −

(
σh(1)σ−1c(1)

)
⊗
(
σh(2)σ−1c(2)

)
= S2

δ

(
h(1)

)
c(1) ⊗ S2

δ

(
h(2)

)
c(2) − σh(1)σ−1c(1) ⊗ S2

δ

(
h(2)

)
c(2)

−
(
σh(1)σ−1c(1)

)
⊗
(
σh(2)σ−1c(2)

)
+ σh(1)σ−1c(1) ⊗ S2

δ

(
h(2)

)
c(2)

=
(
S2
δ

(
h(1)

)
c(1) − σh(1)σ−1c(1)

)
⊗ S2

δ

(
h(2)

)
c(2)

+
(
σh(1)σ−1c(1)

)
⊗
(
S2
δ

(
h(2)

)
c(2) −

(
σh(2)σ−1c(2)

))
.

This shows ∆(I) ⊆ I ⊗C +C ⊗ I. Also we have ε(y) = 0 for all y ∈ I. Therefore I is a coideal
of C and D = C

I is coalgebra. Now it is enough to show that I is an H-module. To do this we
show that for all h, g ∈ H and c ∈ C we have

hS2
δ (g)c− hσgσ−1 ∈ I. (2.2)

First we observe that

σ(σ−1hσ)σ−1
(
S2
δ (g)c

)
− S2

δ

(
σ−1hσ

)
S2
δ (g)c ∈ I.

Since S2
δ is an algebra map, we have

hS2
δ (g)c− σ−1S2

δ (h)σS2
δ (g)c ∈ I. (2.3)
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On the other hand we have

S2
δ

(
σ−1hσg

)
c− σ

(
σ−1hσg

)
σ−1 ∈ I.

Therefore

σ−1S2
δ (h)σS2

δ (g)c− hσgσ−1 ∈ I. (2.4)

Adding relations (2.3) and (2.4), we obtain (2.2). Therefore I is an H-module coalgebra and
using definition of I, (δ, σ) is a DH-modular pair in involution. Thus by Lemma 2.2 we obtain
that σCδ is a DH-SAYD module. �

To exemplify, let us recall that H := Hcop
1 , the co-opposite Hopf algebra of the Connes–

Moscovici Hopf algebra in codimension one, [4] is generated by the elements X, Y and δk, where
k ∈ N, subject to the following relations

[Y,X] = X, [Y, δk] = kδk, [X, δk] = δk+1, [δk, δi] = 0, k, i ∈ N.

Its coalgebra structure and antipode are defined as follows

∆(Y ) = 1⊗ Y + Y ⊗ 1,∆(δ1) = δ1 ⊗ 1 + 1⊗ δ1,
∆(X) = X ⊗ 1 + 1⊗X + Y ⊗ δ1,
ε(X) = ε(Y ) = ε(δk) = 0, S(X) = −X + Y δ1, S(Y ) = −Y, S(δk) = −δk.

Let U be the enveloping algebra of the Lie algebra generated by X and Y . Also suppose F is the
co-opposite Hopf algebra of the Hopf algebra generated by all the δk. It is shown in [13] that H
is canonically isomorphic to the bicrossed product Hopf algebra F IC U where U acts on F via

Xδk = δk+1, Y δk = kδk,

and F coacts on U via

H(X) = X ⊗ 1 + Y ⊗ δ1, H(Y ) = Y ⊗ 1.

A similar decomposition exists for the higher dimensions of this Hopf algebra denoted Hcop
n .

Its is shown in [15, Theorem 3.16] that there is only one-dimensional SAYD module for the
co-opposite Hopf algebra of the Connes–Moscovici Hopf algebra Hcop

1 , namely 1Cδ. Since for
Hcop

1 we have S2 6= Id, it follows that δ 6= ε. But in the following example we show that 1Cε
defines a CHcop

1 -SAYD module.

Example 2.4. In Lemma 2.3, let H = Hcop
1 , δ = ε, σ = 1 and C = H, where the H-module

structure is given by the multiplication. The relations

S2(Y ) = Y, S2(δk) = δk, S2(X) = X − δ1,

show that I is the coideal generated by the elements of the form{
S2(Xn)h−Xnh

∣∣n ∈ N
}
.

Using S2(X) = X − δ1, Xδi = δi+1 + δiX and the fact that S2 is a morphism of algebras, one
obtains the following relation easily by induction

S2(Xn)−Xn = δn +

n−1∑
i=1

δihn,i,
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where hn,i are certain elements in H. This shows that the coideal I is generated by

{δih, h ∈ H, i ∈ N}.

We define a coalgebra map ϕ : H −→ U , given by

f IC u 7−→ ε(f)u.

One checks that ker(ϕ) = I and therefore HI
∼= U . As a result the action of H on D ∼= U which

has been defined by multiplication simplifies to

(f IC u)(1 IC v) = ϕ(f IC uv) = ε(f)uv,

where f IC u ∈ H and 1 IC v ∈ U ∼= D. Therefore D = H
I
∼= U is a H-module coalgebra

and 1Cε is a UH-SAYD module.

2.2 HCC modules for coalgebras

Definition 2.5. Let C be a coalgebra which is also an H-module but not necessarily module-
coalgebra where the action of H on C⊗• is diagonal. A module-comodule M over H is called
a (H,C)-Hopf cyclic coefficients, abbreviated by CH-HCC, if the cosimplicial and cyclic ope-
rators on C∗H(C,M) are well-defined and turn it to a cocyclic module. We use the symbol

CH-HCC for the category whose objects are CH-HCC modules and whose morphisms are H-
module and H-comodule morphisms

In the following statement we show that for any CH-SAYD module the cocyclic module
structure defined in (2.1) is well-defined and therefore we obtain a Hopf cyclic cohomology with
these new coefficients:

Proposition 2.6. Let C be an H-module coalgebra. Then any CH-SAYD module M is a CH-
HCC.

Proof. Since C is assumed to be an H-module coalgebra, all cosimplicial structure operators
except the very last coface are well-defined. On the other hand, the last coface is a composition
of the first coface and the cyclic operator. Therefore it is enough to show that the cyclic operator
is well-defined. Let π : Cn(C,M) → CnH(C,M) be the natural projection then we see that the
same proof as in [5] works here

π(τn(mh⊗H c0 ⊗ · · · ⊗ cn)) = (mh)〈0〉 ⊗H c1 ⊗ · · · ⊗ cn ⊗ (mh)〈−1〉c0

= m〈0〉h
(2) ⊗H c1 ⊗ · · · ⊗ cn ⊗ S

(
h(3)

)
m〈−1〉h

(1)c0

= m〈0〉 ⊗H h(2)c1 ⊗ · · · ⊗ h(n+1)cn ⊗ h(n+2)S
(
h(n+3)

)
m〈−1〉h

(1)c0

= m〈0〉 ⊗H h(2)c1 ⊗ · · · ⊗ h(n+1)cn ⊗m〈−1〉h(1)c0
= π

(
τn
(
m⊗ h(1)c0 ⊗ · · · ⊗ h(n+1)cn

))
.

We use the CH-AYD module condition in the second equality. To verify the cocyclicity condition,
using the CH-stability condition one has

τn+1
n (m⊗H c̃) = m〈0〉 ⊗H m〈−1〉c̃ = m⊗H c̃. �

Lemma 2.7. Let C be an H-module coalgebra. If the action of H on C is cocommutative, i.e.

h(1)c1 ⊗ h(2)c2 = h(2)c1 ⊗ h(1)c2, h ∈ H, c1, c2 ∈ C, (2.5)

then any module M over H, with the trivial coaction, defines a CH-HCC.
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Proof. Since C is assumed to be an H-module coalgebra it suffices to show that τn is well-
defined. Indeed, let π : Cn(C,M)→ CnH(C,M) be the natural projection, then

π
(
τn
(
m⊗ h(1)c0 ⊗ · · · ⊗ h(n+1)cn

))
= m⊗H h(2)c1 ⊗ · · · ⊗ h(n+1)cn ⊗ h(1)c0

= m⊗H h(1)c1 ⊗ · · · ⊗ h(n)cn ⊗ h(n+1)c0 = mh⊗H c1 ⊗ · · · ⊗ cn ⊗ c0
= π(τn(mh⊗H c0 ⊗ · · · ⊗ cn)).

We use (2.5) in the second equality. �

The following statement is a dual result to the previous lemma.

Lemma 2.8. Let C an H-module coalgebra. If H acts on C commutatively, i.e.

hgc = ghc, h, g ∈ H, c ∈ C,

then any comodule M over H, by endowing it with the trivial action, defines a CH-SAYD
module.

Proof. Using the fact that the action of H on M is via ε and H acts commutatively on C we
have

S
(
h(3)

)
m〈−1〉h

(1)c⊗m〈0〉h(2) = h(1)S
(
h(2)

)
m〈−1〉c⊗m〈0〉 = m〈−1〉c⊗m〈0〉ε(h).

The CH-stability condition is obvious by the triviality of the action. �

Example 2.9. Let G be a discrete group acting on a set X normally, i.e. ghx = hgx for all
g, h ∈ G and x ∈ X. Then consider the group algebra H = CG and the obvious coalgebra
structure CX on X where each element is considered to be a group-like element. Obviously CX
is a module coalgebra over CG by the action of G on X. The action of H on CX is commutative.
This introduces a source of CH-SAYDs which are not ordinary SAYD modules over H = CG.
One notes that all types of SAYD modules M on CG are known, see [6], which in all cases G-
graded vector spaces M =

⊕
gMg where for the (non-trivial) action we have gm = m for all

m ∈Mg and hm ∈Mhgh−1 .

We present another example. Since F is a Hopf subalgebra of H = F IC U , the Hopf
algebra H acts on the coalgebra C := H ⊗F C via left multiplication. It is easy to see that as
a coalgebra C is isomorphic to U via u 7−→ (1 IC u) ⊗F 1. Via this identification, the action
of H on C is as follows. Let h = f IC u ∈ H, and v ∈ C = U . Then

(f IC u)v = ((f IC u)(1 IC v)⊗F 1)

= (f IC uv)⊗F 1 =
[(

1 IC u(1)v(1)
)(
S
((
u(2)v(2)

))
f IC 1

)]
⊗F 1

=
(
1 IC u(1)v(1)

)
⊗F ε

(
S
((
u(2)v(2)

))
f
)

= (1 IC uv)⊗F ε(f) = ε(f)uv.

One easily checks that for any bicrossed product Hopf algebra F IC U , the Hopf algebra U is
an H-module coalgebra via this action.

Example 2.10. Consider any bicrossed product Hopf algebra H = F IC U where U is a cocom-
mutative Hopf algebra. We have seen that C = U is an H-module coalgebra by the following
action

(f IC u)v = ε(f)uv. (2.6)

Since U is cocommutative, it is obvious that H acts on C cocommutatively. Therefore any
comodule M over H with the trivial action defines a UH-SAYD module.
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Example 2.11. Consider any bicrossed product Hopf algebra H = F IC U where U is a co-
commutative Hopf algebra. Consider the module coalgebra U with the action defined in (2.6).
We show that H acts on U cocommutatively. First let us recall that

∆(f IC u) = f (1) IC u(1)〈0〉 ⊗ f
(2)u

(1)
〈1〉 IC u〈2〉.

Using the cocommutativity of U , for h := f IC u we get

h(1)v1 ⊗ h(2)v2 = ε
(
f (1)

)
u
(1)
〈0〉v

1 ⊗ ε
(
f (2)u

(1)
〈1〉
)
u(2)v2,

ε(f)u(1)v1 ⊗ u(2)v2 = ε(f)u(2)v2 ⊗ u(1)v1 = h(2)v1 ⊗ h(1)v2.

Therefore any module M over H, providing it with the trivial coaction of H, defines a UH-HCC.
As an example the co-opposite Hopf algebra of Connes–Moscovici Hopf algebra Hcop

1
∼= F IC U

acts cocommutatively on U .

Here we introduce an example of CH-HHC which is not a CH-SAYD module. We have shown
that if H acts on C cocommutatively then any module M defines an CH-HHC. Indeed in this
example, we introduce a triple (H,C,M) such that H acts on C cocommutatively but M is not
a CH-SAYD module.

Example 2.12. Consider H = Hcop
1
∼= F IC U . We have seen that C = U is a H-module

coalgebra by the action (f IC u)v = ε(f)uv and that this action is a cocommutative action by
Example 2.11. Now let M = H be a right H-module via multiplication and left H-comodule by
trivial coaction. Since the action is cocommutative, it is a UH-HCC module. We show that M
is not a CH-SAYD. Let f IC u := δ1 ⊗X ∈ H, c := X ∈ U , and m := 1 IC 1 ∈ M . First we
notice that

(f IC u)(1) ⊗ (f IC u)(2) ⊗ (f IC u)(3)

= f (1) IC u(1)〈0〉 ⊗ f
(2)u

(1)
〈1〉 IC u

(2)
〈0〉 ⊗ f

(3)u
(1)
〈2〉u

(2)
〈1〉 IC u

(3). (2.7)

After substituting into the AYD condition we observe that

S
(
(f IC u)(3)

)
(f IC u)(1)c⊗m(f IC u)(2)

= S
(
f (3)u

(1)
〈2〉u

(2)
〈1〉 IC u

(3)
)(
f (1) IC u(1)〈0〉

)
c⊗mf (2)u(1)〈1〉 IC u

(2)
〈0〉

= S
(
f (2)u

(1)
〈2〉u

(2)
〈1〉 IC u

(3)
)
u
(1)
〈0〉c⊗mf

(1)u
(1)
〈1〉 IC u

(2)
〈0〉

=
(
1 IC S

(
u
(3)
〈0〉
))(

S
(
f (2)u

(1)
〈2〉u

(2)
〈1〉u

(3)
〈1〉
)
IC 1

)
u
(1)
〈0〉c⊗mf

(1)u
(1)
〈1〉 IC u

(2)
〈0〉

= S
(
X(3)

)
X

(1)
〈0〉X ⊗ (1 IC 1)

(
δ1X

(1)
〈1〉 IC X

(2)
)

= X〈0〉X ⊗ (δ1X〈1〉 IC 1) +X ⊗ (δ1 IC X) + S(X)X ⊗ (δ1 IC 1)

= X2 ⊗ (δ1 IC 1) + Y X ⊗
(
δ21 IC 1

)
+X ⊗ (δ1 IC X)−X2 ⊗ (δ1 IC 1)

= X ⊗ (δ1 IC X) + Y X ⊗
(
δ21 IC 1

)
6= X ⊗ (δ1 IC X) = c⊗mh.

2.3 Relation to Kaygun’s cyclic cohomology of bialgebras

In this subsection we first recall the bialgebra cyclic cohomology developed by Kaygun in [8]
and then show that for any CH-SAYD module the result of these two cohomology coincide.

Let H be a bialgebra, C be an H-module coalgebra, M be a right module and left comodule
over H.

We let H act on Cn(C,M) from left by

Lg(m⊗ c0 ⊗ · · · ⊗ cn) = mS
(
g(1)
)
⊗ g(2)c0 ⊗ · · · ⊗ g(n+2)cn,
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and defines the following subspace of Cn(H,M)

Wn(C,M) :=
{[
Lg, τ

i
]
(Cn(H,M)) | g ∈ H, i ∈ Z+

}
.

Here [Lg, τ ] := Lgτ − τLg.
Let us see that W is stable under cyclic structure of C∗(C,M). Indeed for τ we simply see

that

τ
[
Lg, τ

i
]

= [τ, Lg]τ
i +
[
Lg, τ

i+1
]
.

For ∂m, where 0 ≤ m ≤ n, we use the identity ∂mτ = τ∂m+1 and the fact that ∂mLg = Lg∂m to
see that

∂m
[
Lg, τ

i
]

= [Lg, τ ]∂m+1.

For ∂n+1 = τ∂0 we have

∂0
[
Lg, τ

i
]

= τ
[
Lg, τ

i
]
∂1 = [τ, Lg]τ

i∂1 +
[
Lg, τ

i+1
]
∂1.

Using the facts that Lgσj = σjLg and τσj = σj−1τ , we see that for 1 ≤ j ≤ n, we have

σj
[
Lg, τ

i
]

=
[
Lg, τ

i
]
σj−1.

Finally for σ0 = σnτ we obtain

σ0
[
Lg, τ

i
]

= σnτ
[
Lg, τ

i
]

= [τ, Lg]σn−1τ
i +
[
Lg, τ

i+1
]
σn−1.

So C∗(C,M)
W ∗(C,M) is a paracocyclicH-module. This paracocyclic module is denoted by PCM∗(C,M)

in [8]. On the other hand if M is stable then

τn+1(m⊗ c0 ⊗ · · · ⊗ cn) = m〈0〉 ⊗m〈−n−1〉c0 ⊗ · · · ⊗m〈−1〉cn
= m〈0〉m〈−n−3〉S(m〈−n−2〉)⊗m〈−n−1〉c0 ⊗ · · · ⊗m〈−1〉cn
= Lm〈−2〉(m〈0〉m〈−1〉 ⊗ c0 ⊗ · · · ⊗ cn) = Lm〈−1〉(m〈0〉 ⊗ c0 ⊗ · · · ⊗ cn),

which proves that the paracocyclic module CM∗(C,M) := C⊗HPCM∗(C,M) is in fact a cocyclic
module.

Proposition 2.13. Let H be a Hopf algebra, C be an H-module coalgebra, and M be a CH-
SAYD module. Then W ⊆ kerπ, where π : Cn(C,M)→ CnH(C,M) is the canonical projection.

Proof. Let us fix m⊗ c0 ⊗ · · · ⊗ cn ∈ Cn(C,M). Using the CH-SAYD property of M , we see
that

τLg(m⊗ c0 ⊗ · · · ⊗ cn) = τ
(
mS
(
g(1)
)
⊗ g(2)c0 ⊗ · · · ⊗ g(n+2)cn

)
=
(
mS
(
g(1)
))
〈0〉 ⊗ g

(3)c1 ⊗ · · · ⊗ g(n+2)cn ⊗
(
mS
(
g(1)
))
〈−1〉g

(2)c0

= m〈0〉S
(
g(2)
)
⊗ g(5)c1 ⊗ · · · ⊗ g(n+2)cn ⊗ S2

(
g(1)
)
m〈−1〉S

(
g(3)
)
g(4)c0

= m〈0〉S
(
g(2)
)
⊗ g(3)c1 ⊗ · · · ⊗ g(n+2)cn ⊗ S2

(
g(1)
)
m〈−1〉c0.

On the other hand we have

Lgτ(m⊗ c0 ⊗ · · · ⊗ cn) = Lg(m〈0〉 ⊗ c1 ⊗ · · · ⊗ cn ⊗m〈−1〉c0)

= m〈0〉S
(
g(1)
)
⊗ g(2)c1 ⊗ · · · ⊗ g(n+1)cn ⊗ g(n+2)m〈−1〉c0.

So π(τLg(m⊗ c0 ⊗ · · · ⊗ cn)) = ε(g)τ(m⊗ c0 ⊗ · · · ⊗ cn) = π(Lgτ(m⊗ c0 ⊗ · · · ⊗ cn)).
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To finish the proof one uses the facts that, by Proposition 2.6, τ on CH(C,M) is well-defined,
and that [Lg,−] is a derivation. Indeed,

π
([
Lg, τ

i
]
(m⊗ c0 ⊗ · · · ⊗ cn)

)
= π

(
[Lg, τ ]τ i−1(m⊗ c0 ⊗ · · · ⊗ cn)

)
+ τ i−1π([Lg, τ ](m⊗ c0 ⊗ · · · ⊗ cn)) = 0. �

Finally we prove the main result of this subsection.

Proposition 2.14. Let H be a Hopf algebra, C be an H-module coalgebra, and M be a CH-
SAYD module. Then CM∗(C,M) and C∗H(C,M) are isomorphic as cocyclic modules.

Proof. The proof is similar to the case of of the SAYD modules [8]. By Proposition 2.13 we
have the H-linear map between paracocyclic modules

π : PCMn(C,M) −→ CnH(H,M).

Here we assume that the action of H on CnH(C,M) is trivial. It is easily seen that

∂(Lg(m⊗ c0 ⊗ · · · ⊗ cn)) = ε(g)π(m⊗ c0 ⊗ · · · ⊗ cn).

So π induces a map of cocyclic modules

Π : CMn(C,M) −→ CnH(C,M).

On the other hand since W ∗ is a para-cocyclic submodule of C∗(C,M) we have projections of
para-cocyclic modules.

π′ : Cn(C,M) −→ CMn(C,M).

Let us check that π′ is balanced over H. In the following we use [x] as the class of x ∈ Cn(C,M)
in PCMn(C,M) and 1 ∈ C as the generator of C as trivial H-module.

π′(mg ⊗ c0 ⊗ · · · ⊗ cn) = 1⊗H [mg ⊗ c0 ⊗ · · · ⊗ cn] = 1⊗H
[
mg(1)ε

(
g(2)
)
⊗ c0 ⊗ · · · ⊗ cn

]
= 1⊗H

[
mg(1)S

(
h(2)

)
⊗ h(3)c0 ⊗ · · · ⊗ h(n+3)cn

]
= 1⊗H

[
m⊗ g(1)c0 ⊗ · · · ⊗ g(n+1)cn

]
= π′(m⊗ g(1)c0 ⊗ · · · ⊗ g(n+1)cn).

So π′ induces a map of cocyclic modules

Π′ : CnH(C,M) −→ CMn(C,M).

It is obvious that Π and Π′ are inverse to each other. �

2.4 The AH-SAYD and HCC modules for module algebras

Let A be a left H-module algebra and M be a right-left SAYD module over H. We notice
that M ⊗ A⊗(n+1) is a right H-module via (m ⊗ ã)h := mh(1) ⊗ S(h(2))ã and the right H-
module structure of the ground field C is given by rh := ε(h)r for all r ∈ C and h ∈ H. It
is shown that the following cocyclic structure on the space of right H-linear homomorphisms
CnH(A,M) := HomH(M ⊗A⊗(n+1),C) is well-defined [6]

(dif)(m⊗ ã) = f(m⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an), 0 ≤ i < n,

(dnf)(m⊗ ã) = f
(
m〈0〉 ⊗

(
S−1

(
m〈−1〉

)
an
)
a0 ⊗ a1 ⊗ · · · ⊗ an−1

)
,

(snf)(m⊗ ã) = f(m⊗ a0 ⊗ · · · ⊗ ai ⊗ 1⊗ · · · ⊗ an), 0 ≤ i ≤ n,
(tnf)(m⊗ ã) = f(m〈0〉 ⊗ S−1(m〈−1〉)an ⊗ a0 ⊗ · · · ⊗ an−1). (2.8)

where ã = a0 ⊗ · · · ⊗ an.
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Definition 2.15. Let A be a left H-module algebra. A right-left module-comodule M over H
is called an AH-SAYD module if for all m ∈M , h ∈ H, a ∈ A and ϕ ∈ C∗H(A,M)

i) S−1((mh)〈−1〉)a⊗ (mh)〈0〉 = S−1
(
m〈−1〉h

(1)
)
h(3)a⊗m〈0〉h(2),

ii) ϕ(m〈0〉 ⊗ S−1(m〈−1〉)a0 ⊗ · · · ⊗ an) = ϕ(m⊗ ã).

Here the action of H on A⊗(n+1) is diagonal. We use the symbol AH-SAYD for the category
whose objects are AH-SAYD modules and whose morphisms are H-module and H-comodule
morphisms

Lemma 2.16. Let A be an H-module algebra. Then any SAYD module over H is an AH-SAYD
module.

Proof. One easily checks that the following properties are satisfied: i) m〈0〉S
−1(m〈−1〉) = m,

ii) ϕ(m⊗hã)=ϕ(mh⊗ã) if and only if ϕ∈C∗H(A,M), i.e. ϕ(mh(1)⊗S(h(2))ã) = ε(h)ϕ(m⊗ã). �

Definition 2.17. Let A be an algebra and an H-module (not necessarily an H-module algebra).
A module-comodule M over H is called an AH-Hopf cyclic coefficients (AH-HCC), if the cosim-
plicial and cyclic operators on C∗H(A,M) are well-defined and turn it into a cocyclic module.
Here the action of H on A⊗(n+1) is diagonal. We use the symbol AH-HCC for the category whose
objects are AH-HCC modules and whose morphisms are H-module and H-comodule morphisms.

Proposition 2.18. Let A be a left H-module algebra. Then any AH-SAYD module is an AH-
HCC.

Proof. Let M be a right-left AH-SAYD module. To show that M is AH-HCC it is enough to
check that the cyclic map is well-defined

(tnf)((m⊗ a0 ⊗ · · · ⊗ an)h) = (tnf)
(
mh(1) ⊗ S

(
h(2)

)
(a0 ⊗ · · · ⊗ an)

)
= (tnf)

(
mh(1) ⊗ S

(
h(n+2)

)
a0 ⊗ · · · ⊗ S

(
h(2)

)
an
)

= f
((
mh(1)

)
〈0〉 ⊗ S

−1((mh(1))〈−1〉)S(h(2))an ⊗ S(h(n+3)
)
a0 ⊗ · · · ⊗ S

(
h(3)

)
an−1

)
= f

(
m〈0〉h

(2) ⊗ S−1
(
S
(
h(3)

)
m〈−1〉h

(1)
)
S
(
h(4)

)
an ⊗ S

(
h(n+4)

)
a0 ⊗ · · · ⊗ S

(
h(5)

)
an−1

)
= f

(
m〈0〉h

(2) ⊗ S−1
(
h(1)

)
S−1(m〈−1〉)h

(3)S
(
h(4)

)
an ⊗ S

(
h(n+4)

)
a0 ⊗ · · · ⊗ S

(
h(5)

)
an−1

)
= f

(
m〈0〉 ⊗ h(2)

[
S−1

(
h(1)

)
S−1(m〈−1〉)an ⊗ S

(
h(n+2)

)
a0 ⊗ · · · ⊗ S

(
h(3)

)
an−1

])
= f

(
m〈0〉 ⊗ h(2)S−1

(
h(1)

)
S−1(m〈−1〉)an ⊗ h(3)S

(
h(2n+2)

)
a0 ⊗ · · · ⊗ h(n+2)S

(
h(n+3)

)
an−1

)
= f(m〈0〉 ⊗ S−1(m〈−1〉)an ⊗ a0 ⊗ · · · ⊗ an−1)ε(h)

= (tnf)(m⊗ a0 ⊗ · · · ⊗ an)ε(h) = ((tnf)(m⊗ a0 ⊗ · · · ⊗ an))h.

To prove the cyclicity, using the AH-stability condition we have(
tn
n+1f

)
(m⊗ a0 ⊗ · · · ⊗ an) = (tnf)

(
m〈0〉 ⊗ S−1(m〈−1〉)a1 ⊗ · · · ⊗ an ⊗ a0

)
= (tnf)(m⊗ a1 ⊗ · · · ⊗ an ⊗ a0) = f(m⊗ a0 ⊗ · · · ⊗ an). �

Lemma 2.19. Let A be a left H-module algebra, and (δ, σ) be a modular pair and AH-in
involution, i.e.

S−2δ (h)a = σ−1hσa, for any a ∈ A, h ∈ H.

Then σCδ is an AH-SAYD module.
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Proof. The following computations show the AH-AYD condition

S−1
(
(1Ah)〈−1〉

)
a⊗ (1Ah)〈0〉 = δ(h)S−1(σ)a⊗ 1 = σ−1δ

(
h(1)

)
S
(
h(2)

)
h(3)a⊗ 1

= σ−1Sδ
(
h(1)

)
σσ−1h(2)a⊗ 1 = S−2δ

(
Sδ
(
h(1)

))
σ−1h(2)a⊗ 1

= S−1
(
h(1)

)
σ−1h(3)a⊗ δ

(
h(2)

)
= S−1

(
1〈−1〉h

(1)
)
h(3)a⊗ 1〈0〉h

(2).

The stability condition is obvious from the modular pair condition. �

Proposition 2.20. Let (δ, σ) be a modular pair for H and A be a left H-module algebra. We
define the following subspace of A

B =
{
a ∈ A

∣∣S−2δ (h)a = σ−1hσa, for all h ∈ H
}
.

Then B is an H-module subalgebra of A and (δ, σ) is a BH-modular pair in involution.

Proof. It is obvious that 1 ∈ B. Since A is an H-module algebra, σ is a group-like element
and S−2δ is a coalgebra map, the following computation shows that B is a subalgebra of A

S−2δ (h)(ab) =
(
S−2δ

(
h(1)

)
a
)(
S−2δ

(
h(2)

)
b
)

=
(
σ−1h(1)σa

)(
σ−1h(2)σb

)
= σ−1hσ(ab).

Let h ∈ H and b ∈ B. The following computation shows that hb ∈ B and therefore that B
is a left H-module

σ−1kσ(hb) =
(
σ−1(kσhσ−1)σ

)
b = S−2δ (kσhσ−1)b

= S−2δ (k)
[
S−2δ (σhσ−1)b

]
= S−2δ (k)σ−1

(
σhσ−1

)
σb = S−2δ (k)(hb).

Therefore B is an H-module subalgebra of A and (δ, σ) is a BH-modular pair in involution. �

Lemma 2.21. Let A be a left H-module algebra. If the action of H on A is cocommutative, i.e.

h(1)a1 ⊗ h(2)a2 = h(2)a1 ⊗ h(1)a2, h ∈ H, a1, a2 ∈ A, (2.9)

then any module M over H, with the trivial coaction of H, defines an AH-HCC.

Proof. The AH-stability condition is obvious by the triviality of the coaction. Since A is
assumed to be H-module algebra it suffices to show that the cyclic map τ is well-defined

(tnf)((m⊗ a0 ⊗ · · · ⊗ an)h) = (tnf)
(
mh(1) ⊗ S

(
h(n+1)

)
a0 ⊗ · · · ⊗ S

(
h(2)

)
an
)

= f
(
mh(1) ⊗ S

(
h(2)

)
an ⊗ S

(
h(n+1)

)
a0 ⊗ · · · ⊗ S

(
h(3)

)
an−1

)
= f

(
mh(1) ⊗ S

(
h(n+1)

)
an ⊗ S

(
h(n)

)
a0 ⊗ · · · ⊗ S

(
h(2)

)
an−1

)
= f(m⊗ an ⊗ a0 ⊗ · · · ⊗ an−1)ε(h) = (tnf)(m⊗ a0 ⊗ · · · ⊗ an)ε(h).

We use (2.9) in the third equality. �

Lemma 2.22. Let A be a left H-module algebra. If H acts on A commutatively, i.e.

hga = gha, h, g ∈ H, a ∈ A,

then any comodule M over H, endowed with the trivial action from H, defines an AH-SAYD
module.
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Proof. The AH-stability condition is obvious. The following computation proves the AH-AYD
condition

ε(h)S−1(m〈−1〉)a⊗m〈0〉 = h(2)S−1
(
h(1)

)
S−1(m〈−1〉)a⊗m〈0〉

= S−1
(
m〈−1〉h

(1)
)
h(2)a⊗m〈0〉 = S−1

(
m〈−1〉h

(1)
)
h(3)a⊗m〈0〉h(2).

We use the commutativity of the action on the second equality. �

Here we introduce an example of the preceding lemma.

Example 2.23. Similar to Example 2.9, let G be a group acting normally on a set X from
the right and H = CG be the group algebra of G acting on A = Fun(X,C), the commutative
algebra of all complex valued functions on X, by (gf)(x) = f(xg). It is easy to check that A is
a left H-module algebra and furthermore that this action is commutative.

One notes that for any bicrossed product Hopf algebra H = F IC U , the Hopf algebra F is
an H-module algebra by the following action

(f IC u)g := ε(f)(ug), f, g ∈ F , u ∈ U . (2.10)

Example 2.24. Let H := F IC U be any bicrossed product Hopf algebra where U is a co-
commutative Hopf algebra. Then the following computation proves that the action in (2.10) is
cocommutative

(f IC u)(1)v1 ⊗ (f IC u)(2)v2 =
(
f (1) IC u(1)〈0〉

)
v1 ⊗

(
f (2)u

(1)
〈1〉 IC u

(2)
)
v2

= ε
(
f (1)

)
u
(1)
〈0〉v1 ⊗ ε

(
f (2)u

(1)
〈1〉
)
u(2)v2 = ε(f)u(1)v1 ⊗ u(2)v2 = (f IC u)(2)v1 ⊗ (f IC u)(1)v2.

Therefore any module M over H, with the trivial coaction of H, defines a FH-HCC.

Here we introduce an example which shows that the categories of AH-HCC and AH-SAYD
modules are different. In fact we introduce an example of an AH-HCC module which is not
a AH-SAYD.

Example 2.25. Consider H = Hcop
1
∼= F IC U and let M = H be a right H-module via

multiplication and left comodule by trivial coaction. We have seen that the Hopf algebra F
is a left H-module algebra by the action defined in (2.10) and this action is a cocommutative
action by Example 2.24 and therefore that M is a FH-HCC module. We show that M is not
a FH-AYD. First one notices that using the formula

S−1(h) = δ
(
S
(
h(3)

))
δ
(
h(1)

)
S
(
h(2)

)
,

we obtain

S−1(δ1 IC 1) = −δ1 IC 1, S−1(δ2 IC 1) = −δ2 IC 1,

S−1(δ1 IC Y ) = δ1 IC Y + δ1 IC 1, S−1(1 IC Y ) = −1 IC Y,

S−1(1 IC X) = −(1 IC X) + (δ1 IC Y ),

S−1
(
δ21 IC Y

)
= −S−1

(
2δ21 IC 1

)
−
(
δ21 IC Y

)
,

S−1(δ1 IC X) = (δ1 IC X)− (δ2 IC 1)−
(
δ21 IC Y

)
.

Using (2.7) and the triviality of the coaction, by substituting h = δ1 IC X, m = 1 IC 1 and
a = δ1 into the FH-AYD condition we have

S−1((δ1 IC X)(1))(δ1 IC X)(3)δ1 ⊗m(δ1 IC X)(2)
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= S−1
(
δ
(1)
1 IC X(1)

〈0〉
)(
δ
(3)
1 X

(1)
〈2〉X

(2)
〈1〉 IC X

(3)
)
δ1 ⊗ (1 IC 1)

(
δ
(2)
1 X

(1)
〈1〉 IC X

(2)
〈0〉
)

= S−1
(
δ
(1)
1 IC X(1)

〈0〉
)
X(3)δ1 ⊗

(
δ
(2)
1 X

(1)
〈1〉 IC X

(2)
)

= S−1
(
δ
(1)
1 IC X〈0〉

)
δ1 ⊗

(
δ
(2)
1 X〈1〉 IC 1

)
+ S−1

(
δ
(1)
1 IC 1

)
δ1 ⊗

(
δ
(2)
1 IC X

)
+ S−1

(
δ
(1)
1 IC 1

)
Xδ1 ⊗

(
δ
(2)
1 IC 1

)
= S−1

(
δ
(1)
1 IC X

)
δ1 ⊗

(
δ
(2)
1 IC 1

)
+ S−1

(
δ
(1)
1 IC Y

)
δ1 ⊗

(
δ
(2)
1 δ1 IC 1

)
+ S−1

(
δ
(1)
1 IC 1

)
δ1 ⊗

(
δ
(2)
1 IC X

)
+ S−1

(
δ
(1)
1 IC 1

)
Xδ1 ⊗

(
δ
(2)
1 IC 1

)
= S−1(δ1 IC X)δ1 ⊗ (1 IC 1) + S−1(1 IC X)δ1 ⊗ (δ1 IC 1)

+ S−1(δ1 IC Y )δ1 ⊗ (1δ1 IC 1) + S−1(1 IC Y )δ1 ⊗ (δ1δ1 IC 1)

+ S−1(δ1 IC 1)δ1 ⊗ (1 IC X) + S−1(1 IC 1)δ1 ⊗ (δ1 IC X)

+ S−1(δ1 IC 1)Xδ1 ⊗ (1 IC 1) + S−1(1 IC 1)Xδ1 ⊗ (δ1 IC 1)

= ((δ1 IC X)− (δ2 IC 1)− (δ21 IC Y ))δ1 ⊗ (1 IC 1) + (−(1 IC X) + (δ1 IC Y ))δ1

⊗ (δ1 IC 1) + ((δ1 IC Y ) + δ1 IC 1)δ1 ⊗ (δ1 IC 1)− (1 IC Y )δ1 ⊗ (δ21 IC 1)

− (δ1 IC 1)δ1 ⊗ (1 IC X) + (1 IC 1)δ1 ⊗ (δ1 IC X)

− (δ1 IC 1)Xδ1 ⊗ (1 IC 1) + (1 IC 1)Xδ1 ⊗ (δ1 IC 1)

= −(Xδ1)⊗ (δ1 IC 1)− (Y δ1)⊗ (δ21 IC 1) + δ1 ⊗ (δ1 IC X) + (Xδ1)⊗ (δ1 IC 1)

= δ1 ⊗ (δ1 IC X)− δ1 ⊗ (δ21 IC 1)

6= δ1 ⊗ (δ1 IC X) = δ1 ⊗ (1 IC 1)(δ1 IC X).

3 Cup products in Hopf cyclic cohomology

In this section we show that all features of Hopf cyclic cohomology work well with the new
coefficients which we have defined in Section 2.1. One of the most important features of Hopf
cyclic cohomology is its cup product [9, 10, 14] as a generalization of the Connes–Moscovici
characteristic map [4]. We show that this cup product works well with the new coefficients in
this paper. One may construct an AYD module over a Hopf algebra as the tensor product of
a YD module with a AYD module [6, 16]. This shows that the category of AYD modules is
a C-category over the category of YD-modules. In this section we show the same expectation
for generalized modules is satisfied. In other words we prove that the category of CH-SAYD
modules is a C-category over the category of CH-YD modules.

Definition 3.1. Let C be a left H-module coalgebra. A left-right module-comodule M over H
is called an CH-YD module if for m ∈M , h ∈ H, and c ∈ C we have

(mh)〈−1〉c⊗ (mh)〈0〉 = S−1
(
h(3)

)
m〈−1〉h

(1)c⊗m〈0〉h(2).

Lemma 3.2. Let M and N be right-left CH-anti-Yetter–Drinfeld and Yetter–Drinfeld module
respectively. Then M ⊗N is an CH-anti-Yetter–Drinfeld module via

(m⊗ n)h = mh(2) ⊗ nh(1), m⊗ n 7−→ m〈−1〉n〈−1〉 ⊗m〈0〉 ⊗ n〈−1〉.

Proof. The following computation shows that M ⊗N is an CH-anti-Yetter–Drinfeld module

((m⊗ n)h)〈−1〉c⊗ ((m⊗ n)h)〈0〉 =
(
mh(2) ⊗ nh(1)

)
〈−1〉c⊗

(
mh(2) ⊗ nh(1)

)
〈0〉

=
(
mh(2)

)
〈−1〉(nh

(1))〈−1〉c⊗
(
mh(2)

)
〈0〉 ⊗

(
nh(1)

)
〈0〉

= S
(
h(6)

)
m〈−1〉h

(4)S−1
(
h(3)

)
n〈−1〉h

(1)c⊗m〈0〉h(5) ⊗ n〈0〉h(2)
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= S
(
h(4)

)
m〈−1〉n〈−1〉h

(1) ⊗m〈0〉h(3) ⊗ n〈0〉h(2)

= S
(
h(3)

)
(m⊗ n)〈−1〉h

(1) ⊗ (m⊗ n)〈0〉h
(2). �

The rest of this section is devoted to the cup product in Hopf cyclic cohomology with gene-
ralized coefficients.

Let C be an H-left module coalgebra acting from left on an H-left module algebra A satisfying
the following conditions

(hc)a = h(ca), c(ab) =
(
c(1)a

)(
c(2)b

)
, c1 = ε(c)1. (3.1)

Let B = HomH(C,A) denotes the convolution algebra of all H-linear maps from C to A with
the following multiplication

(f ∗ g)(c) = f
(
c(1)
)
g
(
c(2)
)
.

This algebra has the unit element η ◦ ε where η : C −→ A is the unit of A. Let C∗H(C,M)
and C∗H(A,M) be the cocyclic modules which are defined in (2.1) and (2.8) where M ’s are
right-left CH and AH-SAYD modules respectively. Consider the diagonal complex

Cn,na,c = CnH(C,M)⊗ CnH(A,M) = HomH

(
M ⊗A⊗n+1,C

)
⊗
(
M ⊗H C⊗(n+1)

)
,

which is a cocyclic module by the following coface, codegeneracy and cyclic maps, (dn⊗ δn, sn⊗
σn, tn ⊗ τn). For all ϕ ∈ HomH(M ⊗ A⊗n+1,C), fi ∈ B and m⊗ c̃ ∈M ⊗H C⊗(n+1), we define
the following map

Ψa,c : Cn,na,c −→ Hom
(
B⊗(n+1),C

)
,

Ψa,c(ϕ⊗m⊗ c0 ⊗ · · · ⊗ cn)(f0 ⊗ · · · ⊗ fn) = ϕ(m⊗H f0(c0)⊗ · · · ⊗ fn(cn)).

Similar to [14] one has the following statement.

Lemma 3.3. The map Ψa,c is a well-defined map of cocyclic modules C∗,∗ and C∗(B).

Using (3.1), one shows that the following map is an unital algebra map

χ : A −→ HomH(C,A),

χ(a)(c) = c(a).

Therefore we obtain a cyclic map χ : C∗(B,C) −→ C∗(A,C). As a result we have the following
cyclic map

Ψ = χ ◦Ψa,c : Cn,na,c −→ Cn(A,C).

Now we define

Cp,qa,c =
⊕
p+q=n

CpH(A,M)⊗ CqH(C,M),

to be a tensor product of cocyclic modules which has a mixed complex structure [2, 12]. The
cyclic cohomology of this mixed complex is⊕

p,q

HCpH(A,M)⊗HCqH(C,M).

As in [14], one uses the Alexander–Whitney map to obtain the following map

AW : HCpH(A,M)⊗HCqH(C,M) −→ HCp+q(Cp,qa,c ) −→ HCn(Cn,na,c ).

Now we obtain the following statement.
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Proposition 3.4. Let C be an H-left module coalgebra acting from the left on an H-left module
algebra A satisfying (3.1). Let M be an AH and CH-SAYD module, and let C∗H(C,M) and
C∗H(A,M) be the cocyclic modules which are defined in (2.1) and (2.8). The following maps
define cup products on the level of Hopf cyclic cohomology

t = Ψ ◦AW : HCpH(A,M)⊗HCqH(C,M) −→ HCp+q(A).

Proof. This can be proved similarly as the author did in [14]. �
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[15] Rangipour B., Sütlü S., SAYD modules over Lie–Hopf algebras, Comm. Math. Phys. 316 (2012), 199–236,
arXiv:1108.6101.

[16] Staic M.D., A note on anti-Yetter–Drinfeld modules, in Hopf algebras and generalizations, Contemp. Math.,
Vol. 441, Amer. Math. Soc., Providence, RI, 2007, 149–153.

http://dx.doi.org/10.1007/s00220-008-0540-3
http://dx.doi.org/10.1007/s00220-008-0540-3
http://arxiv.org/abs/0705.3190
http://dx.doi.org/10.1007/s002200050477
http://dx.doi.org/10.1007/s002200050477
http://arxiv.org/abs/math.DG/9806109
http://dx.doi.org/10.1016/j.crma.2003.11.036
http://arxiv.org/abs/math.KT/0306288
http://dx.doi.org/10.1016/j.crma.2003.11.037
http://arxiv.org/abs/math.QA/0405005
http://dx.doi.org/10.1017/S0024611506015772
http://dx.doi.org/10.1017/S0024611506015772
http://arxiv.org/abs/math.KT/0307099
http://dx.doi.org/10.1007/s10977-005-1501-7
http://arxiv.org/abs/math.KT/0409191
http://dx.doi.org/10.4310/HHA.2008.v10.n2.a5
http://arxiv.org/abs/0710.2559
http://dx.doi.org/10.1016/j.crma.2004.10.025
http://arxiv.org/abs/math.QA/0411003
http://dx.doi.org/10.4310/HHA.2011.v13.n1.a12
http://arxiv.org/abs/1011.3471
http://dx.doi.org/10.1007/978-3-662-21739-9
http://dx.doi.org/10.1016/j.aim.2008.09.017
http://dx.doi.org/10.1016/j.aim.2008.09.017
http://arxiv.org/abs/0803.1320
http://dx.doi.org/10.4310/HHA.2008.v10.n2.a14
http://arxiv.org/abs/0710.2623
http://dx.doi.org/10.1007/s00220-012-1586-9
http://arxiv.org/abs/1108.6101
http://dx.doi.org/10.1090/conm/441/08503

	1 Introduction
	2 Hopf cyclic cohomology coefficients
	2.1 The CH-SAYD modules for module coalgebras
	2.2 HCC modules for coalgebras
	2.3 Relation to Kaygun's cyclic cohomology of bialgebras
	2.4 The AH-SAYD and HCC modules for module algebras

	3 Cup products in Hopf cyclic cohomology
	References

