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Abstract. We determine explicitly the center of the twisted graded Hecke algebras asso-
ciated to homocyclic groups. Our results are a generalization of formulas by M. Douglas
and B. Fiol in [J. High Energy Phys. 2005 (2005), no. 9, 053, 22 pages].
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1 Main results

The notion of twisted graded Hecke algebras was introduced by S. Witherspoon in [10]; they
are variants of the graded Hecke algebras of V. Drinfel’d [4] and G. Lusztig [6] (see also [7])
and twisted symplectic reflection algebras of T. Chmutova [2]. To a finite dimensional complex
vector space V , a finite subgroup G of GL(V ), and a 2-cocycle α of G, the associated twisted
graded Hecke algebra H is, by definition, a Poincaré–Birkhoff–Witt deformation of the crossed-
product algebra SV#αG, where SV denotes the symmetric algebra of V . The center of SV#αG
is (SV )G, and it is a natural question to determine the center of H. In the non-twisted case, the
center of the graded Hecke algebra associated to a finite real reflection group was determined
by G. Lusztig in [5, Theorem 6.5]. In this paper, we determine the center of H for the twisted
graded Hecke algebra in [10, Example 2.16], where V = Cn and G is isomorphic to a homocyclic
group (Z/`Z)n−1. (By a homocyclic group, we mean a direct product of cyclic groups of the
same order.) In this example, the algebra H is finitely generated as a module over its center;
the center of H therefore plays an important role in the representation theory of H. We show
that the center of H is generated by n+ 1 elements subject to one relation, which we determine
explicitly. Our results are a generalization of formulas by M. Douglas and B. Fiol who considered
the special case when n = 3 in their paper [3] on C3/(Z/`Z)2 orbifolds with discrete torsion.

We state our main results in this section and give the proofs in Section 2. We shall work
over C. Let n be an integer ≥ 3, and ` an integer ≥ 2. Let V = Cn and let x1, . . . , xn be the
standard basis of V . Let G be the subgroup of SLn(C) consisting of all diagonal matrices g
satisfying g` = 1. Let ζ be a primitive `-th root of unity.

Notation 1.1. All subscripts are taken modulo n. For example, xn+1 = x1.

?This paper is a contribution to the Special Issue on New Directions in Lie Theory. The full collection is
available at http://www.emis.de/journals/SIGMA/LieTheory2014.html
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For i = 1, . . . , n, let gi be the element of G such that

gi(xj) =


ζxj , if j = i,

ζ−1xj , if j = i+ 1,

xj , else.

Observe that gn = g−11 · · · g
−1
n−1. We have an isomorphism (Z/`Z)n−1

∼−→ G defined by sending
(1, 0, . . . , 0), . . . , (0, . . . , 0, 1) to g1, . . . , gn−1, respectively.

Define the 2-cocycle α : G×G→ C× of G by

α
(
gi11 · · · g

in−1

n−1 , g
j1
1 · · · g

jn−1

n−1
)

= ζ−i1j2−i2j3−···−in−2jn−1 .

If E is an algebra, an action of G on E is a homomorphism G → Aut(E). Recall that for any
algebra E and an action of G on E, one has the crossed product algebra E#αG. As a vector
space, E#αG is E ⊗ CG; the product is defined by

(r ⊗ g)(s⊗ h) = α(g, h)r(g · s)⊗ gh

for all r, s ∈ E and g, h ∈ G. If g, h ∈ G, then we shall denote their product in E#αG by g ∗ h;
thus,

g ∗ h = α(g, h)gh.

One has, for any i, j ∈ {1, . . . , n} with |i− j| /∈ {1, n− 1},

gi+1 ∗ gi = ζgi ∗ gi+1, gi ∗ gj = gj ∗ gi.

Let t = (t1, . . . , tn) ∈ Cn, and write TV for the tensor algebra of V . Following [10, Example 2.16],
we make the following definition.

Definition 1.2. Let H be the associative algebra defined as the quotient of TV#αG by the
relations:

xixi+1 − xi+1xi = tigi, xixj − xjxi = 0

for all i, j ∈ {1, . . . , n} with |i− j| /∈ {1, n− 1}.

Remark 1.3. By [10, Theorem 2.10] and [10, Example 2.16], the algebra H in Definition 1.2 is
a twisted graded Hecke algebra for G. (However, when n > 3 and ` = 2, this is not the most
general twisted graded Hecke algebra for G; see [10, Example 2.16] and [9, Example 5.1].)

Let C[y±1 , . . . , y
±
n ] be the algebra of Laurent polynomials in the variables y1, . . . , yn. The

group G acts on C[y±1 , . . . , y
±
n ] by

giy
p1
1 · · · y

pn
n = ζpi−pi+1yp11 · · · y

pn
n

for all i ∈ {1, . . . , n− 1} and p1, . . . , pn ∈ Z.

Proposition 1.4. There is an injective homomorphism

Θ : H −→ C[y±1 , . . . , y
±
n ]#αG

such that

Θ(xi) = yi −
(

ζti
ζ − 1

)
y−1i+1gi, (1.1)

Θ(gi) = gi (1.2)

for all i ∈ {1, . . . , n}.
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Let

I = {{i1 < · · · < ik} | k ≥ 0; i1, . . . , ik ∈ {1, . . . , n}},
J = {{i1 < · · · < ik} ∈ I | |ir − is| /∈ {1, n− 1} for all r, s}.

Define the elements δ, ε1, . . . , εn of Zn by

δ = (1, 1, . . . , 1), ε1 = (1, 1, 0, . . . , 0), ε2 = (0, 1, 1, 0, . . . ), . . . , εn = (1, 0, . . . , 0, 1).

Notation 1.5. For any variables ω1, . . . , ωn and p = (p1, . . . , pn) ∈ Zn, we denote by ωp the
expression ωp11 · · ·ω

pn
n .

We shall set

τi =
ti

ζ − 1
for i = 1, . . . , n− 1, τn =

ζtn
ζ − 1

.

Define the element w ∈ H by

w =
∑

{i1<···<ik}∈J

τi1 · · · τikx
δ−εi1−···−εik gi1 ∗ · · · ∗ gik .

Example 1.6. If n = 3, then

w = x1x2x3 + τ1x3g1 + τ2x1g2 + τ3x2g3 = x1x2x3 +
1

ζ − 1
(t1x3g1 + t2x1g2 + ζt3x2g3) .

In particular, if n = 3 and ` = 2, the formula for w is in [1, Lemma 7.1].

Theorem 1.7. The center of H is generated as an algebra by x`1, . . . , x
`
n, and w.

Let Z be the center of H. For r = 0, . . . , b`/2c, set

νr = (−1)r
`

`− r

(
`− r
r

)
,

and set

τ̃i = τ `i for i = 1, . . . , n− 1, τ̃n = (−1)n(`−1)τ `n.

We define a polynomial F in the n+ 1 variables a1, . . . , an and b by

F =
∑

{i1<···<ik}∈J

τ̃i1 · · · τ̃ika
δ−εi1−···−εik −

b`/2c∑
r=0

(−1)nrζ(n−2)rνr(τ1 · · · τn)rb`−2r. (1.3)

Corollary 1.8. The assignment

ai 7→ x`i for i = 1, . . . , n, b 7→ w (1.4)

defines an isomorphism

C[a1, . . . , an, b]/(F )
∼−→ Z. (1.5)

In the undeformed case, when t1 = · · · = tn = 0, the polynomial F is equal to a1 · · · an − b`.
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2 Proof of main results

Proof of Proposition 1.4. For i = 1, . . . , n − 1, we define Θ(xi), Θ(xn), and Θ(gi) by (1.1)
and (1.2). It follows from a straightforward verification that Θ is a well-defined homomorphism.

It remains to see that Θ is injective. Observe that H is spanned by the monomials xpg for
p = (p1, . . . , pn) ∈ Zn and g ∈ G, where p1, . . . , pn ≥ 0. We call p1 + · · ·+ pn the total degree of
the monomial xpg. The image of xpg under Θ is the sum of ypg with terms of strictly smaller
total degrees. Therefore, if α ∈ H is nonzero, we can write it as a sum α0 +α1 + · · · , where αk is
a linear combination of monomials xpg with total degree k. If k is the maximal integer with αk
nonzero, then Θ(αk) is nonzero, and hence Θ(α) is also nonzero. �

Remark 2.1. It follows from Proposition 1.4 that the monomials xp11 · · ·x
pn
n g for non-negative

integers p1, . . . , pn and g ∈ G form a basis for H (called the PBW basis of H). This was first
proved in [10, Example 2.16] using [10, Theorem 2.10].

We have an increasing filtration on H defined by setting deg(xi) = 1 and deg(g) = 0 for
all i ∈ {1, . . . , n}, g ∈ G. It is immediate from Remark 2.1 that the natural homomorphism
SV#αG→ grH is an isomorphism, where grH denotes the associated graded algebra of H.

The proof of (2.3) in the following lemma is the key calculation in this paper.

Lemma 2.2.

(i) One has:

Θ
(
x`i
)

= y`i − τ `i y−`i+1, (2.1)

Θ
(
x`n
)

= y`n − (−1)n(`−1)τ `ny
−`
1 , (2.2)

for all i ∈ {1, . . . , n− 1}.
(ii) One has:

Θ(w) = y1 · · · yn + (−1)nζn−2τ1 · · · τny−11 · · · y
−1
n . (2.3)

Proof. (i) To prove (2.1), we need to show that(
yi − ζτiy−1i+1gi

)
· · ·
(
yi − ζτiy−1i+1gi

)︸ ︷︷ ︸
`

= y`i − τ `i y−`i+1. (2.4)

Since giyi = ζyigi and giy
−1
i+1 = ζy−1i+1gi, the product on the left hand side of (2.4) is a linear

combination of yki y
k−`
i+1 g

`−k
i for k = 0, 1, . . . , `. Moreover, the coefficient of yki y

k−`
i+1 g

`−k
i in this

linear combination is the same as the coefficient of uk when we expand the product(
u− ζ`τi

)(
u− ζ`−1τi

)
· · · (u− ζτi) (2.5)

in the polynomial ring C[u]. Since the polynomial in (2.5) is equal to u` − τ `i , the identity (2.1)
follows. The proof of (2.2) is similar except that

gn ∗ · · · ∗ gn︸ ︷︷ ︸
`

= (−1)n(`−1).

(ii) For any h∗ = {h1 < · · · < hj} ∈ I, we let

h′∗ = {hr ∈ h∗ | hs − hr ∈ {1, 1− n} for some s},
χ(h∗) = |{hr ∈ h′∗ | hr 6= n}| − |{hr ∈ h′∗ | hr = n}|,
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E(h∗) = ζχ(h∗)τh1 · · · τhjy
δ−εh1−···−εhj gh1 ∗ · · · ∗ ghj .

Now suppose i∗ = {i1 < · · · < ik} ∈ J . Let D be the subset of {1, . . . , n} consisting of all d such
that d 6≡ ir, ir + 1 (mod n) for all r. We denote by d1 < · · · < dp the elements of D. Then

Θ
(
τi1 · · · τikx

δ−εi1−···−εik gi1 ∗ · · · ∗ gik
)

= τi1 · · · τik
(
yd1 −

ζtd1
ζ − 1

y−1d1+1gd1

)
· · ·
(
ydp −

ζtdp
ζ − 1

y−1dp+1gdp

)
gi1 ∗ · · · ∗ gik

= τi1 · · · τik
∑
S⊂D

Yd1(S) · · ·Ydp(S)gi1 ∗ · · · ∗ gik ,

where, for r = 1, . . . , p,

Ydr(S) =

{
ydr , if dr /∈ S,
−ζ(ζ − 1)−1tdry

−1
dr+1gdr , if dr ∈ S.

Setting h∗ = i∗ ∪ S, we obtain1

Θ
(
τi1 · · · τikx

δ−εi1−···−εik gi1 ∗ · · · ∗ gik
)

=
∑

{h∗∈I|i∗⊂h∗−h′∗}

(−1)|h∗|−|i∗|E(h∗).

Hence,

Θ(w) =
∑

{i1<···<ik}∈J

Θ
(
τi1 · · · τikx

δ−εi1−···−εik gi1 ∗ · · · ∗ gik
)

=
∑
i∗∈J

 ∑
{h∗∈I|i∗⊂h∗−h′∗}

(−1)|h∗|−|i∗|E(h∗)

 =
∑
h∗∈I

E(h∗)
∑

i∗⊂h∗−h′∗

(−1)|h∗|−|i∗|

 .

If |h∗| = n, then h′∗ = h∗. If |h∗| /∈ {0, n}, then h′∗ 6= h∗. Therefore,

E(h∗)
∑

i∗⊂h∗−h′∗

(−1)|h∗|−|i∗| =


y1 · · · yn if |h∗| = 0,

(−1)nζn−2τ1 · · · τny−11 · · · y−1n if |h∗| = n,

0 else.

�

Proof of Theorem 1.7. It is easy to see that the center of SV#αG is the algebra ofG-invariant
elements (SV )G of SV , and moreover, the algebra (SV )G is generated by x`i (i = 1, . . . , n) and
x1 · · ·xn.

Using Lemma 2.2, we see that

Θ
(
x`i
)

for i = 1, . . . , n, and Θ(w)

are in the center of C[y±1 , . . . , y
±
n ]#αG. Since the homomorphism Θ is injective, the elements x`i

(i = 1, . . . , n) and w are in the center of H. Since the principal symbols of x`1, . . . , x
`
n and w

in SV#αG are, respectively, x`1, . . . , x
`
n and x1 · · ·xn, the theorem follows from a standard

argument. �

1Note that if dr ∈ S but dr + 1 ∈ D − S, then the term gdr in Ydr (S) appears on the left of the term ydr+1

of Ydr+1(S) and one has gdrydr+1 = ζ−1ydr+1gdr . However, if n ∈ S but 1 ∈ D − S, then the term gn in Yn(S)
already appears to the right of the term y1 of Y1(S). This is the reason why the definition of τn differs from the
corresponding definitions of τ1, . . . , τn−1 by a factor of ζ.
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Proof of Corollary 1.8. Let ã1 = Θ(x`1), . . ., ãn = Θ(x`n), and b̃ = Θ(w). By Lemma 2.2,

ãi = y`i − τ̃iy−`i+1 for i = 1, . . . , n,

b̃ = y1 · · · yn + (−1)nζn−2τ1 · · · τny−11 · · · y
−1
n .

By a calculation completely similar to the proof of (2.3), one has∑
{i1<···<ik}∈J

τ̃i1 · · · τ̃ik ã
δ−εi1−···−εik = (y1 · · · yn)` + (−1)n`(τ1 · · · τn)`(y1 · · · yn)−`. (2.6)

We claim that we also have

b`/2c∑
r=0

(−1)nrζ(n−2)rνr(τ1 · · · τn)r b̃`−2r = (y1 · · · yn)` + (−1)n`(τ1 · · · τn)`(y1 · · · yn)−`. (2.7)

To see this, recall that the Chebyshev polynomials of the first kind are defined recursively by
T0(ξ) = 1, T1(ξ) = ξ, and

Tm(ξ) = 2ξTm−1(ξ)− Tm−2(ξ) for m = 2, 3, . . . .

It is well known (and can be easily proved by induction) that

2T`

(
ξ

2

)
=

b`/2c∑
r=0

νrξ
`−2r, (2.8)

2T`

(
ξ + ξ−1

2

)
= ξ` + ξ−`. (2.9)

By (2.8) and (2.9), one has the identity

ξ` + ξ−` =

b`/2c∑
r=0

νr
(
ξ + ξ−1

)`−2r
,

and hence the identity

ξ` + %2`ξ−` =

b`/2c∑
r=0

νr%
2r
(
ξ + %2ξ−1

)`−2r
where ξ and % are formal variables. By setting ξ = y1 · · · yn and choosing % to be a square-root
of (−1)nζn−2τ1 · · · τn, we obtain (2.7).

By Proposition 1.4, Theorem 1.7, and the equations (2.6) and (2.7), the assignment (1.4)
defines a surjective homomorphism

Φ : C[a1, . . . , an, b]→ Z

such that Φ(F ) = 0. Suppose D ∈ C[a1, . . . , an, b] and Φ(D) = 0. We can write

D =

`−1∑
r=0

Dr(a1, . . . , an)br +R,

where Dr(a1, . . . , an) ∈ C[a1, . . . , an] for r = 0, . . . , `− 1, and R ∈ (F ). Thus,

`−1∑
r=0

Dr

(
x`1, . . . , x

`
n

)
wr = 0. (2.10)
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We claim that Dr(a1, . . . , an) = 0 for all r. Suppose not; then let m be the maximal integer

such that Dm(a1, . . . , an) 6= 0. Let x`p11 · · ·x
`pn
n be a monomial in Dm(x`1, . . . , x

`
n) with nonzero

coefficient. Since 0 ≤ m < `, when we write the left hand side of (2.10) in terms of the PBW

basis, the coefficient of x`p1+m1 · · ·x`pn+mn is nonzero, a contradiction. Hence, the kernel of Φ
is (F ). This proves (1.5). �

Remark 2.3. When n = 3, the algebra H is Morita equivalent to a deformed Sklyanin alge-
bra Sdef defined by C. Walton in [8, Definition IV.2]. More precisely, if n = 3 and

e =
1

`

`−1∑
r=0

gr1,

one has HeH = H and eHe ∼= Sdef where the parameters for Sdef (following the notations in [8,
Definition IV.2]) are a = 1, b = ζ, c = di = 0, and ei = −ζti for i = 1, 2, 3. This follows
from the observation that, for n = 3, setting φi = xigi+1, one has φiφi+1 − ζφi+1φi = ζti for
all i. The algebra Sdef (with above parameters) was first studied by M. Douglas and B. Fiol,
see [3, (3.10)]. Our formulas (1.1)–(1.2) are a generalization of [3, (4.6)], and our equation (1.3)
is a generalization of [3, (4.7)]. The formulas in (2.1)–(2.3) are generalizations of [3, (4.8)].
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