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Abstract. In this article, we discuss some well-known theoretical models where an observer-
independent energy scale or a length scale is present. The presence of this invariant scale
necessarily deforms the Lorentz symmetry. We study different aspects and features of such
theories about how modifications arise due to this cutoff scale. First we study the formula-
tion of energy-momentum tensor for a perfect fluid in doubly special relativity (DSR), where
an energy scale is present. Then we go on to study modifications in thermodynamic pro-
perties of photon gas in DSR. Finally we discuss some models with generalized uncertainty
principle (GUP).
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1 Introduction

Quantum gravity ideas naturally suggest a smallest (but finite) observer independent length
scale l, or a finite upper bound of energy κ, which can avoid the paradoxical situation of
spontaneous creation of black holes inside a very small region. It is quite suggestive to consider
this length scale to be the Planck length lP itself and the energy upper bound κ to be the Planck
energy. From another point of view, in the proposed quantum theories of gravity such as loop
quantum gravity, the Planck length denotes a threshold below which the classical picture of
smooth spacetime geometry gives way to a discrete quantum geometry. This suggests that the
Planck length plays a role analogous to the atomic spacing in condensed matter physics. Below
that length there is no concept of a smooth metric. Thus the quantities involving the metric,
such as the usual mass-shell condition in special relativity (SR)

E2 = p2 +m2

receive corrections of order of the Planck length such as [11]

E2 = p2 +m2 + lPE
3 + · · · , (1.1)

where lP is of the order of the Planck length.

However the idea of such an observer-independent length scale immediately raises a contradic-
tion with the principles of SR theory. As lengths are not invariant under Lorentz transformations

?This paper is a contribution to the Special Issue on Deformations of Space-Time and its Symmetries. The
full collection is available at http://www.emis.de/journals/SIGMA/space-time.html

mailto:sudipta_jumaths@yahoo.co.in
mailto:souvick.in@gmail.com
mailto:sghosh@isical.ac.in
http://dx.doi.org/10.3842/SIGMA.2014.104
http://www.emis.de/journals/SIGMA/space-time.html


2 S. Das, S. Pramanik and S. Ghosh

in SR, so one observer’s threshold length scale will be perceived to be different than another’s,
which directly contradicts the idea of an observer-independent length scale, such as the Planck
length.

A modified energy-momentum relationship such as (1.1) generally induces an energy depen-
dent speed of light. In a theory with a varying speed of light, it may be the case that the speed of
light was greater in the very early universe, when the energy was high enough [2]. This could be
an alternative to the horizon problem which still cannot be fully explained by inflation [1, 66]. It
may also lead to corrections to the predictions of inflationary cosmology, which can be verified
through future CMB observations. In [62], it has been even argued that the still unaccounted
dark energy could be mimicked by these models with modified dispersion relations. The expla-
nation lies in the fact that the missing dark energy can be trapped by very high momentum and
low-frequency quanta from transPlanckian regime, frozen at present epoch [62]. But here lies the
same problem: such a modification in the dispersion relation contradicts the Lorentz transforma-
tion laws of SR. In SR, energy and momentum transform according to the Lorentz transforma-
tions and this Lorentz invariance is considered to be a fundamental principle in all the physical
theories. Thus it is a big reason to worry that to incorporate an observer independent length (or
energy) scale or to modify the canonical dispersion relation, it would break Lorentz invariance.

These paradoxes may be resolved if the Lorentz transformations could be modified so as to
preserve an energy or momentum scale. In [6, 7, 58], the authors have shown that it is possible to
build models where the laws of transformation of energy and momenta between different inertial
observers are modified while keeping the principle of relativity for inertial observers intact. This
can be achieved by adding nonlinear terms to the Lorentz transformations acting on momentum
space. As a result, all observers agree to the presence of an invariant energy or momentum. The
idea of a smooth spacetime background breaks down above this observer-independent energy
threshold. In these models, one has to replace the quadratic invariant by a nonlinear invariant,
thus producing a modified dispersion relation. As said earlier, in these theories, there are two
invariant quantities, c, the velocity of light and κ, an upper limit of energy. As there are two
observer-independent invariant quantities, this theory is named “doubly (or deformed) special
relativity” (DSR). This DSR theory possesses the following features1:

(i) The relativity of inertial frames, as proposed by Galileo, Newton and Einstein, is preserved
in DSR.

(ii) There is an invariant energy scale κ, which is of the order of the Planck scale.

(iii) In general, DSR theory exhibits a varying speed of light at high energies.

(iv) For this DSR theories, the notion of absolute locality should be replaced by relative locality
as due to the presence of an energy-dependent metric, different observers live in different
spacetime.

It is possible to achieve all of these conditions through a nonlinear action of the usual Lorentz
group on the physical states of the theory. This nonlinear action immediately invokes some novel
features into DSR theory:

(i) If one adds momenta and energy linearly, as we normally do in physics, the conservation
of momentum becomes inconsistent with this new nonlinear action of the lorentz group on
momentum space. Thus for energy and momentum to be conserved, the addition rules become
nonlinear. This issue of nonlinearity is particularly important for multi-particle systems in DSR.
This can be demonstrated as following: for multi-particle systems, using linear addition rule for
energy/momentum leads to a paradox, known as “soccer ball problem”. The problem lies in
the fact that if we apply linear addition rule for momenta/energies of many sub-Planck energy
particles then we may end up with a multi-particle state, such as a soccer ball whose total energy

1For a detail discussion on relative locality, please see [9].
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becomes greater than the Planck energy, which is forbidden in the DSR theory. As we will see
later, one has to apply nonlinear addition rules for energy/momentum in DSR framework, which
can resolve this paradox. For further discussion about the “soccer ball problem” see [43, 45].

(ii) For DSR theory, spacetime coordinates no longer commute, thus inducing a noncommu-
tative spacetime background.

Particle dynamics in DSR framework has been studied, which has revealed many unusual
features [51, 64]. Some field theoretic models in DSR spacetime have been attempted [25]. On
the other hand, thermodynamics of bosons and fermions with a modified dispersion relation
and its cosmological and astrophysical implications has been studied in [15, 57]. In [60], authors
have introduced a procedure to incorporate gravity into DSR framework and cosmological effects
of DSR has been studied in [52]. We consider a particular DSR model (for details please see
the next section of this article) with κ-deformed Minkowski spacetime background (κ being
the quantum gravity induced noncommutative parameter), which is indeed a noncommutative
geometry [53]. For this DSR model, the well known dispersion relation (or mass-shell condition)
for a particle

ε2 − p2 = m2

has to be modified as

ε2 − p2 = m2
(

1− ε

κ

)2
. (1.2)

Here ε = p0 and p are respectively the energy and the magnitude of the three-momentum of the
particle, m is the mass of the particle and we have taken c = 1. With this model (1.2), we derive
the DSR covariant energy-momentum tensor for perfect fluid. We also study the modifications
in thermodynamic properties of photon gas due to the presence of an upper bound of energy, κ,
for this particular DSR model.

Another interesting idea is the generalized uncertainty principle (GUP) where the usual
Heisenberg uncertainty relation is modified as a consequence of a length scale presented in
the theory [4, 24, 30, 46, 54]. (GUP) [74] naturally encodes the idea of existence of a minimum
measurable length through modifications in the Poisson brackets of position x and momentum p.
Indeed, one should start with the relation between the momentum and the pseudo-momentum
for a consistent deformed algebra [44]. The Jacobi identities are then automatically fulfilled.
GUP has created a lot of interest in the fields like black hole thermodynamics, cosmology and
other related areas [3, 12, 29, 61, 72]. In this article, we have discussed the formulation of
particle Lagrangian in GUP in a covariant manner.

It is noteworthy to mention that all the models we have studied in our works possess very
rich constraint structure. To study dynamics of these models, we use the elegant scheme of
Dirac constraint analysis in Hamiltonian framework [27, 41]. Here we discuss Dirac’s method of
constraint analysis in brief. In Dirac’s method, from a given Lagrangian, one starts by computing
the conjugate momentum p = ∂L

∂q̇ of a generic variable q and identifies the relations that do not
contain time derivatives as (Hamiltonian) constraints. New constraints can also be generated
from demanding time persistence of the first set of constraints. Once the full set of constraints
is obtained, a constraint is classified as first class constraint (FCC) when it commutes with
all other constraints (modulo constraint) and the set of constraints which do not commute are
called second class constraints (SCC). Presence of constraints indicates a redundance of degrees
of freedom (d.o.f.) so that not all the d.o.f.s are independent. FCCs present in a theory signal
gauge invariance. The FCCs and SCCs should be treated in essentially different ways. There
are two ways to deal with FCCs: (i) either one can keep all the d.o.f.s and impose the FCCs by
restricting the set of physical states to those satisfying (FCC) | state〉 = 0; (ii) or one can choose
additional constraints (one each for one FCC), known as gauge fixing conditions so that these,
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together with the FCCs turn in to an SCC set. Now, for SCCs, a similar relation as above,
(SCC) | state〉 = 0 cannot be implemented consistently and one needs to replace the Poisson
brackets by Dirac brackets to properly incorporate the SCCs. If ({ψiρ, ψ

j
σ}−1) is the (ij)-th

element of the inverse constraint matrix where ψi(q, p) is a set of SCCs, then the Dirac bracket
between two generic variables {A(q, p), B(q, p)}DB is given by

{A,B}DB = {A,B} − {A,ψiρ}
(
{ψiρ, ψjσ}−1

)
{ψjσ, B},

where { , } denotes Poisson brackets. Subsequently, one can quantize the theory by promoting
these Dirac brackets to quantum commutators. It should be pointed out that the noncommuta-
tive algebras appearing in our models eventually emerge from the Dirac brackets between the cor-
responding phase space variables. In this Hamiltonian framework, the SCCs ψiρ are considered to
be “strongly” zero since they commute with any generic variable A: {A,ψiρ}DB = {ψiρ, A}DB = 0,
which implies a redundance in the number of d.o.f.s. Hence, to understand the effect of con-
straints we note that the presence of one FCC together with its gauge fixing constraint can
remove two d.o.f.s from the phase space whereas one SCC can remove only one d.o.f. from the
phase space, respectively (for details regarding Dirac’s constraint analysis, please see [27, 41]).

This article is organized as follows: in the Sections 2, 3 and 4 we discuss doubly special
relativity (DSR) models where an observer-independent energy scale is present. We explicitly
show that this scale induces noncommutative spacetime background along with deforming the
Lorentz symmetry. Treating perfect fluid as a multi-particle system, we derive an expression
for the energy-momentum tensor for this perfect fluid in DSR. We also study thermodynamic
properties of photon gas in this DSR framework where modifications are induced by the invariant
energy scale present in the theory.

In Sections 5 and 6, we discuss some GUP induced models. In Section 5, we derive a free
particle GUP Lagrangian in covariant manner as well as derive a Lagrangian in presence of
an external electromagnetic field where the usual equations of motion are modified by the
noncommutative parameter present in the theory. In Section 6, we consider a GUP Hamiltonian
and consequently derive its corresponding kernel following Feynman’s path integral approach.
Finally we summarize and conclude in Section 7.

2 Deformations in Lorentz symmetry:
noncommutative spacetime

Here we discuss about a well-known DSR model, known as the κ-Minkowski spacetime. As
mentioned earlier, this κ-Minkowski model possesses an invariant energy scale κ. Due to the
presence of this scale, the spacetime in this κ-Minkowski DSR model becomes noncommutative.
This noncommutativity can be explicitly seen through the underlying phase space algebra which
is written in a covariant form,

{xµ, xν} =
1

κ
(xµην − xνηµ), {xµ, pν} = −gµν +

1

κ
ηµpν , {pµ, pν} = 0,

where η0 = 1, ηi = 0. This algebra appeared in [39] and partially in [64]. Detailed studies of
similar types of algebra are provided in [51].

It has been pointed out by Amelino-Camelia [7] that there is a connection between the ap-
pearance of an observer independent scale and the presence of nonlinearity in the corresponding
spacetime transformations. Recall that Galilean transformations are completely linear and there
are no observer independent parameters in Galilean/Newtonian relativity. With Einstein rela-
tivity one finds an observer independent scale, the velocity of light, as well as a nonlinear relation
in the velocity addition theorem. In DSR one introduces another observer independent param-
eter, an energy upper bound κ, and ushers another level of nonlinearity in which the Lorentz
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transformation laws become nonlinear. These generalized Lorentz transformation rules, referred
to here as DSR Lorentz transformation, are derivable from basic DSR ideas [7] or in a more
systematic way, from integrating small DSR transformations in a NC spacetime scheme [17, 34].
Another elegant way of derivation is to interpret DSR laws as a nonlinear realization of SR
laws [47, 59] where one can directly exploit the nonlinear map and its inverse, that connects
DSR to SR and vice-versa. It should be pointed out that even though there exists an explicit
map between SR and DSR variables, the two theories will not lead to the same physics (in par-
ticular upon quantization), due to the essential nonlinearity involved in the map. Also, one can
equivalently say that this map or transformation is not canonical since it changes the Poisson
bracket structure in a non-trivial way. According to DSR the physical degrees of freedom live
in a non-canonical phase space and the canonically mapped phase space is to be used only as
a convenient intermediate step. Obviously, to accomplish this, one needs the explicit expression
for the map which can be constructed by a motivated guess [47, 59] or constructed as a form of
Darboux map [34].

We are working in the DSR model of Magueijo and Smolin [59]. Let us start with the all
important map [34, 47, 59]

F (Xµ)→ xµ, F−1(xµ)→ Xµ,

which in explicit form reads

F (Xµ) = xµ
(

1− p0

κ

)
= xµ

(
1− (np)

κ

)
,

F−1(xµ) = Xµ

(
1 +

P 0

κ

)
= Xµ

(
1 +

(nP )

κ

)
,

F (Pµ) =
pµ(

1− p0

κ

) =
pµ(

1− (np)
κ

) ,
F−1(pµ) =

Pµ(
1 + P 0

κ

) =
Pµ(

1 + (nP )
κ

) ,
where nµ = (1, 0, 0, 0) is introduced to express the map in a covariant way and we use the
notation aµb

µ = (ab), (np) = p0, (nP ) = P 0. Note that upper case and lower case letters
refer to (unphysical) canonical SR variables and (physical) DSR variables respectively. Using
canonical Poisson brackets it is straightforward to generate the noncommutative phase space
algebra of DSR variables.

To derive the generalized DSR Lorentz transformations (LDSR), one starts with the familiar
(linear) SR Lorentz transformations (LSR) and then the nonlinear LDSR can be obtained by
following mechanism

x′µ = LDSR(xµ) = F ◦ LSR ◦ F−1(xµ), p′µ = LDSR(pµ) = F ◦ LSR ◦ F−1(pµ).

In explicit form this reads as

x′0 = γα
(
x0 − vx1

)
, p′0 =

γ

α

(
p0 − vp1

)
,

where γ = 1√
1−v2

and the boost is along X1 direction with velocity vi = (v, 0, 0) and α =

1 + 1
κ((γ − 1)P 0 − γvP 1). Similarly for µ = 1, we have the following expressions

x′1 = γα(x1 − vx0), p′1 =
γ

α

(
p1 − vp0

)
.
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It is important to realize that, in the present formulation, noncommutative effects enter through
these generalized (nonlinear) transformation rules.

Note that, in contrast to SR laws, components of xµ, pµ transverse to the frame velocity v
are also affected in DSR to

x′i = αxi, p′i =
pi

α
, i = 2, 3.

There are two phase space quantities, invariant under DSR Lorentz transformation

ηµνp
µpν/

(
1− p0/κ

)2
and ηµνdx

µdxν
(
1− p0/κ

)2
with ηµν = diag(−1, 1, 1, 1). Writing the former as

m2 = ηµνp
µpν/

(
1− p0/κ

)2
yields the well-known Magueijo–Smolin dispersion relation. We interpret the latter invariant to
provide an effective metric η̃µν for DSR

dτ2 = η̃µνdx
µdxν =

(
1− p0/κ

)2
ηµνdx

µdxν . (2.1)

From the expression of α, it is clear that in the limit κ → ∞, α → 1 and all the DSR results
coincide with the usual expressions in SR.

3 Fluid dynamics in κ-Minkowski spacetime

In this section our aim is to construct the energy-momentum tensor (EMT) of a perfect fluid,
that will be covariant in the DSR framework. Indeed, this will fit nicely in our future programme
of pursuing a DSR based cosmology.

3.1 Fluid in SR theory

A perfect fluid can be considered as a system of non-interacting structureless point particles,
experiencing only spatially localized interactions among themselves. The energy momentum
tensor (EMT) for this perfect fluid in the rest frame is of the form [75]

Tµν =
∑
i

Pµi P
ν
i

P 0
i

δ3 (X −Xi) , (3.1)

where Pµi is the energy-momentum four-vector associated with the i-th particle located at Xi.
Once again in the comoving frame it will reduce to the diagonal form

T̃ ii = P =
1

3

∑
i

P2
i

P 0
i

δ3(X −Xi),

T̃ 00 = D =
∑
i

P 0
i δ

3(X −Xi), T̃ i0 = T̃ 0i = 0. (3.2)

In the above relations P 0
i stands for the energy of the i-th fluid particle. The thermodynamic

quantities P and D represent pressure and energy density of the fluid. The particle number
density is naturally defined as

N =
∑
i

δ3(X −Xi). (3.3)
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The Lorentz transformation equation for Tµν is given by

Tµν = LSR

(
T̃µν

)
= ΛµαΛνβT̃

αβ,

where Λ is the Lorentz transformation matrix. For µ = ν = 0 we have

T 00 =
(
Λ0

0

)2
T̃ 00 +

(
Λ0
i

)2
T̃ ii = γ2T̃ 00 + γ2v2T̃ 11.

The above set of equations can be integrated into a single SR covariant tensor

Tµν = (P +D)UµUν + Pηµν , (3.4)

where the velocity 4-vector Uµ is defined as U0 = γ, U i = γvi with UµUµ = −1.

3.2 Fluid in DSR theory

In order to derive the expression for the DSR covariant EMT (tµν) we shall exploit the same
approach as in case of SR EMT. Spatial rotational invariance remains intact in DSR allowing
us to postulate a similar diagonal form for DSR EMT in the comoving frame. The next step
(in principle) is to apply the LDSR to obtain the general form of EMT in DSR. We first define
the nonlinear mapping for the energy-momentum tensor of a perfect fluid in a comoving frame.
In the second step we shall apply the Lorentz boost (LSR) on our mapped variable and finally
arrive at the desired expression in the DSR spacetime through an inverse mapping. But we will
see that when we try to introduce the fluid variables in the DSR EMT in arbitrary frame we
face a non-trivial problem unless we make some simplifying assumptions, which, however, will
still introduce DSR corrections pertaining to the Planck scale cutoff.

As the spherical symmetry remains intact in the DSR theory [34] we define the respective
components of energy-momentum tensor t̃µν in the NC framework analogous to (3.2), (3.3) as

t̃ii = p =
1

3

∑
i

p2
i

p0
i

δ3(x− xi), t̃00 = ρ =
∑
i

p0
i δ

3(x− xi), n =
∑
i

δ3(x− xi), (3.5)

where pi and p0
i are respectively the momentum three-vector and the energy of the i-th fluid

particle in the DSR spacetime. Using (3.5) and using the scaling properties of Dirac-δ function
we obtain the following results

F−1(p) =
1

3

∑
i

P2
i

P 0
i

(
1 + P 0

i /κ
)4 δ3(X −Xi), (3.6)

F−1(ρ) =
∑
i

P 0
i(

1 + P 0
i /κ

)4 δ3(X −Xi), (3.7)

F−1(n) =
∑
i

N(
1 + P 0

i /κ
)3 δ3(X −Xi). (3.8)

In a combined form, we can write down the following nonlinear mapping (and its inverse) as

F−1
(
t̃µν
)

=
∑
i

Pµi P
ν
i

P 0
i

(
1 + P 0

i /κ
)4 δ3(X −Xi),

F
(
T̃µν

)
=
∑
i

pµi p
ν
i

p0
i

(
1 + p0

i /κ
)4 δ3(x− xi). (3.9)

The way we have defined the DSR EMT it is clear that comoving form of EMT also receives
DSR corrections. But problem crops up when, in analogy to SR EMT [75], we attempt to boost
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the t̃µν to a laboratory frame with an arbitrary velocity vi. Recall that for a single particle DSR
boosts involve its energy and momentum. Since p and ρ (for t̃µν) denote composite variables it is
not clear which energy or momentum will come into play. To proceed further, in the expression
of DSR boost, we put in a single energy p̄0 and momentum p̄i which denotes the average energy
and momentum (modulus) of the whole fluid. In fact this simplification is not very artificial
since we are obviously considering equilibrium systems in our study. This allows us to use the
mappings

F−1(p) =
P(

1 + P̄ 0/κ
)4 , F−1(ρ) =

D(
1 + P̄ 0/κ

)4 , F−1(n) =
N(

1 + P̄ 0/κ
)4 .

In a covariant form the mapping and its inverse between t̃µν and T̃µν are

F−1
(
t̃µν
)

=
T̃µν(

1 + P̄ 0/κ
)4 , F

(
T̃µν

)
=

t̃µν(
1− p̄0/κ

)4 .
Finally we can apply the definition of LDSR to obtain the following expressions for energy-
momentum tensor with respect to an arbitrary inertial frame

t00 = LDSR

(
t̃00
)

= F ◦ LSR ◦ F−1
(
t̃00
)

= F ◦ LSR

(
T̃ 00(

1 + P̄ 0/κ
)4
)

= F

(
γ2
(
D + Pv2

)(
1 + γ

κ

(
P̄ 0 − vP̄ 1

))4
)

=
γ2
(
ρ+ pv2

)
ᾱ4

,

ti0 = LDSR

(
t̃i0
)

=
γ2(ρ+ p)vi

ᾱ4
, tij = LDSR

(
t̃ij
)

=
γ2(ρ+ p)vivj

ᾱ4
+ pδij .

It is very interesting to note that the above expressions can also be combined into a single form
which is structurally very close to the fluid EMT in SR

tµν =

(
1− p̄0

κ

)2
ᾱ4

(
(p+ ρ)uµuν + p

ηµν(
1− p̄0

κ

)2
)

=

(
1− p̄0

κ

)2
ᾱ4

(
(p+ ρ)uµuν + pη̃µν

)
, (3.10)

where we have defined the four-velocity uµ in the DSR spacetime as

u0 = dx0/dτ =
γ

(1− p̄0/κ)
, ui = dxi/dτ =

γvi

(1− p̄0/κ)
.

Note that the DSR four-velocity uµ is actually the mapped form of the SR four-velocity Uµ since
the parameter τ does not undergo any transformation. The other point to notice is that η̃µν

of (2.1), (DSR analogue of the flat metric η̃µν), appears in tµν making the final form of the
DSR EMT transparent. Indeed tµν in (3.10) reduces smoothly to Tµν of SR (3.4) in the large κ
limit. Incidentally, again in analogy to the SR construction of many-body system for fluid
((3.1), (3.2)) this form of tµν is consistent with the microscopic picture of DSR EMT for fluid
that we have developed ((3.5)–(3.9)). Derivation of this DSR-covariant expression of energy-
momentum tensor (3.10) is the major result of our work [20].

4 Thermodynamics of photon gas in κ-Minkowski spacetime

We consider here a particular modified dispersion relation in DSR, the Magueijo–Smolin (MS)
dispersion relation [20, 23, 58, 59]

ε2 − p2 = m2
(

1− ε

κ

)2
, (4.1)
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where pµ = (ε, ~p) is the DSR four-momentum and p ≡ |~p| is the magnitude of the three-
momentum of a particle. Thermodynamic properties for photon gas with a different dispersion
relation have been studied in [18]. Also, thermodynamics of bosons and fermions with another
modified dispersion relation and its cosmological and astrophysical implications have been ob-
served in [15, 57]. But these two modified dispersion relations appear from a phenomenological
point of view whereas the dispersion relation (4.1) has a more theoretical motivation which we
discuss below in some details.

It was shown in [34] that existence of an invariant length scale in the theory is consistent
with a noncommutative (NC) phase space (κ-Minkowski spacetime) such that the usual cano-
nical Poisson brackets between the phase space variables are modified. Also, the linear Lorentz
transformations in special relativity (LSR) are replaced by nonlinear DSR-Lorentz transforma-
tions (LDSR) [17, 34]. One point about our notation convention: throughout the rest of this
Section, small letters like x, p denote DSR variables whereas capital letters X, P denote the
corresponding variables in SR theory. Now, using this NC phase space algebra in DSR, one can
readily check that the Lorentz algebra is intact{

jµν , jαβ
}

= gµβjνα + gµαjβν + gνβjαµ + gναjµβ,

where the angular momentum is defined in the usual way as

jµν = xµpν − xνpµ.

As a result, we have the LDSR invariant modified dispersion relation (4.1) as{
jµν ,

p2(
1− ε

κ

)2
}

= 0.

Due to the nontrivial expression for the dispersion relation (4.1), firstly it was supposed that
the velocity of photon c = dε

dp have to be energy dependent. But it was shown in [42] that
a modified dispersion relation does not necessarily imply a varying (energy dependent) velocity
of light. Thus, though the above two models ([18] and [15, 57]) admit a varying speed of light,
in case of the Magueijo–Smolin (MS) DSR model considered here, for photons (m = 0) the
dispersion relation (4.1) is the same as in SR theory. Also the speed of light c is an invariant
quantity in the DSR model [20, 34, 47, 58, 59]. Thus the DSR model considered in [34, 58, 59]
has a more theoretical motivation and it can be developed starting from the NC phase space
variables [34] whereas the models considered in [15, 18, 57] are phenomenological in nature and
as far as we know, there is no fundamental phase space structures to describe these models.

Another interesting fact is that both the models described in [18] and in [15, 57] have no finite
upper bound of energy of the photons though they have a momentum upper bound. But, as
stated earlier, in the Magueijo–Smolin (MS) case, though the dispersion relation for the photons
is unchanged, there is a finite upper bound of photon energy which is the Planck energy κ. One
can readily check that this is an invariant quantity by using the DSR-Lorentz transformation
law for energy [17, 34].

One more thing must be clarified here. In case of the models ([18] and [15, 57]), clearly the
Lorentz symmetry was broken and as a result, the number of microstates and hence the entropy
increases as compared to the Lorentz symmetric SR theory. On the other hand, we are dealing
with a different scenario where the Lorentz symmetry is not broken as Lorentz algebra between
the phase space variables is intact. In fact, the framework we describe here still satisfies the
basic postulates of Einstein’s SR theory; moreover it possesses another observer independent
quantity. Thus it seems that Lorentz symmetry is further restricted in this DSR model. As
a result of this, we expect to have a less number of microstates and less entropy in the MS
model. As we will show later in our explicit calculations, this expected result is correct.
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4.1 Partition function for photon gas

To study the thermodynamic behavior of photon gas, we have to find out an expression for
the partition function first, as it relates the microscopic properties with the thermodynamic
(macroscopic) behavior of a physical system [40, 67], which we do in this section. As we have
said earlier, the modified dispersion relation (4.1) in case of the photons (massless particles)
does not change from the usual SR scenario. Thus, for the photons, the dispersion relation now
becomes

|~p| = p = ε.

We consider a box containing photon gas. Following the standard procedure as given in [40, 67],
we consider a continuous spectrum of momentum instead of quantizing it. The number of
microstates available to the system (

∑
) in the position range from r to r + dr and in the

momentum range from p to p+ dp is given by∑
=

1

h3

∫∫
d3~rd3~p,

where h is the phase space volume of a single lattice and∫∫
d3~rd3~p

is the total phase space volume available to the system.

It should be mentioned here that as in the case of SR theory [65], the phase space volume
element d3xd3p in DSR is also a DSR-Lorentz invariant quantity (for details, please see [23]). If
the volume of the box is considered to be V , in case of SR, the number of microstates can be
written in the following form using the spherical polar coordinates∑

=
4πV

h3

∫ ∞
0

E2dE. (4.2)

We used the dispersion relation P = E to change the integration variable to E. Now, in case of
the DSR model, considering the fact that we have an finite upper limit of energy (κ), we obtain
the number of microstates as∑̃

=
4πV

h3

∫ κ

0
ε2dε, (4.3)

where
∑̃

represents the number of microstates in the DSR model which we have considered here.
It is obvious from the expressions (4.2) and (4.3) that the available number of microstates to
the system in case of DSR is less than that in the SR theory. This happens due to the fact that
there is an upper energy bound in the DSR model whereas the energy spectrum of a particle in
SR theory can go all the way up till infinity. This result agrees with our expectation as stated
earlier.

It is very crucial to get an expression for the partition function as all the thermodynamic
properties can be thoroughly studied using the knowledge about the partition function. For the
conventional free particle in SR, the partition function Z1(T, V ) is defined as [40]

Z1(T, V ) =
4πV

h3

∫ ∞
0

P 2e
− E
kBT dP, (4.4)

where kB is the Boltzman constant and T is the temperature.
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For our DSR model, the single particle partition function Z̃1(T, V ) is defined as

Z̃1(T, V ) =
4πV

h3

∫ κ

0
p2e
− ε
kBT dp. (4.5)

In the limit κ→∞, we get back normal SR theory results.
It should be noted that in the DSR model which we have considered, the photon dispersion

relation is not modified at all (as for massless photons, p = ε). But still there is modification in
the partition function (4.5) due to the presence of an energy upper bound of particles (κ) in the
theory. Note that the upper limit of integration is κ in (4.5) whereas in the normal SR theory
expression (4.4), the upper limit of integration is infinity. In all the models [15, 18, 57], though
the upper limit of energy is infinity as in SR theory, these models have different dispersion
relations than SR.

Using the dispersion relation for photons (ε = p) and using the standard table and formulae
for integrals [38], we finally have an analytic expression of the single particle partition function

Z̃1(T, V ) =
4πV

h3

∫ κ

0
ε2e
− ε
kBT dε

=
4πV

h3

[
2(kBT )3 − e−

κ
kBT (kBT )3

(
2 +

κ

kBT

(
2 +

κ

kBT

))]
. (4.6)

Thus the partition function for a N -particle system Z̃N (T, V ) is given by

Z̃N (T, V ) =
1

N !

[
Z̃1(T, V )

]N
, (4.7)

where we have considered classical (Maxwell–Boltzman) statistics along with the Gibb’s factor.
Describing a multi-particle system in a relativistically invariant way is a non-trivial issue and

more so in case of DSR framework, where the momenta do not add up linearly. Probably the best
setup to discuss these issues is the relative locality [9, 10, 43, 44, 45] framework. Being not so
ambitious we provide a more simple prescription of essentially following the normal statistical
mechanics approach used for a system of of non-interacting particles. This means that the
partition function of the multi-particle system is that of the single particle system raised to the
power of N , the number of particles. The justification of our scheme is the following. First
of all note that, (also advocated in relative locality perspective [9, 10]) our system consists
of individual “elementary particles” (in the classical sense) for which normal special theory
rules should apply. Secondly whatever DSR corrections are considered they concern individual
particle momenta and the interaction terms are damped by a factor of NMP (MP being the
Planck mass), which is macroscopic for a thermodynamic system. Furthermore in [10] the need
for an appropriate coordinate system has been emphasized. Clearly one such coordinate system
is the canonical (Darboux) coordinates, provided in [34]. Expressing the partition function in
the canonical coordinates and then reverting back to the physical coordinates we can argue that
the DSR effects manifest only in single particle partition function which is characterized here
by the upper limit of the energy, κ in the energy integral, a signature of DSR models. For these
reasons we expect that partition function constructed here for a DSR photon gas will hold to
lowest order of κ.

4.2 Thermodynamic properties of photon gas

With the expression for the partition function (4.6), (4.7) in hand, now one can study various
thermodynamic properties of the photon gas for this DSR model. It should be noted that as
κ → ∞, this partition function coincides with the partition function in SR theory and thus all
of our results coincides with the usual SR case in this limit.
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Figure 1. Plot of entropy of photon S against temperature T for both in the SR theory and DSR

model; the dashed line corresponds to the SR theory result and the thick line represents the corresponding

quantity in DSR. We have used the Planck units and the corresponding parameters take the following

values κ = 10000, kB = 1, N = 10000, V = 0.01, h = 1 in this plot. With this scale, T = 10000 represents

the Planck temperature.

We use Stirling’s approximation for ln[N !] [40]

ln[N !] ≈ N ln[N ]−N

in the expression for partition function (4.7) to obtain the free energy F̃ of the system

F̃ = −kBT ln
[
Z̃N (T, V )

]
= −NkBT

[
1 + ln

[
4πV

N

(
kBT

h

)3{
2− e−

κ
kBT

(
2 +

κ

kBT

(
2 +

κ

kBT

))}]]
. (4.8)

In the limit κ→∞, the terms containing κ vanishes and we get back normal SR theory result:
F = −NkBT .

From the expression for free energy (4.8) we can readily obtain the expression for entropy S̃
of photon gas in our considered DSR model as [40]

S̃ = −

(
∂F̃

∂T

)
V,N

= NkB

[
4 + ln

[
4πV

N

(
kBT

h

)3{
2− e−

κ
kBT

(
2 +

κ

kBT

(
2 +

κ

kBT

))}]

− κ3

2k3
BT

3e
κ

kBT −
(
2k3

BT
3 + 2k2

BT
2κ+ kBTκ2

)
]
. (4.9)

The terms containing κ in the above expression (4.9) are the DSR modification terms. In the
limit κ→∞ the terms containing κ vanish and we get back the SR theory result

S = NkB

[
4 + ln

[
8πV

N

(
kBT

h

)3
]]

.

We plot the entropy S against temperature T both for the DSR model and for SR theory to
study the deviation of entropy in the two models.
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Figure 2. Plot of internal energy of photon against temperature for both in the SR theory and DSR

scenario; the dashed line corresponds to the SR theory result and the thick line represents the quantity

in the DSR model. We used the Planck units and the corresponding parameters take the following values

κ = 10000, kB = 1, N = 10000, V = 0.01, h = 1 in this plot. With this scale, T = 10000 represents the

Planck temperature.

In Fig. 1, we have plotted entropy against temperature for both the case of DSR and usual
SR theory. It is clearly observable from the plot that the entropy grows at a much slower
rate in case of DSR than in the SR theory and as temperature increases, the entropy in DSR
model deviates more from the entropy in the SR theory. This result matches with our earlier
expectation considering the underlying symmetry of the theory that the entropy in the DSR
model should be less than the entropy in SR theory. As T = 10000 is the Planck temperature,
from the above plot one can see that the entropy saturates well before reaching the Planck scale
(nearly around T = 2000). However, this saturation temperature is still very much high to
experimentally observe these DSR effects.

It is well known that the total number of microstates available to a system is a direct measure
of the entropy for that system. Therefore our result merely reflects the fact that due to the
existence of an energy upper bound κ in the DSR model, the number of microstates gradually
saturates to some finite value.

We expect modification in the expression of the internal energy U for photon gas in the DSR
model as the expression of entropy is modified and internal energy is related to the entropy
as follows: U = F + TS. In the usual SR scenario, the explicit expression for internal energy
is given by U = 3NkBT . But in the DSR scenario we considered, the expression for internal
energy (Ũ) of photon gas is the following

Ũ = NkBT

[
3− κ3e

− κ
kBT

2k3
BT

3 − e−
κ

kBT
(
2k3

BT
3 + 2κk2

BT
2 + κ2kBT

)
]
. (4.10)

It is easy to see from the expression of internal energy (4.10) that we get back the usual SR
theory expression in the limit κ → ∞. As in the case of entropy, here also we plot internal
energy against temperature for both the SR and DSR case.

In Fig. 2, we plotted internal energy of photon gas against its temperature for both the case
of DSR model and SR theory. One can easily see from the plot that the value of internal energy
(for a particular temperature) in the DSR model (4.10) is always less than its value (for the same
temperature) in the SR theory. Since the internal energy U of photon gas becomes saturated
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after a certain temperature in case of the DSR model, it is tempting to point out that probably
our results are moving towards the right direction related to the “soccer ball problem” that
plagues multi-particle description in the framework of DSR [43, 45].

In the next two sections, we discuss GUP effects for different types of scenarios.

5 Covariant formulation of GUP Lagrangian

Operatorial forms of noncommutative (NC) phase space structures has the generic form

{xi, pj} = δij
(
1 + f1

(
p2
))

+ f2

(
p2
)
pipj ,

{xi, xj} = fij(p), {pi, pj} = gij(p), i = 1, 2, 3. (5.1)

Interestingly, potential application of (5.1) can generate generalized uncertainty principle (GUP)
which is compatible with string theory expectation [4, 30, 55, 56, 73] that there exist a minimum
length scale or a maximum momentum in nature. Such a length scale is defined to be of the order
of
√
β, where β can be treated as a small parameter. The corresponding models of GUP have

been proposed in a non-covariant framework, by Kempf [48] (a two-parameter model, with β
and β′)

{xi, pj} = δij
(
1 + βp2

)
+ β′pipj ,

{xi, xj} = (β′ − 2β)(xipj − xjpi), {pi, pj} = 0 (5.2)

by Kempf, Mangano and Mann [50]

{xi, pj} = δij
(
1 + βp2

)
, {xi, xj} = −2β(xipj − xjpi), {pi, pj} = 0, (5.3)

and also by Kempf and Mangano [49]

{xi, pj} =
βp2δij√(

1 + 2βp2
)
− 1

+ βpipj , {xi, xj} = 0, {pi, pj} = 0. (5.4)

The first NC algebra proposed by Snyder [71] has the same structure that of (5.3). In
fact (5.2) [48] and (5.3) [50] can be reduced to the Snyder NC form [71] as discussed in [70].
Here we restrict ourselves to the classical counterpart of the commutator algebra (5.4) [49] since
it is structurally the simplest as the coordinates and momenta commute among themselves
respectively. But the results derived here are applied to quantum commutators as well.

We will consider a relativistically covariant generalization of the algebra (5.4). Starting with
this algebra, firstly we study a generalized point particle Lagrangian [69] with a non-canonical
symplectic structure that is equivalent to (5.4). Latter on by introducing electrodynamic inter-
action term in Lagrangian we further study point particle dynamics [69]. Now from a physical
point of view this type of an intuitive particle picture is very useful and appealing since we can
see how it differs from the conventional relativistic point particle. Also this particle model can
act as a precursor to field theories in such non-canonical space. Similar point particle symplectic
formalisms have been adopted in other forms of operatorial NC algebras, such as κ-Minkowski al-
gebra [13, 14, 26, 32, 33, 34, 37, 63, 68], relevant in doubly special relativity framework [5, 6, 7, 8]
or very special relativity algebra [21, 36], proposed in [19]. However, the crucial thing for one is
to realize that the Jacobi identity is maintained by the linearized algebra [70]

{Xµ, Pν} = δµν
(
1 + βP 2

)
+ 2βPµPν , {Pµ, Pν} = {Xµ, Xν} = 0

only to O(β). If we consider J(Xµ, Xν , Pλ) to be of the operatorial form

J(Xµ, Xν , Pλ) = {Xµ, {Xν , Pλ}}+ {Pλ, {Xµ, Xν}}+ {Xν , {Pλ, Xµ}},
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then we get

J(Xµ, Xν , Pλ) = 4β2P 2(δνλPµ − δµλPν).

But exact validity of Jacobi identity is quite imperative for the phase space algebra. Furthermore,
due to this violation of Jacobi, there can not be any point particle interpretation of this NC
symplectic structure. This is due to the fact that the NC structures appear as Dirac brackets
which always preserve Jacobi identity [27]. Therefore we will also construct deformed Poincaré
generators that generate proper translations and rotations of the variables.

5.1 Covariantized point particle Lagrangian

We begin by positing covariantized form of the NC algebra proposed in [49] in 3 + 1 dimensions,
with a Minkowski metric ηµν ≡ (1,−1,−1,−1)

{xµ, pν} = − βp2gµν√
(1 + 2βp2)− 1

− βpµpν ≡ −Λgµν − βpµpν ,

{xµ, xν} = 0, {pµ, pν} = 0, (5.5)

where Λ = βp2√
(1+2βp2)−1

. We would like to interpret the above relations (5.5) as Dirac brackets

derived from a constrained symplectic structure. In some sense we are actually moving in the
opposite direction of the conventional analysis where the computational steps are

Lagrangian → constraints → Dirac brackets

or equivalently

symplectic structure → symplectic matrix → symplectic brackets.

Interestingly the Dirac brackets and symplectic brackets turn out to be the same. In this case
our path of analysis will be

symplectic brackets → symplectic matrix → Lagrangian.

Following this path, the symplectic matrix can be formed using (5.5) as

Γµνab =

[
0 −(Λgµν + βpµpν)

(Λgµν + βpµpν) 0

]
.

Inverse of this matrix provides commutators between the constraints as

Γabνλ =


0

(
gνλ
Λ
− βpνpλ

Λ2
√

1 + 2βp2

)

−

(
gνλ
Λ
− βpνpλ

Λ2
√

1 + 2βp2

)
0

 ≡ {Φa
ν ,Φ

a
λ

}
. (5.6)

Indeed there is no unique way but from the constraint matrix one can make a judicious choice
of the constraints and subsequently guess a form of the Lagrangian. We do not claim the
Lagrangian derived in this way is unique, but one can easily check that the derived Lagrangian
yields the same Dirac brackets that one posited at the beginning. Now it is convenient to work
in the first order formalism where both xµ and pµ are treated as independent variables with
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the conjugate momenta, πxµ = ∂L
∂ẋµ

, πpµ = ∂L
∂ṗµ

satisfying {xµ, πxµ} = −gµν , {pµ, πpµ} = −gµν . We

obtain from (5.6) the following set of constraints

Φ1
µ = πxµ ≈ 0, Φ2

µ = πpµ +
xµ
Λ
− β(xp)pµ

Λ2
√

1 + 2βp2
≈ 0.

From this constraint structure we can finally write down the cherished form of the point particle
Lagrangian in the first order formalism of (x, p) as

L = −(xṗ)

Λ
+

β(xp)(pṗ)

Λ2
√

1 + 2βp2
+ λ

(
f(p2)−m2

)
, (5.7)

where λ is a Lagrange multiplier. This construction of the particle model Lagrangian is one of
our major results [69]. We have included a mass-shell condition f(p2) − m2 = 0 where f(p2)
denotes an arbitrary function that needs to fixed. The Lorentz generators get modified to

jµν =
1

Λ
(xµpν − xνpµ),

such that correct transformation of the degrees of freedom are reproduced

{jµν , pλ} = gµλpν − gνλpµ, {jµν , xλ} = gµλxν − gνλxµ.

Interestingly this jµν obeys the correct Lorentz algebra

{jµν , jαβ} = gµαjνβ − gµβjνα − gνβjαµ + gναjβµ. (5.8)

Now since {jµν , p2} = 0, any function of p2 is Lorentz invariant. But keeping translation

invariance in mind, a more natural choice of f(p2) would be f(p2) → p2

Λ2 leading to a modified

mass shell condition p2

Λ2 − m2 = 0. However this can be actually simplified to p2 = M2,

M = m/
(
1− βm2

2

)
.

5.1.1 Approximations leading to other algebras

As we have explained at the beginning, approximating the full NC algebra (5.5) is not the proper
way to derive an effective O(β) corrected dynamical system since, in particular with operatorial
NC algebras, there is always a drawback that Jacobi identities might be violated. The correct
way is to approximate the system at the level of the Lagrangian because then we are assured
that the O(β) corrected NC brackets will also satisfy the Jacobi identities.
O(β) results. To the first order approximation of β, the function Λ becomes Λ = 1+ 1

2βp
2 +

O(β2), using which the equation (5.7) provides the Lagrangian L(1) (without the mass-shell
condition) as

L(1) = −(xṗ)

(
1− 1

2
βp2

)
+ β(xp)(pṗ) +O

(
β2
)
.

The Dirac brackets turn out to be

{xµ, pν} = −

 gµν(
1− βp2

2

) +
βpµpν(

1− 3βp2

2

)(
1− βp2

2

)
 , {xµ, xν} = {pµ, pν} = 0.

Notice that the algebra is still structurally similar as the exact one and the Snyder form with
non-zero {xµ, xν} has not appeared. This agrees with previous results that the Snyder form is
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present only in O(β2) or when more than one β-like parameters are present [50, 70]. However,
linearizing this algebra to O(β) is once again problematic as it clashes with the Jacobi identity.
We will see that the Snyder form is necessary in the linearized system in order to exactly satisfy
the Jacobi identity.

The combination xµ,
(
1− βp2

2

)
pν constitutes a canonical pair with

{
xµ,
(
1− βp2

2

)
pν
}

= −gµν .

The operator jµν =
(
1 − βp2

2

)
(xµpν − xνpµ) transforms xµ and pµ correctly and satisfies the

correct Lorentz algebra (5.8).

O(β2) results. With Λ ≈ 1 + βp2

2 −
(βp2

2

)2
, the Lagrangian L(2) (without the mass-shell

condition) becomes

L(2) = −(xṗ)

(
1− βp2

2
+

(
βp2

2

)2
)

+ β(xp)(pṗ)

(
1− 3βp2

2

)
.

The corresponding Dirac brackets are

{xµ, xν} = D(xµpν − xνpµ), {pµ, pν} = 0,

{xµ, pν} = − gµν(
1− βp2

2 +
(βp2

2

)2) − Cpµpν ,
where

C =
β
(
1− 3βp2

2

)(
1− 3βp2

2 + 7β2p4

4

)(
1− βp2

2 + β2p4

4

) , D =
Cβp2

2
(
1− 3βp2

2

) .
We notice that the Snyder form has been recovered once O(β2) contributions are introduced.
This GUP based Snyder algebra connection constitutes the other major result of our work [69]. It
is possible to construct the deformed Poincaré generators but the expressions are quite involved
and not very illuminating.

Two parameter (β, β′) results. We now provide a considerably simpler Lagrangian with
two parameters β and β′ that can induce the Snyder algebra. Note that ab initio it would
have been hard to guess this result as well as the explicit expressions for the algebra but in our
constraint framework this is quite straightforward. From the constraint analysis that generates
the Dirac brackets it is clear that we need a non-vanishing {φµ2 , φν2} to reproduce a non-vanishing
{xµ, xν} bracket. Thus the two non-canonical terms in L(1) must have different β-factors to
produce the desired effect. Hence we consider the Lagrangian L(β,β′) (without the mass-shell
condition)

L(β,β′) = −(xṗ)

(
1− βp2

2

)
+ β′(xp)(pṗ).

The Dirac brackets are obtained as

{xµ, xν} = D
(β − β′)

β′
(xµpν − xνpµ), {pµ, pν} = 0,

{xµ, pν} = − gµν(
1− βp2

2

) −Dpµpν ,
where D = β′(

1−βp2
2
−β′p2

)(
1−βp2

2

) . Clearly for β = β′ → {xµ, xν} = 0, thus leaving a GUP like

algebra. We have not shown the deformed Poincaré generators which are quite complicated.
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5.2 Particle in external electromagnetic field

We introduce minimally coupled U(1) gauge interaction to the free GUP particle Lagran-
gian (5.7)

L = −(xṗ)

Λ
+

β(xp)(pṗ)

Λ2
√

1 + 2βp2
+ λ

(
f
(
p2
)
−m2

)
+ e(Aẋ).

Since the symplectic structure changes here, so we need to compute the new Dirac algebra
though the procedure remains the same. Therefore in this case the Dirac brackets modified by
the U(1) interaction are given by

{xα, xγ}∗ = 0, {xα, pγ}∗ = −(Λgαγ + βpαpγ),

{pα, pγ}∗ = −eΛ(ΛFαγ + βpa(Fαapγ − Fγapα)). (5.9)

It is convenient to consider the relativistic Hamiltonian of the form

H =
p2

m
−
√
p2. (5.10)

Using the Dirac brackets (5.9) and the Hamiltonian (5.10), the Hamilton’s equations of motion
are obtained as,

ẋα =
{
xα,

pγpγ
m
−√pγpγ

}∗
= − 1

m
Λ2
√

1 + 2βp2pα,

ṗα =
{
pα,

pγpγ
m
−√pγpγ

}∗
= − e

m
Λ2
√

1 + 2βp2pγFαγ . (5.11)

Keeping only O(e) terms we can eliminate p, to get the modified Newton’s law

ẍα = − e

m
Λ2
√

1 + 2βp2ẋγFαγ = − e

m
Λ2
√

1 + 2βm2ẋγFαγ . (5.12)

It is important to note that the dynamics in (5.11) and (5.12) is exact for the GUP parameter β
although it is to the first order of e. Hence the dynamics remains qualitatively unchanged with
a renormalization of the charge. The O(β) equation of motion is given by

ẍα = − e

m

(
1 + 2βm2

)
ẋγFαγ .

6 Path integral formulation for GUP Hamiltonian

The Heisenberg uncertainty principle (HUP) says that uncertainty in position decreases with
increasing uncertainty in energy (∆x ∼ ~

∆p). But HUP breaks down for energies close to Planck
scale, at which point the Schwarzschild radius becomes comparable to Compton wavelength.
Higher energies result in a further increase of the Schwarzschild radius, inducing the following
relation: ∆x ≈ l2P

∆p
~ . Consistent with the above, the following form of GUP has been proposed,

postulated to hold in all scales [50]

∆xi∆pi ≥
~
2

[
1 + β

(
∆p2 + 〈p〉2

)
+ 2β

(
∆p2

i + 〈pi〉2
)]
, i = 1, 2, 3, (6.1)

where [β] = (momentum)−2 and we will assume that β ≈ 1/(MPc)
2 = l2P/2~2, MP = Planck

mass, and MPc
2 = Planck energy ≈ 1019 GeV. In one dimension the above inequality takes the

form

∆x∆p ≥ ~
2

[
1 + 3β(∆p2 + 〈p〉2)

]
(6.2)
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from which we have

∆p ≤ ∆x

3β~
+

√(
∆x

3β~

)2

− 1 + 3β〈p〉2
3β

. (6.3)

Since ∆p is real quantity, we have(
∆x

3β~

)2

≥ 1 + 3β〈p〉2

3β
⇒ ∆x ≥ ~

√
3β
√

1 + 3β〈p〉2, (6.4)

which gives the minimum bound for ∆x as

∆xmin = ~
√

3β. (6.5)

Here one should notice from (6.4) that the condition 〈p〉 = 0 gives this minimum bound (6.5),
which is consistent with the above inequality (6.3) and GUP relation (6.2). Now using rela-
tion (6.5) along with the condition 〈p〉 = 0 we get the maximum bound of ∆p as

∆pmax =
1√
3β
. (6.6)

It can be shown [50] that the inequality (6.1) follows from the modified Heisenberg algebra

[xi, pj ] = i~
(
δij + βδijp

2 + 2βpipj
)
. (6.7)

In this section, we use the notation [ , ] instead of { , } as used in the previous sections of this
article to denote brackets since we are now dealing with quantum Lie algebraic structure. To
satisfy the Jacobi identity, the above bracket (6.7) gives [xi, xj ] = [pi, pj ] = 0, to first order in
O(β) [48]. Now defining

xi = x0i, pi = p0i

(
1 + βp2

0

)
, (6.8)

where p2
0 =

3∑
j=1

p0jp0j and x0i, p0j satisfy the canonical commutation relations [x0i, p0j ] = i~δij ,

one can easily show that the above commutation relation (6.7) is satisfied, to first order of β.
Henceforth, we neglect terms of order β2 and higher. The effects of this GUP (6.1) in Lamb
shift and Landau levels have been studied in [24]. Also, formulation of coherent states for this
GUP has been described in [35]. Here we successfully derive the kernel for this GUP model by
Hamiltonian path integral formulation [31] and show that this GUP corrected kernel induces
a maximum momentum bound in the theory [22].

Using (6.8), we start with the corresponding Hamiltonian of the form

H =
p2

2m
+ V (~r),

which can be written as

H = H0 +H1 +O
(
β2
)
, (6.9)

where

H0 =
p2

0

2m
+ V (~r), H1 =

β

m
p4

0.

Thus, we see that any system with an well defined quantum (or even classical) Hamiltonian H0,
is perturbed by H1, near the Planck scale. In other words, quantum gravity effects are in some
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sense universal. Now the modified Schrödinger equation corresponding to the above Hamilto-
nian (6.9) is given by

− ~2

2m

∂2

∂x2
ψ(x, t) +

β~4

m

∂4

∂x4
ψ(x, t) + V (x)ψ = i~

∂

∂t
ψ(x, t).

In this article we show that path integral method [28] is applicable to this higher energy cases
and we evaluate the free particle kernel for GUP corrected Hamiltonian (6.9). For this purpose,
we shall briefly recall the notion of basic properties of kernel in Hamiltonian path integral
formalism. The kernel in Hamiltonian path integral is given by [31]

K(x′′, x′) =

∫ [
e
i
~
∫

(~p.~̇x−H)dt
] dp1

2π~
dp2

2π~
· · · dpN

2π~
dx1dx2 · · · dxN−1. (6.10)

It has been shown in [31] that the above kernel (6.10) can be written in the form

K(x′′, x′,∆t) = δ(~x′′ − ~x′)− i∆t

~

[
−~2∇2

2m
× δ(~x′′ − ~x′) + V̄ (x)δ(~x′′ − ~x′)

]
from which one can easily obtain Schrödinger equation using the relation

ψ(x′′, t′′) =

∫
K(x′′, t′′;x′, t′)ψ(x′, t′)dx′. (6.11)

Since ∫
ψ∗(x′′, t′′)ψ(x′′, t′′)dx′′ =

∫
ψ∗(x′, t′)ψ(x′, t′)dx′,

using the relation (6.11) we have∫∫∫
K∗(x′′, t′′;x′1, t

′)K(x′′, t′′;x′, t′)ψ∗(x′1, t
′)ψ(x′, t′)dx′′dx′1dx

′ =

∫
ψ∗(x′, t′)ψ(x′, t′)dx′,

which immediately implies the following relation∫∫
K∗(x′′, t′′;x′1, t

′)K(x′′, t′′;x′, t′)ψ∗(x′1, t
′)dx′′dx′1 = ψ∗(x′, t′). (6.12)

Also, if ψ(x, t) is the solution of the Schrödinger equation

− ~2

2m
∇2ψ(x, t) + V (x)ψ(x, t) = i~

∂ψ(x, t)

∂t
,

then the kernel also satisfy Schrödinger equation at the end point x = x′′, i.e.

− ~2

2m

∂2

∂x′′2
K(x′′, t′′;x′, t′) + V (x′′)K(x′′, t′′;x′, t′) = i~

∂

∂t′′
K(x′′, t′′;x′, t′). (6.13)

Equation (6.11), (6.12) and (6.13) are the basic properties of the kernel K(x, t).

6.1 Kernel for GUP corrected Hamiltonian

Path integral method [28] is applicable in all cases where the change of action, corresponding
to the variation of path, is large enough compared to ~. As the above Hamiltonian (6.9) is
associated with higher energy, so a small variation on paths other than the path of least action
make enormous change in phase for which cosine or sine will oscillate exceedingly rapidly between
plus and minus value and cancel out their total contribution. So only the least action path will
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contribute in kernel. This is similar to the idea of path integral in quantum mechanics. We now
therefore consider the Hamiltonian (6.9) in one dimension

H =
p2

0

2m
+
β

m
p4

0 + V (x).

If we consider that the particle goes from x′ to x′′ during the short time interval ∆t, then the
infinitesimal kernel is of the form

K(x′′, t′ + ∆t;x′, t′) =

∫
e
i
~
∫ t′+∆t
t′

(
p0.ẋ−

p20
2m
− β
m
p4

0−V (x)

)
dt dp0

2π~

=

∫
e
i
~p0.(x′′−x′)e

− i
~

[
p20∆t

2m
+β∆t

m
p4

0+∆tV̄ (x)

]
dp0

2π~
, (6.14)

where V̄ (x) is the average of V (x) over the straight line connecting x′′ and x′. Expanding the
second exponential function in (6.14) and neglecting the second and higher order terms of ∆t,
we have

K(x′′, t′ + ∆t;x′, t′) = δ(x′′ − x′)

− i∆t

~

[
− ~2

2m

∂2

∂x′′2
δ(x′′ − x′) +

β~4

m

∂4

∂x′′4
δ(x′′ − x′) + V̄ (x)δ(x′′ − x′)

]
. (6.15)

It is interesting to note that the kernel (6.15) boils down to the same form as in [31] in the limit
β → 0. But it is very difficult to deal with above form of kernel (6.15) as it contains derivative
of delta function. Therefore we are going to derive the delta-independent equivalent form of
kernel. For this we consider the kernel for free particle

K(x′′, t′ + ∆t;x′, t′) =

∫
e
i
~
∫ t′+∆t
t′

(
p0.ẋ−

p20
2m
− β
m
p4

0

)
dt dp0

2π~
, (6.16)

for short time interval ∆t. Now expanding the exponential series of the last term in (6.16) and
neglecting the terms containing higher order of β we have

K(x′′, t′ + ∆t;x′, t′) =

∫
e
− i∆t

2m~

(
p0− (x′′−x′)m

∆t

)2
+
im(x′′−x′)2

2~∆t

(
1− iβ∆tp4

0

~m

)
dp0

2π~
.

After some calculation we get the kernel as

K(x′′, t′ + ∆t;x′, t′)

=

√
m

2πi~∆t

[
1 +

3βi~m
∆t

− 6βm2(x′′ − x′)2

∆t2
− iβm3(x′′ − x′)4

~∆t3

]
e
im(x′′−x′)2

2~∆t . (6.17)

After a bit of lengthy algebra (please see [22] for details), the final form of the kernel becomes

K(x′′, t′′;x′, t′) =

√
m

2πi~(t′′ − t′)

× e
im(x′′−x′)2

2~(t′′−t′)

[
1 +

3βi~m
(t′′ − t′)

− 6βm2(x′′ − x′)2

(t′′ − t′)2
− iβm3(x′′ − x′)4

~(t′′ − t′)3

]
, (6.18)

where t′′ − t′ = N∆t. This kernel (6.18) is exactly of the same form as the kernel for the
infinitesimal interval (6.17). It can be shown that the above kernel (6.18) satisfies the modified
schrodinger equation

− ~2

2m

∂2

∂x2
ψ(x, t) +

β~4

m

∂4

∂x4
ψ(x, t) = i~

∂

∂t
ψ(x, t), (6.19)
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at the point x = x′′, t = t′′. Now the solution of this Schrödinger equation (6.19) is given by [24]

ψ(x, t) =
(
Aeik(1−β~2k2)x− iEt~

+Be−ik(1−β~2k2)x− iEt~ + Ce
x√

2β~2
− iEt~ +De

− x√
2β~2

− iEt~
)
. (6.20)

With this solution (6.20) in hand, we can show that the kernels (6.15) and (6.17) indeed pro-
pagates the wave function ψ(x, t) from a point (x′, t′) to the point (x′′, t′′), for a chosen time
interval ∆t = t′′−t′, such that ∆t

4β~m = D = a dimensionless quantity of O(β). Thus the following
relation holds

ψ(x′′, t′′) =

∫
K(x′′, t′′;x′, t′)ψ(x′, t′)dx′.

Therefore the free particle kernel satisfies the basic properties of a kernel, which we have stated
earlier.

For usual free particle case, the probability that a particle arrives at the point x′′ is propor-
tional to the absolute square of the kernel K(x′′, x′, t′′− t′), i.e. for usual free-particle kernel the
probability is given by

P (x′′)dx =
m

2π~(t′′ − t′)
dx.

Now, for the GUP corrected kernel (6.18), the corresponding probability is given by

P (x′′)dx = K∗(x′′, x′, t′′ − t′)K(x′′, x′, t′′ − t′)dx

=

(
1− 12βm2(x′′ − x′)2

(t′′ − t′)2

)
m

2π~(t′′ − t′)
dx. (6.21)

It is clearly observable that the term
(
1 − 12βm2(x′′−x′)2

(t′′−t′)2

)
in (6.21) is smaller than 1 as β > 0.

Thus we conclude that the probability value in this case is less than the corresponding value

in the free particle case. Also, since probability is non-negative, this term
(
1 − 12βm2(x′′−x′)2

(t′′−t′)2

)
should also be non-negative. Thus we have the following relation

1− 12βm2(x′′ − x′)2

(t′′ − t′)2
≥ 0,

which immediately implies the bound for momentum as

p ≤ pmax =
1

2
√

3β
, (6.22)

where p = mx
t . Thus, from (6.22) we see that GUP induces a momentum upper bound in the

theory which is comparable to maximum momentum uncertainty (6.6) induced by GUP.
Using this procedure, one can also calculate the GUP kernel for higher order terms of β,

i.e. terms up to O(β2) [22]. It is interesting to note that the maximum momentum bound
for O(β2) case is less than that obtained in the previous O(β) case, though by a very small
amount (please see [22] for details).

7 Summary and discussion

A particular framework for quantum gravity is the doubly special relativity (DSR) formalism,
that introduces a new observer independent energy scale, considered to be of the order of the
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Planck energy. Presence of this energy scale naturally invokes noncommutative phase space
structure. We study the effects of this energy upper bound in relativistic thermodynamics for
the particular case of κ-Minkowski spacetime where κ plays the role of energy upper bound.
We have explicitly computed the expression for the energy-momentum tensor of an ideal fluid
in DSR framework [20]. In deriving the result we exploited the scheme of treating DSR as
a nonlinear representation of the Lorentz group in special relativity.

We have also studied the modifications in the thermodynamic properties of photon gas in
this DSR scenario where we have an invariant energy scale [23]. We show both analytically and
graphically that the density of states and the entropy in this DSR framework are less than the
corresponding quantities in Einstein’s special relativity (SR) theory. We stress that the Lorentz
symmetry is not broken in this model. But due do the presence of an invariant energy upper
bound in this theory, microstates can avail energies only up to a finite cut-off whereas in SR
theory, microstates can attain energies up to infinity. The internal energy is modified in case of
the DSR model and as a consequence the expression for the specific heat is also modified.

Though highly non-trivial, one can similarly study the behaviour of an ideal gas or fermion gas
in case of this DSR model. There might be some modifications in the Fermi energy level which
in turn can modify the Chandrasekhar mass limit for the white dwarf stars. Thus astrophysical
phenomena in DSR framework is another issue which remains to be addressed.

Further, as we have the expression for energy-momentum tensor, one can study the cosmo-
logical aspects of the DSR model using the Friedmann equations. But this requires idea about
the geometry sector (precisely the metric gµν and hence Einstein tensor Gµν) which is still
unknown in the context of the DSR model. This still remains another open issue to be further
studied.

It is noteworthy to mention here that “bouncing” loop quantum cosmology theories (for ex-
ample see [16] and references therein) entail some modifications to the geometry of spacetime
which in turn effectively put a bound on the curvature avoiding the big bang singularity. How-
ever, for these “bouncing” models, the perturbation technique cannot be used as at the point
of curvature saturation, the energy density of the cosmic fluid diverges. So it is unclear how
to construct the matter part of the Einstein equation. One alternative to avoid the big bang
singularity is the inflation theory where the perturbation method can also be applied. On the
other hand, in our model, the energy density of the cosmic fluid saturates to the Planck energy
which is a finite real quantity. Possibly a combination of the model considered in this paper
along with the “bouncing” loop quantum cosmology can successfully describe a situation where
big bang singularity can be avoided.

We also have considered generalized uncertainty principle (GUP) induced models [69]. We
derived a covariant free particle Lagrangian in GUP and also studied GUP Lagrangian in pre-
sence of an external electromagnetic field. We show how the equations of motion are affected
by the noncommutative parameter present in the theory.

GUP gives rise additional terms in quantum mechanical Hamiltonian like βp4, where β ∼
1

(MPc)2 is the GUP parameter. This term plays important role at Planck energy level. Consi-

dering this term as a perturbation, we have shown that path integral method is applicable on
this GUP corrected non-relativistic cases [22]. Here we have constructed the explicit form of the
GUP kernel by applying Hamiltonian path integral method. The consistency properties of this
kernel is then thoroughly verified. We have shown that the probability for finding a particle
at a given point in case of the GUP model is less than the corresponding probability in the
canonical free particle case. We have also shown that probabilistic interpretation of this kernel
induces a momentum upper bound in the theory. And this upper bound changes slightly with
e−O(β2), if we consider higher order β terms in the Hamiltonian. Following this Hamiltonian
path integral approach one can construct kernels and study their properties for other systems
like particle in a step potential, Hydrogen atom etc, which is our future goal.
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