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Abstract. The 95 symbols of su(1,1) are studied within the framework of the generic
superintegrable system on the 3-sphere. The canonical bases corresponding to the binary
coupling schemes of four su(1, 1) representations are constructed explicitly in terms of Jacobi
polynomials and are seen to correspond to the separation of variables in different cylindrical
coordinate systems. A triple integral expression for the 9j coefficients exhibiting their
symmetries is derived. A double integral formula is obtained by extending the model to the
complex three-sphere and taking the complex radius to zero. The explicit expression for
the vacuum coefficients is given. Raising and lowering operators are constructed and are
used to recover the relations between contiguous coefficients. It is seen that the 95 symbols
can be expressed as the product of the vacuum coefficients and a rational function. The
recurrence relations and the difference equations satisfied by the 95 coefficients are derived.
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1 Introduction

The objective of this paper is to show how the framework provided by the generic superintegrable
system on the 3-sphere can be used to study the 9j coefficients of su(1,1). In addition to
providing a new interpretation for these coefficients, this approach, which can be viewed as
a treatment of the problem in the position representation, allows for an explicit construction of
the canonical bases involved in the 95 problem and a direct derivation of the properties of the 95
symbols without reference to Clebsch—Gordan or Racah coefficients.

The 95 symbols arise as recoupling coefficients in the combination of four irreducible su(1,1)
representations of the positive-discrete series. These coefficients and their equivalent su(2) ana-
logues have traditionally found applications in molecular [26] and nuclear [28] physics but have
also appeared in the study of spin networks related to quantum gravity [22]. Over the past years,
they have been the object of a number of publications, many of which study the 9j coefficients
from the point of view of special functions. For example, the connection between 9j coefficients
and orthogonal polynomials in two variables has been studied by Van der Jeugt [31], Suslov [21]
and more recently by Hoare and Rahman [12] who used the 95 coefficients as a starting point
to their study of bivariate Krawtchouk polynomials [6, 8]. A number of explicit multi-sums ex-
pressions have also been investigated by Alisauskas and Jucys [1, 2|, Rosengren [23, 24, 25] and
Srinivasa Rao and Rajeswari [27]. Also worth mentioning is the original approach of Granovskii
and Zhedanov [10] which opened a path to a new method for deriving generating functions and
convolution identities for orthogonal polynomials [17, 30].

In the present paper, we shall indicate how the 95 problem can be studied in the position
representation using the connection between the coupling of four su(1, 1) representations and the
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generic superintegrable system on the three-sphere. This system has been discussed by Kalnins,
Kress and Miller in [13]. It is governed by the Hamiltonian

H= Y B+ % a=a-1/4 (1.1)

s2’
1<i<k<4 1<e<4 7

where ay > —1 and is defined on the 3-sphere of square radius r? = s? + s3 + s3 + s3. Here the
operators J;, stand for the familiar angular momentum generators

Jip = i(Siask — Skasi), 1< <k <4 (1.2)

The system described by (1.1) is both superintegrable and exactly solvable. It has five alge-
braically independent second order constants of motion that generate a quadratic algebra [14].

It will first be shown that the Hamiltonian (1.1) coincides with the total Casimir operator
for the combination of four su(1,1) representations and that its constants of motion correspond
to the intermediate Casimir operators associated to each possible pairing of the four representa-
tions; these results extend the author’s previous work [9]. Using this framework, the canonical
orthonormal bases of the 95 problem, which correspond to the joint diagonalization of different
pairs of commuting intermediate Casimir operators, will be constructed as solutions of the
Schrodinger equation associated to (1.1) separated in different cylindrical coordinate systems;
these solutions will be given in terms of Jacobi polynomials. The coordinate realization of the
canonical bases and the underlying quantum mechanical framework will yield an expression for
the 95 coefficients in terms of an integral on the 3-sphere exhibiting their symmetries. By ex-
tending the model to the complex 3-sphere and taking the complex radius to zero, the expression
for the 95 symbols in terms of a double integral found by Granovskii and Zhedanov [10] shall
be recovered. This formula will be used to obtain an explicit hypergeometric formula for the
special case corresponding to the “vacuum” 9j coefficients. The coordinate realization will also
allow for the construction of raising and lowering operators based on the structure relations of
the Jacobi polynomials. These operators will then be used to derive directly the relations be-
tween contiguous 95 symbols, which are usually obtained by manipulations of Clebsch—Gordan
or Racah coefficients (given in terms of the Hahn or the Racah polynomials [31]). From these
relations, it will be possible to conclude that the 95 coefficients can be expressed as a product
of the vacuum coefficients and of functions that are rational (and not polynomial as stated
n [12]). The fact that the raising and lowering operators factorize the corresponding interme-
diate Casimir operators shall be used to obtain the action of the intermediate Casimirs on the
basis states. This will also lead to both the difference equations and the recurrence relations
satisfied by the 95 coefficients.

The organization of the paper is as follows.

e Section 2: generic system on the 3-sphere from four su(1,1) representations, exact solu-
tions, canonical basis vectors of the 95 problem, triple integral representation, symmetries
of the 95 coefficients.

e Section 3: double integral formula, explicit vacuum 95 coefficients.
e Section 4: raising/lowering operators, relations between contiguous 9;j symbols.

e Section 5: difference equations and recurrence relations for 95 symbols.

2 The 95 problem for su(1,1) in the position representation

In this section the 95 problem for the positive-discrete series of su(1,1) representations is exa-
mined in the position representation. The total Casimir operator for the addition of four repre-
sentations is identified with the Hamiltonian of the generic superintegrable system on S3 and the
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intermediate Casimir operators are identified with its symmetries. The canonical basis vectors
of the 95 problem are constructed as wavefunctions separated in different coordinate systems
and the 9j coefficients are expressed as the overlap coefficients between these bases.

2.1 The addition of four representations and the generic system on S3

Consider the operators

. 1 a; ; 1 a; .
K = i (—6;. + 87 + 8;) . KP = 1 ((Sz‘ F5,)% — S;) ;o i=104 (2.1)
i :

(2
which form four mutually commuting sets of generators satisfying the su(1,1) commutation
relations

(5 KD = +k0, K9 kY] =2k

The operators (2.1) provide a realization of the positive-discrete series of su(1, 1) representations

(vi)

on the space of square-integrable functions on the positive real line. A set of basis vectors ey,

n; = 0,1,..., for these representations specified by a positive real number v; taking the value
o; +1
vi = ’2 , (2.2)

is given in terms of Laguerre polynomials [16] according to

v me | 2L(Mi+1) 2 ait1/2 (a
67(1;)(82') = (_1) ’ IMC 2/28? 1/ ngll) (S?), n; = 0, 1, ceey (23)

where I'(z) is the gamma function [4]. These basis vectors are orthonormal with respect to the
scalar product [16]

/ 67(11:1)(81)65::1)(31) dS,L' = 5nin/~7
0 g i

and the action of the generators on the basis vectors is given by

KWel) (s1) = /(ni + 1)(n; + 205

e
S) el (51) = V/ni(ni + 20 — el
K§e) () = (ni+ i) (sy),

) (s0),
D (s)s

which corresponds to the usual action defining the irreducible representations of the positive-
discrete series [33]. In the realization (2.1), it is easily verified that the Casimir operator
of su(1,1) which has the expression

Q) = [P - KO
acts as a multiple of the identity, i.e.
QY =vi(v; — 1),

for i = 1,...,4. The four sets (2.1) can be used to define a fifth set of su(1,1) generators
through

Ko= Y K, Ki= Y KV

1<i<4 1<i<4
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The above operators realize a representation of su(1,1) on the space ®?:1 V) where V)
is the space spanned by the basis vectors (2.3). It is directly checked that the total Casimir
operator associated to this realization is

Q=H/4, (2.4)

where H is the Hamiltonian of the generic superintegrable system on the 3-sphere given by (1.1).

When considering the tensor product of several representations, it is natural to consider the
intermediate Casimir operators associated to each possible pairing of representations. These
intermediate Casimir operators are defined by

Q) = [k + K12~ (K9 + KOY[KD + K9] - [k + K], 1<i<j<a

and have the expression

o2 2

- 1 a;S4 . g
Q) =1 <J2-2j+ ;; +aijl +ai+aj—1>, 1<i<j<4, (2.5)

i j

where J;; are the angular momentum operators (1.2). By construction, the intermediate Casimir
operators Q) commute with the total Casimir operator Q and hence the intermediate Casimir
operators (2.5) are the symmetries of the Hamiltonian (1.1). It is directly checked that the
intermediate Casimir operators Q7). Q9 commute only when 7, j, k, ¢ are all different and
hence the largest set of commuting intermediate Casimir operators has two elements. Note that
the intermediate Casimir operators are linearly related to the total Casimir operator as per the
relation
Q= Z Q) — 2 Z Q.
1<i<j<4 1<i<4

In considering the total Casimir operator (2.4), one can take the value of the square radius r?
to be fixed since the operator

20Kg+ K, + K_ =12,

commutes with @ and all the intermediate Casimir operators Q). We shall take r2 = 1, thus
considering the Hamiltonian (1.1) on the unit 3-sphere.

2.2 The 95 symbols

In general, the representation ®;1:1 V(i) is not irreducible, but it is known to be completely
reducible in representations of the positive-discrete series. In this context, the 95 symbols arise
as the overlap coefficients between natural bases associated to two different decomposition
schemes.

e In the first scheme, one first decomposes V1) @ V(*2) and V#3) @ V(*4) in irreducible com-
ponents V#12) V(#34) and then decomposes V#12) @ V(#34) in irreducible components V*)
for each occurring values of (v12,v34). The natural (orthonormal) basis vectors for this
scheme are denoted |U; v19,v34; V) and defined by

QU 7, w19, v3g; v) = v19(via — 1)|7; 119, v3a; V),
QY| w19, v3a;v) = va(vsa — 1)|T; 012, v3; ),
QlV;vi2,v34;v) = v(v — 1) |V v12, V343 1), (2.6)

where U = (v1, 12,3, V4).
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e In the second scheme, one first decomposes V#1) @ V(#3) and V(2) @ V#4) in irreducible
components V#13) 7/(24) and then decomposes V#13) @ V(24) in irreducible compo-
nents V*) for each occurring values of (113, v4). The natural (orthonormal) basis vectors
for this scheme are denoted |7; 113, v94; V) and defined by

QU |7 113, vaa; v) = ni3(vi3 — 1)|7; 113, vo4; V),
QY| 113, vaa; V) = voa(vag — 1)|7; 113, vo4; 1),

Q|7; 113, va4;v) = v(v — 1)|7; 113, Vag; V). (2.7)

The 95 symbols are defined as the overlap coefficients between these two bases, i.e.

141 V2 2

|U; 12, V345 V) = E v3 vy V34 |Uivi3, Vo4 v).
vis,v24 \ V13 V24 14

For the 95 symbols to be non-vanishing, one must have

Vg =v1t+rv2+m, v3e =v3+uv4+n, vig=uv1+uv3+ux, Vog = Vo + 14+ Y,
v=1v1+1vs+rv3+uvy+ N, (2.8)

where m, n, x, y and N are non-negative integers such that m +n < N and x +y < N.

In view of the coordinate realization stemming from the previous subsection, the bases (2.6)
and (2.7) can be constructed explicitly by solving the corresponding eigenvalue equations: these
bases correspond to the diagonalization of the Hamiltonian (1.1) together with the pairs of
commuting intermediate Casimir operators (symmetries) (Q(12), Q3%)) or (Q(3), QY). In view
of the conditions (2.2), (2.8) and for notational convenience, the basis corresponding to the
scheme (2.6) shall be simply denoted by |m,n)x, the basis corresponding to (2.7) by |z, y)n and
the 95 coefficients will be written as

a1 G2 M
m,n)y =Y Sas ou n vy, (2.9)
z,yY x y N
T+y<N
or equivalently as
a1 G M
a3z a4 N :N<x7y|m7n>N

x y N

The 95 coefficients are taken to be real. Since they are transition coefficients between two
orthonormal bases, it follows from elementary linear algebra that

Q] G2 M a1 G M
E a3z G4 N a3 04 n’ = 5mm’5rm’7 (2.10)
Ty x N T N
z+y<N Y Y
and similarly
a1 2 m a1 Qg M
E as a4 N az g Mg = gty
m,n x y N ¥ y N

m+n<N
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2.3 The canonical bases by separation of variables

Let us now obtain the explicit realizations for the bases |m,n)y and |z,y) N corresponding to
the coupling schemes (2.6) and (2.7). As shall be seen, these bases correspond to the separation
of variables in the equation HY = AY using different cylindrical coordinate systems. Note that
this eigenvalue equation has been studied by Kalnins, Miller and Tratnik in [15].

2.3.1 The basis for {Q(1?),Q(34}

To obtain the coordinate realization of the basis corresponding to the first coupling scheme (2.6),
we look for functions ¥, ,,.x on the 3-sphere that satisfy

Q(lz) \I"m,n;N = Agﬁ) \Ilm,n;Nv Q(34) \Ilm,n;N = )\%34) \Ijm,n;Nu Q‘l’m,n;N = AN‘l’m,n;Na
with eigenvalues

A2 — (4 a1 /24 a2 /2)(m + a1 /2 4+ ap/2 + 1),
ABY = (n 4 a3/2 + aa/2)(n + a3/2 + ay/2 + 1),
Ay = (N +a]/2+1)(N + |a|/2 +2),

where |a] = > ;. The expressions for the spectra follow directly from the fact that the operators

(3
are intermediate Casimir operators in the addition of su(1,1) representations of the positive-
discrete series [32]. Consider the set of cylindrical coordinates {6, ¢1, 2} defined by

81 = cos B cos ¢, 89 = cos fsin ¢, 83 = sin 6 cos ¢, s4 =sinfsingy.  (2.11)

In these coordinates, one finds from (2.5) that the operators Q%) Q4 read

1
Q) = 1 <—8§1 + a1 tg® ¢1 + ﬁ + (a1 +az — 1)> ;
1
QBY (A R te2 gy + —o— + (a3 + ag — 1)
4 #a T tg? ¢ ’ ’

and that () takes the form

_ b
0= -d3+ (10~ L)

1 ay as 1 9 as a4
+——(-93, + + + —92, + + :
cos2 ( 17 cos2 ¢y | sin? qbl) sin? 6 ( 92" cos2 gy | sin? by
It is directly seen from the above expressions that ¥, ,.n will separate in the coordinates (2.11).
Using standard techniques, one finds that the wavefunctions have the expression

(0,61, dalm, n)y = WL (G ¢ hy) = plozar)plasas)

2 1,2 1 .
X ](Vﬁ;a_faﬁ ettt )(cosﬂcos ¢1)°‘1+1/2(cos951n ¢1)a2+1/2

X (sin 6 cos ¢2 )3+ 1/2(sin 0 sin ¢g)*+F1/2 cos?™ 0 sin®" O P21 (cos 2¢1)

" P7(la4’a3)(COS 2¢2)P(2"+O‘3+O‘4+1’2m+a1+a2+1)(COS 20), (2.12)

N—-—m—n

where P,(La’ﬁ ) (x) are the classical Jacobi polynomials (see Appendix A). The normalization factor

m(Laﬁ):\/2r(m+1)r(m+a+ﬁ+1)F(2m+a+6+2) 213

'm+a+1)I'm+B8+1)I'2m+a+5+1) "
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ensures that the following orthonormality condition holds:

w/2 pw/2 pmw/2
/ / / N 010, 61, o) {0, 61, ol ) v AQ = Sy B, (2.14)
0 0 0

where d2 = cos sin 6 df d¢; dgs. In Cartesian coordinates, ‘117(7?2,0;\2]’&3’0‘4) assumes the form

(ov1,002,003,004) , ,
(s1,82,83, salm,n)n =¥, "y (1, 89, 83, 54) = mlezet)ploses)
(2n4-az+as+1,2m+a;+as+1) . +1/2 2 . 2\m(.2 . 2\ p( ) st — 53
n+asz+ay 2m—toq+ag (e Q2,01
XN —m—n IIs (s1+53)" (s3+s1)" Py 52
; s1 + 85
=1
( ) 53— 51\ p@n+astasti2mrartastl) 2, 2 2 2
Q4,03 3 4 ) 1 2 _ _
x Py 2 1 52 Py (s1+s5 — 53 — s1). (2.15)
3 4

The wavefunctions V¥, ,.n thus provide a concrete realization in the position representation of
the basis state |m,n)y corresponding to the first coupling scheme. A different realization of
this state is given by Lievens and Van der Jeugt in [19], who examined realizations of coupled
vectors in the coherent state representation for general tensor products.

2.3.2 The basis for {Q(13), Q(24)}

To obtain the coordinate realization of the basis corresponding to the second coupling sche-
me (2.7), we look for functions =, .5 on the 3-sphere that satisfy

13)= 13)= 24) = _ 2= - _ =
Q( )Ex,y;N = /\;(L« )ux,y;N’ Q( )ux,y;N - )\?(J )Hx,y;Nv QEzy;N = ANEzyiN,
where

AP = (2 + a1/2 + a3/2)(x + 01 /2 + az/2 + 1),
MY = (y + a2/2+ aa/2)(y + a2/2 + @y /2 + 1),
Ay = (N +al/2+ 1N + ol /2 +2),

4
and |o| = > ;. Consider the set of cylindrical coordinates {1, ¢1, w2} defined by
i=1

$1 = cos v cos p1, S = sin ¥ cos (2, $3 = cos ¥ sin 1, sy =sin¥sinpe. (2.16)

In these coordinates, the operators Q(*3), Q(24) have the expressions

1 a
Q(13) = 1 <—8£1 +ay th p1+ ﬁ + (Cll + a3 — 1)) )
1
1 a
24) 2 2 4
Q( )—4<—8¢2—|—a2tg 902+tg2(p2+(a2+a4_1))7

and the total Casimir operator () reads

_ L o 1

al as 1 as a4
(& ) .
t ot o < o1t o2 1 * sin? g01> T sin? ¢ ( ot os? ©2 * sin? @2) ]
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It is clear from the above that the functions Z, 4. n will separate in the coordinates (2.16). The
wavefunctions =, ,.ny have the expression

(0, 01, 0212, y) N = E(m’zav%a?”m)(’ﬁ P1,02) = 77(&3’a1)77(a4’02)

7y
(2y+az+as+1,2z+a1+az+1) a1+l/2(

/e (cos ¥ cos 1)
X (cos¥sin ¢1)3 /2 (sin 9 sin 2)*1 /2 cos?® ¥ sin? 9 P31 (cos 21

> Pécm,ozg) (COS 2(102)P](\?E—;-itz—&-a4+1,2x+a1+a3+1) (COS 219)7

sin ¥ cos gy )2 1/2

where 777(1 B g given by (2.13) and where Py(f"ﬁ ) (x) are again the classical Jacobi polynomials.

The wavefunctions obey the orthonormality condition

w/2 /2
/ / / N<x,ay/|197 Splagp2><1979017§02’$7y>NdQ = 511’5yy’5NN/7 (217)
0 0 0

where d2 = cos¥'sin ¥ d¥ dyj dys. In Cartesian coordinates, one has

—=(a1,02,a3,04) : ,
(81, 82,83, 84|, y)N = = ZL N (s1,82,583,84) = 77(043 al)n?(jm az)
(2y+az+as+1,2c+a1+a3z+1) = +1/2 2 NT /[ 2 219 o ) S% —8%
YyroaragTL,srTa1Ta3 (&7 as,o
X N e H 55" (s14s3)" (s5+ 57) Py | 55—
; 81+ 83
=1
( ) 5% — 5421 (2yt+astast+l2ztartaz+l) (2 2 2 2
Qg ,02 YTo2+04 ,2r+o01tag . .
x By 7 2 ) INZa—y (s1+ 53 — 55 — s1). (2.18)
85+ 8%

Note that (2.18) can be obtained directly from (2.15) by permuting the indices 2 and 3. The
wavefunctions =, .y thus provide a concrete realization of the basis states |z, y)n corresponding
to the coupling scheme (2.7) in the position representation.

2.4 95 symbols as overlap coefficients, integral representation
and symmetries

In view of (2.9), the 95 coefficients for the positive-discrete series of su(1,1) representations
can be expressed as the expansion coefficients between the wavefunctions ¥, ,.n and Z; 4. n at
a given point, i.e.

\I/m,n;N = Z a3 G4 N E%y;N. (2.19)
T,y z y N
z+y<N

The orthogonality relation (2.17) immediately yields the integral formula

a1 2 m ( )
, , 2n+az+as+1,2m+a;+az+1
asz Qg N o= 77’57?2 al)n7(LQ4 aa)nN—m—n
x y N
as,a1), (aq,a2), (2y+aztas+1,2c+ar+az+1) a7,+1/2 2 2\m ( 2 2\
x )77; )nN oy dsi(s1 +s3)" (53 + s1)
S+ = 1
2 2\T [ 2 Y p(ag,a1) 82 (044 as) 83 8421 (az,0 ) 3% — S%
x (s1+83)" (2 + 1) P 53 ) B el R e
31—1—32 s3+s4 81+ s3
( ) 5% - 3421 (2n+ag+aa+1,2m+ai+as+1) 2 2
Qg,02 3 4 1 2
X PZ/ ( 2 2> N—m—n ( + 82 84)
85+ s
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(2y+az+oag+12z+a1+az+1) 1 2 2 2 2
X PNZasy (s1+s3— 55— 57), (2.20)

4
where Si stands for the totally positive octant of the 3-sphere described by > 512 = 1 with
i=1
s; = 0. The integral expression (2.20) looks rather complicated and shall be simplified in the next
section. However, the formula (2.20) and the elementary properties of the Jacobi polynomials
can be used to efficiently obtain the symmetry relations satisfied by the 95 symbols (2.9). As

a first example, one can read off directly from (2.20) the symmetry relation

ap az m a1 ag3 T
a3 a4 N op=<ar g4 Y p- (2.21)
x y N m n N

which we shall refer to as the “duality property” of 95 symbols. As a second example, using the
well-known identity PT(LO"B)(—:E) = (=1)" (8) (x), one finds that

a1 G2 Mm Qg 1 m a3 G4 N
a3 ag nop=(—)NTITTV o) az ooy =(—1)NTEVIMI o) an m o p(2.22)
xr y N y x N zr y N

A number of other symmetries can be derived by combining the above. Let us note that the
formula (2.20) can also be found from the results of [18].

3 Double integral formula and the vacuum 935 coefficients

In this section, a double integral formula for the 95 symbols is obtained by extending the
wavefunctions to the complex three-sphere and taking the complex radius to zero. The formula
is then used to compute the vacuum 95 coefficients explicitly.

3.1 Extension of the wavefunctions

The wavefunctions W, ,.n and Z, . n can easily be extended to the complex three-sphere of

2

radius r“ using their expressions in Cartesian coordinates. The extended wavefunctions ¥, .y,

Ez,y;N have the expressions

4
I Qg0 ay,a3), (2ntasztas+l,2m+ar+az+1) a;+1/2
\Ijmm;N = n§n2 1)777(1 * 3)77N7mfn H Si '

i=1
2 2\m (2 2\n( 2 2 2 2\ N=m=n p(az,a1) st — 55
X (51 + 52) (53 + 54) (81 + 55+ s3+ 54) ™ 32 n 2
1 2

2 2 2 2 2 2
5) (53— S 2ntazt+astl2mtari+aztl) (51T 85 — 83— 8
><P7§0‘4’O‘3)< 3 4)p( n+oz+oas+1, 1+a2 )( 1 2 3 4)’ (3_1>

s3+s3) N-mmn s?+ s34 83 + s3

and

4

= _ (as,a1 ag,a), (2y+aztas+1,2c+a1+a3z+1) a;+1/2
=z N = 77:(r )77;(/ )UN_x_y s,

=1

2 2
2 NZT/ 2 2\Y [ 2 2 2 N\ N—z—y 5(az,a 51 — 53
x (s1+535)" (s5+s3)"(s1+ 53 + 55+ s7) ng 3,01) —
81 + 83
2 2 2 2 2 2
(as,a2) [ 52 = 51\ p(2ytastas+l2etar+az+l) (ST + 83 — 85 — 84
< By 22 ) PNa—y 2, 2 24 2 ) (3.2)
85+ 81 §1+ 85+ s3+ 57
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with s; € Cfori =1,...,4. The expressions (3.1) and (3.2) correspond to the bases constructed
by Lievens and Van der Jeugt in [18] in their examination of 3nj symbols for su(1,1). The basis
vectors (3.1) and (3.2) also resemble the harmonic functions on S* of Dunkl and Xu [7], but do
not correspond to the same separation of variables.

When the coordinates satisfy s3 + s34 s3+ s7 = 1, the wavefunctions (3.1) and (3.2) coincide
with (2.15) and (2.18), respectively. When r? # 1, CI;m,n;N and éx,y;N differ from W, ,.n
and Z;,.n by a constant factor of pNHlel+2 - GQince the parameters N and «; are fixed, the
expansion (2.19) is not affected by this common multiplicative factor and one can write

a] s m

Upnin (51,82,83,54) = D Qaz as n p g yn(st,s2,83,5), (3.3)
T,y z y N
z+y<N

for a given point (s1, s2, 53, S4) satisfying s? + s2 4+ s2 +s2 = r2. Let us now impose the condition
g p ) ) ) ymg 1 2 3 4 p
2 2 2 2
S1 + S9 = —(53 + 84)7

which corresponds to taking the radius of the complex three-sphere to zero. Upon introducing
the new variables v and v defined by

5%—5% _s§+2si—l—s%

Uu=—-—-= v =
2 2 2 2
81+ 83 §1 1 83

)

and using the identity

- +1) -m,—f—m| y
(@ +y)" Py T4y my v a+1 x|’

in (3.1) and (3.2), one finds that the expansion (3.3) reduces to

N
S~ U— plaz.an) u+v+2 plaias) 2—u—w
i 2 m u—v " v—u

a1 Qg m
_ Z a3 s da:,y;Nngas’al)(u)PgS(M’aQ)(,U)’

T,y z y N
z+y<N

where the coefficients ¢, ;v and dg . v read

(az,a1), (a4,a3),,(2n+tazt+as+1,2m+ai+az+1) (_1)n(N +m+n+ |Oé| + 3)N7mfn

Cmn;N = Ty, Tin, NIN—m—n (N -m — n)' ’
d _ (az,01), (aq,00), (2ytastas+l,2z+on+az+1) (“DY(N+z+y+al+ S)N*x*y
zy;N = Nz "y NIN=z—y (N —z—y)! '

Here (a), stands for the Pochhammer symbol defined by
(@) = (a)(a+1)---(a+n—1), (a)=1.

The orthogonality relation (A.1) for the Jacobi polynomials then leads to the integral represen-
tation

a]p g m 2,1\7

o n Cm,n;N
3 4

d. .. (az,01); (4,02)
x y N z,yiN hy hy
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1 rl
X /_1 /_1 dUdU(l_u)a3(l+u)o‘1(1—U)O‘4(1_|_U)oz2

XRSMMWNR?W”<u+v+2>w—vWR?W”(2_u_v)]%%“%mmaa

u—"v v—1u

where A is given by (A.2). The integral formula (3.4) coincides with the one found by
Granovskii and Zhedanov [10] using a related approach. The formula (3.4) is one of the most
simple expressions for 95 symbols. Given the wealth of results on the asymptotic behavior of
Jacobi polynomials, one can expect the formula (3.4) to be useful in the examination of the
asymptotic behavior of the 95 symbols, an active field [5, 34] of interest in particular for the
study of spin networks related to quantum gravity [11].

3.2 The vacuum 9j coefficients

The integral expression (3.4) will now be used to obtain the explicit expression for the “va-
cuum” 95 coefficients, which correspond to the special case m = n = 0. These shall be used
in the next section to further characterize the 95 symbols. Upon using the binomial expansion,
the formula (3.4) gives the following expression for the vacuum 9; coefficients:

ap az 0 N N
; 2

as oy 0 CCZOMV B B O@)] Z( > 1)N- k/ / dude

x y N N by 7  hy P

(1 —u)®(1 4 u)* P39 ()P (1 — )4 (1 + v)aQP(O“"a2 (v)oNF, (3.5)

where (]IX ) is the binomial coefficient. To evaluate the integrals, one can use the expansion of
the power function in series of Jacobi polynomials [3] which reads

27k T 1 —k 1
xkzz{ T ta+f+ )2F1|:j. JJ+a+ 2}}]3(0{,5)(:6)7

= (k—NT2j+a+p+1) 2] +a+p+2 J
where ,F, stands for the generalized hypergeometric function [3]. Upon inserting the above
expansion in (3.5) and using the orthogonality relation (A.1) for the Jacobi polynomials, one
finds

a1 9 0 (ag,al) (a4,a3) (a3+a4+1,a1+a2+1)
@z s 0 o] o) s )
, az2) (2yt+az+aitl2z+ar+az+l
. y N 77xa3 a1 nya4 as nNg_(zggy Qg T+oq+as
y [( N+t (N +laf +3)n ] { T(z+ a1+ a3+ DI (y + ag+ ag+ 1)
2N=2=y (N4 z+y+|a|+3)v-s—y ] T2z + a1+ az+ 1)['(2y + as+ as+ 1)
N

x ffycv_f_y>v4ﬁ

{—k,:c—i—ag—i-l 2] F[—(N—x—y—k),y+a4+1‘2]
X oIy 211 .
20 + a1 + az + 2 20+ s+ g + 2

The summation in the above relation can be evaluated by means of the formula

M
(=N)e —,ay {— N,a ~y(a)N —N,a2,1—b; — N
Zz:; a2y x|2F1 by z| =2 (bl)N3 2| g - N
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Then using identity (a), = F(Fa(jg)" ), the following expression is obtained:

a1 9 0 N
ag a4 0 p = (
x,y

x y N
. [ (N + o] + 3)aiy ]1/2 [(al +oag+1)m(oq+<J43+2)N+gc_y]”2
(a1 —+ a9 + 2)N(a3 + oy + 2)N (a1 + a3 + 1)2;5(061 + a3 + 2)23;

|: (042 —+ a4 + 1)y(oz2 + oy + 2)23,/
(a2 + o+ 1)oy(2 + s + 2) N—gy

1/2
) (o + Dl + 1)y (s + L(es + 1),]/2

1/2
:| (y+a4 + 1)N7:137y

" F[—(N—:v—y),—(N—x+y+a2+a4+1),x+a3+1‘1] (3.6)
a2 —(N —z+ aq),2x + a1 + asz + 2 ’ )
where ( xNy ) = m stands for the trinomial coefficients. The analogous formula for the 95

coefficients of su(2) has been given by Hoare and Rahman [12]. The duality formula (2.21) can
be used to obtain a similar expression for the case where z =y = 0.

4 Raising, lowering operators and contiguity relations

In this section, raising and lowering operators are introduced and are called upon to obtain the
relations between contiguous 95 symbols by direct computation. These relations are used to
show that the 95 symbols can be expressed as the product of the vacuum 9;5 coefficients and
a rational function of the variables z, y.

4.1 Raising, lowering operators and factorization

Let Aﬂ_f”’““‘) be defined as

al,o 1 1
Ag: 1az) = 5 |::|:(9¢1 — tg¢1(a1 + 1/2) + @(O&Q + 1/2):| ) (4'1>

and let B{****") have the expression

1 1
B = - [j:@@ —tgdalas +1/2) + —(au +1 /2)] , (4.2)
2 tg P2
where the coordinates (2.11) have been used. It is directly checked that with respect to the
scalar product in (2.14), one has (Agfl"”))T = Ag?lm) and (BE_?S’“‘Q)T = BJ(F%’O“*)7 where
stands for the adjoint of z. With the help of the relations (A.4) and (A.3), it is easily verified
that one has on the one hand
AS?”’OQ)\Il(a1+1’a2+1’a3’a4)(9, b1, $2)

m,n;N

=v(m+1)(m+ o1+ az +2) wﬁ?ﬁfgﬁff)(e, b1, P2),
AL (9, 61, 6)

- m,n; N

= vm(m+a1 +as+1) \Ifﬁfj},{?}@ﬂ’%’a‘l)(@v o1, $2), (4.3)

and on the other hand

B—(’—a37a4)\Ij(al,OlQ,Oé3+1,Oé4+1) (97 ¢17 ¢2)

m,n;N
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— V(n+ D)(n+as +as + 2) U925 (9, 6, o),
B(a3’a4)\11(a1’0]‘§’0‘3’a4) (0, ¢1, P2)

- m7n;

=/n(n+az+ag+1) ‘I/,(gjﬁﬁ’;oﬁfll’aﬁl)(ea o1, ¢2),

(o1,a2,03,04)

where \I]m,n;N

is given by (2.12). The operators (4.1) and (4.2) provide a factorization of

the intermediate Casimir operators Q(!2) and Q3% respectively. Indeed, it is directly checked
that

Al 419D — QU — (a1/2 4 ag/2) (1 /2 + /2 + 1),
BP# ) Blas) — BN _ (04/2 + 4/2)(03/2 + aa/2 + 1). (4.4)

4.2 Contiguity relations

The raising/lowering operators (4.1) and (4.2) can be used to obtain the relations satisfied by
contiguous 95 symbols. To facilitate the computations, let us make explicit the dependence of
the canonical basis vectors |m,n)y, |z,y)y on the parameters a; by writing

|m,n) N = |ou, oo, a3, a3 m,n) N, |z, )N = o1, a2, a3, a5 2, Y) N

With this notation the 95 symbols are written as

a1 G2 m
as ag n p = n(a1, a2, a3, 45T, y|ar, ag, a3, ag;m,N)N.
x y N

To obtain the first contiguity relation for 95 symbols, one considers the matrix element

. (a1,02) .
N{o, ag, a3, a5, y| AL lar + 1, a2 + 1, a3, u;m, n) N_1.

By acting with Agf“’”) on |ag + 1,2 + 1, a3, aq;m, n) y—1 using (4.3), one finds

a1 oy m—41
Vim+D(m+ar+az+2)as ag  n

x oy N
= N<0417 9, 3,045 T, y|ASro<1,a2) ’041 + 1, a0 +1,a3,aq4;m, n>N_1. (4.5)
To obtain the desired relation, one must determine y {1, ae, a3, ay; , y|ASf‘1’a2) or equivalently

(A$17a2))T|a17 a2, 03, 45 T, y>N = A917a2)’a17 a2, 03,45 T, y>N7

where the reality of the basis functions Z;,.n has been used. This can be done directly by
(a1,a2)

writing A in the coordinates {1, ¢1, 2} defined in (2.16), acting with this operator on the

wavefunctions Eia;,’ﬁ%%’a“)(ﬁ, ©1,¢2) and using the properties of the Jacobi polynomials. Since

this step represents no fundamental difficulties, the details of the computation are relegated to
Appendix B. One finds that

A(al ,a2) = (a1,a2,a3,04)
- “z,y;N

@ tort Dot Dyt ast Dyt omt DN —z—g)(N + 245+ Jo +3)
(22 + 13+ 1)(22 + a13 + 2)(2y + 24 + 1)(2y + a2q + 2)
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—=(a1+1,a2+1,03,04)
—z,y;N—-1

N zxt+as)(y+ar+)(y+au+1)(N—x+y+au+2)(N+x—y+ai3+1)
(22 + a13) (22 + 13 + 1)(2y + aoq + 1)(2y + agq + 2)

% —=(a1+1,a24+1,03,04)
—z—1,y;N—1

 Jetat+D@tastDyly+a)(N+oz—y+az+2)(N-—z+y+aut+l)
(2 + a3+ 1)(2x + a13 +2)(2y + a24)(2y + s + 1)

—=(a1+1,a2+1,03,04)
“z,y—1;N—-1

. \/x(x + a3)y(y + 044)(N —r—Yy+ 1)(N +r+y+ |a| + 2) (a14+1,00+1,a3,04) (4 6)

[1]

(22 + a13) (22 + a3 + 1)(2y + a24)(2y + agq + 1) r—1y-LN-1

where the shorthand notation a;; = o; + o was used. Combining (4.2) with (4.6), one finds
the contiguity relation

a1 ag m+1
Vim+1)(m+ans+2){az oy n
r oy N

et at+)(ztaz+)(y+a+)(yt+au+1)(N—-—2—y)(N+z+y+|al +3)
(2z + a13 + 1) (22 + a13 + 2)(2y + aoq + 1) (2y + aog + 2)
ar+1 ag+1 m

X as oy n
x Y N -1

a:(gc+a3)(y+a2+1)(y+ag4+1)(N—m+y+ag4+2)(N+a:—y+a13+1)
(2:c+a13)(2:z:+a13+ 1)(2y+a24+ 1)(2y+ag4+2)
a1 +1 ag+1 m

X asg (a7} n
z—1 Y N -1

C Jeta+D@toas+Dylytoa) N+ —y+as+2)(N—z+y+au+l)
(2x + a13+ 1)(2x + a13 + 2)(2y + a24) (2y + g + 1)
ar+1 ag+1 m

X asg QY n
x y—1 N-—-1

(22 4+ a13) (22 + a3 + 1) (2y + a24) (2y + 24 + 1)

ar+1 as+1 m
X as oy n . (4.7)
r—1 y—1 N-1

\/x<x+a3>y<y+a4><N—x—y+1><N+z+y+|a|+2>

To obtain the second contiguity relation, we could consider the matrix element

) (3,004) )
N<041, a2, (3, 43 T, y‘BJr |Oé1, ag, a3+ 1, a4 + 17man>N—1>

and proceed similarly by direct computation. However, it is easier to use the symmetry rela-
tion (2.22) to permute the first two rows of the relation (4.7) and then take a; ¢ a3, as <> au,
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m <> n. This directly leads to the second contiguity relation

a1 9 m
Vin+D(n+as+2){as as n+1
x oy N

ettt )(ztaz+ )yt +1)(y+au+1)(N—-—2—y)(N+z+y+|al +3)
(22 + a13+ 1) (22 + 13 + 2)(2y + g + 1) (2y + g + 2)

a1 (%) m
X<az3+1 ag+1 n
x Y N -1

 jreta)ytatDytau+ (N -—az+yt+au+2)(N+z—y+a+l)
(22 + a13)(2x + a3 + 1)(2y + a4 + 1)(2y + agq + 2)
a1 a9 m
X<ag+1 ag+1 n
z—1 Y N -1

N (+az+)(z+as+Dyly+a)(N+rz—-—y+az+2)(N-—z+y+au+l)
(2:(: + a3 + 1)(21‘+ 13 + 2)(2y +a24)(2y + aioq + 1)
(05} a9 m
Xceas+1 ag+1 n
T y—1 N-—-1

@t o)yt o) (N—z—y+D)(N+z+y+|o+2)
(2x + &13)(2%’ + a13 + 1)(2y + a24)(2y + o4 + 1)

a1 (6% m
Xcaz+1 ag+1 n : (4.8)
r—1 y—1 N-1

A third contiguity relation can be found by considering the matrix element

. (1 —1,a2—1) .
N<C¥1,0£2,C¥3,C¥4,$,y|A ‘mvna a1 — 1,0(2 - 1,@3,0[4)]\[4.1.

Upon using the action (4.3), one has

a1 ag m-—1
vVmm+tar+az—1)<as as n
r oy N

. (0‘1_170‘2_1) .
= n{aq, a0, as, ay; x, y| AL |m,n;on — 1, a0 — 1, a3, ) N

To obtain the relation, one needs to compute y {1, as, s, ay;, y|A(,al_1’a2_1) or equivalently
(A(jll_l’O‘?_l))”al’ a2, 3,045 T, y>N = Afl_Lcm_l) |a1a a2, 03, 045 T, y>N (49)

Following the calculations of Appendix C, one arrives at

A(Cl{l71,0{271):‘(a1,a27a370{4)
+ “zy N

@t a)(rtas)(yta)(ytau)(N—-—z—-y+1)(N+z+y+|af+2)
N 2z + 013) 2z + 13 + 1)(2y + a24) (2y + q + 1)
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—(c1—1,a2—1,a3,04)
X “z,y;N+1

n (z+1)(x+az+1)(y+a)(y+au)(N—x+y+ay+1)(N+z—y+a3+2)
(2z + a13 + 1) (22 + a13 + 2)(2y + @24)(2y + s + 1)

—(c1—1,02—1,a3,04)
X “z+1,y;N+1

 Je@ta)@ta)y+ Dy +ta+(N+r—y+a+ (N -2 +y+ay+2)
(22 + a13) (22 + a13 + 1)(2y + agq + 1)(2y + agq + 2)

—=(a1—1,az—1,a3,04)
X “zy+1;N+1

e+t a+ )Y+ Dy +at+ )N -z —y)(N+z+y+a[+3)
(22 4+ a13 + 1)(22 + a13 +2)(2y + a4 + 1)(2y + a4 + 2)
xS (4.10)

Combining the above relation with (4.9), there comes
ap oy m-—1

vVm(m+ap—1){az ay n
r oy N

(22 + a13)(2x + a13 + 1)(2y + a24)(2y + a2q + 1)
ap—1 a9 —1 m
X Qs (a7} n
x Y N +1

_ \/(m + 1) (z + o13)(y + a2) (y + 020) N —z — y + YV + 2 +y + |a] + 2)

(x4+1)(z+a3+1)(y+a)(y+au)(N—az+y+au+1)(N+z—-—y+aiz+2)
+
(2x +a13+1)(2x + a13 + 2)(2y + 24) (2y + aos + 1)
a1 —1 ag—1 m
X asg QY n
z+1 Y N +1

_Je@ta)@toas)y+t Dy tau+D)(V+z—y+az+ (V-2 +y+ay+2)
(2 + a13)(22 + a13 + 1)(2y + aoq + 1) (2y + agq + 2)
a;—1 ag—1 m
X asg QY n
x y+1 N+1

e+ +a+ D+ Dy +a+ (N -z —y)(N+z+y+a[+3)
2+ a3+ 1)2z + a3 +2)(2y + a1 + 1) (2y + o4 + 2)

a1 —1 ag—1 m
X as ay n . (4.11)
x+1 y+1 N+1

Upon applying the symmetry relation (2.22) on (4.11) and then performing the substitutions
a1 > ag, ag <> ag and m < n, one finds a fourth contiguity relation

a1 9 m
nn+ags—1)as ag n—1
x oy N
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_ @t os)(@+a)(yt+o)(y+au)N-—z—y+1)(N+z+y+|af+2)
(2x 4+ a13)(2x + 13 + 1)(2y + a24) (2y + 24 + 1)

(05} a9 m
X<az3—1 ag4—1 n
x Y N +1

(2x + a13+1)(2x + a13 + 2)(2y + 24) (2y + aos + 1)
(05} a9 m
X<az3—1 ag4—1 n
z+1 Y N +1

_\/(ac—i—l)(m—l—al—|—1)(y+a4)(y+a24)(N—a:—|—y+a24+1)(N+ac—y+a13—|—2)

(27 4+ a13) (22 + 13 + 1)(2y + az4 + 1)(2y + a4 + 2)

a1 a9 m
X<ag—1 ag—1 n
x y+1 N+1

_\/(x+1)($+041+1)(y+1)(y+a2+1)(N—x—y)(N+x+y+!aH—3)

+\/(90+043)(93+0613)(y+1)(y+a2+1)(N+$—y+0413+1)(N—33+y+0424+2)

2z + a13+ 1) (22 + 13+ 2)(2y + g + 1) (2y + g + 2)
a1 a9 m
xqaz—1 ag—1 n . (4.12)
z+1 y+1 N+1

The relations (4.7), (4.8), (4.11) and (4.12) are usually obtained by writing the 95 symbols
in terms of Clebsch-Gordan coefficients (given in terms of the Hahn polynomials) and using
the properties of the latter. In our presentation however, these relations emerge from a direct
computation involving Jacobi polynomials.

4.3 97 symbols and rational functions

It will now be shown that the 95 symbols of su(1,1) can be expressed as the product of the
vacuum coefficients and a rational function. To this end, let us write the 95 symbols as

a1 g m ap ag O ( :
Q1,02,03,04

a3 aq nop=Qa3 ar 0 Ry (z,y),

x y N z y N

where Roo.n(z,y) =1, Roin:n(2,y) = Rm—1:8(2,y) = Rpn—1(z,y) = 0. Since the vacuum
95 coefficients are known explicitly, the contiguity relations (4.7), (4.8) can be used to generate
the functions Ry, n.n(z,y). Upon taking

G(a1,a2,a3,a4) :3F2 —(N—$—y),—(N—x+y+a2+oz4+1),x+a3+1’1
oy N —(N—z+a4),2x+ a1 +as+2 ’

using the expression (3.6) for the vacuum coefficients, the relations (4.7) and (4.8) become

(c12 +2) (12 + 3)(N + azs + 1)

(a14+1,00+1,03,04)
(a1,02,03,04) _ T my;N-1 (a1+1,02+1,03,04)
X Rm+17n§N (x’y) - G(a1,a2,a3,a4) Rmun;N—l (x’ y)
z,y; N

¢On+lﬂm+%nr+ﬂNUV+an+2XN+JM+3Xar¥Dm2+U
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(r4+ar+1)(z+a3+1)(y+az+1)(y+aut+1)(N—x—y)(N+x+y+|a +3)}

X
L 2z +a13+1)(2x + a13+ 2)(2y + s + 1)(N — z + )
r (a1+1,02+1,03,04)
r(y+az+1)(y+az+ag+1) ijl,y;Ni1 o (01 +1,02+1,03,04)
* Rmn'N—l (:L‘_ lvy)
(2y + 24 + 1) G(a17a27a37a4) 3Ty
z,y; N

@t +1)(at+0z13+1)(N+x—y+a13+2)y(y—|—a4)(N—x+y+Oz24+l)}
(N — T+ 044)(2.73 + a3 + 1)(2.%' + a3 + 2)(2y + aogq + 1)
G(a1+1,a2+1,a3,a4)

z,y—1;N—1 (a14+1,a04+1,03,04)
(a1,02,003,04) Rmv"?N*1 (z,y —1)
z,y; N
(a1+1,a2+1,03,04)
xy(y + 054) Gl“*l,y*hN*l (c1+1,02+1,03,04)
- [(2y tau+1)]  glonazasa) B -1 (z=-Ly-1), (4.13)
z,y; N

and

\/(n +1)(n + ass + 2)N(N + aza + 2)(N + |of + 3)(as + D(as + 1) paraz,asai)

(avza +2) (s + 3)(N + a2 + 1) mnt1iN
(a1,02,034+1,004+1)
_ z,y; N—1 (011,0427043-‘1-1,044-"-1)
- (01,002,03,004) m,n;N—1 (z,9)
z,y; N
y [(z+as+D(z4+a3+1)(y+au+1)(N—z—y)(N+z+y+ | +3)]
i 2z +a13+1)2z +a13+2)(2y + aga + 1)
r ( i ) +17 +1)
_ x(y + Q24 + 1)(N —x + (%) + 1) Gxoill(,);z,]sil “ R(al,ag,a3+l,a4+1) (.’E 1 )
(2y + agq + 1) Gi‘?‘yl;ﬁz,as,m) m,n;N—1 Y
N -(3:—1—043—1—1)(:r—|—a13—|—1)(y)(N+x—y+a13+2)(N—3:—|—y+a24+1)]
i 2z +a13+ 1) 2z + 13+ 2)(2y + aog + 1)

(a1,02,a3+1,04+1)
z,y—1;N—1 (a1,a2,03+1,04+1)

G(al,az,as,oq) m,n;N—1 (x’ Y- 1)
z,y; N
(o1,a2,03+1,04+1)
_ 2y(N —x+ay+1) Gx—l,y—l;N—l R(al,az,a3+l,a4+l)($ ly—1) (4.14)
(2y + agq + 1) G;?é;;;mas,azx) mn;N—1 Y ’ ’

From (4.13) and (4.14), one can generate the functions Ry, n.n(x,y) recursively. Writing the
first few cases, one sees that the R, ,(z,y) are rational functions of the variables x, y. This
is in contradiction with the assertion of [12], where the functions R,, ,(z,y) are claimed to be
polynomials in the variables z, y. In view of the orthogonality relation (2.10), the rational
functions Ry, ,,(x,y) satisfy the orthogonality relation

Z t:c,y;NRm,n;N (377 y)Rm’,n’($7 y) = Omm/ Onnt
x—l—xg;iN

where the weight function is of the form

2
a1 2 0
t:c,y;N =dqag3 ag 0
x y N

It is possible to express the 95 symbols of su(1,1) in terms of polynomials in the two variab-
les z, y as was done by Van der Jeugt in [31]. However the involved family of polynomials
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Ppon:n(x,y) is of degree (N —m, N — n) the variables z(z + a3 + 1) and y(y + ag4 + 1) and
hence do not include polynomials whose total degree is less then N.

5 Difference equations and recurrence relations

In this section, it is shown that the factorization property of the intermediate Casimir operators

and the contiguity relations can be used to exhibit difference equations and recurrence relations
for the 95 symbols.

A first difference equation can be obtained by considering the matrix element

a1,a2)A(a1,a2

. ( ) .
N<041704270437044,33ay‘14+ ’a17a27a37a47m7n>N'

Using (4.3), one has on the one hand

) (o1,02) 4(a1,02) )
N<Ck1,0&2,063,0&4,.1‘,y‘14+ AT ’@1,0&2,0&3,&4,m,n>1\[

a1 g m
=m(m+ar+ar+1)Sas ag n
x y N

Using on the other hand (4.6) and (4.10) to compute N<Oél,OéQ,Oég,Oé4;l’,y|ASfél7a2)A(_al’a2), one
arrives at the difference equation

ap a2 m o1 a9 m
mm+ap+1)qas as np=FE < o3 as  n
x y N r—1 y—1 N
o ) m a; ag m
+ Eri1y41 Qg Qg np+Dy,das a4 n
x+1 y+1N x y—1 N
] Q2 m o] a2 m
+Dpyr1403 a4 np+Crys a3 g N
r y+1 N r—1 y N
aq Qo M (071 a9 m
+Crr1yq a3 as np+DBepiyq o3 ay  n
x+1 y N xr+1 y—1 N
o Qg m ar as m
+ Beyr1{ 3 ay nopH+Azyqa3 ag o nop. (5.1)
z—1 y+1 N x y N

The coefficients are given by

Epy=—(N+z+y+la|+)(N+z+y+|af+2)

z(x + o) (z + asz)(z + o3)
X \/(N—a:—y+1)(N—f'3—y+2)\/(2x+a13 — 1)1(2w+041?;)2(233 +12‘13 +1)

y y(y + a2)(y + ) (y + ao4)
(2y + a2a — 1)(2y + 24)%(2y + 24 + 1)’

D%y:—\/(N—HU—y+a13+2)(N—x+y+a24+1)

y(y + a2)(y + o) (y + az)
xVIN—z—y+1)(N+z+y+]al +2)\/(2y+a24 - 1)2(2y+a24)2(2y jazﬁ 1)
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[ x(x + as) (r4+ar+1)(z+a3+1) }
2z +ai3)2z+ai3+1)  (2z+aiz+1)2z+ai3+2)]’

Cow=vVIN+z—y+az+1)(N—z+y+ay+2)

r(r + a1)(x + az)(z + ai3)
% \/(N momyt DN oty ol 2)\/(233 + a13 — 1)(22 4+ a13)%(22 + au3 + 1)

[ y(y + aq) (y+as+1)(y +a+1) }
2y + )2y +ags+1)  2y+as+1)2y+a+2)|’

Bey=-VIN+z—y+a+ ) (N+z—y+a3+2)(N—z+y+amu+l)

z(z + o)z + as)(z + oa3)
VN —z+y+amu+ 2)\/(2x + 13 — 1)(22 + a13)?(2x + a3 + 1)

y y(y + a2)(y + ) (y + ao4)
(2y + a2a — 1)(2y + 24)%(2y + 24 + 1)’

r+ar+D)(z+as+Dyly+a)(N+z—y+ais+2)(N—x+y+ay+1)
(2$ + a3 + 1)(2x + a3 + 2)(2y —+ a24)(2y + aoq + 1)
zz+az)(y+tar+1)(ytau+ ) (N+z—y+ais+1)(N—z+y+au+2)
(22 + a13) (22 + a1z + 1)(2y + agq + 1)(2y + aq + 2)
ta+DEt+as+)t+or+Dyt+oun+ (N -z —y)(N+z+y+|a[+3)
+
(2%’ + a3 + 1)(21‘ + a13 + 2)(2y + qoq4 + 1)(2y + oq + 2)
r(x+o3)y(y+a)(N—z—y+(N+z+y+|af+2)
(2x + a13) (22 + a1z + 1)(2y + a24) (2y + 24 + 1) } ’

Agy = [<

+

A second difference equation is found with the help of the symmetry relation (2.22). It reads

ap g m N o ay m
nn+oaga+1)Sas as np==FEy,q a3 as  n
x y N r—1 y—1 N
N o ay m N o oy m N ar agm
+Eriy+1q @3 o np—Dpyqaz ay nop—Dyypiqaz o n
r+1 y+1 N z y—1 N z y+1 N
N ar g m N o g m N o ay m
— Cyy az oy nop—Criiy ag oy nop+Biiy o3 oy n
r—1 y N x+1 y N x+1 y—1 N
N o ay  m N a1 g m
+ Beyt1 a3 g nopHAryqa3 g onop, (5.2)
xr—1 y+1 N r y N
where the coefficients E’x,y, ]_~)x,y, ..., etc. are obtained from E, ,, D;,, ... by taking oy <+ a3

and o <> 4. Given the factorization property (4.4), the r.h.s. of equations (5.1), (5.2) give
the action of the intermediate Casimir operators Q(12), Q3% on the basis where Q('3), Q2% are
diagonal. Using the duality relation (2.21), it possible to write recurrence relations for the 9j
symbols which give the action of the intermediate Casimir operators Q(3), Q2% on the basis
where Q12 Q3% are diagonal. These relations read

o) g m a; as m—1
zz+oz+1)sa3 as np=Ep,<as g n—1
x y N x Yy N
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a; oy m+1 a1 Q9 m a1 o9 m
+Emntint1qas g n+li+Dppqaz ag n—1p+Dpppiqas ag n+l
x yN x Yy N Ty N
a1 ag m-—1 a1 g m—+1 ap as m—+1
+ Cm,n a3 Oy n + Cm+1,n a3 Oy n + Bm+1,n ag ay n—1
Ty N x Yy N x yN
ap ay m—1 ap az m
+Bmpriqas g n+lp+Apndas ag n g, (5.3)
x Yy N z y N
where Em,na lA)m’n, ... are obtained from E,, ,,, Dy, ... by taking ag <+ a3. The second recur-
rence relation is
Q1 Qg m a; ag m—1
ylytagu+1)qas au np=FEpp,<as ag n—1
x y N T Yy N
o ag m+1 o1 ag M a1 ag M
+Emtint1qa3 a1 n+lp—Dyppqas s n—1p—Dpppiqaz ag n+l
z yN x oy N x oy N
ap g m-—1 a1 oy m—+1 a1 oy m+1
—Cpn a3 oy n —Cmtin 03 n +Bntinqas oz n—1
x Yy N x oy N x yN
a1 ag m—1 a1 as m
+Bpnt1qas ag n+lp+Annqas as n g, (5.4)
r oy N zr y N

where Evmm, Dm,n, etc. are obtained from FE,, ,,, Dy, n, etc, by effecting the permutation o =
(1243) on the parameters (aq, g, ag, aq). Writing once again the 95 symbols as

a; ag m a; az 0
a3 Q4 N = q Q3 Q4 0 Rm,n (x7 y)7
xr y N zx y N

and defining

RZ,O(x7y)
Roe.s) = (1), Rl = (FU00), Ralea) - Bl .

the recurrence relations (5.3) and (5.4) can be written in matrix form as follows

r(r+ a3+ 1Ry (z,y) = qganw(% y) + T7(11+)1Rn+1(xa Y)

+ Ry (2, 9) + VR (2,y) + ¢ VR, _a(z, y), (5.5)
y(y + a2+ DRu(2,y) = ¢ Rnsa(@,9) + 1070 Ros1 (2, )
+ 5P (2,y) + P Ro1(7,9) + ¢ Roa(2, ), (5:6)

(1) (1)

where the matrices ¢q,”, rp, @

and sy’ are easily found from the coefficients in (5.3) and (5.4). It
is apparent from (5.5) and (5.6) that the vector functions R,,(z, y) satisfy a five term recurrence
relation. In view of the multivariate extension of Favard’s theorem [7], this confirms that the

functions R,,(z,y) are not orthogonal polynomials.
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6 Conclusion

In this paper, we have used the connection between the addition of four su(1,1) representa-
tions of the positive discrete series and the generic superintegrable model on the 3-sphere to
study the 95 coefficients in the position representation. We constructed the canonical basis
vectors of the 95 problem explicitly and related them to the separation of variables in cylindrical
coordinates. Moreover, we have obtained by direct computation the contiguity relations, the
difference equations and the recurrence relations satisfied by the 95 symbols. The properties of
the 95 coefficients as bivariate functions have thus been clarified.

The present work suggests many avenues for further investigations. For example Lievens and
Van der Jeugt [18] have constructed explicitly the coupled basis vectors arising in the tensor
product of an arbitrary number of su(1, 1) representations in the coherent state representation.
Given this result, it would be of interest to give the realization of these vectors in the position
representation by examining the generic superintegrable system on the n-sphere. Another in-
teresting question is that of the orthogonal polynomials in two variables connected with the 95
problem. With the observations of the present work and those made by Van der Jeugt in [30],
one must conclude that the study of 95 symbols do not naturally lead to families of bivariate or-
thogonal polynomials that would be two-variable extensions of the Racah polynomials. However,
the results obtained by Kalnins, Miller and Post [14] and the connection between the generic
model on the three-sphere and the 95 problem exhibited here suggest that an algebraic interpre-
tation for the bivariate extension of the Racah polynomials, as defined by Tratnik [29], could
be given in the framework of the addition of four su(1, 1) algebras by investigating the overlap
coefficients between bases which are different from the canonical ones. We plan to follow up on
this.

A Properties of Jacobi polynomials

The Jacobi polynomials, denoted by pie? )(z), are defined as follows [16]:

P)(z) =

(a+1), 7 —n,n—l—a+6+1‘1—z
n! ! a+1 2 |

where , F, stands for the generalized hypergeometric function [3]. The polynomials satisfy
1
/ (1—2)2(1 + 2)P PP () PleP) (2)dz = &P 8, (A.1)
-1
where the normalization coefficient is

(@8) _ garsr1LCntat S+l (n+a+Dl(n+5+1)

o F'2n+a+p+2)(n+a++1)I'(n+1) (4.2)
The derivatives of the Jacobi polynomials give [20]

0. PlaB) (2) = [7”0“2?5“} pleto ) (A.3)

0. ((1=2)°(1+ 2P (z)) = 2+ 1)1 -2 1+ 2P R 0. (A

One has

(@8) () — (Pt B+1 Y papty _onta ) pase) A
P = (et IR P 4 (5 R, A



The Generic Superintegrable System on the 3-Sphere and the 95 Symbols of su(1,1) 23

and

(1 ; Z’) PRz

n+aoa-—1 (a1—1,8) n (a—1.8)
= (5t PO - (o ) P ), A
<2n—|—a—|—5—1> n—l (2) 2n+a+p-1) " (2) (A.6)
Since Pr(La’ﬁ)(—z) = (—1)"P,({B’a)(z), one has also
<1 + Z) P,rga’ﬂ)(z)
2
B plas _ontl ) plesy
<2n+a+6+1>P (2)+ 2n+a++1 B 72) (A7)
and
() (ATt B+ sty ("B platip)
P = (2 P - (G R )R, A

B Action of A(al’a2) on ”(al’]o\‘,z’a:’”a“)
T,Y;

(a1,02)

In Cartesian coordinates, the operator A" reads

7 1 S1 52
A(_al az) = —5(81852 — 82(951) + 2782(042 + 1/2) — 2781(051 + 1/2).
The action of A(al’”) on the wavefunctions ";a;’]? 23,:04) oan be written as

(ag,al) (a4,a2) (2y+0424+1,2x+0413+1)
]:77 ny IN—2— Y

% [_7:_114(7&1’&2)}—} [P](\?y;-a;zx-i-l 2x+a13+1)(cos 20) P J2ICERCEY (cos 2¢1) ploa,az) (cos 2p2)|

where

4
F=(st+s3)"(s3+ 1) [[s52
i=1

One has

_ 1 5152 5152
Flaed rl 519, — 5908,,) +x - )
[ ] 2( 105, = 5205,) s? + s3 ys%+s?l

In the cylindrical coordinates (2.16), the operator reads
[‘F_IA(_al’az)f} =7 [tgﬁcos (1 COS @2] -y W

tg ¥
oS (1 sin 9

tg ,19 a<p2

1
~3 [cos 1 €OS 2 Oy + tg U sin 1 cos 2 Oy, —

Using the relation (A.3), one finds

Alevedglmgzanan) _ (0080 (N 434y + |a] + 3) (cos? 9) (sin” ¥)”
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X P](\?y:a;‘l? 2etaiz+2) (cos 219)P(a3’0‘1) (cos 2901)P(0‘4’0‘2) (cos2¢3)

+ (z + a13 + 1) (cos®¥) (sm 9)? sin? ¢y

X P](\,zyza;ﬁl 2"TJFO%H)((:O 219)P(a3+1 a1+1)(cos 24,01)Py(a4’°‘2)(cos 2¢9)
—(y+ags+1) (cos 19)x(81n 19) ~!gin2 V2

x PR At (05 29) PLO3 ) (cos 21) P (cos 202)
+ [x(cos 19):5_1(Sim2 9)Y — y(cos 19) (sin 19) _1]

P](\?yiazﬁl 2ztars+l) (cos 20) P31 (cos 2(p1)P15°‘4’°‘2) (cos2¢9)|,

where

(a1,02,03) _  (a3,01), (oq,00) (2y+a2a+1,2z+013+1) a1+3/2 az+3/2 az+1/2 ay+1/2
Uy N 77; 3 1)77?3 1,02) [ (s1)™ / (52)2 / (53)° / (54)% /2.

The identities (A.5) and (A.6) can then be used to write the result in a form involving only
terms of the type P,gas’alﬂ) and P,g,a“m“). Regrouping the terms, one finds

A(alyaz):(ahaz,as,w&) _ . (a1,02,03)
- ‘_‘mvy’N - m7y7N

{(az+oz13+1)(y+a24+1)(N+a:+y+|a|+3)}

2z +a13+1)(2y + agq + 1)
x (cos® )" (sin*9)Y P (@3,0141) (¢og 2@1)P§a4’a2+1)(cos 2¢2)P(2y+a24+2 2:"uro‘mﬂ)(cos 29)

( N—z—y—1
{(:c+a (y + agq + 1)(cos? 9)*~ 1 (sin? )Y

+

P(a37a1+1) cos 2 P(a4,a2+1) cos 2
20 4 a13 +1)(2y + a2s + 1) } z—1 ( p1) Py ( ©2)

X ((N+2+y+|al+3)cos ﬁPﬁy;a;“? 2rtenst) (005 99)

+ (22 4+ a3 + 1)P](V23If;4+1’2m+a13+1)(cos 219))

(y + ay)(x + a3 + 1)(cos® ¥)*(sin? 9)¥~!
2z + 13+ 1)(2y + agq + 1)

(N+2z+y+|al+3)sin 19P](V2yia;4+12 2rtenst2) (005 99)

—+

Plasertl) (cog 24,01)Py(f41’a2+1) (cos 2¢9)

xT

X

/‘\

— 2y + anu + )P,(fyjo;zﬁl 22jJro“‘q’H)(cos 219))

Y+ ag)(z + as)(cos? 9)*L(sin? 9)¥~!
2z +a13+1)(2y + agq + 1)

X ( N + 2z +y+ |a| + 3) cos® ¥ sin? 19P](V2y;ra;4+12 Zetest2) (cos 209)

+

} P:(Eigl,al-&-l) (cos 2(101)Py(gzi,a2+1) (cos 2¢9)

+ (2x + ag3 + 1) sin 19P](V2y;a;4+1 2rrens ) (cos 209)

— (2y + ag4 + 1) cos 19P](V2yiaz4+1 Arteastl) (oog 219))}

The terms between parentheses in the above expression are easily evaluated and found to be

(N+z+y+|al+3)cos ﬂPﬁyIO‘zﬁf 21+&13+2)(C0S 29)

+ 2z + o3 + 1)P](V2ﬂa;4“ 2x+a13+1)(cos 29)
=(N+z—-y+as+ 1)P](V2y;-oc;4+2 2$+a13)( cos 29),
(N + 2z +y+ |af + 3) sin? 0P1(\,2y1:o‘;4t2 2”P':Jro‘l“JrQ)(cos 29)
— 2y + aoq + 1)]3(2y+a24+1 2gCJralﬁl)(cos 29)

n—r—y
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=—(N—z+y+ay+ 1)P](\,2y:az4’21+a13+2) (cos 299),

(N + 2 +y+ |a| + 3) cos® I sin? 19P](V2y:;a;4t2 21+Q13+2)(COS 29)
+ (22 + a3 + 1) sin? 79P](\,2y;a24+1 2rte1sth) (005 9¢9)
— (2y + 24 + 1) cos z?PJ(ng;a;ﬁl 2”ﬂHﬁal?ﬂrl)(cos 29)

=—(N-z—-y+ l)P](VZf:f;ﬁHalg)(cos 299).

Adjusting the normalization factors then yields the result (4.6).

C Action of A(al 1,az—1) on = '—'(alaa2’a3aa4)
z,y; N

(a1—1,a2—1)

In Cartesian coordinates, the operator A} reads

(a1—Laz—1) _ 1 St 52
A+ =3 (81852 82(951) -+ 259 (042 1/2) 951 (041 1/2).

. a;—1,az—1 . —_
The action of A(+ ! 2=1) on the wavefunctions =, ,.ny can be expressed as

—1,_(as,a1), (aa,a9), (2y+az4+12z+a13+1)
) v

X [QASSI_LOQ_DQA} [(Sin2 1) (cos® p1)* P>V (cos 2@1)}
x [(sin? 2)7 (cos? 22)° P49 (cos 2)

.9 q\2x+aa+1 2 g\2r+a13+1 5(2y+aza+1,2z+a13+1)
X [(sm 19) (cos 19) PN_:C_y (cos29) |,

where

4
G=(si+ s%)mJrl (s5+ s?l)yJrl H s?i_lm.
i=1

One has

1
= (5205 — $10,) + (@ + 1) 2s — (y 4+ 1) 52

gA(m*l,aQ*l)gfl '
o 173 T Vg

In the cylindrical coordinates (2.16), this operator reads

[QA o1-laz=l)g =3 [cos @1 €os P20y + tg ¥ sin 1 cos P20,
_ s Si;;ﬂ LX) } (x4 1)[tg Y cos p1 cos pa] — (y + 1)[ctg ¥ cos ¢y cos pa].

Using the identity (A.4), one finds

A(Oq*1,042*1)55003;1%2,013,014) _ ﬁfyl;;mas) [(N —r—y+1) cos? 1 cos? s
X ( cos® ﬁ)x ( sin® ﬁ)yngaw‘l) (cos 2¢1)P§0‘4’0‘2) (cos 2@2)P](sz;rf;flm+a13)

+ (z + 1) cos® o (cos? ¥)* ( sin® ﬂ)yH

x PLT (cos 2001 P42 (cos 2i0) PV 0220155 (o5 29)

— (y + 1) cos® 1 ( cos® 19)$+1 (sin®9)?
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x PLe3:91) (cos 2901)Py(i4171’a271) (cos 2302)P](V23:f;4+1’2z+a13+1) (cos 299)

+(z+1) cos? 01 cos? ©2 ( cos? 19)96( in? 19)y+1
% ngas,oa) (cos 2@1)]3;0‘4’0‘2) (cos 2¢2)P](\72y1'a24+1 2ztars+l) (cos 299)

— (y + 1) cos? 1 cos? py ( cos? 19)30 (sm 9)*

x P51 (cos 2¢1) P{**2) (cos 2@2)]31(\723;?;4“72“&13“)(COS 20)|,
where
:(;v;;]ricfz,as) _ n(as,m)m(/amm)n](?yzw;ﬂ 2x+a13+1)( )a171/2(82)0‘2*1/2(53)0‘3“/2(84)%“/2-

Then using (A.7) and (A.8), one finds

_17 —-1)= ) ) ) } 3
As?q az—1)=(a1,a2,03,04) _ ﬁ(al az,a3)

TzyN TmyN (2:6 + a3 + 1)(2y + ao4 + 1)

(z+a)(y+o)(N-—z—y+1)
{ |

x ((cos® )" (sin® 19)yP(O‘3’O‘1 D (cos 2901)P(O‘4’°‘2_1)(cos 2902)P](V23:f3121x+a13)(cos 29)
z+1)(y + az)(cos? 9)" T (sin® 9)¥ | (ag,a1-1) ( 1)
plos 9p1) Ples02 2
" { (27 + a3 + 1)(2y + s+ 1) et (cos2oEy (cos2¢2)
y ( 9% + s + 1 s1n ';’;PJ(VQyIaz4+1 21+a13+1)(cos 29)
+[N—x—y+ 1] 29P(23’;O‘;j‘flwra13)(cos 219))

P(CY3,C|£171) 2 P(Ol4,o¢271) 9
(2 + a3+ 1)(2y + g + 1) } x (cos2p1) P13 (cos 2¢9)

(2y+a24,2x+013)
PN (cos 29)

1 { (x+a1)(y+ 1)((:052 9)* (sin2 9)v+1

N —z— 1
X([ ToyH ]sin219

2
cos” ¥ _(2y+tass+1,20+a13+1)
o o 1 p ' cos 29 )

[2y 24 ]sin2 9 Ny ( )

(x+1)(y + 1)(0052 19):1:+1(sin2 ?9)y+1 (as.0n) (nas1)
{ 2r+a13+ 1) 2y +agq + 1) Ppiy (cos2p1) Py (cos2¢p2)

1 (2y+0a24,204013)
X ([N—$—y+1]mPN_r_y+l (COS219)

1 (2y+a24+1,2z+a13+1)
—R2y+ag+1 P ’ cos 21
[ Yy 24 ]Sin2 9 N—xz—y ( )

1 (2y+ag24+1,2z+a13+1)
+ [22 4+ aq3 + 1] o Ny ¥ (cos 219)) )

The term between the parentheses are easily determined to be the following

. 279
20+ ang + 120 PRVttt (qog 9)
COS

1 (2y+a24,22+13)
+[N—z—y+1] o 19PN_I_2H_1 (cos 299)

=(N—z+y+ay+ 1)P](\,23;f;4’2x+0“3+2) (cos 249),
[N —z —y+1] i ﬁpgg;rfziiﬂaw)(cos 299)

2

cos” ¥ _(2ytasi+1,.20+ar3+1)

_ " 1 P ’ cos 29
2y + aoq + ]sin219 N—z—y ( )
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— —(N +z—y+as+ 1)P](V231rivz4+2,2x+a13)(cos 219)’

1 (2y+a24,22+a13)
[N -z —y+ l]mPNgxf;ilx 13 (cos 209)

1 (2y+aos+1,2z+a13+1)
— [2y + a4 + 1] 2 ﬁPfofy (cos 209)

1 (2y+a24+1,22+a13+1)
+ [22 + an3 + 1] o ﬁPN_z_y (cos 219)

=—(N+z+y+|a+ 3)P](V22—;fz‘i2’2x+al3+2) (cos 29).

Adjusting the normalization factors then yields the result (4.10).
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