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1 Introduction

Cluster algebras, introduced by Fomin and Zelevinsky [11] in 2000, are commutative algebras
equipped with a distinguished set of generators, the cluster variables. The cluster variables are
grouped into sets of constant cardinality n, the clusters, and the integer n is called the rank of
the cluster algebra. Starting with an initial seed (x, B), that is, an initial cluster x together with
a skew-symmetrizable integer n × n exchange matrix B = (bij), the set of cluster variables is
obtained by repeated application of so called mutations. To be more precise, let {x1, x2, . . . , xn}
be indeterminates over Z and let F = Q(x1, x2, . . . , xn). For every k = 1, 2, . . . , n, the muta-
tion µk(x) of the cluster x = {x1, x2, . . . , xn} is a new cluster µ(x) = (x\{xk}) ∪ {x′k} obtained
from x by replacing the cluster variable xk with the new cluster variable

x′k =
1

xk

∏
bik>0

xbiki +
∏
bik<0

x−biki


in F . Mutations also change the attached matrix B, see [11].

The set of all cluster variables is the union of all clusters obtained from an initial cluster x
by repeated mutations. Note that this set may be infinite.

It is clear from the construction that every cluster variable is a rational function in the
initial cluster variables x1, x2, . . . , xn. In [11] it is shown that every cluster variable u is actually
a Laurent polynomial in the xi, that is, u can be written as a reduced fraction

u =
f(x1, x2, . . . , xn)

n∏
i=1

xdii

, (1.1)

where f ∈ Z[x1, x2, . . . , xn] and di ≥ 0. The right hand side of equation (1.1) is called the cluster
expansion of u in x.
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The coefficient-free cluster algebra A(x, B) is the subring of F = Q(x1, x2, . . . , xn) generated
by the cluster variables. When the set of cluster variables is finite, we say that A(x, B) is of
finite type.

We are interested in cluster algebras arising from bordered surfaces with marked points [8,
9, 10, 13]. In particular, we study cluster algebras of type Dn (type D for short), which are
of finite type (as classified in [12]) and correspond to once-punctured n-gons, as also described
in detail in [20]. Other, related work on type D cluster algebra combinatorial models include
[1, 3, 12].

Our first result is a Laurent polynomial expansion formula for cluster variables arising from
a once-punctured polygon in terms of certain paths (called T o-paths) on an ideal triangulation T o

of the surface. This is an extension of the T -path formula (which we call the T o-path) given for
any unpunctured surface by Schiffler and Thomas [21, 22]. Our proof takes advantage of two
facts proven by the second author, Schiffler, and Williams: (1) a Laurent polynomial expansion
formula for cluster variables arising from any surface in terms of perfect matchings of a snake
graph [17], and (2) a bijection between these perfect matchings and T o-paths arising from any
unpunctured surface [16]. An application of the T o-path formula for type D is discussed in the
next paragraph.

Our second result is a specific case of a result of [4, 6], proven by representation theoretic
methods, that the basis consisting of all cluster monomials is in fact the atomic basis for any
skew-symmetric cluster algebra of finite type (see Section 5.1). We give a combinatorial proof of
this fact for coefficient-free cluster algebras of type D. Our proof relies heavily on the T o-path
formula for type D and is inspired by Dupont and Thomas’ work in [7] on atomic bases for
cluster algebras of type A and Ã.

In Section 2, we provide background material on ideal triangulations and tagged triangu-
lations, focusing on the case of once-punctured polygons. Section 3 presents our first result
(Theorem 3.8), an extension of the T o-path formula of [21, 22] to once-punctured polygons. We
give the proof of this T o-path formula in Section 4. Finally, in Section 5, we give our second
and main result (Theorem 5.8), which is a combinatorial proof, using the T o-path formula, that
the cluster monomials form the atomic basis for a coefficient-free type D cluster algebra.

2 Background: cluster algebras arising
from once-punctured disks

For the reader’s convenience, we begin by reviewing terminology arising in the theory of cluster
algebras from marked surfaces from [10, Sections 2 and 7]. We restrict our attention to the
case of a once-punctured polygon, which often simplifies the notation. Let Cn denote a once-
punctured n-gon, i.e., a disk with a marked point (called the puncture) in the interior and n
marked points on the boundary.

Definition 2.1 (ordinary arcs). A boundary edge of Cn is a segment of the boundary between
two consecutive boundary marked points. An ordinary arc γ of Cn is a curve (considered up
to isotopy) in Cn such that the endpoints of γ are marked points, γ does not cross itself except
possibly at its endpoints, γ does not cross the boundary of Cn except possibly at its endpoints,
and γ is not contractible to a marked point or homotopic to a boundary edge.

A radius is an arc between a boundary marked point and the puncture. Following [7],
a peripheral arc is an arc with both endpoints on the boundary. An `-loop is a loop cutting out
a monogon with a sole puncture inside it (i.e., as illustrated by loop ` in Fig. 1(c)). An `-loop
is considered a peripheral, ordinary arc.

Definition 2.2 (compatibility of ordinary arcs, ideal triangulations). Two distinct ordinary arcs
are said to be compatible if they do not intersect except possibly at endpoints. Also, each arc
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(a) Ordinary triangle. (b) Two vertices.

`

r

(c) Self-folded triangle. (d) One vertex, 3 edges.

Figure 1. Possible types of ideal triangles.
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Figure 2. An ideal triangulation T o and the corresponding tagged triangulation T = ι(T o). The `-loop `

and the corresponding tagged radius ι(`) (tagged notched at the puncture) are both in gray.

is compatible with itself. A maximal (by inclusion) collection of distinct, pairwise compatible
ordinary arcs is called an ideal triangulation. The ordinary arcs of an ideal triangulation cut the
surface into ideal triangles (see Fig. 1). We call an `-loop and the radius it encloses a self-folded
triangle (Fig. 1(c)).

Remark 2.3. Three possible types of ideal triangles can appear in an ideal triangulation of Cn:
an ordinary triangle with 3 distinct vertices and 3 distinct sides (Fig. 1(a)), an ideal trian-
gle with 2 distinct vertices and 3 distinct sides (Fig. 1(b)), and finally a self-folded triangle
(Fig. 1(c)). The ideal triangulation of Fig. 2 (left) contains all 3 types of Cn-ideal triangles.
Note that the one-vertex ideal triangle (Fig. 1(d)) cannot appear.

Definition 2.4 (tagged arcs). A tagged arc of Cn is obtained by marking (“tagging”) each
endpoint of an ordinary arc (that is not an `-loop) β either plain or notched such that the
endpoints of β on the boundary must be tagged plain. A notching is indicated by a bow tie (see
Fig. 2). Note that a tagged arc never cuts out a once-punctured monogon, i.e., an `-loop is not
a tagged arc (even for other punctured surfaces).

Remark 2.5. Every tagged arc β of Cn belongs to one of the following three classes:

• β is a radius tagged plain at both endpoints (which we call a plain radius).

• β is a radius tagged notched at the puncture and plain at the boundary (which we call
a notched radius).

• β is a peripheral arc connecting distinct endpoints tagged plain at both endpoints.

Definition 2.6 (compatibility of tagged arcs, tagged triangulations, and multi-tagged triangu-
lations of Cn). The following is a complete list of possible compatible pairs {α, β} of tagged arcs
of Cn:

• α and β are two peripheral arcs (tagged plain at all endpoints) that do not intersect in
the interior of Cn.

• α and β are a peripheral arc and a radius (tagged plain at boundary endpoints) that do
not intersect in the interior of Cn.
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P

(a) Wheel-like triangulation around the puncture.

r

`ℵ
i

P

(b) A self-folded triangle around the puncture where
ℵ, i are peripheral arcs or boundary edges.

Figure 3. Local triangulations around the puncture. The shaded gray area consists only of peripheral

arcs and boundary edges, each sector forming a polygon.

• α and β are two radii both adjacent to the same boundary marked point (tagged plain)
but α is tagged plain at the puncture and β is tagged notched at the puncture.

• α and β are two radii with distinct boundary endpoints (tagged plain at boundary end-
points) and tagged the same way at the puncture.

• α and β are equal.

A maximal (by inclusion) collection of distinct, pairwise compatible tagged arcs is called a tagged
triangulation. A collection of pairwise compatible tagged arcs (considered with multiplicity) is
called a multi-tagged triangulation. A multi-tagged triangulation Σ is compatible with T if σ ∈ T
for every tagged arc σ ∈ Σ.

Definition 2.7 (representing ordinary arcs as tagged arcs). Any ordinary arc β can be rep-
resented by a tagged arc ι(β) as follows. Suppose β is an `-loop (based at marked point v)
which encloses a radius r, where r is the unique (ordinary) arc connecting v and the puncture P .
Then ι(β) is obtained by tagging r plain at v and notched at P . Otherwise, ι(β) is simply β
with both endpoints tagged plain. Fig. 2 shows an ideal triangulation T o of a once-punctured
quadrilateral and its corresponding tagged triangulation ι(T o).

As a convention, we will usually denote a tagged triangulation by T and an ideal triangulation
by T o. Unless otherwise stated, T = ι(T o).

Theorem 2.8 ([10, Theorem 7.11, Example 6.7]). A cluster algebra is associated to Cn as
follows. Choose a tagged triangulation Tinit = {τ1, . . . , τn} of Cn. Let A be the cluster algebra
given by the initial seed (xTinit , BTinit) where xTinit = {xτ1 , . . . , xτn} is the cluster seed associated
to Tinit and BTinit is the exchange matrix corresponding to Tinit (see Definition 4.1 in [10]).
Then the tagged triangulations of Cn are in bijection with the (unlabeled) seeds (xT , BT ) of A,
and the tagged arcs γ of Cn are in bijection with the cluster variables (so we can denote each
cluster variable by xγ or x(γ), where γ is a tagged arc). Therefore, a multi-tagged triangulation Γ
corresponds to a cluster monomial (denoted xΓ, see Definition 5.1).

If r is a plain radius and ` is the `-loop enclosing r, denote x` := xrxr(p) . If β is a boundary
edge, set xβ := 1. When we say the T -expansion of a cluster variable x(γ), we mean the cluster
expansion of x(γ) in the variables of the seed xT , i.e., a Laurent polynomial in the variables
of xT , see equation (1.1).

Remark 2.9. Due to the following proposition, it is enough to work with only two types of
tagged triangulations T : one where T has all plain-tagged radii (so that T o has a local wheel-like
triangulation as in Fig. 3(a)), and one where T has two parallel radii, one tagged plain and the
other tagged notched at the puncture (so that T o has a self-folded triangle as in Fig. 3(b)).
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Figure 4. A triangulation T o and an arc γ of a once-punctured square. The first, second, third, and

fourth ideal triangles crossed by γ are denoted by 40, 41, 42, and 43.

Proposition 2.10 ([17, Proposition 3.15]). Suppose T = {τ1, . . . , τn} is a tagged triangulation
of Cn. Let γ(p) denote the arc obtained from γ by changing the notching at the puncture P.
Let T (p) denote the tagged triangulation that is obtained from T by replacing each τ ∈ T by τ (p).
Let x(γ) be the T -expansion of the cluster variable corresponding to γ. Then

x
(
γ(p)

)
= x(γ)|x(τi)←x(τi(p))

is the T (p)-expansion of the cluster variable corresponding to γ(p).

3 (T o, γ)-path expansion formula

We extend Schiffler and Thomas’ work [21, 22] to once-punctured disks Cn. Following [21,
Section 3], we will use the following setup throughout the rest of the paper.

• Let S be an unpunctured surface or S = Cn. Let T o be an ideal triangulation of S and let
γ /∈ T o be an ordinary arc of S. Recall that an `-loop is considered an ordinary arc.

• Choose an orientation on γ, and let sγ and tγ be the starting point and the finishing point
of γ. Denote by

sγ = pγ0 , p
γ
1 , p

γ
2 , . . . , p

γ
d+1 = tγ

the points of intersection of γ and T o in order. Since γ is considered up to homotopy, we
pick a representative so that d is minimal. Let i1, i2, . . . , id be such that τγik is the arc of T o

containing pγk . See Fig. 4, where τγi1 = 1, τγi2 = 2, and τγi3 = 3, and see Fig. 9(a), where τγik
(k = 1, . . . , 5) are labeled 1, 2, `, r and `.

• For k = 0, 1, . . . , d, let γk denote the segment of γ from the point pk to the point pk+1,
and let 4γ

k denote the (unique) ideal triangle of T o that γk crosses. When it is clear from
the context which arc we mean, we simply write pγk as pk, τ

γ
ik

as τik , 4γ
k as 4k.

• The side/s of 4k that is not labeled τik or τik+1
is labeled as in Figs. 5 and 6. In particular,

for k = 1, . . . , d− 1, define arc τ[γk] to be

τ[γk] =

{
the 3rd arc in 4k if 4k is not self-folded,

the radius in 4k if 4k is self-folded.

Define τ[γ0], τ[γ−1], τ[γd], and τ[γd+1] as follows:
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– If the ideal triangle 40 has three distinct edges, then 40 is formed by arc τi1 and
two distinct arcs/boundary edges τ[γ0], τ[γ−1] (not equal to τi1) such that τ[γ0], τ[γ−1],
τi1 are arranged in clockwise order around 40. Similarly, if the ideal triangle 4d has
three distinct edges, then it is formed by the arcs τid and two distinct arcs/boundary
edges τ[γd], τ[γd+1] (not equal to τid) such that τ[γd], τ[γd+1], τid are arranged in clockwise
order around 4d.

– If 40 (respectively, 4d) is self-folded, then τ[γ0] = τ[γ−1] (respectively, τ[γd] = τ[γd+1])
is the radius.

In Fig. 9(a), τ[γ0] = b1, τ[γ−1] = b4, τ[γd] = 2, τ[γd+1] = b3.

Definition 3.1 (Quasi-arc). If τ is an ordinary radius of Cn between a marked point v on the
boundary and the puncture P , let an associated quasi-arc τ ′ be a curve (not passing through P)
which satisfies the following:

1. τ ′ is between v and a (non-marked) point P
′ in the vicinity of P . (Note that another

quasi-arc associated to τ may use a different point P
′′.)

2. τ ′ agrees with the arc τ outside of a radius-ε disk Dε around P , where ε is chosen small
enough so that the intersection of τ with any other arc is outside of Dε.

If τ is a peripheral arc, we let the associated quasi-arc be τ itself. We label a quasi-arc with the
label of the arc that it is associated to.

By abuse of notation, whenever we say we are going along an arc or a side of an ideal
triangle4k (as part of a T o-path), we mean traversing an associated quasi-arc. Note that except
for the case when τ is a radius, no abuse of notation is actually needed. The following is an
extension of the complete (T o, γ)-path definition as stated in [21, Definition 2], [16, Section 4.1].

Definition 3.2 (complete (T o, γ)-path). A path w = (w1, w2, . . . , wlength(w)) on T o is a concate-
nation of steps, i.e., oriented quasi-arcs and boundary edges of the ideal triangulation T o of S,
such that the starting point of a step wi is the finishing point of the previous step wi−1. We say
that w = (w1, . . . , w2d+1) is a complete (T o, γ)-path if the following axioms hold:

(T1) Each even step w2k (k = 1, . . . , d) is a quasi-arc associated to arc τik . Recall that τi1 , . . . , τid
is the sequence of arcs crossed by γ in order.

(T2) For k = 0, . . . , d, each w2k+1 traverses a side of the ideal triangle 4k. In addition, w1 tra-
verses the edge τ[γ0] or τ[γ−1] (which is adjacent to s) and w2d+1 traverses the edge τ[γd]

or τ[γd+1] (which is adjacent to t).

i) Moreover, for k = 1, 2, . . . , d − 1, let [pk, pk+1]w denote the segment of w starting at
the point pk following w2k, continuing along w2k+1 and w2(k+1) until the point pk+1.
Then the segment γk is homotopic to [pk, pk+1]w. If S = Cn, then we mean homotopy
in the disk minus the puncture.

ii) The segment γ0 is homotopic to the segment [s, p1]w of the path starting at the point
s = p0 following w1 and w2 until the point p1;

iii) The segment γd is homotopic to the segment [pd, t]w of the path starting at the point
pd following w2d and w2d+1 until the point pd+1 = t.

(T3) The step w2k+1 starts and finishes in the interior of 4k or at a boundary marked point.
This means that, if w2k+1 goes along a quasi-arc τ ′ associated to a radius, τ ′ must be
chosen so that its endpoint P

′ near the puncture is located in the interior of 4k.
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1
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(b) Two vertices where arc 1γ

or dγ is a loop.

γ
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γ
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τ[γd+1]

d

(c) Two vertices where arc
1γ or dγ is not a loop.
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τ[γ−1] τ[γ0]

1

γ

τ[γd+1] τ[γd]

d

(d) Self-folded triangle.

Figure 5. Ways for γ to cross the ideal triangle 40 or 4d.

τ[γk]

k + 1k

γ

(a) Ordinary trian-
gle.

γ

τ[γk]

k k + 1

(b) Two vertices where
arc τ[γk] is a loop.

γ

k k + 1

(c) Two vertices where
arc k + 1 is a loop.

k

k + 1

k + 2

γ

(d) γ crossing a self-folded tri-
angle’s radius in the counter-
clockwise direction.

Figure 6. Ways for γ to cross an ideal triangle 4k for k = 1, . . . , k − 1.

See Examples 3.9 and 3.10.
It is clear that this definition agrees with the complete T o-paths of [16, 21] for unpunctured

surfaces. For short, we will refer to a complete (T o, γ)-path as simply a (T o, γ)-path (or a T o-
path) for the rest of this paper.

Remark 3.3. Per (T2), a (T o, γ)-path is homotopic to γ. It is possible to have wj = wj+1

and, if j is odd, to have wj = wj+1 = wj+2. However, since for each k we have w2k = τik and
w2(k+1) = τik+1

by (T1) but τik 6= τik+1
, no more than three consecutive steps can coincide.

Definition 3.4 (backtrack cycle, non-backtrack cycle, quasi-backtrack). Let γ /∈ T o and let
w = (w1, . . . , w2d+1) be a (T o, γ)-path. Let τ be an arc of T o, and let (wj , wj+1) be a pair of
consecutive quasi-arcs going along τ . We say that (wj , wj+1) is a cycle if the starting point of wj
coincides with the ending point of wj+1.

i) A cycle (wj , wj+1) is called a backtrack, denoted by (τ, τ), if it is contractible.

ii) A cycle (wj , wj+1) is called a non-backtrack, denoted by (τ, τ ), otherwise.

In the case that τ is a radius between the puncture P and a marked point v on the boundary,
we say that (wj , wj+1), denoted by (τ, τ), is a quasi-backtrack if it is a concatenation of two
quasi-arcs P

′ ; v ; P
′′ where P

′ and P
′′ are distinct points in the vicinity of P .

Remark 3.5. Assume (wj , wj+1) is a pair of steps going along τ , as in Definition 3.4.
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τ

v

wj wj+1

P
′
P

(a) Backtrack cycle.

τ

v

wj+1wj

P
′

(b) Counterclockwise non-backtrack cycle.

τ

v

wj wj+1

P
′

(c) Clockwise non-backtrack cycle.

Figure 7. The three possibilities of a pair (wj , wj+1) of consecutive steps along a radius τ if T o has

a self-folded triangle with r as the radius.

v

k

w2k
w2k+1

P
′

4k−1 4k

v

k
+

1

w2k+1 w2k+2

P
′

4k 4k+1

(a) Backtrack cycle (w2k+1, w2k) or (w2k, w2k+1).

v

k
w2k

P
′

w2k+1

P
′′

4k−1 4k k
+

1

v

w2k+1

P
′

w2k+2

P
′′

v

(b) Quasi-backtrack (w2k, w2k+1) or (w2k+1, w2k).

Figure 8. A pair (wj , wj+1) of consecutive steps along a radius τ is either a quasi-backtrack or a backtrack

cycle if every ideal triangle of T o is an ordinary triangle.

1) Suppose τ is peripheral.

i) Then (wj , wj+1) is a backtrack if and only if wj and wj+1 are opposite orientations of τ .
In particular, if τ has two distinct endpoints, (wj , wj+1) must be a backtrack cycle.

ii) If τ is an `-loop, the concatenation of two steps going along the same orientation of τ
would form a non-contractible cycle. However, we show in Proposition 3.13(1) that it is
impossible for (wj , wj+1) to go along the same orientation of an `-loop twice as part of
a (T o, γ)-path.

2) Suppose τ is a radius between the puncture P and a marked point v on the boundary.

a) Suppose wj begins at v, so that (wj , wj+1) is a concatenation of two associated quasi-arcs
v ; P

′ ; v.

i) Then (wj , wj+1) is a backtrack cycle if it is contractible to v. See Fig. 7(a) for the
case where T o has a self-folded triangle and τ is its radius and Fig. 8(a) for the case
where τ is not the only radius of T o.

ii) If (wj , wj+1) is not contractible, then due to (T2) it must be homotopic to a loop
which goes around the puncture once. We say that (wj , wj+1) is a counterclockwise
non-backtrack if it goes counterclockwise (Fig. 7(b)), and a clockwise non-backtrack
if it goes clockwise (Fig. 7(c)). We show in Proposition 3.13(2a) that in this case, τ
must be the only radius of T o, i.e., T o contains a self-folded triangle.

b) Suppose wj ends at v, so that (wj , wj+1) is a concatenation of two associated quasi-arcs
P
′ ; v ; P

′′, where P
′ and P

′′ are in the vicinity of the puncture. We show in Proposi-
tion 3.13(2b) that P

′ and P
′′ must be distinct, so (wj , wj+1) is a quasi-backtrak. See

Fig. 8(b).
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Definition 3.6 (Laurent monomial from a T o-path). We identify each step with the label of the
quasi-arc/boundary edge which it traverses and define the Laurent monomial x(w) corresponding
to a complete (T o, γ)-path w by

x(w) =
∏
i odd

xwi
∏
i even

x−1
wi .

Remark 3.7. Two or more (T o, γ)-paths may correspond to the same Laurent monomial, e.g.,
see Example 3.10. For each (T o, γ)-path w, the denominator of x(w), before reducing, is equal
to xi1 , xi2 , . . . , xid which corresponds to the arcs τi1 , . . . , τid of T o which cross γ.

Theorem 3.8 (T o-path formula for Cn, an extension of [21, Theorem 3.1], [22, Theorem 3.2]).
Let T o be an ideal triangulation of Cn, let γ /∈ T o be an ordinary arc of Cn, and let xγ denote
the corresponding element in the cluster algebra which arises from Cn (see Theorem 2.8). Then

xγ =
∑
w

x(w),

where the sum is taken over all (T o, γ)-paths. The formula does not depend on the choice of
orientation on γ.

The proof of Theorem 3.8 is given in Section 4.4. Note that, since x` := xrxr(p) , Theorem 3.8
also provides a formula for the cluster variable associated to every tagged arc of Cn.

Example 3.9. The following are the five (T o, γ)-paths for the situation of Fig. 4. Note that γ
crosses 1, 2, 3 in order so τi1 = 1, τi2 = 2, and τi3 = 3 in this example.

1) (b1, 1, 2, 2, 4, 3, b3), 3) (b4, 1, b2, 2, 2, 3, 4), 5) (b4, 1, 1, 2, 3, 3, b3).

2) (b1, 1, 2, 2, 2, 3, 4), 4) (b4, 1, b2, 2, 4, 3, b3),

Theorem 3.8 thus implies that

xγ =
xb1x2x4xb3 + xb1x2x2x4 + xb4xb2x2x4 + xb4xb2x4xb3 + xb4x1x3xb3

x1x2x3
,

where xbj = 1 for each boundary edge bj .

Example 3.10. The nine (T o, γ)-paths from Fig. 9(a) are as follows (with the backtracks
underlined):

(1) (b4, 1, b2, 2, b3, `, r, r, `, `, b3), (6) (b4, 1, b2, 2, 2, `, `, r, r, `, b3),

(2) (b4, 1, 1, 2, `, `, r, r, `, `, b3), (7) (b4, 1, b2, 2, 2, `, r, r, `, `, b3),

(3) (b1, 1, 2, 2, 2, `, `, r, r, `, 2), (8) (b1, 1, 2, 2, 2, `, `, r, r, `, b3),

(4) (b1, 1, 2, 2, b3, `, r, r, `, `, b3), (9) (b1, 1, 2, 2, 2, `, r, r, `, `, b3).

(5) (b4, 1, b2, 2, 2, `, `, r, r, `, 2),

The last four of these (T o, γ)-paths contain a (counterclockwise) non-backtrack (r, r) and are
illustrated in Fig. 9. They are drawn so that the backtrack cycles (2, 2) and (`, `) are ignored.

We apply Theorem 3.8 and replace each (xrx`)/(x`xrx`) with 1/x` and each x` with xrxr(p)
to get

xγ =
(
xb4xb2xb3xb3 + xb4x1xrxr(p)xb3 + xb1x

3
2 + xb1x

2
b3x2 + xb4xb2x

2
2

+ 2xb4xb2xb3x2 + 2xb1xb3x
2
2

)
/(x1x2xrxr(p)),

where xbj = 1 for each boundary edge bj .
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b1

b2

b3

b4

1

2

`

rγ

v

P

(a) An arc γ of C4 which crosses T o

5 times.

1
2

r

`

b4

b2

b3

(b) (b4, 1, b2, 2, 2, `, `, r, r, `, b3).

1
2

r

`

b4

b2

b3

(c) (b4, 1, b2, 2, 2, `, r, r, `, `, b3).

1
2

r

`
b1 b3

(d) (b1, 1, 2, 2, 2, `, `, r, r, `, b3).

1
2

r

`
b1 b3

(e) (b1, 1, 2, 2, 2, `, r, r, `, `, b3).

Figure 9. The four (T o, γ)-paths (of T o and γ from Fig. 9(a)) which contain a (counterclockwise) non-

backtrack cycle (r, r). All backtracks (2, 2) and (`, `) have been omitted, and steps are not drawn exactly

along the arcs/boundary edges for illustration purposes.

1
2

3
τ

b1b3

b2

b4

γ

(a) An `-loop γ of C4 which
crosses T o 3 times.

12

3 τ

b1

b2

b3

b4

b1

(b) (b1, 1, 2, 2, 3, 3, τ).

12

3 τ

b1

b2

b3

b4

b2

(c) (τ, 1, b2, 2, 3, 3, τ).

12

3 τ

b1

b2

b3

b4

b3

(d) (τ, 1, 1, 2, b3, 3, τ).

12

3 τ

b1

b2

b3

b4b4

(e) (τ, 1, 1, 2, 2, 3, b4).

Figure 10. The four (T o, γ)-paths of the ideal triangulation T o and the `-loop γ of Fig. 10(a). Each

path contains a quasi-backtrack (1, 1), (2, 2), or (3, 3).

Example 3.11. Fig. 10 illustrates the four (T o, γ)-paths for the case where the ideal triangu-
lation T o and the `-loop γ /∈ T o are illustrated in Fig. 10(a). In this example, no (T o, γ)-path
contains any cycle (wj , wj+1).

Fig. 11 illustrates three of the five (T o, γ)-paths for the case where the ideal triangulation T o

and the arc γ /∈ T o are illustrated in Fig. 11(a). The backtrack cycle (3, 3) in Fig. 11(d) is not
drawn. The other two (T o, γ)-paths are (0, 1, b2, 2, 0, 3, b3) and (b1, 1, 2, 2, 0, 3, b3).
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1
2

3 0
b1b3

b2

b4

γ
(a) An arc γ of C4 which
crosses T o 3 times.

1
2

3 0
b1

b2

b3

b4

b1

b4

(b) (b1, 1, 2, 2, 2, 3, b4).

1
2

3 0
b1

b2

b3

b4

b2

b4

(c) (0, 1, b2, 2, 2, 3, b4).

1
2

3 0
b1

b2

b3

b4

b3

(d) (0, 1, 1, 2, 3, 3, b3).

Figure 11. Three of the five (T o, γ)-paths of the ideal triangulation T o and the arc γ of Fig. 11(a).

1
2

r

`

b4

b2

b3

(a) A path with the same la-
bels (b4, 1, b2, 2, 2, `, `, r, r, `, b3) as
Fig. 9(b) but fails (T2) because
[p4, p5]w is not homotopic to γ4.

12

3 τ

b1

b2

b3

b4

b1

(b) A path with the same labels
(b1, 1, 2, 2, 3, 3, τ) as Fig. 10(b)
but fails (T3) because w5 = 3
starts outside 42.

1
2

3 0

b1

b2

b3

b4

b3

(c) A path with the same labels
(0, 1, 1, 2, 3, 3, b3) as Fig. 11(d) but
fails (T3) because w1 = 0 starts out-
side40 and w3 = 2 finishes outside41.

Figure 12. Examples of non-(T o, γ)-paths for the situations in Figs. 9(a), 10(a), and 11(a). Each path

is homotopic to γ and satisfies (T1) but fails (T2) or (T3).

3.1 A non-backtrack cycle can only go along a self-folded triangle’s radius

We prove the assertions from Remark 3.5.

Definition 3.12 (Crossing a self-folded triangle). Suppose that T o contains a self-folded triangle
with radius r. We say that γ crosses r in the counterclockwise direction (respectively, clockwise
direction) if it matches (respectively, if γ has the opposite orientation of) Fig. 6(d).

Proposition 3.13. Let T o be an ideal triangulation of Cn. Suppose γ is an ordinary arc which
crosses τ ∈ T o, and let w = (w1, . . . , w2d+1) be a (T o, γ)-path. Suppose (wj , wj+1) is a pair of
steps both going along quasi-arcs associated to τ .

1) Suppose τ ∈ T o is an `-loop `. Then (wj , wj+1) are two opposite orientations of `, so that
(wj , wj+1) is a backtrack cycle. See Remark 3.5(1).

2) Suppose T o does not contain any self-folded triangle, and let τ ∈ T o be a radius between the
puncture P and a marked point v on the boundary.

a) Suppose that wj begins at v, so that (wj , wj+1) is a concatenation of two quasi-arcs v ;

P
′ ; v where P

′ is in the vicinity of the puncture. Then (wj , wj+1) is a backtrack cycle.
See Remark 3.5(2a).

b) Suppose that wj ends at v, so that (wj , wj+1) is a concatenation of two quasi-arcs P
′ ;

v ; P
′′ where P

′ and P
′′ are in the vicinity of the puncture. Then P

′ 6= P
′′, and hence

(wj , wj+1) is a quasi-backtrack. See Remark 3.5(2b).

Remark 3.14. In Examples 3.9 and 3.11, none of the (T o, γ)-paths include a non-backtrack
cycle along a radius since T o contains no self-folded triangle (see Proposition 3.13(2a)). In
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contrast, four of the (T o, γ)-paths in Example 3.10 for (T o, γ)-paths contains a non-backtrack
cycle. Furthermore, no cycle P

′ ; v ; P
′ can appear in general (see Proposition 3.13(2b)). See

Fig. 12 and Example 3.17 for examples of non-(T o, γ)-paths.

Proof of Proposition 3.13. First, we point out that the pair of steps (wj , wj+1) must be in
the middle of the (T o, γ)-path, i.e.,

the first step of w cannot be wj and the last step of w cannot be wj+1. (3.1)

To see this, note that, by (T2), w1 goes along τ[γ0] or τ[γ−1], and w2d+1 goes along τ[γd] or τ[γd+1].
But, as illustrated in Fig. 5, τ[γj ] 6= τi1 if j ∈ {0,−1}, and τ[γj ] 6= τid if j ∈ {d, d + 1}. Since,
by (T1), w2 goes along τi1 and w2d goes along τid , we must have 1 < j and j + 1 < d.

We prove case (1): Suppose T o has a self-folded triangle with radius r and `-loop `, and
τ = `. For the sake of argument, suppose that wj and wj+1 are the same orientation of `. Note
that every arc of T o other than ` has two distinct endpoints.

– First, suppose j = 2k is even. Per (3.1), another even-indexed step w2(k+1) follows
(w2k, w2k+1). Since w2k+1 ends at v, the step w2k+2 (crossing γ) must go from v along a different
arc λ to a different marked point. Using the labels of Figs. 13(a), λ can be either r, ℵ, or i.
We check all possible cases against (T1) and (T2) but only show one of the arguments here.
Suppose λ = r and γ is a peripheral arc crossing `, r, and ` again in the counterclockwise
direction as in Fig. 13(a) with j = 2k and j + 1 = 2k + 1 so that w2k = ` and w2k+2 = r. For
contradiction, suppose (w2k, w2k+1) go along the clockwise orientation of ` twice. Recall that γk
is the segment of γ from pk (a point in the interior of `) and pk+1 (a point in the interior of r)
as in Fig. 13(b). By (T2), the segment γk must be homotopic to [pk, pk+1]w (see Definition 3.2
and Fig. 13(c)). However, as illustrated in Fig. 13(d), the concatenation of [pk, pk+1]w and the
opposite orientation γ−k of γk is not contractible. Hence γk is not homotopic to [pk, pk+1]w.

– Second, suppose j = 2k+1 is odd. Again, per (3.1), there is another even-indexed step w2k

(crossing γ, and going from a different marked point to v along a peripheral arc) which precedes
(w2k+1, w2k+2). Using the same logic as in the previous paragraph, we show that (w2k+1, w2k+2)
must go along two opposite orientations of ` in order for γk to be homotopic to [pk, pk+1]w.

We prove case (2a): Suppose τ is a radius and a side of a regular triangle (hence T o has no
self-folded triangle), and every arc of T o has two distinct endpoints.

– First, suppose j = 2k is even. Per (3.1), another even-indexed step w2(k+1) follows
(w2k, w2k+1). Since w2k+1 ends at v, the step w2k+2 (crossing γ) must be a peripheral step λ to
a different point. But (w2k, w2k+1) would need to be contractible in order for γk to be homotopic
to [pk, pk+1]w.

– Second, suppose j = 2k+1 is odd. Again, per (3.1), there is another even-indexed step w2k

(crossing γ, and going from a different marked point to v along a peripheral arc λ) which
precedes (w2k+1, w2k+2). But (w2k+1, w2k+2) would need to be contractible in order for γk to be
homotopic to [pk, pk+1]w.

We prove case (2b): First suppose j = 2k+1 is odd. Then P
′ is in the interior of4k since w2k+1

must start in the interior of 4k by (T3). The next step w2k+2 then goes along τ from v to P
′′.

Since the last step of w is an odd-indexed step, after w2k+2 there must be another step w2k+3

which starts at P
′′. Again by (T3), w2k+3 starts in the interior of 4k+1. But 4k and 4k+1 are

distinct triangles since T o has no self-folded triangle. Hence P
′ 6= P

′′, and so (w2k+1, w2k+2) is a
quasi-backtrack which starts in the interior of 4k and ends in the interior of 4k+1.

If j = 2k is even, then by a similar argument (w2k, w2k+1) is a quasi-backtrack which starts
in the interior of 4k−1 and ends in the interior of 4k. See Fig. 8(b). �
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r

v

y

`
ℵ i

pk

(a) γ crosses r in the coun-
terclockwise direction

r `γk
pk pk+1

(b) γk is the segment of γ
from pk to pk+1.

r `

(c) [pk, pk+1]w goes along `+, `+,
and r.

P

γ−k

(d) Concatenation of [pk, pk+1]w
and the opposite orientation of γk.

Figure 13. (`+, `+) is not a valid (T o, γ)-subpath.

3.2 A (T o, γ)-path w on Cn is uniquely determined by its sequence of labels

Notation 3.15. Let r and ` be the radius and `-loop of a self-folded triangle, and let v be
the boundary vertex on the boundary that is adjacent to `. Let `+ (respectively, `−) denote
the clockwise (respectively, counterclockwise) orientation along `. (We mark each ` curve in our
illustrations with an arrow pointing clockwise to remind the reader that `+ denotes the clockwise
direction.)

Consider the cycle (r, r)

v ; P
′ ; v along r

from Remark 3.5(2a). Let (r, r) denote the backtrack cycle and let (r, r) denote a (counterclock-
wise or clockwise) non-backtrack cycle.

The following proposition is an analogue of a remark from [21, Section 3.1].

Proposition 3.16. A (T o, γ)-path w on Cn is uniquely determined by its sequence of labels
(w1, . . . , w2d+1), forgetting the orientations of the steps and whether a consecutive pair is a non-
backtrack or a backtrack.

Example 3.17. To illustrate Proposition 3.16, consider the (T o, γ)-path of Fig. 9(b)

w = (b4, 1, b2, 2, 2, `+, `−, r, r, `+, b3).

The pair (w8, w9) = (r, r) is a counterclockwise non-backtrack along the radius r, and w10 = `+
goes clockwise around `. Consider a different path w′ (see Fig. 12(a)) which goes along the same
sequence of arcs such that (w′8, w

′
9) = (r, r) is a clockwise non-backtrack along the radius, and

w′10 = `− goes counterclockwise around `. Even though w′ is homotopic to γ, the segment γ4 is
not homotopic to [p4, p5]w, violating Definition 3.2(T2).

The paths illustrated in Figs. 12(b) and 12(c) go along associated quasi-arcs of the same
arcs/edges as the (T o, γ)-paths of Figs. 10(b) and 11(d), but they fail axiom (T3), which requires
each odd-indexed step w2k+1 to start and finish in the interior of 4k or at a boundary marked
point.
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r

v

y

`
ℵ i

γ

(a) When γ starts at the puncture.

r

v

y

`−
ℵ

r

(b) (r,`−,ℵ,ℵ).

r

v

y

`+
i

ℵ
r

(c) (r, `+, i,ℵ).

r

v

y

`
ℵ

r

(d) (r, `+, `−,ℵ).

Figure 14. The subpaths (w1, . . . , w4) of Remark 3.18(A1), (A2) when γ starts at P and crosses ` and ℵ.

See Fig. 21.

Proof of Proposition 3.16. For short, let the arcs τi1 , . . . , τid be denoted by arcs 1, . . . , d.

First, consider the subsequence (w1, w2, w3). There are four possibilities:

i) 40 is an ordinary triangle (Fig. 5(a)).

ii) 40 is an ideal triangle with two vertices where arc 1 is the loop (Fig. 5(b)).

iii) 40 is an ideal triangle with two vertices where arc 1 is not the loop (Fig. 5(c)).

iv) 40 is a self-folded triangle where arc 1 is the `-loop (Fig. 5(d)).

For each of the first three cases, 40 has three distinct edges k, τ[γ0], and τ[γ−1]. There are exactly
two possible subpaths for (w1, w2), which are represented by two distinct sequences (τ[γ0], 1)
and (τ[γ−1], 1).

In the fourth case, 40 is a self-folded triangle with radius r and `-loop ` (see Fig. 5(d), top),
so that τ[γ0] = τ[γ−1] = r. However, there are exactly two possible subpaths in this case as well.

Remark 3.18. Suppose γ is a radius starting at the puncture, as in Fig. 5(d). Let v denote the
vertex that ` is based at. Due to (T2), the first step w1 must go P

′ ; v along τ[γ0] = τ[γ−1] = r,
but there are two valid options for w2, to go counterclockwise or clockwise along `, so that there
are exactly two possibilities for (w1, w2):

A1) (r, `−),

A2) (r, `+).

We continue with the proof of Proposition 3.16 in this fourth case. In particular, we show
that (A1) and (A2) lead to distinct ways for the (T o, γ)-path to be finished. These two possible
choices for (w1, w2) are represented by the same sequence (τ[γ0], 1) = (τ[γ−1], 1), but we claim
that the orientation of w2 determines the possible choices for the next term w3. Suppose that ℵ
(respectively, i) is the side of 41 which lies clockwise (respectively, counterclockwise) of `, as
illustrated in Fig. 14(a).
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Suppose γ ends at the vertex y. If w2 = `− is counterlockwise, then w3 = ℵ (Fig. 14(b)),
otherwise w3 = i (Fig. 14(c)).

If γ does not end at y, then the second arc that γ crosses is either ℵ or i (say, ℵ). If
w2 = `− is counterclockwise, then (w3, w4) = (ℵ,ℵ) (Fig. 14(b)). If w2 = `+ is clockwise, then
(w3, w4) = (i,ℵ) (Fig. 14(c)) or (`−,ℵ) (Fig. 14(d)). Hence, the subpath (w1, w2, w3) is either
(r, `−,ℵ), (r, `+, b), or (r, `+, `−). As these are represented by three distinct subsequenes, each
subsequence uniquely determines the first three steps of w.

By the same logic, the subsequence (w2d−1, w2d, wd+1) uniquely determines the last three
steps of w.

Next, consider any triple (w2k, w2k+1, w2k+2). There are four possibilities:

i) 4k is an ordinary triangle (Fig. 6(a)).

ii) 4k is an ideal triangle with two vertices where neither arc k nor arc k+1 are loops (Fig. 6(b)).

iii) 4k is an ideal triangle with two vertices where one of arcs k and k+ 1 (say, k+ 1) is a loop
(Fig. 6(c)).

iv) 4k is a self-folded triangle with radius r and `-loop ` where one of arcs k and k + 1 (say,
k + 1) is the radius r (Fig. 6(d)).

For each of the first three cases, 4k has three distinct edges k, k + 1, and τ[γk]. There are
exactly three legal subpaths for (w2k, w2k+1, w2k+2), and they are represented by three distinct
sequences (k, k+1, k+1), (k, k, k+1), and (k, τ[γk], k+1). In the case that one of these steps is an
`-loop, it is also clear that (T2) forces a specific orientation along ` as part of the (T o, γ)-path.

In the fourth case, γ crosses `, r, then ` in either the counterclockwise or clockwise (say, the
former) direction.

Lemma 3.19. Suppose T o contains a self-folded triangle with radius r and `-loop `, and suppose
that γ crosses r, say, in the counterclockwise direction. Let v be the boundary vertex on the
boundary that is adjacent to `. Suppose `, r, ` are the k-th, (k+1)-th, and (k+2)-th arcs crossed
by γ (see Fig. 6(d)). Then there are exactly three possible subpaths for (w2k, w2k+1, w2(k+1)):

a1) (`−, r, r): follow `− then backtrack cycle (r, r) (Fig. 15(1)),

a2) (`+, `−, r): follow (`+, `−) then follow r from v to P
′ (a point in the vicinity of the puncture)

(Fig. 15(2)),

a3) (`+, r, r): follow `+ then counterclockwise non-backtrack cycle (r, r) (Fig. 15(3)).

There are also exactly three possible subpaths for (w2(k+1), w2k+3, w2(k+2)):

b1) (r, `−, `+): follow r from P
′ (a point in the vicinity of the puncture) to v then (`−, `+) (see

Fig. 16(1)),

b2) (r, r, `−): backtrack cycle (r, r) then `− (Fig. 16(2)),

b3) (r, r, `+): counterclockwise non-backtrack cycle (r, r) then `+ (Fig. 16(3)).

The (`, r, r, `, `)-subsequence corresponds to exactly 2 valid subpaths for (w2k, . . . , w2k+2), one
where (r, r) is a backtrack and the other where (r, r) is a non-backtrack. We get them by com-
bining (a1) with (b1) and combining (a3) with (b1):

I) (`−, r, r, `−, `+): follow `− then backtrack cycle (r, r) then (`−, `+).

II) (`+, r, r, `−, `+): follow `+ then counterclockwise non-backtrack cycle (r, r) then (`−, `+).

Similarly, the (`, `, r, r, `)-subsequence would correspond to exactly two valid subpaths, one where
(r, r) is a backtrack and the other where (r, r) is a non-backtrack. We get them by combining
(a2) with (b2), and combining (a2) with (b3).
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r `

(1) (`−, r, r).

r `

(2) (`+, `−, r).

r `

(3) (`+, r, r).

r

v

y

`
ℵ i

pk

(4) γ crosses r in the counter-
clockwise direction.

Figure 15. The subpaths (w2k, w2k+1, w2k+2) of Lemma 3.19(a1), (a2), (a3) if γ crosses arcs τik = `,

τik+1
= r, and τik+2

= ` in the counterclockwise order. See Fig. 22.

r `

(1) (r, `−, `+).

r `

(2) (r, r, `−).

r `

(3) (r, r, `+).

Figure 16. The subpaths (w2k+2, w2k+3, w2k+4) of Lemma 3.19(b1), (b2), (b3) if γ crosses arcs τik = `,

τik+1
= r, and τik+2

= ` in the counterclockwise order. See Fig. 23.

III) (`+, `−, r, r, `−): follow `+, then `− then backtrack cycle (r, r) then `−.

IV ) (`+, `−, r, r, `+): follow `+, then `− then counterclockwise non-backtrack cycle (r, r)
then `+.

Remark 3.20. In Lemma 3.19, note that the subpaths (I) and (III) are homotopic to a coun-
terclockwise orientation of `. The subpaths (II) and (IV) are contractible to v.

Proof of Lemma 3.19. By (T1), since the k-th, (k+1)-th, (k+2)-th arcs crossed by γ are `, r,
and `, the sequence

(w2k, w2k+1, w2(k+1), w2k+3, w2(k+2))

must be

(`, , r, , `).

For this to be a connected path, we must fill in the odd steps with ` then r (or r then `) by (T2),
so that the 5-term subsequence is either (`, r, r, `, `) or (`, `, r, r, `).

The two subpaths (a1) and (a3) (both represented by (`, r, r)) satisfy (T2):
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r `
γ−k

(a) Concatenation of [pk, pk+1]w
(`−,r, r(backtrack)) and γ−

k is
contractible, so [pk, pk+1]w is ho-
motopic to γk.

r `
γ−k

(b) Similarly, [pk, pk+1]w (`+,r, r
(counterclockwise non-backtrack))
is homotopic to γk.

r `
γ−k

(c) [pk, pk+1]w (`+,r, r(backtrack))
is not homotopic to γk.

Figure 17. Concatenation of [pk, pk+1]w (`, r, r) and the opposite orientation of γ−k of γk.

Case (a1) If (w2k, w2k+1, w2(k+1)) = (`−, r, r) (where (r, r) is a backtrack cycle), the concatena-
tion of [pk, pk+1]w and the opposite orientation γk

− of γk is contractible, so [pk, pk+1]w
and γk are homotopic. See Fig. 17(a).

Case (a3) If (w2k, w2k+1, w2(k+1)) = (`+, r, r) (where (r, r) is a counterclockwise non-backtrack
cycle), the concatenation of [pk, pk+1]w and the opposite orientation γk

− of γk is
contractible, so [pk, pk+1]w and γk are homotopic. See Fig. 17(b).

The sequence (`, r, r) may also represent a subpath (`+, r, r) where (r, r) is a backtrack or
(`−, r, r) where (r, r) is a non-backtrack cycle, but we claim that these are not valid T o-
subpath: For contradiction, suppose (w2k, w2k+1, w2k+2) = (`+, r, r) where (r, r) is a backtrack.
By (T2), the segment γk (Fig. 13(b)) must be homotopic to [pk, pk+1]w. However, as illustrated
in Fig. 17(c), the concatenation of [pk, pk+1]w and the opposite orientation γk

− of γk is not
contractible. Hence γk is not homotopic to [pk, pk+1]w, and so this subpath does not appear.
Similarly, no subpath (`−, r, r) with a non-backtrack cycle (r, r) can appear.

By similar logic,

– (a2) is the only valid T o-subpath which can be represented by (`, `, r),

– (b1) is the only valid T o-subpath which can be represented by (r, `, `), and

– (b2) and (b3) are the only two valid T o-subpaths which can be represented by (r, r, `).

This concludes our proof of Lemma 3.19. �

We continue with the proof of Proposition 3.16. Note that the subpaths (I) and (II) are
represented by the same 5-term subsequence (`, r, r, `, `). We claim that the steps w2k−1 which
precede (I) and (II) go along distinct arcs/edges. Note that the ideal triangle 4k−1 is a two-
vertex, three-edge triangle (Fig. 1(b)).

Case 1: Suppose k = 1, so that γ starts at the marked point y. Recall that the side of 40 that
lies clockwise of ` is τ[γ0], and the side of 40 that lies counterclockwise of ` is τ[γ−1] (see
Fig. 5(b)). In Fig. 15(4), τ[γ0] = ℵ and τ[γ−1] = i.

– Since (I) starts with a counterclockwise `− step, the first step w1 must go along τ[γ−1].
So the first six-term subsequence is (τ[γ−1], `, r, r, `, `).

– Since (II) starts with a clockwise `+ step, the first step w1 must go along τ[γ0]. So
the first six-term subsequence is (τ[γ0], `, r, r, `, `).
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Case 2: Suppose 1 < k, so that γ crosses arc k − 1 (in Fig. 15(4), this arc is either ℵ or i.)
Suppose (without loss of generality) that arc k − 1 lies clockwise of ` (i.e., arc k − 1
is ℵ in Fig. 15(4)). Then the third arc τ[γk−1] of 4k−1 lies counterclockwise of ` (i.e.,
side τ[γk−1] is i in Fig. 15(4)). Recall that w2k−2 must traverse arc k − 1 by (T1).

– Since (I) starts with a counterclockwise `− step, the previous step w2k−1 must go
along either ` or τ[γk−1] (i.e., side i in Fig. 15(4)), so that (w2k−1, . . . , w2(k+2)) form
a six-term subsequence (`, `, r, r, `, `) or (τ[γk−1], `, r, r, `, `).

– Since (II) starts with a clockwise `+ step, the previous step w2k−1 must go along arc
k − 1 (i.e., arc ℵ in Fig. 15(4)), so that (w2k−1, . . . , w2(k+2)) = (k − 1, `, r, r, `, `).

Similarly, the subpaths (III) and (IV) are represented by the same 5-term subsequence (`, `, r,
r, `). We claim that the steps w2(k+2)+1 following (III) and (IV) go along distinct arc/edges.
Note that the ideal triangle 4k+2 is a two-vertex, three-edge triangle (Fig. 1(b)).

Case 1: Suppose d = k + 2, so that γ ends at the marked point y. Recall that the side of 4d

that lies clockwise of ` is τ[γd], and the side of 40 that lies counterclockwise of ` is τ[γd+1]

(see Fig. 5(b)). In Fig. 15(4), τ[γd] = ℵ and τ[γd+1] = i.

– Since (III) ends with a counterclockwise `−, the last step must go along τ[γd], so that
the last six-term subsequence is (`, `, r, r, `, τ[γd])

– Since (IV) ends with a clockwise `+, the last step must go along τ[γd+1], so that the
last six-term subsequence is (`, `, r, r, `, τ[γd+1]).

Case 2: Suppose d > k + 2, so that γ crosses arc k + 3 (in Fig. 15(4), this arc is either ℵ or i.)
Suppose (without loss of generality) that arc k + 3 lies clockwise of ` (i.e., arc k + 3
is ℵ in Fig. 15(4)). Then the third arc τ[γk+2] of 4k+2 lies counterclockwise of ` (i.e.,
side τ[γk+2] is i in Fig. 15(4)).

– Since (III) ends with a counterclockwise `−, the next step w2k+5 must go along arc
k + 3 (i.e., arc ℵ in Fig. 15(4)), so that (w2k, . . . , w2k+5) = (`, `, r, r, `, k + 3).

– Since (IV) ends with a clockwise `+, the next step w2k+5 must go along either counter-
clockwise `− or τ[γk+2] (i.e., arc/edge labeled i in Fig. 15(4)), so that (w2k, . . . , w2k+5)
form a six-term subsequence (`, `, r, r, `, `) or (`, `, r, r, `, τ[γk+2]). �

4 Proof of Theorem 3.8, the (T o, γ)-path expansion formula
for a once-punctured disk

We begin with an outline of our proof. Let T o be an ideal triangulation of a once-punctured
n-gon Cn and let γ /∈ T o be an oriented ordinary arc (possibly an `-loop).

Step 1: Following [17, Section 7], we construct a triangulated (d + 3)-gon S̃γ (modeled after
40, . . . ,4d). See Section 4.1.

Step 2: In Section 4.2, we give a bijection π : {(S̃γ , γ̃)-paths} → {(T o, γ)-paths}.
Step 3: Section 4.3 recaps [17, Theorem 4.10], a T o-expansion of xγ in terms of perfect matchings

of a snake graph GT o,γ .

Step 4: [16, Lemma 4.5] gives a bijection F : {perfect matchings of GT o,γ} → {(S̃γ , γ̃)-paths}.
See Section 4.4.

Step 5: The composition π ◦F gives a bijection between perfect matchings of GT o,γ and (T o, γ)-
paths. Applying π ◦ F to [17, Theorem 4.10] yields Theorem 3.8.
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4.1 A triangulated polygon S̃γ and a lifted arc γ̃

Let T o be an ideal triangulation of a once-punctured n-gon Cn and let γ /∈ T o be an oriented
ordinary arc (possibly an `-loop) from the point s to the point t. Let Sγ be the union of the ideal

triangles 4k (k = 0, . . . , d) crossed by γ. First, for each k = 0, . . . , d, we build a triangle 4̃k

with three distinct labels.

Definition 4.1 (triangles 4̃k). If 4k has three distinct sides, its lift 4̃k is an ordinary triangle
with the edge labels τ̃ik = τik , τ̃ik+1

= τik+1
, τ̃[γk] = τ[γk], and the same orientation as 4k.

When 4k is a self-folded triangle with radius r and `-loop `, its lift 4̃k is formed by two lifts
of r and a lift of `, as follows:

Case k = 1 or d: If k = 0, then 4̃0 has edge labels τ̃i1 = `, τ̃[γ0] = r, τ̃[γ−1] = rcc (arranged in

clockwise order). Similarly, if k = d, then 4̃d has edge labels τ̃id = `, τ̃[γd] = r,
τ̃[γd+1] = rcc (arranged in clockwise order). See Fig. 18(b).

Case 0 < k < d: Suppose k = `, k + 1 = r, and k + 2 = `. Then 4̃k has three distinct edge
labels τ̃ik , τ̃ik+1

, and τ̃[γk]: If γ crosses r in counterclockwise (respectively,

clockwise) direction, let τ̃ik+1
= r be the label of the edge of 4̃k which lies

counterclockwise (respectively, clockwise) of τ̃ik = `. Let τ̃[γk] = ṙ be the label

of the third edge of 4̃k.

Similarly, 4̃k+1 has three distinct edge labels τ̃ik+1
, τ̃ik+2

, and τ̃[γk+1]: If γ
crosses r in counterclockwise (respectively, clockwise) direction, let τ̃[γk+1] = r̈

be the label of the edge of 4̃k+1 which lies counterclockwise (respectively,
clockwise) of τ̃ik+2

= `. Let r be the label of the third edge of 4̃k+1. See
Figs. 18(e) and 18(f).

Definition 4.2 (triangulated (d+ 3)-gon). Glue 4̃1 to 4̃0 along τi1 , glue 4̃2 to 4̃1 along τi2 ,

and so forth to form a triangulated (d+ 3)-gon S̃γ with internal edges

τ̃i1 , . . . , τ̃id

and boundary edges

τ̃[γ−1], τ̃[γ0], . . . , τ̃[γd+1].

Let the lift s̃ = p̃0 of s = p0 be the vertex of 4̃0 that is adjacent to the lifted edges τ̃[γ0]

and τ̃[γ−1], and the lift t̃ = p̃d+1 of t = pd+1 be the vertex of 4̃d that is adjacent to the lifted

edges τ̃[γd] and τ̃[γd+1]. If k = 1, . . . , d− 1, let p̃k, p̃k+1 denote the lifts of pk, pk+1 on 4̃k which
lies on the interior of τ̃ik , τ̃ik+1

(respectively).

Let γ̃ be the arc in S̃γ from s̃ to t̃. We call γ̃ the lift of γ. Let π : S̃γ → Sγ denote the covering

map of S̃γ → Sγ . See Fig. 19(b) for the lifts γ̃ and S̃γ of γ and Sγ of Fig. 19(a).

Remark 4.3. By construction, τ̃ik = τik for each k. Furthermore, τ̃[γk] = τ[γk] unless τ̃[γk] has
label ṙ, r̈, or rcc. In addition, τ̃[γ0], τ̃[γd] /∈ {ṙ, r̈, rcc}, so τ̃[γ0] = τ[γ0], τ̃[γd] = τ[γd].

4.2 A bijection π between (S̃γ, γ̃)-paths and (T o, γ)-paths

Keep the same setup as in the previous section, where T o is an ideal triangulation of Cn and
γ /∈ T o is an ordinary arc of Cn. As S̃γ is a triangulation of a polygon, we can consider a (S̃γ , γ̃)-

path w̃ = (w̃1, . . . , w̃2d+1) as defined in Definition 3.2. For example, the (S̃γ , γ̃)-paths of Fig. 20
correspond to the four (T o, γ)-paths of Fig. 9.
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Figure 18. The triangles 4̃k when γ crosses an `-loop.

Lemma 4.4. The covering map π : S̃γ → Sγ which gives

π(w̃j) =

{
r if w̃j has label ṙ, r̈, or rcc,

the same label as w̃j otherwise.

induces a bijection

π : {(S̃γ , γ̃)-paths in S̃γ} → {(T o, γ)-paths in Sγ},
π(w̃1, w̃2, . . . , w̃2d+1) = (π(w̃1), π(w̃2), . . . , π(w̃2d+1)).

Proof. Let w̃ be a (S̃γ , γ̃)-path. Note that, since S̃γ is a polygon, there is only one way to
concatenate a pair (w̃j , w̃j+1) of steps. By (T1), every w̃2k has label τ̃ik , and every w2k has
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Figure 19. The construction of the triangulated polygon S̃γ and lifted arc γ̃ for T o and γ from Fig. 19(a).
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r

` r̈

b3

2

b3

2

b4

b1

b2

1

(b) (b4, 1, b2, 2, 2, `, ṙ, r, `, `, b3).
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Figure 20. The (T̃ o, γ̃)-paths corresponding to the four (T o, γ)-paths from Fig. 9. All backtracks have

been omitted.

label τik . Per Remark 4.3, τ̃ik has the same label as τik , and τ̃[γj ] has the same label as τ[γj ] if
j ∈ {0, d}.

By construction, 4̃0 has three distinct labels, τi1 , τ[γ0], and τ̃[γ−1], and 4̃d has three distinct
labels, τid , τ[γd], and τ̃[γd+1]. Hence, as discussed in Section 3.2, the subpath (w̃1, w̃2) is either
(τ[γ0], τi1) or (τ̃[γ−1], τi1), and the subpath (w̃2d, w̃2d+1) is either (τid , τ[γd]) or (τid , τ̃id+1

).

• If 40 has three distinct sides, τi1 , τ[γ0], and τ[γ−1], then τ̃[γ−1] = τ[γ−1], and π maps (w̃1, w̃2)
to the (T o, γ)-subpath (w1, w2) with the same labels.

If 40 is a self-folded triangle with radius r and `-loop `, then recall that 4̃0 is an ordinary
triangle with edge labels `, rcc, r (in counterclockwise order) as in Fig. 21(a). By (T1)
and (T2), w̃1 goes along τ̃[γ0] or τ̃[γ−1] and w̃2 goes along `. Hence, either (w̃1, w̃2) = (rcc, `)
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Figure 21. The lifts (w̃1, . . . , w̃4) of Remark 3.18(A1), (A2) when γ starts at the puncture, see Fig. 14.
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Figure 22. The lifts (w̃2k, w̃2k+1, w̃2k+2) of the subpaths of Lemma 3.19(a1), (a2), (a3), see Fig. 15.
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Figure 23. The lifts (w̃2k+2, w̃2k+3, w̃2k+4) of the subpaths of Lemma 3.19(b1), (b2), (b3), see Fig. 16.

or (w̃1, w̃2) = (r, `) (see Fig. 21). By Remark 3.18, there are two possible (T o, γ)-subpaths
(w1, w2), either (r, `−) or (r, `+). We see that π maps

(r, `)←→ Remark 3.18(A1): (r, `−),

(rcc, `)←→ Remark 3.18(A2): (r, `+).

• Similarly, if 4d has three distinct sides, then (w̃2d, w̃2d+1) is mapped to the subpath with
the same labels. Otherwise, if 4d is a self-folded triangle with radius r and `-loop `, then
recall that 4̃d is an ordinary triangle with edges `, rcc, r (in counterclockwise order), see
Fig. 18(b). Then either (w̃2d, w̃2d+1) = (`, rcc) or (w̃2d, w̃2d+1) = (`, r), and π maps

(`, rcc)←→ (`−, r),

(`, r)←→ (`+, r).

Similarly, each 4̃k has three distinct labels τik , τik+1
, and τ̃[γk]. As discussed in Section 3.2,

the subpath (w̃2k, w̃2k+1, w̃2k+2) is one of (τik , τik+1
, τik+1

), (τik , τik , τik+1
), or (τik , τ̃[γk], τik+1

).

• If 4k (k = 1, . . . , d) has three distinct sides, τik , τik+1
, and τ[γk], then τ̃[γk] = τ[γk]. Hence

(w̃2k, w̃2k+1, w̃2k+2) is mapped to the (T o, γ)-subpath (w2k, w2k+1, w2k+2) with the same
labels.
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Otherwise, suppose 4k is a self-folded triangle with radius r and `-loop `. Assume
that `, r, ` are the k-th, (k + 1)-th, and (k + 2)-th arcs crossed by γ and that γ crosses
them in the counterclockwise direction (see Fig. 18(c)). By construction (see Definition 4.1
and Fig. 18(e)), 4̃k has sides labeled τ̃ik = `, τ̃ik+1

= r, and τ̃[γk] = ṙ (in counter-
clockwise order). The subpath (w̃2k, w̃2k+1, w̃2k+2) is one of (τ̃ik , τ̃ik+1

, τ̃ik+1
) = (`, r, r),

(τ̃ik , τ̃ik , τ̃ik+1
) = (`, `, r), or (τ̃ik , τ[γk], τ̃ik+1

) = (`, ṙ, r). See Fig. 22. Per Lemma 3.19, there
are three possible (T o, γ)-subpaths for (w2k, w2k+1, w2k+2). We see that π maps

(`, r, r)←→ Lemma 3.19(a1): (`−, r, r),

(`, `, r)←→ Lemma 3.19(a2): (`+, `−, r),

(`, ṙ, r)←→ Lemma 3.19(a3): (`+, r, r (counterclockwise non-backtrack)).

By construction (see Definition 4.1 and Fig. 18(e)), 4̃k+1 has sides labeled τ̃ik+1
= r,

τ̃ik+2
= `, and τ̃[γk+1] = r̈ (in counterclockwise order). The subpath (w̃2k+2, w̃2k+3, w̃2k+4)

is one of (τ̃ik+1
, τ̃ik+2

, τ̃ik+2
) = (r, `, `), (τ̃ik+1

, τ̃ik+1
, τ̃ik+2

) = (r, r, `), or (τ̃ik+1
, τ̃[γk+1], τ̃ik+2

) =
(r, r̈, `). See Fig. 23. Per Lemma 3.19, there are three possible (T o, γ)-subpaths for
(w2k+2, w2k+3, w2k+4). We see that π maps

(r, `, `)←→ Lemma 3.19(b1): (r, `−, `+),

(r, r, `)←→ Lemma 3.19(b2): (r, r, `−) then `−,

(r, r̈, `)←→ Lemma 3.19(b3): (r, r (counterclockwise non-backtrack) , `+). �

We expect that Lemma 4.4 can be generalized to other punctured surfaces. However, other
punctured surfaces can have more complication ideal triangulations (like those containing an
ideal triangle of Fig. 1(d)) that have not been considered in our argument.

4.3 Perfect matching expansion formula

We recap the snake graph expansion formula of [17, Theorem 4.10] for ordinary arcs of any
bordered surface (including once-punctured polygons). We continue to restrict our attention to
the case of the once-punctured n-gon Cn.

Definition 4.5 (snake graph GT o,γ). We unfold S̃γ into a graph GT o,γ , called a snake graph,

by inserting negative-oriented copies 4̃(−)
k of 4̃k (for k = 1, . . . , d− 1) into S̃γ . Fig. 24(a) is the

graph GT o,γ that is built from S̃γ of Fig. 19(b). See [17, Section 4] for details. A tile consists

of 4̃k and 4̃k+1 (or 4̃(−)
k and 4̃(−)

k+1) glued together along a diagonal labeled τ̃ik . Let GT o,γ
denote the graph obtained from GT o,γ by removing the diagonal from each tile.

Definition 4.6 (crossing monomial). Define the crossing monomial of γ with respect to T o

to be

cross(T o, γ) =

d∏
k=1

x(τik).

Definition 4.7 (perfect matchings and weights). A perfect matching of a graph G is a subset E
of the edges of G such that each vertex of G is incident to exactly one edge of E. See Fig. 25.
If the edges of a perfect matching E are labeled βj1 , . . . , βjr , then the weight x(E) of E is the
product xβj1 · · ·xβjr .



24 E. Gunawan and G. Musiker

`

2

b3

r

r`

`

r̈

`

2

r

ṙ
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(b) A path corresponding to the (S̃γ , γ̃)-path of
Fig. 20(c), with odd steps (b1, 2, 2, `, r̈, b3), see
Fig. 25(8), and even steps the diagonals 1, 2, `,
r, and `.

Figure 24. The snake graph GT o,γ of Definition 4.5 and an example of a path on GT o,γ , see Remark 4.9.
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Figure 25. The nine perfect matchings of the snake graph GT o,γ of Fig. 24(a). Matchings (6)–(9)

correspond to the (T o, γ)-paths of Fig. 9. Note that these four are the only matchings where their

restrictions to the gray-shaded tile are perfect matchings.

Theorem 4.8 ([17, Theorem 4.10], perfect matching expansion formula). Let T o be an ideal
triangulation of any surface S and let γ /∈ T o be an ordinary arc (note: γ may be an `-loop).
Let xγ denote the element corresponding to γ in the cluster algebra which arises from S (see
Theorem 2.8). Then

xγ =
∑
E

x(E)

cross(T o, γ)
,

where the sum is over all perfect matchings E of GT o,γ.
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1

r

` r

(1) edge r ←→ w̃2k+1.

1

r

`

`

(2) edge `←→ w̃2k+1.

1

r

`
ṙ

(3) edge ṙ ←→ w̃2k+1.

Figure 26. The subpaths on GT o,γ corresponding to the subpaths (w̃2k, w̃2k+1, w̃2k+2) = (`, , r) from

Fig. 22.

1

`
r

`

(1) edge r ←→ w̃2k+3.

1

`
r

r

(2) edge `←→ w̃2k+3.

1

`
r
r̈

(3) edge r̈ ←→ w̃2k+3.

Figure 27. The subpaths on GT o,γ corresponding to the subpaths (w̃2k+2, w̃2k+3, w̃2k+4) = (r, , `) from

Fig. 23.

4.4 Proof of the T o-path formula for Cn (Theorem 3.8)

Remark 4.9 ([16, Lemma 4.5]). There is a bijection

F : {perfect matchings of the graph GT o,γ} →
{

(S̃γ , γ̃)-paths on S̃γ
}
,

F : E 7→ w̃E ,

where the diagonals of GT o,γ correspond to the even-indexed steps of each (S̃γ , γ̃)-path (see
Fig. 24(b)) and each matching E correspond to the odd-indexed steps of w̃E . See Figs. 26
and 27.

The bijections π (of Lemma 4.4) and F compose to form a bijection between the perfect
matchings of the snake graph GT o,γ and the (T o, γ)-paths on Cn.

Theorem 4.10 (snake graph matchings to (T o, γ)-paths). Consider an arc γ of Cn and the
(T o, γ)-paths and snake graph GT o,γ corresponding to γ. The map

π ◦ F : {perfect matchings in GT o,γ} → {(T o, γ)-paths on Cn},
E 7→ wE := π(w̃E)

is a bijection where the edges of each matching E correspond to the odd-indexed steps of the
(T o, γ)-path wE, see Fig. 24(b). In particular, the weight x(E) of the perfect matching E is
equal to the numerator of the Laurent monomial x(wE) (see Definitions 3.6 and 4.7).

Remark 4.11 (matching restrictions and (T o, γ)-subpaths). The four (T o, γ)-subpaths of Lem-
ma 3.19(I)–(IV) correspond to the four possible matchings of the triple-tiles of GT o,γ . Compare
Figs. 15–16, Figs. 22–23, and Figs. 26–27.
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Proof of Theorem 3.8. Applying the bijection π ◦ F to the formula of [17, Theorem 4.10]
yields

xγ =
1

cross(T o, γ)

∑
E perfect matchings

of GTo,γ

x(E) =
1

cross(T o, γ)

∑
(T o,γ)-paths w

(
d∏

k=0

x(w2k+1)

)
.

Since
d∏

k=1

x(w2k) = cross(T o, γ), this concludes the proof. �

Example 4.12. The nine perfect matchings of the graph GT o,γ (from Fig. 24(a)) are listed in
Fig. 25. Per Theorem 4.10, they correspond to the nine (T o, γ)-paths of Example 3.10.

5 Combinatorial proof of atomic bases for type D

5.1 Atomic bases for the once-punctured n-gons (type Dn)

Definition 5.1 (cluster monomials). Let A be a coefficient-free cluster algebra. A cluster
monomial is a monomial in cluster variables all belonging to a single cluster.

Recall that, in the case that A arises from a surface, a cluster corresponds to a tagged trian-
gulation and a cluster monomial corresponds to a multi-tagged triangulation (see Theorem 2.8).
See Definition 2.6 for a list of compatible pairs of tagged arcs of Cn.

The concepts of positive elements and atomic bases were first introduced in [23] for the case
of an annulus with one marked point on each boundary.

Definition 5.2 (positive elements and atomic bases). An element y ∈ A is called positive if the
Laurent expansion of y in the variables of every cluster of A has non-negative coefficients.

A Z-linear basis B of A is called an atomic basis of A if any positive element of A is a non-
negative Z-linear combination of B. Note that, if such a B exists, B is the collection of all
indecomposable positive elements (i.e., elements which cannot be written as a sum of positive
elements) of A, hence it is unique.

Remark 5.3. To prove that a collection B ⊂ A is an atomic basis of A, it suffices to verify the
following:

every element of B is a positive element of A, (5.1)

B is a Z-linear basis of A, (5.2)

every positive element y ∈ A can be written as a Z≥0-linear combination of B. (5.3)

Theorem 5.4 ([4]). If A is a cluster algebra of type A, D, or E, the cluster monomials of A
form the atomic basis of A.

Proof. [14, 19], [2], and [4, 6] give representation theoretic proofs for (5.1), (5.2), and (5.3),
respectively. [17] and [18] provide combinatorial arguments for (5.1) and (5.2), respectively,
and [7] gives a combinatorial proof for type A for (5.3). We present in the remainder of this paper
a combinatorial proof for type D for (5.3) which relies on the T o-path formula (Theorem 3.8)
and is inspired by [7]. �

Recall that a multi-tagged triangulation Σ is not compatible with a tagged triangulation T
if Σ contains an arc σ which is not in T . Recall also that a proper Laurent monomial in
variables ui is a product of the form uc11 · · ·ucrr where at least one of the ci is negative.
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Lemma 5.5. Consider a once-punctured polygon Cn. For every tagged triangulation T and every
multi-tagged triangulation Σ which is not compatible with T , the T -expansion of xΣ is a sum of
proper Laurent monomials.

Remark 5.6. A general version of Lemma 5.5 is known as the proper Laurent monomial property
(following [6]) which was proven for cluster algebras from surfaces and any choice of coefficients
in [6] and then for any skew-symmetric cluster algebras in [5], using representation theoretic
arguments in both cases.

Definition 5.7. Let N be a subset of a tagged triangulation T . We write the degree with respect
to N to mean the degree with respect to the cluster variables corresponding to N .

Outline of proof of Lemma 5.5. Suppose xΣ is a cluster monomial not compatible with
a tagged triangulation T , i.e., Σ contains an arc σ which is not in T . For brevity, suppose
that all tagged arcs of Σ\T are peripheral and the corresponding ideal triangulation T o has no
self-folded triangle. For full details and the rest of the cases, see the remainder of this paper.

Step 1: Choose a tagged arc σ ∈ Σ\T such that σ is as close as possible to the puncture and,
if possible, σ only crosses every arc of T at most once. Let (T, σ)-cross (respectively,
(T, σ)-doublecross) be the set of arcs of T which σ crosses (respectively, the set of arcs
of T which σ crosses twice).

Step 2: For each (T, σ)-path w, we compare the number of odd-indexed steps (contributing to the
numerator of x(w)) and the number of even-indexed steps (contributing to the denom-
inator of x(w)) that belong to (T, σ)-cross and (T, σ)-doublecross. See Definition 3.6.
This allows us to show that each term in the T -expansion of xσ is of negative degree
either with respect to the cluster variables corresponding to (T, σ)-cross or with respect
to the cluster variables corresponding to (T, σ)-doublecross.

Step 3: Similarly, for each factor xβ in the product of xΣ, we consider a (T, β)-path and compare
the number of odd steps versus the number of even steps to show that every term in the
T -expansion of xβ has non-positive degree with respect to both the cluster variables cor-
responding to (T, σ)-cross and the cluster variables corresponding to (T, σ)-doublecross.

Step 4: It follows, since σ ∈ Σ and every term in the T -expansion of xΣ has non-positive
degree with respect to both (T, σ)-cross and (T, σ)-doublecross that every term in the
T -expansion of xΣ has negative degree with respect to either (T, σ)-cross or (T, σ)-
doublecross.

Since (T, γ)-cross and (T, γ)-doublecross are subsets of T , the T -expansion of xΣ is a sum of
proper Laurent monomials. �

Theorem 5.8. If A is a coefficient-free cluster algebra of type D, every positive element y ∈ A
is equal to a linear combination y =

∑
ΓmΓxΓ of cluster monomials where each mΓ is non-

negative.

Proof of Theorem 5.8. We assume (5.1) and (5.2) for B = {cluster monomials}. The follow-
ing argument appears in [6, 7, 23], and we include it here for completeness. Let y be a positive
element of a cluster algebra of type D. Write y =

∑
ΓmΓxΓ as a linear combination of cluster

monomials. Then we prove that every mΓ is non-negative as follows.
Let xΓ be a cluster monomial from the sum, and let Γ denote the multi-tagged triangulation

corresponding to it. Choose a tagged triangulation T := TΓ that is compatible with the multi-
tagged triangulation Γ, i.e., so that γ ∈ T for every arc γ ∈ Γ. Consider a different cluster
monomial xΣ from the sum. We argue that

xΓ does not appear in the T -expansion of xΣ. (5.4)
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If all the arcs of Σ were in T , then xΣ is its own T -expansion, and we are done. Suppose that Σ
has an arc that is not in T . By Lemma 5.5, every term in the T -expansion of xΣ is a proper
Laurent monomial in the cluster corresponding to T . Since xΓ is a monomial (i.e., not a proper
Laurent monomial) in this cluster, we have proven (5.4).

Hence, mΓ is equal to the coefficient of xΓ in the T -expansion of y. Since y is a positive
element, the coefficient of xΓ in the T -expansion of y is non-negative, as required. �

In Section 5.2, we provide notations and lemmas which are helpful toward proving the lemmas
in Sections 5.3 and 5.4. Section 5.3 (respectively, Section 5.4) discusses lemmas which are needed
to prove Lemma 5.5 for the case where all arcs of Σ\T are peripheral (respectively, for the case
where Σ\T contains a radius). Even though a few of the lemmas can also be proven using
the existing snake graph formula [17, Theorem 4.3] (recapped in Section 4.3), many arguments
(such as the proofs of Lemmas 5.23, 5.24, and 5.26) can be done more easily using the T o-path
formula. Finally, we prove Lemma 5.5 in Section 5.5: if Σ is not compatible with the tagged
triangulation T , we can choose a tagged arc σ ∈ Σ\T such that every term in the T -expansion
of xΣ has negative degree with respect to some subset NT

σ of T\Σ by Lemmas 5.23, 5.24, 5.25,
5.28, 5.26, and 5.29.

5.2 Notations and technical lemmas to prove Lemma 5.5

Recall from Remark 2.5 that every tagged arc of Cn belongs to one of three classes: plain radius,
notched radius, or peripheral.

Remark 5.9. Per Remark 2.9, we only need to prove Lemma 5.5 and the related statements
for two cases: one where T has all plain radii and one where T has 2 parallel radii r, r(p).

Definition 5.10. Let T be a tagged triangulation, T o the corresponding ideal triangulation,
and λ a tagged arc. Let (T o, λ)-cross denote the arcs of T o that cross λ, and let (T o, λ)-
doublecross denote be the arcs of T o that cross λ twice. (Note that, If T contains two parallel
radii r, r(p), then (T o, λ)-cross and (T o, λ)-doublecross may contain the associated `-loop.)

If T contains two parallel radii r, r(p) (so that T o contains a self-folded triangle with radius r
and `-loop `), and if λ crosses the `-loop `, let

(T, λ)-cross := {r(p) and the peripheral arcs of T that cross λ}, and

(T, λ)-doublecross := {r(p) and the (peripheral) arcs of T that cross λ twice}.

Otherwise, if λ does not cross an `-loop that belongs to T o, let

(T, λ)-cross := (T o, λ)-cross and (T, λ)-doublecross := (T o, λ)-doublecross.

Lemma 5.11. Let T be a tagged triangulation with two parallel radii r, r(p) (so that T o has a self-
folded triangle with radius r and `-loop `). Suppose β and σ (possibly β = σ) are compatible
tagged arcs not in T , and either σ is a plain radius or β is peripheral. Let w = (w1, . . . , w2d+1)
be a (T o, β)-path. Recall that x` := xr xr(p).

Then x(w) having negative (respectively, non-positive) degree with respect to (T o, σ)-cross
implies that x(w) has negative (respectively, non-positive) degree with respect to (T, σ)-cross.

Similarly, if (T o, σ)-doublecross is nonempty and if x(w) has negative (respectively, non-
positive) degree with respect to (T o, σ)-doublecross, then x(w) has negative (respectively, non-
positive) degree with respect to (T, σ)-doublecross.

Note that this statement is not necessarily true if σ is peripheral and β is a radius.
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λ

Cλ

P

(a) Once-punctured disk Cλ.

P

λ

Diskλ

(b) Disk Diskλ.

Figure 28. λ cuts out a smaller once-punctured disk Cλ and a disk Diskλ, shaded in gray.

Proof. If σ is a radius (Fig. 18(a)), then it cannot cross r, so r /∈ (T o, σ)-cross. Since r /∈
(T, σ)-cross, replacing the two gradings (T o, σ)-cross and (T, σ)-cross is equivalent to simply
replacing ` in (T o, σ)-cross with r(p) in (T, σ)-cross, and the degree would stay the same.

If β is a peripheral arc crossing r (Figs. 18(d), 18(c)), then (T o, σ)-cross contains r, but w
goes along r exactly twice in a row, per Lemma 3.19(I)–(IV). So x(w) (as a T o-monomial) has
zero degree with respect to r, and we can again replace ` in (T o, σ)-cross with r(p) in (T, σ)-cross
to arrive at the same conclusion.

Since r is a radius, σ can cross it at most once, so r /∈ (T o, σ)-doublecross. Since r /∈ (T, σ)-
doublecross, replacing the two gradings (T o, σ)-doublecross and (T, σ)-doublecross is equivalent
to simply replacing ` in (T o, σ)-doublecross with r(p) in (T, σ)-doublecross, and the degree would
stay the same. �

Notation 5.12. Every ordinary peripheral arc λ snips the surface into a smaller once-punctured
disk (denoted Cλ) and a region not containing the puncture (denoted Diskλ). See Fig. 28.

Let σ be a peripheral arc with endpoints s and t (possibly s = t), and let β be another
ordinary arc. We say that β lies in Diskσ (respectively, Cσ) if the interior of β lies entirely in
the interior of Diskσ (respectively, Cσ).

Let v be an endpoint of β. We say that v lies in Diskσ if v is a marked point on the boundary
of Diskσ, possibly v = s or t. We say that v lies in Cσ if v is a marked point in the interior or on
the boundary of Cσ, possibly v = s or t. We say that v lies strictly in Diskσ (respectively, Cσ)
if v lies in Diskσ (respectively, Cσ) and v is not equal to s nor t. We say v lies outside of Diskσ
if v is not a marked point of Diskσ (hence v is not equal to s nor t). We use the same language
when the region is a disk cut out by two radii.

We use Lemmas 5.13 and 5.14 to prove Lemma 5.15(iii), (iv).

Lemma 5.13. Suppose γ and σ are distinct compatible ordinary arcs not in T o. If σ crosses τ[γk],
then σ crosses arc kγ or k + 1γ, the k-th and (k + 1)-th arcs crossed by γ.

Proof. To simplify the proof, assume that 0 < k < d. There are four possibilities for ways of γ
to cross the ideal triangle 4γ

k , see Fig. 6. If 4γ
k is self-folded, then τ[γk] is equal to either arc kγ

or k+ 1γ , and we are done. If arc kγ , arc k+ 1γ , and τ[γk] are all distinct, then γk (the segment
between pγk and pγk+1 contained in 4k) cuts 4γ

k into two regions, and one of the regions is an
ideal quadrilateral Q = Quad(4γ

k) with sides τ[γk], γk, part of arc kγ , and part of arc k + 1γ

(see Figs. 6(a), 6(b), and 6(c)). By assumption, σ crosses τ[γk], so σ cuts through Q. Since σ
does not cross γk (because σ and γ are compatible by assumption), σ has to cross either arc kγ

or k + 1γ . �

Lemma 5.14. Suppose γ and σ are (distinct, compatible) peripheral arcs such that γ that is
contained in the interior of Diskσ (i.e., σ is closer than γ to the puncture, see Fig. 29). If σ
crosses τ[γk] twice, then σ crosses arc kγ twice or σ crosses k + 1γ twice.
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Figure 29. Lemma 5.14, when σ crosses τ[γk] twice.

Proof. To simplify the proof, assume 0 < k < d. Let v be the marked point adjacent to both
arcs kγ and k + 1γ . Suppose σ crosses τ[γk] twice. There are four possibilities for ways of γ to
cross the ideal triangle 4k, see Fig. 6. If 4γ

k is self-folded, then τ[γk] is equal to either arc kγ

or k + 1γ , and we are done.

Suppose arc kγ , arc k + 1γ , and τ[γk] are all distinct. Since γ is peripheral, γ cuts the
surface Cn into two regions, the smaller once-punctured disk Cγ containing σ, and the disk Diskγ
containing v.

We claim that τ[γk], arc kγ , and arc k+1γ are all peripheral (one of them possibly an `-loop).
First, τ[γk] must be peripheral because a radius can be crossed at most once. Because v is in the
disk Diskγ , v is not the puncture, and so the arcs k and k + 1 are also peripheral.

The puncture is either closest to arc kγ , arc k + 1γ , or τ[γk] (see Fig. 29). Since σ cuts out
a disk containing γ, if the puncture is closest to arc kγ (respectively, to arc k+1γ), then σ has to
cross arc kγ (respectively, arc k + 1γ) twice. See Figs. 29(g) and 29(j) (respectively, Figs. 29(h)
and 29(k)). If the puncture is closest to τ[γk], then σ has to cross either arc kγ or arc k + 1γ

twice (Figs. 29(i) and 29(l)). �

Lemma 5.15. Let T o be an ideal triangulation. Suppose β and σ are compatible ordinary arcs,
with β /∈ T o, and possibly β = σ. Let w = (w1, . . . , w2d+1) be a (T o, β)-path. Suppose we have
one of these four scenarios:
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i) Let NT o
σ := {all radii of T o} and suppose β is peripheral. (Note that NT o

σ does not depend
on σ here.)

ii) Let σ be a radius of T o, and let NT o
σ := {all radii of T o}\{σ}, and suppose β is peripheral.

iii) Let NT o
σ denote (T o, σ)-cross, if σ /∈ T .

iv) Let NT o
σ denote (T o, σ)-doublecross if (T o, σ)-doublecross is non-empty, and suppose that β

is a peripheral arc such that either β = σ or β is contained in the interior of Diskσ.

In all four of these scenarios, if w2k+1 ∈ NT o
σ , then there is a step w2k or w2k+2 which goes

along an arc of NT o
σ .

Proof of Lemma 5.15. Suppose w2k+1 belongs to NT o
σ . To simplify the proof, we only discuss

cases where k 6= 0, d. Recall that (T1) requires β to cross each even step w2i of w.
First, we prove the assertion in scenarios (i) and (ii). If w2k+1 goes along a radius from

the boundary to the puncture, we see that w2k+2 must be a radius, as needed for scenario (i).
Furthermore, since β crosses w2k+2 but not σ, we see that w2k+2 is a radius that is not equal
to σ, proving scenario (ii). If w2k+1 goes from the puncture to the boundary, we can repeat
a similar argument to show that w2k ∈ NT o

σ .
In scenarios (iii) and (iv), recall that the steps w2k, w2k+1, and w2k+2 must go along edges in

the (k+ 1)-th ideal triangle 4β
k crossed by β, and β crosses w2k and w2k+2. If w2k+1 goes along

the same arc as w2k or w2k+2, then we are done. Hence assume that the ideal triangle 4β
k has

three distinct edges w2k = τβik , w2k+1 = τ[βk], w2k+2 = τβik+1
.

We consider scenario (iii): If β = σ, then w2k and w2k+2 cross β = σ, and we are done.

Assume that β 6= σ. By Lemma 5.13, since σ crosses τ[βk], then σ crosses τβik or τβik+1
.

Finally, we consider scenario (iv): By assumption, β = σ or β is peripheral arc contained in
the interior of Diskσ.

First, suppose β = σ. Having distinct w2k, w2k+1, and w2k+2 means that the segment σk
cuts 4k into two regions, and one of the regions contains w2k+1. Since σ cuts w2k+1 twice,
σ cuts 4σ

k three times. Since the surface Cn only contains one puncture, this is impossible,
hence either w2k = w2k+1 or w2k+2 = w2k+1.

Next, suppose β is a peripheral arc (β 6= σ) contained in the interior of Diskσ. By Lem-

ma 5.14 (see Fig. 29), since σ crosses w2k+1 = τ[βk] twice, σ crosses τβik or τβik+1
twice. Hence σ

crosses w2k or w2(k+1), as needed. �

In particular, Lemma 5.15 implies Corollary 5.17.

Definition 5.16. Let w be a T o-path. Let N be a subset of T o. A consecutive subpath
w′ = (wa, . . . , wb) of w is called an N -subpath if each step wj of w′ comes from N . We say
that w′ is a longest N -subpath of w if the step wa−1 (if any) and the step wb+1 (if any) do not
come from N .

Corollary 5.17. Suppose we have the same setup as Lemma 5.15.

a) If β does not cross any arc of NT o
σ , then w does not contain any arc of NT o

σ , and the degree
of x(w) with respect to NT o

σ is zero.

b) If the corresponding term x(w) has positive degree with respect to NT o
σ , there must be an

odd-length (of length three or greater) longest NT o
σ -subpath w̄ = w2i−1, . . . , w2j+1 of w.

Proof. a) If β does not cross any arc of NT o
σ , then by (T1) there is no even-indexed step w2k

from NT o
σ . By Lemma 5.15, there is no odd-indexed step from NT o

σ .
b) Suppose x(w) has a positive degree with respect to NT o

σ . Then |odd-indexed steps from
NT o
σ | > |even-indexed steps from NT o

σ | by the T o-path formula, and so there is at least one
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Figure 30. Lemma 5.18, when σ crosses two peripheral arcs α, τi1 of 40.

odd-indexed step from NT o
σ . By Lemma 5.15, each odd-indexed step w2k+1 ∈ NT o

σ must either
follow w2k ∈ NT o

σ or preceed w2k+2 ∈ NT o
σ , and so the assertion follows. �

Lemma 5.18. Suppose T o is an ideal triangulation and σ /∈ T o is a peripheral arc from v1 to v′1
(with v1 6= v′1). Let τ := τi1, the edge opposite v1 in the first ideal triangle 40 through which σ
passes. Let α and λ denote the two sides (the arcs τ[σ0], τ[σ−1], not necessarily in this order)
of 40 adjacent to σ at v1. Suppose σ crosses α (see Fig. 30). Then:

a) α is a peripheral arc with distinct endpoints.

b) λ is a peripheral arc (or boundary edge) with distinct endpoints.

c) τi1 is peripheral (possibly an `-loop) and τi1 ∈ (T o, σ)-doublecross.

d) There is no arc from (T o, σ)-cross that is adjacent to σ at v′1, and α is the only arc of
(T o, σ)-cross that is adjacent to σ. Consequently, if w = (w1, . . . , w2d+1) is a (T o, σ)-path,
then either w1 /∈ (T o, σ)-cross or w2d+1 /∈ (T o, σ)-cross.

e) σ crosses all radii of T o.

Proof. Observe that, since v1 lies on the boundary, the first ideal triangle σ crosses, 40, is not
self-folded, and so all its edges τi1 , λ, α are pairwise distinct.

a) First, we prove part (a): We know that α cannot be a radius, because a radius from v1 cannot
cut an arc adjacent to v1. Furthermore, since an `-loop based at v1 would have to lie entirely
in Cσ, no `-loop based on v1 can cross σ, hence α is a non-`-loop peripheral arc.

b) Second, we prove part (b) of this lemma.

• Suppose for contradiction that λ is an `-loop. Again, since no `-loop based on v1 can
cross σ, we see that λ and σ do not cross. Hence λ would cut out a region Diskλ not
containing the puncture but containing σ as well as α. It is impossible for α and σ to
both cross and be adjacent in this region, hence λ is not an `-loop.

• Suppose for contradiction that λ is a radius. Then 40 is an ordinary triangle with the
puncture as one of the vertices. Hence the region outside of 40 contains no puncture, so
it is impossible for σ to cross40 a second time. Therefore σ cannot cross α, contradicting
our assumption.

Hence λ is a peripheral arc with distinct endpoints or a boundary edge.

c) We now prove part (c) of this lemma. By (a) and (b), τ = τi1 is also a peripheral arc (possibly
an `-loop). Note that the puncture must be closer to τi1 than to α. Hence, the second arc
crossed by σ is contained outside of Diskτ , while α lies in Diskτ . Since σ crosses α, σ must
cross τ the second time, as needed for part (c).
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d) Next, we prove part (d) of this lemma. Suppose that α′ ∈ T o is adjacent to the other end-
point v′1 of σ. Note that α cuts out a disk Diskα containing v′1, and no arc of T o in the
interior of Diskα can both be adjacent to σ and belong to (T o, σ)-cross. But both α and α′

belong to T o so they do not cross, hence α′ is contained in Diskα, and so α′ cannot both be
adjacent to σ and belong to (T o, σ)-cross.

Furthermore, by definition the only arcs that are adjacent to σ at v1 are τ[σ0] and τ[σ−1] (i.e.,
α and λ). But λ is contained in Diskσ, so λ cannot cross σ.

e) Finally, we prove part (e) of this lemma. If τi1 is an `-loop, then σ must cross the radius
(which is the only radius of T o) containing it. Otherwise, since τi1 ∈ T o is peripheral, all
radii of T o are contained in Cτ . Since the segment of σ that is contained in Cτ is homotopic
to the segment of the original surface’s boundary along Cτ and since the two endpoints of σ
lie strictly in Diskτ , it follows that σ must cross all the radii. �

The following lemma is also used many times throughout the rest of this paper.

Lemma 5.19. Suppose T o is an ideal triangulation, β /∈ T o is an ordinary arc, and w = (w1, . . . ,
w2d+1) is a (T o, β)-path. Let N be a subset of T o.

a) If |even steps from N | ≥ |odd steps from N |, then x(w) has non-positive degree with respect
to N . Furthermore, inequality implies negative degree.

b) x(w) has non-positive degree with respect to (T o, β)-cross.

c) If w1, w2d+1 /∈ (T o, β)-cross, then x(w) has negative degree with respect to (T o, β)-cross.
Hence, if β is not adjacent to any arc that crosses it, x(w) has negative degree with respect
to (T o, β)-cross.

Proof. Consider a (T o, β)-path w = (w1, . . . , w2d+1). Part (a) follows from the T o-path formula.

The corresponding term x(w) in the T o-expansion of xβ has d + 1 factors in the numerator
and d factors in the denominator. All the factors in the denominator correspond to the arcs
of T o that cross β. By Lemma 5.18(d), at least one of the endpoints of β is not adjacent to any
arc from (T o, β)-cross, so either the first step w1 or the last step w2d+1 of w does not come from
(T o, β)-cross by (T2). Hence, there are at most d odd steps contributing to the degree. Since
there are exactly d even steps from (T o, β)-cross, x(w) has non-positive degree with respect to
the arcs of T o which cross σ, satisfying part (b).

If the first and last steps w1, w2d+1 of w do not come from (T o, σ)-cross, there are at most
d−1 odd steps which contribute to the degree, and (c) follows. Furthermore, if β is not adjacent
to any arc from (T o, σ)-cross, then w1, w2d+1 /∈ (T o, σ)-cross by (T2). �

5.3 Technical lemmas to prove Lemma 5.5 for cases
where all arcs of Σ\T are peripheral

5.3.1 Proving that xΣ has non-positive degree with respect to (T, σ)-cross

Lemma 5.20. Let T be a tagged triangulation and suppose σ is a tagged peripheral arc not in T .

a) Then each termin the T -expansion of xσ has non-positive degree with respect to (T, σ)-cross.

b) If (T o, σ)-doublecross is empty, then each term in the T -expansion of xσ has negative degree
with respect to (T, σ)-cross.

Proof. By Lemma 5.19(b), each term in the T o-expansion of xσ has non-positive degree with
respect to (T o, σ)-cross.
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close as possible to the puncture.
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(b) If (T o, σ)-doublecross is non-
empty, then r = 1.

Figure 31. Proof of Lemma 5.5: the case where Σ\T are all peripheral.
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5.23 and 5.24: σ is the only central
arc.

Figure 32. Setups for Lemmas 5.23 and 5.24.

By Lemma 5.18(c), if (T o, σ)-doublecross is empty, then σ is not adjacent to any arc from
(T o, σ)-cross. Therefore, by Lemma 5.19(c), x(w) has negative degree with respect to (T o, σ)-
cross.

By Lemma 5.11, both assertions follow. �

Definition 5.21. Let Λ be a multi-tagged triangulation containing only peripheral arcs. We
say that λ ∈ Λ is central in Λ if λ is as close as possibly to the puncture, i.e.,

if β ∈ Λ\{λ}, then the disk Diskβ does not contain λ.

Remark 5.22. Let {λ1, . . . , λr} be the set of central arcs of Λ. Then, by definition, every β ∈ Λ
is contained in Diskλj for some j. See Fig. 31(a).

Lemma 5.23. Suppose Σ is a multi-tagged triangulation and T is a tagged triangulation. Sup-
pose σ ∈ Σ\T is a tagged peripheral arc that is central in Σ\T , i.e.,

if β ∈ Σ\T is not σ, then the disk Diskβ does not contain σ (see Fig. 32). (5.5)

Let β be any tagged arc in Σ such that, if β ∈ Σ\T , then β is peripheral. See Figs. 32(a)
and 32(b). Then each term in the T -expansion of xβ has non-positive degree with respect to
(T, σ)-cross.

Proof. Let sσ be the starting point and let tσ be the finishing point of σ. Since σ is not an
`-loop by assumption, sσ 6= tσ.

If β ∈ T , then its degree with respect to any of the above gradings is zero since it cannot
cross σ. If β = σ, we are done by Lemma 5.20.

Otherwise, suppose β ∈ Σ\T and β 6= σ, and so β is peripheral by assumption. Let w =
(w1, . . . , w2d+1) be a (T o, β)-path. First, we prove that

the T o-expansion of x(w) has non-positive degree with respect to (T o, σ)-cross. (5.6)
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For contradiction, suppose otherwise. By Corollary 5.17(b), there must be a longest (T o, σ)-
cross-subsequence w̄ = (w2i−1, . . . , w2j+1) of w (of length three or greater). Since σ and β are
compatible, there are two possibilities for β: either β lies in the once-punctured disk Cσ or β
lies in the disk Diskσ.

Case 1: First, suppose β lies in Cσ. See Fig. 32(a). Per (5.5), β has the property that it cuts out
the disk Diskβ not containing σ, so no radius can cross both β and σ. Hence each of the
even-indexed arcs w2i, . . . , w2j is a peripheral arc because each of them crosses both β
and σ. It then follows that each odd-indexed arc w2i+1, . . . , w2j−1 is also a peripheral arc.

We claim that w̄ begins and finishes in Cσ (recall that this means possibly at sσ or tσ):

• If i = 1, then w1 starts in Cσ since β lies in Cσ. Otherwise, there is a pre-
vious step w2i−2 which crosses β. Since w2i−2 does not belong to (T o, σ)-cross by
assumption, w2i−2 ends in Cσ.

• If j = d, then w2d+1 finishes in Cσ since β lies in Cσ. Otherwise, there is a next
step w2j+2 which crosses β. Since w2j+2 does not belong to (T o, σ)-cross by as-
sumption, w2j+2 ends in Cσ.

In fact, by induction starting from w2i−1, every odd-indexed arc of w̄ must start from Cσ.
But this means that w2j+1 is a peripheral arc which begins and ends in Cσ but also
crosses σ, which is impossible.

Case 2: Next, suppose that β lies in Diskσ. See Figs. 32(b) and 33. To simplify our argument,
consider

a 2-fold cover T̃ o of T o, a triangulated once-punctured disk containing two lifts

of every arc τ ∈ T o and of every boundary marked point of Cn (see Fig. 34),

every ideal triangle in T̃ o is an ordinary triangle, (5.7)

a lift of γ is a radius if and only if γ is a radius of Cn.

Since every pair of arcs of Cn cross each other at most twice,

every pair of lifted arcs cross each other at most once on the two-fold cover.(5.8)

Hence, by Lemma 5.18(c),

a pair of adjacent lifted arcs do not cross on the two-fold cover. (5.9)

Choose a lift σ̃ of σ going from s̃σ to t̃σ. Here σ̃ cuts out a disk Diskσ̃ from T̃ o. Let β̃
denote the lift of β which lies in Diskσ̃, and let w̃ be the lift of w which is a (T̃ o, β̃)-path.
We abuse notation by writing w̄ to denote the subpath of w̃ corresponding to w̄.

i) First, assume that w̄ has an earlier step w2i−2 and a later step w2j+2. We see
that w̄ starts from inside Diskσ̃ (otherwise, w̃2i−2 would have to cross σ̃) and w̄
ends inside Diskσ̃ (otherwise, w̃2j+2 would have to cross σ̃). Recall that by inside
Diskσ̃ we mean possibly at s̃σ or t̃σ. In fact, by induction starting from w2i−1,
every odd-indexed arc of w̄ must start from inside Diskσ̃. But this means that
w̃2j+1 begins and ends inside Diskσ̃ and also crosses σ̃. This requires σ̃ and w̃2j+1

to cross twice, contradicting (5.8).

ii) Second, assume that i = 1 or j = d. Without loss of generality, assume i = 1.
There are two cases: either β and σ are adjacent at σ or not.
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Figure 33. T o when (T o, σ)-doublecross = {θ1, . . . , θh} is nonempty.
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Figure 34. Two-fold cover Diskσ̃ of T o when (T o, σ)-doublecross = {θ1, . . . , θh} is nonempty.

• If β and σ are adjacent at s, then w̃1 and σ̃ are adjacent and so w̃1 cannot
cross σ̃ by (5.9). But w1 crosses σ by assumption, and so w̃1 must cross the
other lift σ̃2 of σ which is outside of Diskσ̃. Therefore w̃1 ends outside of Diskσ̃.
• If β and σ are not adjacent at σ, then w1 starts inside of Diskσ̃ because β̃ lies

in Diskσ̃. Since w1 crosses σ by assumption, w̃1 has to cross σ̃ and end outside
of Diskσ̃.

So, either way, w̃1 ends outside of Diskσ̃. Hence w̃2, . . . , w̃2j+1 forms a zig-zag pat-

tern crossing σ̃ an even number (2j) of times, ending outside of Diskσ̃. Since β̃ lies
in Diskσ̃, there must be a step w̃2j+2 right after w̄ which crosses w̃, contradicting

the assumption that w̄ is a longest (T̃ o, σ̃)-cross-subpath.

This ends the proof for (5.6). The conclusion follows from Lemma 5.11. �

5.3.2 Proving that xΣ has non-positive degree with respect
to (T, σ)-doublecross, and xσ has negative degree
with respect to (T, σ)-cross and (T, σ)-doublecross

Lemma 5.24. Suppose Σ is a multi-tagged triangulation and T is a tagged triangulation. Let
σ ∈ Σ\T be a tagged peripheral arc.

1) Assume (T, σ)-doublecross is non-empty, and σ is central in Σ\T and no other arc is central
in Σ\T . Let β ∈ Σ (possibly β = σ). Then each term in the T -expansion of xβ has non-
positive degree with respect to (T, σ)-doublecross.

2) Each term in the T -expansion of xσ has negative degree with respect to (T, σ)-cross or (T, σ)-
doublecross.
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Proof. If β ∈ T , then its degree with respect to (T o, σ)-doublecross is zero since it cannot
cross σ. Suppose β ∈ Σ\T . By Remark 5.22, β = σ or β lies in Diskσ, i.e., if β 6= σ, then σ is
closer than β to the puncture. See Notation 5.12.

Let wβ = (w1, . . . , w2e+1) be a (T o, β)-path. If β does not cross any arc from (T o, σ)-
doublecross, then by Corollary 5.17(a) the degree of w with respect to (T o, σ)-doublecross is
zero. Suppose β crosses at least an arc from (T o, σ)-doublecross. See Figs. 33.

Suppose x(wβ) has positive degree with respect to the θk’s. Then by Corollary 5.17(b) there
is a longest {θk’s}-subpath w̄β = (w2i−1, . . . , w2j+1) of w.

Let arc τi1 , . . . , τid be the arcs crossed by σ, in order.
Let θ1, . . . , θh (h ≥ 1) denote the arcs in that are crossed by σ twice (ordered so that θ1 is the

first and last arc from (T o, σ)-doublecross crossed by σ). Note that θ1, . . . , θh−1 are contained in
the disk Diskθh cut by θh, see Fig. 33. Let ρ1, . . . , ρf (f ≥ 1) be the radii of T o, in order of their
intersections with σ. Recall that, by Lemma 5.18(e), σ crosses all radii of T o. Let τi1 , . . . , τim (if
any) be the peripheral arcs which σ exactly once, right before σ crosses θ1 for the first time. Let
τim+h+f+h+1

, . . . , τid (if any) be the peripheral arcs which σ exactly once, right after σ crosses θ1

for the second time.
Consider a 2-fold cover T̃ o of T o, a triangulated once-punctured disk containing two lifts of

every arc τ ∈ T o and of every boundary marked point of Cn, see (5.7) and Fig. 34.
Recall that (5.9) gives that

a pair of adjacent lifted arcs on T̃ o do not cross.

Let sσ be the starting point of σ and let tσ be the finishing point of σ. By assumption, σ is
not an `-loop, so s 6= t. Choose a lift σ̃ of σ, running from a lift s̃ of s to a lift t̃ of t. Let Diskσ̃
denote the disk that is cut out by σ̃. Let σ̃2 be the other lift of σ, running from s̃2 to t̃2. Note
that σ̃ and σ̃2 never coincide, and, in particular,

σ̃ and σ̃2 share no common endpoint. (5.10)

Let Disk2
σ̃ be the disk that is cut out by σ̃.

Let ρ1
1, . . . , ρ

1
f denote the lifts of ρ1, . . . , ρf which are crossed by σ̃. Let ρ2

1, . . . , ρ
2
f denote the

other lifts of ρ1, . . . , ρf , lying entirely outside of Diskσ̃. Let θ1
1, . . . , θ

1
h (respectively, θ2

1, . . . , θ
2
h)

denote the lifts of θ1, . . . , θh which σ̃ crosses first (respectively, second). In general, let τ1 denote
the lift of τ ∈ T o in the region cut out by ρ1

f and ρ2
f which contains s̃, and let τ2 denote the lift

of τ ∈ T o in the other region.
Since σ cuts τi1 , . . . , τim , θ1, . . . , θh, ρ1, . . . , ρf , θh, . . . , θ1, τim+h+f+h+1

, . . . , τid , in this order,
we see that σ̃ cuts

τ1
i1 , . . . , τ

1
im , θ1

1, . . . , θ
1
h, ρ1

1, . . . , ρ
1
f , θ2

1, . . . , θ
2
h, τ2

im+h+f+h+1
, . . . , τ2

id
,

in this order.
If τ 6= θk, then by assumption τ ∈ T o cuts σ at most once, so

if τ 6= θk, then σ̃ cuts at most one of the two lifts τ1, τ2 of τ ,

and a lift of τ cuts at most one of the two lifts σ̃, σ̃2 of σ. (5.11)

Since σ cuts each arc θk twice, σ̃ cuts both lifts θ1
k and θ2

k of θk. Due to (5.9),

σ̃ cannot be adjacent to θ1
k or θ2

k. (5.12)

Let β̃ be the lift of β that is contained in Diskσ̃. Let w̃β denote the (T̃ o, β̃)-path corresponding
to wβ, and we abuse notation by writing w̄β to refer to the subpath of w̃β corresponding to w̄β.
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If w̄β contains both θ1
a and θ2

b for some 1 ≤ a, b ≤ h, then w̄β must contain the radius/radii
ρ1

1, . . . , ρ
1
f , contradicting that the fact that w̄β is a {θk’s}-subpath. Without loss of generality,

assume each step of w̄β goes along θ1
k for some k.

Note that, because θk crosses σ twice,

every θ1
k crosses both σ̃ and σ̃2.

Hence, since every step of w̄β is θ1
k for some k,

every step of w̄β begins strictly inside Diskσ̃ or Disk2
σ̃. (5.13)

Recall that starting strictly inside Diskσ̃ (respectively, Disk2
σ̃) means at a marked point of

Diskσ̃ (respectively, Disk2
σ̃) that is not s̃ or t̃ (respectively, s̃2 or t̃2).

If β = σ, then w̄1 starts at s̃ and w̄2d+1 finishes at t̃, so by (5.13) there must be an earlier
step w̃2i−2 and a later step w2j+2 of w̃. If β 6= σ, then it is possible to have i = 1 (if β is not
adjacent to σ at its starting point) or j = e (if β is not adjacent to σ at its finishing point).

We claim that w̄β starts strictly inside Diskσ̃. For the sake of argument, suppose that
w̄β = (w̃2i−1, . . . , w̃2j+1) starts strictly inside of Disk2

σ̃.

Case 1: First, suppose that w̃β has an earlier step w̃2i−2. Since w̃2i−2 must cross β̃, which lies in
Diskσ̃, we see that w̃2i−2 must cross both σ̃ and σ̃2 to get from strictly inside Diskσ̃ to
strictly inside Disk2

σ̃. Since w̃2i−2 is not a lift of one of the θk’s, this contradicts (5.11).

Case 2: Second, assume that β 6= σ, and we have i = 1. Since β̃ lies in Diskσ̃ by assumption,
either w̃1 starts at s̃σ or t̃σ, or w̃1 starts strictly inside of Diskσ̃ (see Notation 5.12).
By (5.13), w̃1 starts strictly in Diskσ̃.

Either way, w̄β starts strictly in Diskσ̃. Per (5.13), we see that (w̃2i−1, . . . , w̃2j+1) forms a zip-
zag pattern bouncing back and forth between (strictly) Diskσ̃ and (strictly) Disk2

σ̃. So, by
induction starting from w̃2i−1, every odd-indexed arc of w̄ must start strictly in Diskσ̃ and ends
strictly in Disk2

σ̃. Hence the last step w̃2j+1 ends strictly in Disk2
σ̃.

The step w̃2j+1 cannot be the last step of w̃β because the finishing point of β̃ lies (strictly)

outside of Disk2
σ̃ per (5.10). Hence w̃β has a next step w̃2j+2. Since w̃2j+2 must cross β̃, which

lies in Diskσ̃, we see that w̃2j+2 must cross both σ̃ and σ̃2 to go strictly from Disk2
σ̃ to strictly

in Diskσ̃. Since w̃2j+2 is not a lift of one of the θk’s, this contradicts (5.11).

We prove part (2):
Suppose w = (w1, . . . , w2d+1) is a (T o, σ)-path. First, we claim that the T o-expansion

of x(w) has negative degree with respect to either (T o, σ)-cross or (T o, σ)-doublecross: By
Lemma 5.18(d), either w1 /∈ (T o, σ)-cross or w2d+1 /∈ (T o, σ)-cross. If necessary, reverse the
orientation of w so that w2d+1 /∈ (T o, σ)-cross. If not all the odd steps w1, w3, . . . , w2d−1 cross σ,
then x(w) has negative degree with respect to (T o, σ)-cross by Lemma 5.19(c). Hence suppose
that all steps of w except w2d+1 come from (T o, σ)-cross.

We claim that w2h+1 /∈ (T o, σ)-doublecross:
Since w1 ∈ (T o, σ)-cross, Lemma 5.18(c) gives us w2 = θ1. Since w1 crosses σ, its lift w̃1

(which lies in Disk1
θ̃1

) must cross a lift of σ. Because w̃1 is adjacent to σ̃, they cannot cross

by (5.9), so w̃1 must cross the other lift σ̃2 of σ which is located (strictly) outside of Diskσ̃.
Hence w̃1 goes from s̃ to outside of Diskσ̃, and w̃2 goes along θ1

1 from outside to strictly inside
of Diskσ̃. By (T1) and (T2), the steps w̃2, w̃3, . . . , w̃2h−1, w̃2h make a zig-zag pattern along the
arcs θ1

1, . . . , θ
1
h, so that w̃2h goes along θ1

h and ends strictly in Diskσ̃. Hence, by (T2), w̃2h+1

either goes along θ1
h or ρ1

1. If w̃2h+1 goes along θ1
h, it goes from strictly inside to outside of Diskσ̃.

Since the point of ρ1
1 that is adjacent to θ1

1 is strictly in Diskσ̃, it is impossible for w̃2(h+1) to go
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Figure 35. 4-fold cover T̃ o of T o where β is a peripheral arc, and σ is a peripheral arc (respectively,

a radius), and Diskσ̃ is a disk cut out by the peripheral σ̃ (respectively, the fundamental domain area

bounded by the two lifts σ̃ and σ̃′ of σ.)

along ρ1
1. This contradicts the fact that w̃2(h+1) must go along ρ1

1. Hence w̃2h+1 goes along ρ1
1,

as needed to show that w2h+1 /∈ (T o, σ)-doublecross.
By part (1), the odd-indexed steps w2(h+f+1)−1, . . . , w2(h+f+h)+1 cannot all belong to (T o, σ)-

doublecross, so there are at most h odd-indexed steps coming from w2(h+f+1)−1, . . ., w2(h+f+h)+1.
As there are at most (h − 1) + h odd-indexed steps from w3, w5, . . . , w2h−1, there are at most
(h− 1) + h odd-indexed steps of w coming from (T o, σ)-doublecross total. There are exactly 2h
even steps of w from (T o, σ)-doublecross by (T1). Hence, by Lemma 5.19(a), the term x(w) has
negative degree with respect to (T o, σ)-doublecross, as required.

Per Lemma 5.11, the conclusion follows. �

5.4 Technical lemmas to prove Lemma 5.5 for cases
where Σ has a radius not in T

5.4.1 Σ\T contains a plain radius σ

Lemma 5.25 (Corollary of Lemma 5.19(c)). Let T be a tagged triangulation and let σ /∈ T be
a plain radius, see Figs. 36(a) and 36(b). Then every term in the T -expansion of xσ has negative
degree with respect to

NT
σ := (T, σ)-cross.

As defined in Definition 5.10,

(T, σ)-cross

=

{
(T o, σ)-cross if T has no parallel radii

{r(p), and the (peripheral) arcs of T that cross σ} if T has parallel radii r, r(p).

Proof. Since σ is a radius, it is not adjacent to any arc from (T o, σ)-cross. Hence, by Lem-
ma 5.19(c),

each term in the T o-expansion of xσ has negative degree

with respect to (T o, σ)-cross, (5.14)

and therefore, by Lemma 5.11, with respect to NT
σ := (T, σ)-cross. �
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Figure 36. Lemmas 5.25 and 5.26 assume that Σ\T contains a plain radius σ.

Lemma 5.26. Assume the same setup of T , σ, and NT
σ as in Lemma 5.25 above, and let β be

a tagged arc that is compatible with σ. Then each term in the T -expansion of xβ has non-positive
degree with respect to NT

σ = (T, σ)-cross.

Proof of Lemma 5.26. Let ρ1, . . . , ρf denote the radii of T o and let σ run from the puncture
to the boundary such that the radii ρ1, ρf and peripheral arc τi1 (the first arc crossed by σ) form
the first triangle that σ crosses. If T o has a self-folded triangle r, `, then f = 1 and ρ1 = r = ρf
and τi1 = `. See Figs. 36(a) and 36(b).

If β = σ, we are done by the previous Lemma 5.25. Otherwise, since β must be compatible
with σ, there are only four possibilities: β is an arc of T , another plain radius, the notched
radius σ(p), or a peripheral arc.

Case 1: First, suppose β ∈ T is compatible with σ. Then β cannot cross σ and β cannot be
a notched radius, so β /∈ (T, σ)-cross.

Case 2: Second, suppose β is another plain radius (not in T o). Let w = (w1, . . . , w2d+1) be
a (T o, β)-path which runs from the puncture to the boundary. Then w1 is a radius,
and hence w1 does not cross σ. Note that ρ1 and ρf (possibly ρ1 = ρf ) bound a region
(say, R) containing σ and all the (peripheral) arcs in (T o, σ)-cross. If β is outside of R,
then w does not contain any arc of (T o, σ)-cross. If β is contained in R, then the
even-indexed arcs of w that are crossed by σ form a consecutive string

w2 = τi1 , . . . , w2j = τij .

By Lemma 5.15(iii), the only odd-indexed step/s that may belong to (T o, σ)-cross are
w3, . . . , w2j+1 since w1 is a radius (and hence does not cross σ). Hence w has at j even-
indexed steps and at most j odd-indexed steps from (T o, σ)-cross, so, by Lemma 5.19(a),
x(w) has non-positive degree with respect to (T o, σ)-cross, and hence, by Lemma 5.11,
with respect to (T, σ)-cross.

Case 3: Third, suppose β = σ(p). First, suppose T has parallel radii r, r(p). By (5.14), each
term of the T o-expansion of xσ has negative degree with respect to (T o, σ)-cross = {`,
(peripheral) arcs of T which cross σ}. Each term x(w) (as a T o-monomial) correspond-
ing to a (T o, σ)-path w has degree +1 with respect to r, so x(w)|r↔r(p) (as a T (p)o-
monomial) has degree +1 with respect to r(p) and negative degree with respect to
(T o, σ)-cross = {`, (peripheral) arcs of T which cross σ}, and, therefore, non-positive
degree (as a T -monomial) with respect to (T, σ)-cross. Since xσ(p) = xσ|r↔r(p) by [17,
Proposition 3.15], every term in the T -expansion of xσ(p) has non-positive degree with
respect to (T, σ)-cross, as needed.
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Next, suppose f ≥ 2, and we have, by [17, Proposition 3.15],

xσ(p) = xσ|ρi↔ρi(p) = xσ|ρ1↔ρ1(p),ρf↔ρf (p) . (5.15)

The second equality is due to the fact that no (T, σ)-path would contain the radii
ρ2, . . . , ρf−1, as these radii are not adjacent to σ. Let `1 (respectively, `f ) be the loop
surrounding the radius ρ1 (respectively, ρf ), see Fig. 36(c).

Since only the starting endpoint (and not the finish endpoint) of σ is adjacent to ρ1

and ρf , we see that every term in the T -expansion of xσ has degree +1 with respect to
{ρ1, ρf}, so

each term in the T -expansion of σ(p) has degree +1

with respect to {x
ρ
(p)
1

= x`1/xρ1 , xρ(p)f
= x`f /xρf }. (5.16)

Furthermore, we observe that each term in the T -expansions of x`1 and x`f has at most
degree +1 with respect to (T, σ)-cross. Since x

ρ
(p)
i

= x`i/xρi for i = 1, f ,

each term in the T -expansions of x
ρ
(p)
1

and x
ρ
(p)
f

has at most degree +1

with respect to (T, σ)-cross. (5.17)

By Lemma 5.25, every term in the T -expansion of xσ has negative degree with respect
to (T, σ)-cross. Combining this fact with (5.15), (5.16), and (5.17), we see that each
term in the T -expansion of xσ(p) has non-positive degree with respect to (T, σ)-cross.

Case 4: Fourth, suppose β is a peripheral arc (not in T ) that does not cross σ. Consider a 4-fold

cover T̃ o of T o, a disk with one puncture (P̃ ) and 4 lifts for every arc and marked
point of T o. Let β̃ be a lift of β. Since β and σ do not cross, there are two lifts of σ,
say, σ̃, σ̃′, which bound exactly one fundamental domain containing β̃. We denote this
fundamental domain by Diskσ̃. Let t̃ and t̃′ be the boundary endpoints of σ̃ and σ̃′,
and let P̃ be the puncture. See Fig. 35(a) (if T has no parallel radii) or 35(b) (if T o

contains a self-folded triangle r, `).

Let w = (w1, . . . , w2d+1) denote a (T o, β)-path and also (by abuse of notation) its corre-

sponding lifted (T̃ o, β̃)-path. Per Corollary 5.17(b), in order for x(w) to have a positive
degree with respect (T o, σ)-cross, there must be a subsequence w̄ of consecutive edges
that cross σ, say, w̄ = w2i−1, . . . , w2j+1, where the edges directly prior to w̄ and directly
after w̄ do not cross σ. Since no radius of T o can cross σ, all edges in w̄ are peripheral
arcs.

We claim w̄ starts and finishes strictly inside Diskσ̃, i.e., at a marked point of Diskσ
that is none of P̃ , t̃, and t̃′.

If i = 1, then w1 starts strictly in Diskσ because w1 is not adjacent to σ̃ nor σ̃′. Similarly,
if j = d, then w2d+1 ends strictly Diskσ because w2d+1 is not adjacent to σ̃ nor σ̃′.

Otherwise, w̄ must start strictly in Diskσ̃ because w2i−2 must cross β̃ but not σ̃ nor σ̃′,
and w̄ must end strictly in Diskσ̃ because w2j+2 must cross β̃ but not σ̃ nor σ̃′.

By induction, every odd edge of w̄ starts strictly in Diskσ̃. But this means that w2j+1

starts and ends strictly Diskσ̃ even though w2j+1 cuts one of σ̃ and σ̃′, which is impos-
sible.

Hence, x(w) has non-positive degree with respect to (T o, σ)-cross, and, by Lemma 5.11,
also with respect to (T, σ)-cross, as needed. �
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ρ1 = r
τi2

` = τi1

τid
t

σ

J
I

(a) T o has a self-folded triangle
r, ` and Σ\T contains a notched
radius σ(p).

ρ1

ρ2

ρ3
ρf−1

ρf
τi1

τid
t

σ

J
I

(b) T has no parallel radii and
Σ\T contains no plain radius
but it has a notched radius σ(p).

ρ1

ρ2

ρ3
ρf−1

ρf
τi1

τid
t

σ = J
I

(c) T has no parallel radii and
Σ\T contains no radius that
crosses T , but Σ\T contains
a notched radius parallel to ρ1.

Figure 37. Three setups for Lemmas 5.28 and 5.29.

5.4.2 Σ\T contains no plain radius but there is a notched radius σ(p) ∈ Σ\T

The following lemma is helpful toward proving Lemmas 5.28 and 5.29.

Lemma 5.27. Suppose T is a tagged triangulation with no parallel radii, so that T = T o, and ρ
is a radius of T . Then every term in the T -expansion of xρ(p) has negative degree with respect
to {all the radii of T}.

Proof of Lemma 5.27. Let ρ1, . . . , ρf (with f ≥ 2) denote all the (plain) radii (in consecutive
order) of T such that ρ = ρ1. Consider the loop `1 surrounding the radius ρ1 which crosses ρ2

first and crosses ρf last (see Fig. 36(c)). Consider a (T, `1)-path w = (w1, . . . , w2d+1). Here
d = f − 1.

We first show that x(w) has non-negative degree with respect to {ρ1, . . . , ρf}. Since the arcs
that are crossed by `1 are precisely ρ2, . . . , ρf , the even steps of w are ρ2, ρ3, . . . , ρf by (T1). By
Lemma 5.19(a), The only way for x(w) to have positive degree with respect to {ρ1, . . . , ρf} is if
all the odd steps of w come from {ρ1, . . . , ρf}. By induction, w1 = ρ1, w3 = ρ2, . . . , w2d−1 = ρf
such that each one goes from the boundary to the puncture. But this requires w2d = ρf to
go from the puncture to the boundary. Hence w2d+1 goes from boundary to boundary, so
w2d+1 /∈ {ρ1, . . . , ρf}. Hence each term in the T -expansion of x`1 has non-negative degree with
respect to {ρ1, . . . , ρf}.

Since x
(p)
ρ1 = x`1/xρ1 , every term in the T -expansion of x

(p)
ρ1 has negative degree with respect

to {ρ1, . . . , ρf}. �

Lemma 5.28. Suppose Σ is a multi-tagged triangulation and T is a tagged triangulation such
that Σ\T does not contain any plain radius but it contains a notched radius σ(p). There are
three cases to consider, Figs. 37(a), 37(b), and 37(c).

If T has parallel radii r, r(p), we denote

NT
σ := {r, and the (peripheral) arcs of T that cross σ},

where σ(p) ∈ Σ\T is a notched radius such that σ /∈ T (see Fig. 37(a)).
If T has no parallel radii, we denote

NT
σ :=


{all radii of T} if σ(p) ∈ Σ\T is a notched radius such that σ /∈ T

(see Fig. 37(b)),

{all radii of T}\{σ} if Σ\T contains no notched radius that crosses T , but

σ(p)∈Σ\T is a notched radius where σ∈T (see Fig. 37(c)).

Then each term in the T -expansion of xσ(p) has negative degree with respect to NT
σ .
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Proof of Lemma 5.28. There are three cases to prove, Figs. 37(a), 37(b), and 37(c).

Fig. 37(a): In this case T has parallel radii r, r(p). The result follows from the proof of Lem-
ma 5.25 by switching the roles of r, σ with r(p), σ(p).

For the remainder of this proof, assume T has no parallel radii. Let ρ1, . . . , ρf denote the radii
of T with f ≥ 2.

Fig. 37(b): Σ\T contains a notched radius σ(p) such that σ /∈ T . Let NT
σ := {all radii of T},

per above assumption. Assume σ is adjacent to ρ1 and ρf . First, recall that (5.15)
gives us

xσ(p) = xσ|ρi↔ρi(p) = xσ|ρ1↔ρ1(p),ρf↔ρf (p) .

Second, observe that every term in the T -expansion of xσ has degree +1 with
respect to {ρ1, ρf} and does not include any step from {ρ2, . . . , ρf−1}. Third,

by Lemma 5.27, every term in the T -expansions of x
(p)
ρ1 and x

(p)
ρf has negative

degree with respect to {ρ1, . . . , ρf}. Combing these three facts, every term in the
T -expansion of xσ(p) = xσ|ρ1↔ρ1(p),ρf↔ρf (p) has negative degree with respect to

{ρ1, . . . , ρf}.
Fig. 37(c): Σ\T contains no radius that crosses T , but σ(p) ∈ Σ\T is a notched radius where

σ ∈ T . Let ρ1 denote the radius σ of T . Let NT
σ := {ρ2, . . . , ρf}, per above

assumption. Consider the loop `1 around ρ1 (see Fig. 36(c)) and a (T, `1)-path w.
Observe that w has even steps ρ2, ρ3, . . . , ρf , and the first and last steps of w are
not in {ρ2, . . . , ρf}, so x(w) has negative degree with respect to {ρ2, . . . , ρf} by
Lemma 5.19(a). Since

xρ1(p) =
x`1
xρ1

,

each term in the T -expansion of x
ρ
(p)
1

also has negative degree with respect to

{ρ2, . . . , ρf}. �

Lemma 5.29. Assume the same setup and three different cases as Lemma 5.28 above. If β ∈ Σ,
then each term in the T -expansion of xβ is of non-positive degree with respect to NT

σ .

Proof. As in the proof of Lemma 5.28, there are three cases to prove, Figs. 37(a), 37(b),
and 37(c).

We prove the case of Fig. 37(a) where T has parallel radii r, r(p) and NT
σ = {r, and the arcs

of T that cross σ} by switching the roles of r, σ with r(p), σ(p) in the proof of Lemma 5.26.
For the remainder of this proof, we prove the two setups of Figs. 37(b) and 37(c) for when T

has no parallel radii. Let ρ1, . . . , ρf denote the radii of T with f ≥ 2.
If β = σ(p), we are done by the previous Lemma 5.28. Otherwise, since β is compatible

with σ(p), there are four possibilities: β is an arc of T , a notched radius that crosses T , a notched

radius ρ
(p)
k parallel to a radius of T , or a peripheral arc.

Case 1: First, suppose β ∈ T . Since β is compatible with the notched radius σ(p), we see that
β /∈ NT

σ since either NT
σ = {all radii of T} (if σ /∈ T ) or NT

σ = {all radii of T}\{σ} (if σ
is a radius of T ).

Case 2: Second, suppose β is a notched radius that crosses T . The case of Fig. 37(b) where
NT
σ = {all radii of T} is done by Lemma 5.28 (for the same case). We do not need to

consider the case of Fig. 37(c) because it is assumed that Σ\T does not contain any
notched radius that crosses T .
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Case 3: Third, suppose that β is a notched radius ρ
(p)
k not equal to σ(p). The case of Fig. 37(b)

where NT
σ = {all radii of T} is done by Lemma 5.27.

To prove the case of Fig. 37(c), let ρ1 denote σ. Suppose β is a notched arc ρ
(p)
k with

k 6= 1, and consider the loop `k around ρk and a (T, `k)-path w. We claim that x(w) has
at most degree +1 with respect to {ρ2, . . . , ρf}. To prove this, note that the f − 1 even
arcs of w are ρk+1, . . . , ρf , ρ1, . . . , ρk−1, i.e., all the radii of T except for ρk. For x(w)
to have degree +2 or more with respect to {ρ2, . . . , ρf}, we need all f odd arcs of w to
be in {ρ2, . . . , ρf}. But either the step right before or right after the even-step along ρ1

of w needs to be either ρ1 or another (peripheral) arc. Hence x(w) has at most degree
+1 with respect to {ρ2, . . . , ρf}. Since

xρk(p) =
x`k
xρk

,

each term of xρk has at most degree 0 with respect to {ρ2, . . . , ρf}, as needed.

Case 4: Fourth, suppose β is a peripheral arc not crossing σ. Let w = (w1, . . . , w2d+1) be
a (T, β)-path. Suppose for contradiction that x(w) is of positive degree with respect
to NT

σ . By Corollary 5.17(b),

we must have a subsequence w̄ = w2i−1, . . . , w2j+1 of w

(of length three or greater) where all the steps of w̄ belong to NT
σ

while the step before and the one after do not belong to NT
σ . (5.18)

We claim that w̄ must starts at the boundary (as opposed to the puncture). Otherwise,
w would contain an earlier step w2i−2 which must be a radius of T going from the
boundary to the puncture. For the case where σ is not a radius of T and NT

σ = {all
radii of T} (Fig. 37(b)), this shows that w2i−2 ∈ NT

σ . For the case where σ = ρ1 and
NT
σ = {ρ2, . . . , ρf} (Fig. 37(c)), since β cannot cross ρ1, we see that w2i−2 has to come

from {ρ2, . . . , ρf} = NT
σ . For both cases, this contradicts the assumption (5.18) that no

step before w̄ comes from NT
σ , hence w̄ must starts at the boundary. Similarly, w̄ must

end at the boundary (as opposed to the puncture).

Since every step of w̄ is a radius, it follows by induction that every odd step of w̄
starts at the boundary. But this means that w2j+1 is a radius that begins and ends at
the boundary, which is impossible. Hence x(w) has non-positive degree with respect
to NT

σ . �

5.5 Proof of Lemma 5.5

Proof of Lemma 5.5. Suppose xΣ is a cluster monomial not compatible with a tagged trian-
gulation T .

Suppose that all tagged arcs of Σ\T are peripheral. We shall choose a tagged arc σ ∈ Σ\T
that is central and, if possible, crosses every arc of T at most once, as follows. Let {λ1, . . . , λr}
be the set of central arcs in Σ\T (see Fig. 31(a)). If r = 1, then choose σ := λr.

If r > 1, we choose σ ∈ {λk’s} such that (T o, σ)-doublecross = ∅. To see that we can do this,
suppose that one of these λk (say, λr) cuts an arc τ ∈ T o twice, see Fig. 31(b). Since τ must cut
out a simply-connected region containing all of λ1, . . . , λr−1, each of λ1, . . . , λr−1 crosses every
arc of T o at most once.

Hence, we satisfy the setup for

Lemma 5.23: σ is central in Σ\T, and for

Lemma 5.24: If (T o, σ)-doublecross is nonempty, then σ is the only central arc in Σ\T.
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Lemma 5.24(2) tells us that each term in the T -expansion of xσ is of negative degree with
respect to either (T, σ)-cross or (T, σ)-doublecross. At the same time, Lemmas 5.23 and 5.24(1)
tell us that every term in the T -expansion of xΣ has non-positive degree with respect to both
(T, σ)-cross and (T, σ)-doublecross. It follows, since σ ∈ Σ, that every term in the T -expansion
of xΣ has negative degree with respect to either (T, σ)-cross or (T, σ)-doublecross. Since (T, σ)-
cross and (T, σ)-doublecross are subsets of T , the T -expansion of xΣ is a sum of proper Laurent
monomials.

Suppose now that Σ\T contains a radius σ. A very similar argument appears in the proof of
[7, Proposition 2.3] but we repeat it here for completeness. Lemma 5.25 (if σ is a plain radius)
or Lemma 5.28 (if all radii of Σ\T are notched) tells us that each term in the T -expansion of xσ
is of negative degree with respect to a subset NT

σ . At the same time, Lemma 5.26 (if σ is a plain
radius) or Lemma 5.29 (if all radii of Σ\T are notched) tells us that each term in the T -expansion
of the other factors of xΣ are of non-positive degree with respect to the same grading NT

σ . It
follows that each term in the T -expansion of xΣ has negative degree with respect to this grading.
Since NT

σ is a subset of T , the T -expansion of xΣ is a sum of proper Laurent monomials. �

5.6 Further directions

It is not known for a general cluster algebra whether its set of indecomposable positive elements
forms an atomic basis. Examples of cluster algebras where this fails to happen are those of

rank 2 where the exchange matrix looks like

(
0 b
−c 0

)
with bc ≥ 5 [15].

Per [18, Conjecture 1.5], we are exploring the existence of atomic bases for type D̃n−1 cluster
algebras (which arise from (n − 3)-gons with 2 punctures). Toward this goal, we would like to
extend the T o-path expansion formula to general bordered surfaces with more than 1 puncture.
Additionally, the T o-path formula presented in this paper was only done for ordinary arcs in the
setting of ideal triangulations T o. We are working on proving a similar formula for tagged arcs
and for tagged triangulations T .
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