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Abstract. Locally homogeneous Lorentzian three-manifolds with recurrect curvature are
special examples of Walker manifolds, that is, they admit a parallel null vector field. We
obtain a full classification of the symmetries of these spaces, with particular regard to
symmetries related to their curvature: Ricci and matter collineations, curvature and Weyl
collineations. Several results are given for the broader class of three-dimensional Walker
manifolds.
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1 Introduction

A Walker manifold is a pseudo-Riemannian manifold (M, g) admitting a degenerate parallel
distribution. Such a phenomenon is peculiar to the case of indefinite metrics. As such, it is
responsible for many special geometric properties of pseudo-Riemannian manifolds which do not
have any Riemannian counterpart, and has been investigated by several authors under different
points of view. The monograph [5] is a well-written recent survey on Walker manifolds and the
various related research areas.

Lorentzian three-manifolds admitting a parallel degenerate line field have been studied in [12].
These Lorentzian metrics are described in terms of a suitable system of local coordinates (t, x, y)
and form a large class, depending on an arbitrary function f(t, x, y). The case of strictly Walker
manifolds, where the parallel degenerate line field is spanned by a parallel null vector field, is
characterized by condition f = f(x, y). The results of [12] have been recently used in [14] to
obtain a complete classification of the models of locally homogeneous Lorentzian three-manifolds
with recurrent curvature.

The aim of this paper is to investigate symmetries of these Lorentzian spaces. If (M, g)
denotes a Lorentzian manifold and T a tensor on (M, g), codifying some either mathematical
or physical quantity, a symmetry of T is a one-parameter group of diffeomorphisms of (M, g),
leaving T invariant. As such, it corresponds to a vector field X satisfying LXT = 0, where L
denotes the Lie derivative. Isometries are a well known example of symmetries, for which
T = g is the metric tensor. The corresponding vector field X is then a Killing vector field.
Homotheties and conformal motions on (M, g) are again examples of symmetries. In recent
years, symmetries related to the curvature of the manifold have been investigated. Among them:
curvature collineations (where T=R is the curvature tensor), Weyl collineations (T=W being the
Weyl conformal curvature tensor) and Ricci collineations, for which T=% is the Ricci tensor. We
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may refer to the monograph [16] for further information and references on symmetries. Ricci
and curvature collineations have been investigated in several classes of Lorentzian manifolds
(see, for example, [1, 6, 7, 8, 9, 13, 15, 17, 18, 19, 20, 21, 22] and references therein). Because of
their physical relevance, in most cases curvature symmetries have been studied for some space-
times. Moreover, the three-dimensional case has also been considered as an interesting source
of examples and different behaviours (see, for example, [8]).

A matter collineation of a Lorentzian manifold (M, g) is a vector field X, corresponding
to a symmetry of the energy-momentum tensor T = % − 1

2τg, where τ denotes the scalar
curvature. Matter collineations are more relevant from a physical point of view [10, 11], while
Ricci collineations have a more clear geometrical significance, since % is naturally deduced from
the connection of the metric [19]. These physical and geometrical meanings do coincide in
a special case, namely, for metrics with vanishing scalar curvature. And this is exactly the case
for any strictly Walker three-manifold [12].

We shall obtain complete classifications of curvature and Ricci (≡ matter) collineations of
homogeneous Lorentzian three-manifolds with recurrent curvature. In Section 2 we shall give
some basic information about Walker three-manifolds and curvature symmetries. In Section 3 we
then investigate symmetries of an arbitrary strictly Walker three-manifold. Since the function
f = f(x, y) determining the metric tensor here is arbitrary, one cannot expect to obtain these
symmetries explicitly in the general case. However, we describe the sets of partial differential
equations describing the different symmetries and use them to give some explicit examples of
proper symmetries. Then, in Section 4 we shall completely classify the symmetries of homo-
geneous Lorentzian three-manifolds with recurrent curvature. All calculations have also been
checked using Maple16 c©.

2 Preliminaries

2.1 Three-dimensional Walker metrics

We shall essentially follow the notations used in [12]. A three-dimensional Lorentzian mani-
fold M admitting a parallel degenerate line field has local coordinates (t, x, y), such that with
respect to the local frame field {∂t, ∂x, ∂y} the Lorentzian metric is given by

gf =

0 0 1
0 ε 0
1 0 f(t, x, y)

 ,

for some function f(t, x, y). In the above expression, ε = ±1. However, it is easily seen that by
reversing the metric and changing the sign of the coordinate x, without loss of generality one
can reduce to the case ε = 1 (as it was done, for example, in [14]).

The parallel degenerate line field is spanned by ∂t, and the existence of a parallel null vector
U = ∂t (strictly Walker metric) is characterized by the independence of the function f of the
variable t [23]. Therefore, with respect to local coordinates (t, x, y), the general form of a strictly
Walker metric is given by

gf =

0 0 1
0 1 0
1 0 f(x, y)

 , (2.1)

for an arbitrary smooth function f . With respect to the coordinate basis {∂t, ∂x, ∂y}, the Levi-
Civita connection ∇ and curvature R of the metric gf described by (2.1) are completely deter-
mined by the following possibly non-vanishing components (see also [12]):

∇∂x∂y = 1
2fx∂t, ∇∂y∂y = 1

2fy∂t −
1
2fx∂x (2.2)



Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature 3

and

R(∂x, ∂y)∂x = 1
2fxx∂t, R(∂x, ∂y)∂y = −1

2fxx∂x, (2.3)

where R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ]. From (2.2) and (2.3), a straightforward calculation yields
that the covariant derivative of the curvature tensor is completely determined by the possibly
non-vanishing components

(∇∂xR)(∂x, ∂y)∂x = 1
2fxxx∂t, (∇∂xR)(∂x, ∂y)∂y = −1

2fxxx∂x,

(∇∂yR)(∂x, ∂y)∂x = 1
2fxxy∂t, (∇∂yR)(∂x, ∂y)∂y = −1

2fxxy∂x. (2.4)

Either by (2.4) or by direct calculation differentiating the Ricci identity, it is easily seen that
three-dimensional (strictly) Walker metrics have recurrent curvature, that is, in a neighborhood
of any point of non-vanishing curvature, one has ∇R = ω ⊗R, for a suitable one-form ω. Since
we are interested in the study of the nonflat examples with recurrent curvature, throughout the
paper we shall assume that fxx 6= 0 at any point.

In local coordinates (t, x, y), the Ricci tensor % of any metric (2.1) is given by

% =

0 0 0
0 0 0
0 0 −1

2fxx

 . (2.5)

A pseudo-Riemannian manifold (M, g) is said to be locally homogeneous if for any pair of points
p, q ∈M there exist a neighbourhood U of p, a neighbourhood V of q and an isometry φ : U → V .
Hence, locally homogeneous manifolds “look the same” around each point. For any given class
of pseudo-Riemannian manifolds, it is a natural problem to determine its locally homogeneous
examples. Locally homogeneous examples among three-dimensional Walker metrics have been
investigated in [14] (see also [3]). Rewriting the classification obtained in [14] in terms of
coordinates (t, x, y) used in (2.1), we have the following.

Theorem 2.1 ([14]). Locally homogeneous Lorentzian three-manifolds of recurrent curvature
naturally divide into three classes. They correspond to one of the following types of (strictly)
Walker metrics, as described in (2.1):

I) Nb, defined by taking f(x, y) = −2b−2ebx, for some real constant b 6= 0;

II) Pc, defined by taking f(x, y) = −x2α(y), where α > 0 satisfies α′y = cα3/2 for some real
constant c;

III) CWε, defined by taking f(x, y) = −εx2, where ε = ±1.

2.2 Curvature and Ricci collineations

Let (M, g) denote a pseudo-Riemannian manifold (in particular, a Lorentzian one). A vector
field X on M preserving its metric tensor g, the corresponding Levi-Civita connection ∇, its
curvature tensor R or its Ricci tensor %, is respectively known as a Killing vector field, an affine
vector field, a curvature collineation or a Ricci collineation.

It is obvious that if X preserves g (respectively, ∇, R), then it also preserves ∇ (respective-
ly, R, %), but the converse does not hold in general. Homothetic vector fields (i.e., vector fieldsX
satisfying LXg = λg for some real constant λ) are again necessarily curvature collineations (in
particular, Ricci collineations). For this reason, we are specifically interested in the existence of
proper Ricci and curvature collineations, namely, the ones which are not homothetic (and hence,
not Killing). Thus, we also need to specify which are the Killing, affine and homothetic vector
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fields, which is an interesting problem on its own, due to the natural geometric meaning of such
symmetries.

Conditions defining Ricci and curvature collineations are formally similar to the ones defining
Killing or affine vector fields. However, they may show some deeply different behaviours. In
fact (see, for example, [16, 19]):

(a) Killing and affine vector fields are smooth (provided they are at least C1). However,
for any positive integer k, there exist Lorentzian metrics admitting Ricci (and curvature)
collineations, which are Ck but not Ck+1.

(b) Unlike Killing and affine vector fields, Ricci (and curvature) collineations form a vector
space which may be infinite-dimensional and (because of the above point (a)) is not neces-
sarily a Lie algebra. In fact, if X, Y are Ricci (curvature) collineations, then [X,Y ] might
not be differentiable.

(c) While Killing and affine vector fields agreeing in the neighbourhood of a point must
coincide everywhere, two Ricci (respectively, curvature) collineations that agree on an
non-empty subset of M may not agree on M , since they are not uniquely determined by
the value of X and its covariant derivatives of any order at a point.

Observe that the above item (b), as concerns the possibility of the vector space of Ricci
collineations to be infinite-dimensional, refers to cases where the Ricci tensor % is necessarily
degenerate (as it is always the case, for example, for three-dimensional strictly Walker metrics).
On the other hand, if % (respectively, T = % − 1

2τg) is nondegenerate, then Ricci (respectively,
matter) collineations form a finite-dimensional Lie algebra of smooth vectors. In fact, in such
a case, they are exactly the Killing vector fields of the nondegenerate metric tensor %.

3 Symmetries of Walker three-manifolds

Observe that any three-dimensional strictly Walker metric is already equipped in a natural way
with the strongest possible symmetry. In fact, it admits a parallel vector field U = ∂t. We
shall now investigate the different kinds of symmetries of these metrics, starting with Killing,
homothetic and affine vector fields. The descriptions we obtain are given in the following.

Theorem 3.1. Let (M, gf ) be a three-dimensional strictly Walker manifold, where gf is de-
scribed in the local coordinates (t, x, y) by equation (2.1). A smooth vector field X = X1∂t +
X2∂x +X3∂y is

i) a Killing vector field if and only if

X1 = −c1t− xf ′1(y) + f2(y), X2 = f1(y), X3 = c1y + c2, (3.1)

where f1, f2 are smooth functions on M , satisfying

2c1f − 2f ′′1 (y)x+ 2f ′2(y) + f1(y)∂xf + (c1y + c2)∂yf. (3.2)

ii) a homothetic, non-Killing vector field if and only if

X1 = ηt− c1t− xf ′1(y) + f2(y), X2 =
η

2
x+ f1(y), X3 = c1y + c2, (3.3)

where η 6= 0 is a real constant and

(2c1 − η)f − 2f ′′1 (y)x+ 2f ′2(y) +
(η
2
x+ f1(y)

)
∂xf + (c1y + c2)∂yf = 0. (3.4)
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iii) an affine Killing vector field if and only if

X1 = c3t− xf ′1(y) + f2(y), X2 =
c1 + c3

2
x+ f1(y), X3 = c1y + c2, (3.5)

where

(c1 − c3)f − 2f ′′1 (y)x+ 2f ′2(y) +

(
c1 + c3

2
x+ f1(y)

)
∂xf

+ (c1y + c2)∂yf + c4 = 0. (3.6)

Proof. We start from an arbitrary smooth vector field X = X1∂t + X2∂x + X3∂y on the
three-dimensional strict Walker manifold (M, gf ), where gf is described by equation (2.1), and
calculate LXgf . Then, X satisfies LXgf = ηgf for some real constant η if and only if the
following system of partial differential equations is satisfied:

∂tX3 = 0, ∂xX2 =
η

2
, ∂xX3 + ∂tX2 = 0, ∂yX3 + ∂tX3f + ∂tX1 = η,

f∂xX3 + ∂xX1 + ∂yX2 = 0, 2∂yX3f + 2∂yX1 +X2∂xf +X3∂yf = ηf. (3.7)

We then proceed to integrate (3.7). From the first three equations in (3.7) we get X2 =
η
2x − a1(y)t + f1(y) and X3 = a1(y)x + b1(y). Then, the fourth equation in (3.7) yields X1 =
ηt− a′1(y)tx− b′1(y)t+ f4(x, y). Substituting this into the fifth equation, we get

2a′1(y)t = a1(y)f + ∂xf4(x, y) + f ′2(y),

which must hold for all values of t, implying that a1(y) = c1 is a constant. Now, the last equation
in (3.7) gives

(c1∂xf + 2b′′1(y))t = (2b′1(y)− ηf)f + 2∂yf4(x, y) +
(η
2
x+ f2(y)

)
∂xf

+ (c1x+ f3(y))∂yf,

which immediately yields that c1∂xf + 2b′′1(y) = 0 and so, c1∂
2
xxf = 0. Since we assumed

∂2xxf 6= 0, we then have c1 = 0 and integrating b′′1(y) = 0 we get b1(y) = c2y + c3. On the
other hand, from the fifth equation in (3.7) we now have f4(x, y) = −f ′2(y)x + f5(y) and the
last equation gives

(2c2 − η)f − 2f ′′2 (y)x+ 2f ′5(y) +
(η
2
x+ f2(y)

)
∂xf + (c2y + c3)∂yf = 0.

This proves the statement i) in the case η = 0 and the statement ii) if we assume η 6= 0.
With regard to affine vector fields, expressing condition LX∇ = 0 in the coordinate basis

{∂t, ∂x, ∂y}, we get the following system of partial differential equations:

∂2ttX1 = ∂2ttX2 = ∂2xxX2 = ∂2txX2 = ∂2ttX3 = ∂2xxX3 = ∂2txX3 = ∂2tyX3 = 0,

∂2xxX1 + ∂xX3∂xf = 0,

2∂2txX1 + ∂tX3∂xf = 0,

2∂2tyX2 − ∂tX3∂xf = 0,

2∂2xyX3 − ∂tX3∂xf = 0,

2∂2tyX1 + ∂tX3∂yf + ∂tX2∂xf = 0,

2∂2xyX2 − ∂xX3∂xf − ∂tX2∂xf = 0,

2∂2yyX3 + ∂xX3∂xf − ∂tX3∂yf = 0,
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2∂yX3∂xf − 2∂2yyX2 − ∂xX2∂xf + ∂tX2∂yf +X2∂
2
xxf +X3∂

2
xyf = 0,

∂yX3∂xf + 2∂2xyX1 + ∂xX3∂yf + ∂xX2∂xf − ∂tX1∂xf +X2∂
2
xxf +X3∂

2
xyf = 0,

2∂yX3∂yf + 2∂2yyX1 + ∂xX1∂xf + 2∂yX2∂xf − ∂tX1∂yf +X2∂
2
xyf +X3∂

2
yyf = 0. (3.8)

As for the above system (3.7), we then proceed to integrate (3.8). From the first equation we get
X3 = c1t+ a1(y)x+ f2(y) and then the fifth equation yields 2a′1(y) = c1∂xf , so that c1∂

2
xxf = 0

and so, c1 = 0. Then, a1(y) = c2 is a constant.

Integrating the third and fourth equations (taking into account the first one) we get X1 =
f3(y)t + f4(x, y), X2 = c3t + f5(y)x + f6(y). The sixth equation then gives f ′3(y) + c3∂xf = 0,
which, by the same argument above, yields c3 = 0 and f3(y) = c4.

Similarly, the eighth equation becomes 2f ′′2 (y) + c2∂xf = 0, which gives c2 = 0 and f2(y) =
c5y + c6. The second equation now reads ∂2xxf4(x, y) = 0, and the seventh leads to f ′5(y) = 0.
So, f4(x, y) = f7(y)x+ f8(y) and f5(y) = c7.

By the ninth and tenth equations we then have f ′′6 (y) + f ′7(y) +
1
2(2c7 − c4 − c5)∂xf = 0, so

that c7 = c4+c5
2 and f7(y) = −f ′6(y) + c8. Integrating the tenth equation with respect to the

variable x, we get

(c5 − c4)f − 2f ′′6 (y)x+

(
c4 + c5

2
x+ f6(y)

)
∂xf + (c5y + c6)∂yf + f9(y) = 0.

We differentiate the above equation with respect to y and subtract the eleventh equation, ob-
taining f ′9(y)−2f ′′8 (y) = c8∂xf , which immediately leads to c8 = 0 and f9(y) = 2f ′8(y)+ c9. The
statement follows after we suitably rename the remaining constants and functions. �

Remark 3.2. Since f = f(x, y) is an arbitrary smooth function of two variables, we cannot
integrate equations (3.2), (3.4) and (3.6) of Theorem 3.1 in full generality. However, it is well
known that the Lie algebras of Killing, homothetic and affine vector fields are finite-dimensional.

Therefore, on the one hand, for any prescribed function f(x, y) these equations force the sets
of Killing, homothetic and affine vector fields of (M, gf ) to depend on a finite number of real
parameters. On the other hand, they allow us to determine special functions f , for which we can
find some explicit examples of homothetic non-Killing and affine non-homothetic vector fields.

At the end of this section we shall illustrate these results calculating the symmetries of an
arbitrary locally conformally flat strictly Walker metric. In the next section we shall consider the
functions f determining the locally homogeneous examples of three-dimensional strictly Walker
manifolds. Further explicit examples can be determined by direct calculation.

Remark 3.3 (homothetic fixed points). The existence on a Lorentzian manifold (M, g) of
homothetic fixed points, that is, of a non-trivial homothetic vector field X which vanishes at
a point m ∈ M , has some important consequences on the structure of the manifold itself.
Different conclusions can be deduced depending on whether m is an isolated fixed point or not.
In the latter case, the zeroes of X form a null geodesic, and the resulting metric is a kind of
plane wave, whose conformal vector fields can be determined. Interesting studies of the link
between homothetic and conformal vector fields (and their fixed points) and the geometry the
metrics can be found in [2, 4, 17, 18]. The above Theorem 3.1 and the special cases described in
Theorem 3.6 and in Section 4, allow us to discuss the existence of homothetic fixed points for
all three-dimensional Walker metrics, and gives a unified treatment for a large class of three-
dimensional manifolds, where all different behaviours can occur, from metrics with no proper
homothetic vector fields, to cases where homothetic fixed points occur and can be explicitly
determined.

We now turn our attention to curvature collineations and prove the following.
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Theorem 3.4. Let X = X1∂t+X2∂x+X3∂y be an arbitrary smooth vector field on the strictly
Walker manifold (M, gf ), where gf is described as in (2.1). Then:

i) X is a Ricci collineation if and only if one of the following cases occurs:

(a) f is arbitrary and

X2 = −
2f ′1(y)∂

2
xxf + f1(y)∂

3
xxyf

∂3xxxf
, X3 = f1(y),

where f1 is an arbitrary smooth function on M , and the Ricci collineation is defined
in the open subset where ∂3xxxf 6= 0.

(b) f = f1(y)x
2 + f2(y)x+ f3(y) and

X3 =
c1√
|f1(y)|

.

ii) X is a curvature collineation if and only if X is a special Ricci collineation of one of the
following types:

(a)′ type (a) with

• either X1 = X1(y), X2 = X3 = 0, or
• f(x, y) = f2(x)f3(y) + f4(y)x+ f5(y), f1(y) =

c1√
|f3(y)|

and

X1 =
c1f
′
3(y)

2
f3(y)

√
|f3(y)|t+ f6(y).

(b)′ type (b) with X1 = 2f4(y)t +
c1f ′1(y)

2 f1(y)
√
|f1(y)|t − 1

2f
′
4(y)x

2 − f ′5(y)x + f6(y) and
X2 = f4(y)x+ f5(y).

Proof. Because of equation (2.5), a smooth vector field X = X1∂t+X2∂x+X3∂y on a strictly
Walker manifold (M, gf ) is a Ricci collineation if and only if

∂2xxf∂tX3 = 0, ∂2xxf∂xX3 = 0, 2∂2xxf∂yX3 + ∂3xxxfX2 + ∂3xxyfX3 = 0. (3.9)

As we already mentioned, we are always assuming that ∂2xxf 6= 0. Consequently, from the first
two equations in (3.9) we have X3 = X3(y), and the third equation becomes

2∂2xxfX
′
3(y) + ∂3xxxfX2 + ∂3xxyfX3(y) = 0. (3.10)

In the open subset where ∂3xxxf 6= 0, from the above equation (3.10) we get at once the case (a).
Case (b) is obtained as a special solution of (3.10), assuming that ∂3xxxf = 0.

We then consider curvature collineations, starting from an arbitrary Ricci collineation as
described in cases (a) and (b) and requiring the additional condition LXR = 0. Calculations
are of the same kind for all these cases. For this reason, we report the details only for case (b).

So, consider a Ricci collineation X = X1∂t+X2∂x+
c1√
|f1(y)|

∂y, where f = f1(y)x
2+f2(y)x+

f3(y). In particular, calculating the condition LXR = 0 on the pairs of coordinate vector fields
∂t, ∂x, ∂y, we find that X is a curvature collineation if and only if the following equations hold:

∂yX2 + ∂xX1 = ∂tX2 = 0,
c1f
′
1(y)

2
√
|f1(y)|

+ f1(y) (2∂xX2 − ∂tX1) = 0.

It easily follows from the first of the above equations that ∂xX1 and X2 are functions of the
variables (x, y). Since f1(y) 6= 0, differentiating with respect to x the second of the above
equations we get ∂2xxX2 = 0 and so, X2 = f4(y)x + f5(y). Now, again the second equation

gives X1 =
c1f ′1(y)

2f1(y)
√
|f1(y)|

t + 2f4(y)t + f6(x, y). Then, since ∂xX1 = −∂yX2, we conclude that

f6(x, y) = −1
2f
′
4(y)x

2 − f ′5(y)x+ f7(y) and this ends the proof. �
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Observe that taking X2 = X3 = 0, all equations in (3.9) are satisfied. Therefore, X = X1∂t
is a Ricci collineation for any arbitrary smooth function X1 = X1(t, x, y), and (by case (a)′)
a curvature collineation for any smooth function X1 = X1(y). This implies at once the following.

Corollary 3.5. For any strictly Walker three-manifold (M, gf ), the Lie algebras of smooth Ricci
collineations and smooth curvature collineations are infinite-dimensional. In particular, each of
these spaces admits proper Ricci and curvature collineations.

We end this section calculating the symmetries of a locally conformally flat strictly Walker
three-manifold. By direct calculations of the Cotton tensor of a strictly Walker three-mani-
fold (M, gf ) (see also [12]), it is easily seen that this manifold is locally conformally flat if and
only if ∂3xxxf vanishes identically, that is, when the defining function is of the form f(x, y) =
p(y)x2+q(y)x+r(y) (with p(y) 6= 0 in order to avoid the flat case). We now prove the following.

Theorem 3.6. Let X = X1∂t+X2∂x+X3∂y be an arbitrary smooth vector field on a conformally
flat strictly Walker manifold (M, gf ), where gf is described as in (2.1) with f(x, y) = p(y)x2 +
q(y)x+ r(y) (p(y) 6= 0). Then, X is:

i) a Killing vector field if and only if (c1y + c2)p(y)
′ + 2c1p(y) = 0 and X is described as

in (3.1), with f1, f2 explicitly determined as solutions of

2f1(y)
′′ − 2c1q(y)− (c1y + c2)q(y)

′ − 2f1(y)p(y) = 0,

2f2(y)
′ + 2c1r(y)+(c1y + c2)r(y)

′ + f1(y)q(y) = 0.

ii) a homothetic, non-Killing vector field if and only if (c1y+ c2)p
′(y)+ 2c1p(y) = 0 and X is

described as in (3.3), with f1, f2 explicitly determined as solutions of

2f ′′1 (y) + (
η

2
− 2c1)q(y)− (c1y + c2)q

′(y)− 2f1(y)p(y) = 0,

2f ′2(y) + (2c1 − η)r(y) + (c1y + c2)r
′(y) + f1(y)q(y) = 0, η 6= 0.

iii) a proper affine Killing vector field if and only if (c2y + c3)p(y)
′ + 2c2p(y) = 0 and X is

described as in (3.5), with f1, f2 explicitly determined as solutions of

2f ′′1 (y)+
c1 − 3c2

2
q(y)− (c2y + c3)q

′(y)− 2f1(y)p(y) = 0,

2f ′2(y)+(c2 − c1)r(y) + (c2y + c3)r
′(y) + f1(y)q(y) + c4 = 0.

iv) a Ricci collineation if and only if X3 =
c1√
|p(y)|

, where c1 is a real constant.

v) a curvature collineation if and only if

X1 = 2f1(y)t+
c1p
′(y)

2p(y)
√
|p(y)|

t− 1

2
f ′1(y)x

2 − f ′2(y)x+ f3(y),

X2 = f1(y)x+ f2(y), X3 =
c1√
|p(y)|

,

where f1(y) and f2(y) are arbitrary smooth functions on M .

Proof. Let (M, gf ) be a conformally flat strictly Walker manifold of dimension three, where gf
is described by the relation (2.1). As explained above, the function f satisfies f(x, y) = p(y)x2+
q(y)x + r(y), (p(y) 6= 0), where p(y), q(y) and r(y) are arbitrary smooth functions on M . We
then choose a smooth vector field X = X1∂t+X2∂x+X3∂y, where X1, X2 and X3 are arbitrary
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smooth functions on M . By Theorem 3.1, X is a homothetic vector field if and only if satisfies
equations (3.3) and (3.4). Equation (3.4) for the above function f(x, y) gives(

2c1p(y) + (c1y + c2)p(y)
′)x2

−
(
2f1(y)

′′ +
(η
2
− 2c1

)
q(y)− (c1y + c2)q(y)

′ − 2f1(y)p(y)
)
x

+ (2c1 − η)r(y) + 2f2(y)
′ + (c1y + c2)r(y)

′ + f1(y)q(y) = 0.

This equation immediately proves the second statement, since the coefficients of x and its powers
must vanish, in order to satisfy it identically. The first statement now follows by setting η = 0
in the equations of homothetic vector fields.

With regard to affine Killing vector fields, X must satisfy equations (3.5) and (3.6). So by
straightforward calculations, the functions p(y), q(y) and r(y) must satisfy(

2c2p(y) + (c2y + c3)p(y)
′)x2

−
(
2f ′′1 (y)− (c2y + c3)q

′(y)− 2f1(y)p(y) +
c1 − 3c2

2
q(y)

)
x

+
(
2f ′2(y) + (c2y + c3)r

′(y) + f1(y)q(y) + (c2 − c1)r(y) + c4
)
= 0,

which leads to the third statement. Assertions (iv) and (v) are direct consequences of the
cases (b) and (b)′ of Theorem 3.4, respectively. �

4 Symmetries of homogeneous Lorentzian three-manifolds
with recurrent curvature

We reported the classification of homogeneous Lorentzian three-manifolds with recurrent cur-
vature in Theorem 2.1. We shall now completely describe the symmetries of these manifolds.
We start with the following.

Theorem 4.1. Let (M, gf ) be a homogeneous three-dimensional Lorentzian strictly Walker

manifold of type Nb, that is, determined by f(x, y) = −2ebx
b2

, b 6= 0.
An arbitrary smooth vector field X = X1∂t +X2∂x +X3∂y on M :

• is homothetic (equivalently, Killing) if and only if

X1 = c1t+ c2, X2 =
2c1
b
, X3 = −c1y + c3.

• is affine if and only if

X1 = c1t+ c2 + c4y, X2 =
2c1
b
, X3 = −c1y + c3.

• is a Ricci collineation if and only if X1 is arbitrary and

X2 = −
2

b
f ′1(y), X3 = f1(y).

• is a curvature collineation if and only if

X1 = f2(y)− f ′1(y)t+
2

b
f ′′1 (y)x, X2 = −

2

b
f ′1(y), X3 = f1(y).

In the above equations, cj are real constants and f1(y) an arbitrary smooth function.
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Proof. Let (M, gf ) be a homogeneous three-dimensional Lorentzian strictly Walker manifold

of type Nb, where f(x, y) = −2ebx
b2

, b 6= 0. By Theorem 3.1, an arbitrary smooth vector field
X = X1∂t + X2∂x + X3∂y is homothetic if and only if X1, X2 and X3 satisfy equations (3.3)

and (3.4). Setting f(x, y) = −2ebx
b2

in equation (3.4), we easily get

ebx

b2
(2− bx)η − 2ebx

b2
(2c1 + bf1(y))− 2f ′′1 (y)x = −2f ′2(y),

which easily yields η = 0, f1(y) = −2c1
b and f2(y) = c3, where c3 is a real constant. As

η = 0, X is a homothetic vector field if and only if it is Killing, and the statement follows from
equation (3.3).

With regard to affine vector fields, setting f(x, y) = −2ebx
b2

in equation (3.6) we find

2ebx

b2

(
c2 − c1 +

b

2
(c1 + c2)x+ bf1(y)

)
+ 2f ′′1 (y)x = 2f ′2(y) + c4,

which since b 6= 0, yields the following relations

c2 = −c1, f1(y) =
2c1
b
, f2(y) = −

c4
2
y + c5,

where c5 is a real constant. The statement then follows if one chooses suitable coefficients c2, c3
and c4 in (3.5).

Next, the result on Ricci collineations follows easily from the fact that they are characterized
by equations

∂tX3 = ∂xX3 = 0, ∂yX3 + bX2 = 0.

In particular, a Ricci collineation is also a curvature collineation when it satisfies

f ′1(y) + ∂tX1 = 0, 2f ′′1 (y)− b∂xX1 = 0,

which proves the last part of the statement. �

With regard to homogeneous three-dimensional Lorentzian strictly Walker manifolds of ty-
pe Pc and CWε, comparing their defining functions f(x, y) with the one of a locally conformally
flat strictly Walker three-manifold, it is easy to conclude that these homogeneous spaces are
indeed locally conformally flat. Therefore, their symmetries can be deduced as special cases of
the results obtained in Theorem 3.6. In this way, we obtain the following.

Theorem 4.2. Let (M, gf ) be a homogeneous three-dimensional Lorentzian strictly Walker
manifold of type Pc, that is, determined by f(x, y) = −x2α(y), where

α′(y) = cα(y)
3
2 , α(y) > 0.

Let h(y) denote a smooth function explicitly determined from α(y) by equation

h′′(y) + α(y)h(y) = 0.

An arbitrary smooth vector field X = X1∂t +X2∂x +X3∂y on M :

• is Killing if and only if

X1 = −h′(y)x+ c1, X2 = h(y), X3 = 0.
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• is homothetic if and only if

X1 = −h′(y)x+ c1 + ηt, X2 = h(y) +
η

2
x, X3 = 0.

• is affine if and only if

X1 = −h′(y)x+ c1 + c2t+ c3y, X2 = h(y) +
c2
2
x, X3 = 0.

• is a Ricci collineation if and only if X1, X2 are arbitrary and X3 =
c1√
|α(y)|

.

• X is a curvature collineation if and only if

X1 = −
1

2
f ′1(y)x

2 − f ′2(y)x+
(
2f1(y) +

c1c

2

)
t+ f3(y),

X2 = f1(y)x+ f2(y), X3 =
c1√
|α(y)|

.

In the above equations, fi(y) are arbitrary smooth functions and cj are real constants.

Theorem 4.3. Let (M, gf ) be a homogeneous three-dimensional Lorentzian strictly Walker
manifold of type CWε, that is, determined by f(x, y) = −εx2. Consider the functions s(y), t(y)
given by

s(y) =

{
c2 sin(y)− c1 cos(y) if ε = 1,

c1e
−y − c2ey if ε = −1,

t(y) =

{
c1 sin(y) + c2 cos(y) if ε = 1,

c1e
−y + c2e

y if ε = −1.

Then, an arbitrary smooth vector field X = X1∂t +X2∂x +X3∂y on M :

• is Killing if and only if

X1 = s(y)x+ c3, X2 = t(y), X3 = c4,

• is homothetic if and only if

X1 = s(y)x+ c3 + ηt, X2 = t(y) +
η

2
x, X3 = c4,

• is affine if and only if

X1 = s(y)x+ c3 + c5t+ c6y, X2 = t(y) +
c5
2
x, X3 = c4,

• is a Ricci collineation if and only if X3 = c1.

• is a curvature collineation if and only if

X1 = 2f1(y)t−
1

2
f ′1(y)x

2 − f ′2(y)x+ f3(y), X2 = f1(y)x+ f2(y), X3 = c1.

In the above equations, fi(y) are arbitrary smooth functions on M and cj real constants.

It is well known that for three-dimensional manifolds and locally conformally flat mani-
folds, the curvature is completely determined by its Ricci curvature. However, as a conse-
quence of Theorem 3.6 (in particular, Theorems 4.2 and 4.3), we find explicit examples of
three-dimensional locally conformally flat spaces, for which Ricci and curvature collineations
are not equivalent.
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