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1 Schur’s inequality

Posed by Richard Askey

Department of Mathematics, University of Wisconsin, Madison, WI, 53706, USA
E-mail: askey@math.wisc.edu

In Hardy, Littlewood and Pólya’s book “Inequalities” [22, Problem 60 on p. 64], the following
inequality (communicated by I. Schur) was stated:

xn(x− y)(x− z) + yn(y − x)(y − z) + zn(z − x)(z − y) > 0,

when x, y, z are positive and not all equal, and n ≥ 0. It is not hard to show that the inequality
is true for all real x, y, z for n even when > 0 is replaced by ≥ 0.

There is a strange theorem of Hilbert [23]. He proved that if one has a polynomial in k
variables which is homogeneous of degree j and which is nonnegative for all real values of the
variables, then it can be written as a sum of k squares when either k or j is 2, and when k = 3
and j = 4, but not necessarily in all other cases. The case n = 2 fits the exceptional condition
k = 3, j = 4, so a natural question is: what is this representation?

This problem has been solved in the mean time. The answer is

1

4

((
2x2 − y2 − z2 + 2yz − xz − xy

)2
+ 3
(
y2 − z2 + xz − xy

)2)
.

James Wan (Singapore University of Technology and Design) was the first to send this to me.
Shortly after that, I got a solution using software of Erich Kaltofen (North Carolina State
University) and Zhengfeng Yang (Shanghai key Laboratory of Trustworthy Computing), which
was run by Zhengfeng Yang. Manuel Kauers (RISC, Johannes Kepler University of Linz, Austria)
sent the problem to Erich Kaltofen, who was traveling and he sent it to his coworker. I was
indeed hoping for something like this.

?This paper is a contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applica-
tions. The full collection is available at http://www.emis.de/journals/SIGMA/OPSFA2015.html
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mailto:askey@math.wisc.edu
http://www.emis.de/journals/SIGMA/OPSFA2015.html
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2 Blumenthal–Nevai theorems for the one quarter class
of orthogonal polynomials

Posed by Ted Chihara

Purdue University, Calumet, Hammond, IN, 46323, USA
E-mail: chihara@purduecal.edu

Consider an orthogonal polynomial sequence (OPS), {Pn(x)}, which is defined by the classical
three term recurrence relation (n ≥ 1),

Pn(x) = (x− cn)Pn−1(x)− λnPn−2(x),

with P−1(x) = 0, P0(x) = 1, cn real, and λn > 0. Suppose first that the sequences {cn} and {λn}
converge to finite limits, c and λ. Let σ = 1

2(c− 2
√
λ) and τ = 1

2(c+ 2
√
λ). In his dissertation

written under David Hilbert, O. Blumenthal [6] proved that the zeroes of all of the Pn(x) form
a set that is dense in the interval [σ, τ ]. More recently, P. Nevai [29] proved that in fact the
interval [σ, τ ] is the essential spectrum of the orthogonal polynomial system (i.e., of the operator
given by the corresponding Jacobi matrix). See [7, 11] for references and historical facts.

We would like to find analogues of these theorems when the sequences above are unbounded.
To this end, let us consider the “one quarter class” of orthogonal polynomials (see [10]); namely,
let lim

n→∞
cn =∞, and

lim
n→∞

λn+1

cncn+1
=

1

4
.

Now let xn,1 < xn,2 < · · · < xn,n, denote the zeros of Pn(x) and let

ξi = lim
n→∞

xn,i, ηj = lim
n→∞

xn,n−j+1, σ = lim
i→∞

ξi, τ = lim
j→∞

ηj .

Now under the above conditions (i.e., for the one-quarter class), we will have τ =∞, and each
of the three cases,

σ = −∞, |σ| <∞, σ =∞,

can occur. Sufficient conditions for each of the three cases to occur can be expressed in terms
of the concept of “eventual chain sequences” (see [9]).

Now the case σ = ∞ corresponds to the orthogonality measure having a discrete spectrum
with ∞ as its only limit point. A specific example is furnished by certain Meixner polynomials
of the first kind [8]. For the case when |σ| < ∞, we proved [7] that the set of all zeros of the
corresponding orthogonal polynomials is dense in the interval [σ,∞). Later, we posed [11] the
problem of determining, after imposing additional conditions, if necessary, that [σ,∞) is a subset
of the spectrum (that is, it is the essential spectrum). We hasten to remind that when σ is finite,
the corresponding Hamburger moment problem will be determined (a fact that was known to
Stieltjes). Recently, Grzegorz Świderski [36] has proven that, with a slight additional condition
(a certain monotonicity condition), in fact [σ,∞) is indeed the essential spectrum, thus settling
this open problem (see also [2]). This now leaves the most difficult case, σ = −∞.

We thus pose the inevitable question: Is there an analog of Blumenthal’s theorem for this case?
The lack of specific examples of OPS whose orthogonality measure has a spectrum extending
over the entire real line makes this situation the most difficult to conjecture about. The only
known example of OPS of this type, are the Meixner polynomials of the second kind [8] (i.e.,
the so-called “Meixner–Pollaczek” polynomials). Do there exist any other OPS examples of this
type?

mailto:chihara@purduecal.edu
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3 Generalized linearization formulas
for hypergeometric orthogonal polynomials

Posed by Howard S. Cohl

National Institute of Standards and Technology, Gaithersburg, MD, 20899-8910, USA
E-mail: howard.cohl@nist.gov

Given a hypergeometric orthogonal polynomial Pn(x;a), where a is a set of arbitrary pa-
rameters, we would like to obtain closed-form expressions for the coefficients of generalized
linearization formulas. A linearization formula for a hypergeometric orthogonal polynomial is
an expression of the type

Pn(x;a)Pm(x;a) =
m+n∑
k=0

αk,m,n(a), (3.1)

whereas a connection relation for a hypergeometric orthogonal polynomial is given by

Pn(x;a) =

n∑
k=0

βk,n(a,b)Pk(x;b). (3.2)

The coefficients αk,m,n(a), βk,n(a,b) are usually given in terms of products of Pochhammer
symbols (shifted factorials), generalized hypergeometric functions with fixed arguments, or mul-
tiple hypergeometric functions with fixed arguments. In our context, a generalized linearization
formula, given by

Pn(x;a)Pm(x;a) =
m+n∑
k=0

γk,m,n(a,b),

is obtained by inserting the connection relation (3.2) in the linearization formula (3.1) and using
series rearrangement with justification to identify the coefficient γk,m,n(a,b).

Some concrete examples include the Laguerre, Gegenbauer and continuousq-ultraspheri-
cal/Rogers polynomials. For the Laguerre polynomials, the connection relation is [30, (18.18.18)]

Lαn(x) =
n∑
k=0

(α− β)n−k
(n− k)!

Lβk(x),

and the linearization formula is [34, (63-64)] (see also [25, (6.2-3)])

Lαm(x)Lαn(x) =

n+m∑
k=|n−m|

Aαk,m,nL
α
k (x),

where

Aαk,m,n :=
2m+n−kn!m!

(m+ n− k)!(k − n)!(k −m)!
3F2

(
k−m−n

2 , k−m−n+1
2 , α+ k + 1

k − n+ 1, k −m+ 1
; 1

)
.

For the Gegenbauer polynomials, the connection relation is [30, (18.18.16)]

Cλn(x) =

bn
2
c∑

k=0

µ+ n− 2k

µ

(λ)n−k(λ− µ)k
k!(µ+ 1)n−k

Cµn−2k(x),

mailto:howard.cohl@nist.gov
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and the linearization formula is [30, (18.18.22)]

Cλm(x)Cλn(x) =

min(m,n)∑
k=0

Bλ
k,m,nC

λ
m+n−2k(x),

where

Bλ
k,m,n :=

(m+ n+ λ− 2k)(m+ n− 2k)!(λ)k(λ)m−k(λ)n−k(2λ)m+n−k
(m+ n+ λ− k)k!(m− k)!(n− k)!(λ)m+n−k(2λ)m+n−2k

.

For the continuous q-ultraspherical/Rogers polynomials, the connection relation is [24, (13.3.1)]

Cn(x; γ|q) =

bn
2
c∑

k=0

βk(γ/β; q)k(γ; q)n−k(1− βqn−2k)
(q; q)k(βq; q)n−k(1− β)

Cn−2k(x;β|q),

and the linearization formula is [24, (13.3.10)]

Cm(x;β|q)Cn(x;β|q) =

min(m,n)∑
k=0

Dβ
k,m,nCm+n−2k(x;β|q),

where

Dβ
k,m,n :=

(q; q)m+n−2k(β; q)m−k(β; q)n−k(β; q)k(β
2; q)m+n−k(1− βqm+n−2k)

(q; q)k(q; q)m−k(q; q)n−k(βq; q)m+n−k(β2; q)m+n−2k(1− β)
.

It was originally thought that the linearization coefficients of the Jacobi polynomials were
most simply represented by a double hypergeometric series [28, (3.6-7)], [3, p. 40]. However, as
pointed out to the author recently by Askey, Rahman was able to prove that the linearization
coefficients of Jacobi polynomials can be represented as a very well-poised 9F8(1). The connec-
tion relation for Jacobi polynomials with two free parameters is given by (see for instance Ismail
[24, p. 256])

P (γ,δ)
n (x) =

n∑
k=0

cγ,δ;α,βk,n P
(α,β)
k (x),

where γ, δ > −1, and such that if γ, δ ∈ (−1, 0) then γ + δ + 1 6= 0,

cγ,δ;α,βk,n :=
(γ + k + 1)n−k(n+ γ + δ + 1)kΓ(α+ β + k + 1)

(n− k)!Γ(α+ β + 2k + 1)

× 3F2

(
−n+ k, n+ k + γ + δ + 1, α+ k + 1

γ + k + 1, α+ β + 2k + 2
; 1

)
.

Let j, s, n ∈ N0, such that s + 1 ≤ n, 0 ≤ j ≤ 2n − 2s, and without loss of generality n ≥ m.
The linearization formula for the Jacobi polynomials is given in Rahman [32, cf. p. 919] by

P (α,β)
m (x)P (α,β)

n (x) =
n+m∑

k=|n−m|

hα,βk,m,nP
(α,β)
k (x),

where

hα,βs+j,n−s,n :=
(α+ β + 1 + 2s+ 2j)n!2(n− s)!(s+ j)!

(α+ β + 1)(2s− 2n− α− β)s!j!
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× (β+1)n(α+β+1)2n−2s(α+β+1)2s+j(2s−2n)j(2α+2β+2n+2)j(α−β)j
(α+1)n(α+1)n−s(α+1)s+j(α+1)n−s(β+1)s(α+β+1)n−s(α+β+2)2n+j(2β+2s+2)j

× 9F8

 β+s+ 1
2 ,

β+s+ 3
2

2 , 2β+1
2 , β+n+1,

β+s+ 1
2

2 , s+1, 2s−2n+1
2 , α+β+j+2s+2

2 , 1−j2 ,− j
2

s−n−α, α+β+j+2s+1
2 , α+β+n+ 3

2 ,
β−α−j+2

2 , β−α−j+1
2 , 2β+2s+2+j

2 , 2β+2s+3+j
2

; 1

 .

There is a corresponding result proved by Rahman [33] for the 4φ3 continuous q-Jacobi polyno-
mials whose linearization coefficients are given in terms of a very well-poised 10φ9.

The best chance for finding generalized linearization coefficients which are hypergeometric
functions is for the Gegenbauer and continuous q-ultraspherical/Rogers polynomials. This is
because these linearization coefficients are given by products of Pochhammer symbols. Perhaps
other orthogonal polynomials in the (q-)Askey scheme are amenable to this calculation, but we
have yet to uncover further closed-form linearization formulae.

Motivations for considering ordinary linearization formulas and for connection formulas are
very clearly given in [3]. Generalized linearization formulas, have the same motivations amplified
by an ability to freely choose parameters. It has been suggested by an editor of the current special
issue that the most simple example of a generalized linearization formula involves Chebyshev
polynomials of the first kind [1, (6.4.13)]

Tn(x) =
1

εn
lim
µ→0

n+ µ

µ
Cµn(x) =

1

εn
lim
µ→0

(µ+ 1)n
(µ)n

Cµn(x),

where εn = 2− δn,0 is the Neumann factor, and Chebyshev polynomials of the second kind

Un(x) = C1
n(x).

For generic values of m and n, one has the following classical relations between the Chebyshev
polynomials of the first and second kind. For instance, we have the following linearization
formula [3, (5.1)]

Tm(x)Tn(x) =
1

2
(Tm+n(x) + Tm−n(x)),

and interrelation formula [31, (18.9.9)]

Tn(x) =
1

2
(Un(x)− Un−2(x)).

Hence there is

Tm(x)Tn(x) =
1

4

(
Um+n(x)− Um+n−2(x) + Um−n(x)− Um−n−2(x)

)
. (3.3)

The first two formulas are rewritings of standard trigonometric identities. The product
formula (3.3) is a degenerate case of the generalized linearization formula for Gegenbauer poly-
nomials

Cλm(x)Cλn(x) =

bm+n
2
c∑

k=0

fλ,µk,m,nC
µ
m+n−2k(x),

where fλ,µk,m,n ∈ R for λ, µ ∈ (−1/2,∞) \ {0}. We are able to compute explicitly the coefficients

fλ,µk,m,n which contain a terminating, balanced, well-poised 9F8(1) which satisfies [4, (7.6.1)]. We
plan to publish this generalized linearization formula elsewhere.
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4 Simplifying multiple summations

Posed by Charles F. Dunkl a and Christoph Koutschan b ∗

a) Department of Mathematics, University of Virginia, Charlottesville VA, 22904, USA
E-mail: cfd5z@virginia.edu

b) Johann Radon Institute for Computational and Applied Mathematics (RICAM),
Austrian Academy of Sciences, Linz, Austria
E-mail: christoph.koutschan@ricam.oeaw.ac.at

Here we describe a general problem area, rather than a specific open problem. In various
computations, such as connection coefficients of families of orthogonal polynomials, or multiple
iterated integrals, one arrives at a multiple sum of hypergeometric form. The classical series
of this type are the Lauricella series but typically more general series arise in practice (more
parameters for example). What is needed is a systematic approach to find simplification to
lower order summations when this is possible, or hopefully, when the answer is known. Roughly
speaking, one would want a collection of known formulas, like the single-sum hypergeometric for-
mulas with famous names (Gauss, Saalschütz, Dixon, Watson, . . . ). The state-of-the-art today
includes techniques for deriving recurrence or differential equations, by treating parameters in
the sum as variables; these techniques are referred to as the holonomic systems approach [40, 42],
and they are mainly based on the idea of creative telescoping. Several algorithms in this spirit
have been proposed, for example Zeilberger’s [41], Takayama’s [37], and Chyzak’s [12], to name
just a few of them. These algorithms work especially well when there is a closed form (products
of Pochhammer symbols, gamma functions, etc.), as the corresponding recurrence equation is of
first order and can easily be solved. However, when the resulting recurrence is of higher order,
it is more involved to find a nicer representation of the original sum, for example, as a single-
sum. To some extent the algorithms developed by Schneider [35] in the framework of difference
fields can be applied for this purpose. Nevertheless, it appears that often some human insight
is needed. For example one may have to postulate the form of the single sum and then apply
algorithms to prove the validity. We consider this as one of the key ingredients in this problem
area. We illustrate these ideas with two worked-out examples.

The first example is a double sum, which comes in a terminating and in a non-terminating
version; both have closed forms. For m,n = 0, 1, 2, . . . we define

S(m,n) :=
m∑
i=0

(−m)i(n+ 1)i
i!(m+ n+ 2)i

n∑
j=0

(−n)j
(
1
2 − n

)
j

j!
(
1
2

)
j

1

i+ j + 1
2

= 22m+2n
m!(m+ n)!(m+ n+ 1)!

(
1
2

)
n

n!(n+ 2m+ 1)!
(
1
2

)
m+n+1

.

The sum is of double hypergeometric series form because

1

i+ j + 1
2

= 2

(
1
2

)
i+j(

3
2

)
i+j

.

The sum is from [16]; the application is in [17]. There is a non-terminating form of this sum:
for n = 0, 1, 2, . . . , β /∈ N,

S(β, n) =
∞∑
j=0

(−β)j(n+ 1)j
j!(β + n+ 2)j

n∑
i=0

(
2n

2i

)
1

i+ j + 1
2

∗Christoph Koutschan was supported by the Austrian Science Fund (FWF): W1214.

mailto:cfd5z@virginia.edu
mailto:christoph.koutschan@ricam.oeaw.ac.at
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= 22β+2nB

(
β + 1, n+

1

2

)
Γ(n+ β + 2)Γ(n+ β + 1)

n!Γ(n+ 2β + 2)
.

This is so far unpublished; one proof relies on the Rogers–Dougall formula [30, (16.4.9)], [31,
(16.4.9)]. Alternatively, one can evaluate this double sum by computer algebra algorithms. We
first apply Zeilberger’s algorithm [41] to the inner sum (summation with respect to j), as it is
implemented in the HolonomicFunctions package [26], developed by one of us. It computes the
second-order recurrence

(i+ n+ 2)(2i+ 2n+ 5)T (i+ 2, n)

=
(
4i2 + 4in+ 12i+ 2n2 + 5n+ 9

)
T (i+ 1, n)− (i+ 1)(2i+ 1)T (i, n),

where

T (i, n) :=

n∑
j=0

(−n)j
(
1
2 − n

)
j

j!
(
1
2

)
j

1

i+ j + 1
2

,

and a similar, again second-order, recurrence with respect to the parameter n. We find that
T (i, n) is not a hypergeometric term, so Zeilberger’s algorithm cannot be applied to perform
the summation with respect to i. Instead, we use its generalization, Chyzak’s algorithm [12]. It
computes the two first-order recurrences

(n+ 1)(2m+ n+ 2)(2m+ 2n+ 3)S(m,n+ 1)

= 4(2n+ 1)(m+ n+ 1)(m+ n+ 2)S(m,n)

and

(2m+ n+ 2)(2m+ n+ 3)(2m+ 2n+ 3)S(m+ 1, n)

= 8(m+ 1)(m+ n+ 1)(m+ n+ 2)S(m,n),

from which the closed-form evaluation readily follows.
Our second example is the reduction of a double sum to a single sum (the problem arose in

an integral over the compact group Sp(2) [15]). For (α1, α2, α3, α4) ∈ N4
0 such that α1 ≡ α2 ≡

α3 ≡ α4 mod 2 (all even or all odd), let

b0 =
α2 + α3

2
, b1 =

α1 + α4

2
, b2 =

α2 + α4

2
, b3 =

α3 + α4

2
.

Then consider the following double sum (a terminating Kampé de Fériet double hypergeo-
metric series of order 3 [18, p. 244], with 5 numerator and 3 denominator parameters, and
argument (1,1))

s(α1, α2, α3, α4) :=
(2κ)2b1(2κ)2b0

(
1
2

)
b1

(
1
2

)
b0

(
1
2

)
b3

(4κ)2b1+2b0

(
κ+ 1

2

)
b1

(
κ+ 1

2

)
b0

(
κ+ 1

2

)
b3

×
bα4/2c∑
i=0

bα3/2c∑
j=0

(−α4)2i(−α3)2j(κ)i+j

i!j!
(
1
2 − b1

)
i

(
1
2 − b0

)
j

(
1
2 − b3

)
i+j

2−2i−2j

=:
(2κ)2b1(2κ)2b0

(4κ)2b1+2b0

s′(α1, α2, α3, α4).

The simplification is

s′(α1, α2, α3, α4) =

(
1
2

)
b1

(
1
2

)
b2

(
1
2

)
b3(

κ+ 1
2

)
b1

(
κ+ 1

2

)
b2

(
κ+ 1

2

)
b3

bα4/2c∑
i=0

(
−α4

2

)
i

(
1−α4

2

)
i
(κ)i(−κ− b1 − b0)i

i!
(
1
2 − b1

)
i

(
1
2 − b2

)
i

(
1
2 − b3

)
i

.

http://www.risc.jku.at/research/combinat/software/HolonomicFunctions
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The latter sum is a terminating balanced 4F3-series. By use of the Whipple transformation it can
be shown that s′ is completely symmetric in its arguments. An intermediate step in formulating
the single sum was to discover the recurrence

α1α4

(
κ+

1

2
(α2 + α3 + 1)

)
s′(α1 − 1, α2 + 1, α3 + 1, α4 − 1)

+
1

2

(
α2α3(α1 + α4 + 1)− α1α4(α2 + α3 + 1)

)
s′(α1, α2, α3, α4)

= α2α3

(
κ+

1

2
(α1 + α4 + 1)

)
s′(α1 + 1, α2 − 1, α3 − 1, α4 + 1).

Once the single-sum representation is conjectured, it is again more or less routine to prove
that it is equal to the original double sum s(α1, α2, α3, α4), although the computations get a bit
more involved now. Here it is convenient to consider the two cases (even and odd) separately. We
found that Takayama’s algorithm [37] works best in this example, again using the implementation
described in [26]. For each side of the identity, it derives a set of three-term recurrence equations
in the parameters α1, α2, α3, α4; in more technical terms this means that the two annihilators
have both holonomic rank 2. It turns out that the recurrences for the left-hand side perfectly
agree with those for the right-hand side. Hence by comparing a few initial values the identity is
established.

5 Four open problems in orthogonal polynomials
and random matrices

Posed by Sheehan Olver ∗

School of Mathematics and Statistics, The University of Sydney, New South Wales, Australia
E-mail: Sheehan.Olver@sydney.edu.au

5.1 Existence of a fast discrete spherical harmonic transform

Does there exist an algorithm that can efficiently convert from values of a function evaluated
on a grid on the sphere to spherical harmonic coefficients, and vice-versa? Ideally, such an
algorithm would be roughly of complexity O(n log n) for a grid of n points.

5.2 Easy-to-use software for uniform asymptotics of orthogonal polynomials

Is it possible to make uniform asymptotics with error bounds easy-to-use, for general orthogo-
nal polynomials? Recent work on quadrature [20, 39] and fast transforms [21] is built-up from
uniform asymptotics, where error bounds are necessary to ensure accuracy and to optimize com-
plexity. Riemann–Hilbert problems allow for uniform asymptotics for general orthogonal polyno-
mials [13, 14, 27], however, the methodology is hard to use for non-experts. A software package
that would take in a general weight and return the uniform asymptotic expansion would be ideal.

5.3 Spectrum of a finite-dimensional random symmetric Bernoulli matrix

What is the spectrum of a finite-dimensional random symmetric Bernoulli matrix? A random
symmetric Bernoulli matrix consists of entries that are randomly ±1, subject to a symmetry
condition. What is the spectrum of a finite-dimensional random symmetric Bernoulli matrix?
Unlike other symmetric random matrices such as Gaussian Orthogonal Ensemble (GOE), these

∗Sheehan Olver would like to acknowledge Deniz Bilman, Andrew Swan, Alex Townsend, and Thomas Trogdon
for helping to pose his list of questions.

mailto:Sheehan.Olver@sydney.edu.au
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only have a finite number of configurations of eigenvalues. While such matrices fall into the
general framework of universality for Wigner ensembles [19, 38] (describing the asymptotics of
the spectrum), this does not explain the finite-dimensional picture.

5.4 Existence of a Wigner-like family corresponding
to general invariant ensembles

Does there exist a Wigner-like family corresponding to general invariant ensembles? For special
cases we know such families exist. For example, the Wigner ensembles have the same limiting
spectral density as a Gaussian Unitary Ensemble (GUE). Similarly, the Wishart ensembles have
the same limiting spectral density as a Laguerre Unitary Ensembles (LUE).

6 Positivity of an integral involving Gegenbauer polynomials

Posed by Rick Beatson a, Wolfgang zu Castell b and Yuan Xu c

a) Department of Mathematics and Statistics, University of Canterbury,
Christchurch, New Zealand
E-mail: r.beatson@math.canterbury.ac.nz

b) Department of Scientif ic Computing, Helmholtz Zentrum München,
German Research Center for Environmental Health, Neuherberg, Germany
E-mail: castell@helmholtz-muenchen.de

c) Department of Mathematics, University of Oregon, Eugene, OR, 97403, USA
E-mail: yuan@uoregon.edu

The following conjecture was stated in [5, Conjecture 1.4].

Conjecture 6.1. Let δ > 0, λ > 0 and n ∈ N0. For every 0 < t < π, define

F λ,δn (t) =

∫ t

0
(t− θ)δCλn(cos θ)(sin θ)2λdθ.

Then F λ,δn (t) > 0 for all t in (0, π] if and only if δ ≥ λ+ 1.

It is known that if F λ,δn (t) ≥ 0, then F λ,γn (t) ≥ 0 for γ > δ. For λ > 0, let F λn (t) := F λ,λ+1
n (t).

It is proved in [5] that F λn (t) ≥ 0 if λ = d−2
2 and d = 4, 6, 8.

The conjecture is associated with the study of positive definite functions on the unit sphere.
Under the assumption that F λn is nonnegative for λ = d−2

2 and all n ∈ N0, a Pólya criterion for
positive definite functions on the sphere Sd−1 is established in [5].

7 A family of polynomials related
to a multiple zeta values identity

Posed by Wadim Zudilin

School of Mathematical and Physical Sciences, University of Newcastle,
Callaghan NSW 2308, Australia
E-mail: wzudilin@gmail.com

The multiple zeta values (MZVs) are defined for positive integers s1, s2, . . . , sl with s1 > 1
as the values of the convergent series

ζ(s1, s2, . . . , sl) =
∑

n1>n2>···>nl≥1

1

ns11 n
s2
2 · · ·n

sl
l

.

mailto:r.beatson@math.canterbury.ac.nz
mailto:castell@helmholtz-muenchen.de
mailto:yuan@uoregon.edu
mailto:wzudilin@gmail.com
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They satisfy numerous identities (some of which remain conjectural) and attract considerable
interest of scientists working in number theory, algebraic geometry and mathematical physics.

The easiest identity is ζ(2, 1) = ζ(3). It was already given by Euler centuries ago. It in fact
generalizes to the form

ζ(2, 1, 2, 1, . . . , 2, 1︸ ︷︷ ︸
2l entries

) = ζ(3, 3, . . . , 3︸ ︷︷ ︸
l entries

)

for l = 1, 2, 3, . . . , an identity that can be proved by using a suitable integral representation
of MZVs. There is a different proof of the identity in which certain biorthogonally looking
polynomials show up. Namely, the polynomials form the one-parameter family

Bα
n (t) =

1

n!

n∑
k=0

(ωt)k(ω
2t)k(α+ t)n−k(α− t+ k)n−k

k! (n− k)!
,

where ω = exp(2πi/3) is the cubic root of unity. Though it is not obvious from the representa-
tion, we have Bα

n (t) ∈ C[t3] for n = 0, 1, 2, . . . , so that we can view Bα
n as polynomials in x = t3.

To prove that Bα
n (t) ∈ C[t3], one can use the 3-term recurrence relation(

(n+ α)3 − t3
)
Bα
n − (n+ 1)

(
2n2 + 3n(α+ 1) + α2 + 3α+ 1

)
Bα
n+1

+ (n+ 2)2(n+ 1)Bα
n+2 = 0

and the initial conditions Bα
0 = 1, Bα

1 = α2, satisfied by the polynomials. It is not hard to
see from the recursion that the x-polynomials Bα

n have degree [n/2]. What is more surprising
(but observed experimentally only) is that the zeroes of the polynomials are all real and follow
a certain distribution on the negative half-line (−∞, 0).

A modified version of the MZV identity,∑
n1>m1>n2>m2>···>nl>ml≥1

(−1)n1+n2+···+nl

n21m1n22m2 · · ·n2lml

= 8l
∑

n1>m1>n2>m2>···>nl>ml≥1

1

n21m1n22m2 · · ·n2lml

for l = 1, 2, 3, . . . , has been recently established using a cumbersome machinery of MZVs. The
identity is equivalent to proving that the polynomials An(t) ∈ Q[t3] (of degree [n/2] in x = t3)
produced by the recursion(

n3 − (−1)nt3
)
An(t) + (n+ 1)2(2n+ 1)An+1(t) + (n+ 2)2(n+ 1)An+2(t) = 0

and the initial conditions A0 = 1, A1 = 0 (no closed-form is known!) satisfy

∞∑
k=0

Ak(t) =

∞∏
j=1

(
1 +

t3

8j3

)
.

Equivalently, the polynomials Ãn(t) =
n∑
k=0

Ak(t) that come from the recursion

(
n3 − (−1)nt3

)
Ãn−1 + (2n+ 1)nÃn − (n+ 1)2nÃn+1 = 0 (7.1)

satisfy

lim
n→∞

Ãn(t) =
∞∏
j=1

(
1 +

t3

8j3

)
.

Note that the zeroes of the polynomials An(t) and Ãn(t) are also expected to lie on the negative
half-line (−∞, 0). The details of the story can be found in [43].
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Questions 7.1. Is there an argument to deduce the limit of Ãn(t) as n→∞ using the recurrence
relation for the polynomials (7.1)? Can the polynomials An(t) and Ãn(t) be given in an explicit
hypergeometric form?
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[19] Erdős L., Péché S., Ramı́rez J.A., Schlein B., Yau H.-T., Bulk universality for Wigner matrices, Comm.
Pure Appl. Math. 63 (2010), 895–925, arXiv:0905.4176.

[20] Hale N., Townsend A., Fast and accurate computation of Gauss–Legendre and Gauss–Jacobi quadrature
nodes and weights, SIAM J. Sci. Comput. 35 (2013), A652–A674.

[21] Hale N., Townsend A., A fast, simple, and stable Chebyshev–Legendre transform using an asymptotic
formula, SIAM J. Sci. Comput. 36 (2014), A148–A167.

http://dx.doi.org/10.1017/CBO9781107325937
http://dx.doi.org/10.1016/j.jat.2016.02.009
http://arxiv.org/abs/1408.5349
http://dx.doi.org/10.1093/imanum/drt008
http://dx.doi.org/10.1093/imanum/drt008
http://arxiv.org/abs/1110.2437
http://dx.doi.org/10.1016/0022-247X(68)90037-1
http://dx.doi.org/10.2307/1999865
http://dx.doi.org/10.1216/rmjm/1181072999
http://dx.doi.org/10.1016/S0377-0427(02)00883-X
http://dx.doi.org/10.1016/S0012-365X(99)00259-9
http://dx.doi.org/10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.3.CO;2-R
http://dx.doi.org/10.1017/S0017089507003709
http://arxiv.org/abs/math.CA/0607823
http://arxiv.org/abs/1412.4022
http://dx.doi.org/10.1142/S2010326315500185
http://arxiv.org/abs/1501.02289
http://dx.doi.org/10.1002/cpa.20317
http://dx.doi.org/10.1002/cpa.20317
http://arxiv.org/abs/0905.4176
http://dx.doi.org/10.1137/120889873
http://dx.doi.org/10.1137/120889873


12 H.S. Cohl
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