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Abstract. In this paper, we study the formal solution space of a nonlinear PDE in a fiber
bundle. To this end, we start with foundational material and introduce the notion of a pfd
structure to build up a new concept of profinite dimensional manifolds. We show that the
infinite jet space of the fiber bundle is a profinite dimensional manifold in a natural way.
The formal solution space of the nonlinear PDE then is a subspace of this jet space, and
inherits from it the structure of a profinite dimensional manifold, if the PDE is formally
integrable. We apply our concept to scalar PDEs and prove a new criterion for formal inte-
grability of such PDEs. In particular, this result entails that the Euler–Lagrange equation
of a relativistic scalar field with a polynomial self-interaction is formally integrable.
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1 Introduction

Even though it appears to be unsolvable in general, the problem to describe the moduli space
of solutions of a particular nonlinear PDE has led to powerful new results in geometric analysis
and mathematical physics. Notably this can be seen, for example, by the fundamental work
on the structure of the moduli space of Yang–Mills equations [5, 15, 46]. Among the many
challenging problems which arise when studying moduli spaces of solutions of nonlinear PDEs
is that the space under consideration does in general not have a manifold structure, usually not
even one modelled on an infinite dimensional Hilbert or Banach space. Moreover, the solution
space can possess singularities. A way out of this dilemma is to study compactifications of
the moduli space like the completion of the moduli space with respect to a certain Sobolev
metric, cf. [20]. Another way, and that is the one we are advocating in this article, is to consider
a “coarse” moduli space consisting of so-called formal solutions of a PDE, i.e., the space of those
smooth functions whose power series expansion at each point solves the PDE. In case the PDE
is formally integrable in a sense defined in this article, the formal solution space turns out to be
a profinite dimensional manifold. These possibly infinite dimensional spaces are ringed spaces
which can be regarded as projective limits of projective systems of finite dimensional manifolds.

Profinite dimensional manifolds appear naturally in several areas of mathematics, in par-
ticular in deformation quantization, see for example [34], the structure theory of Lie-projective
groups [8, 26], in connection with functional integration on spaces of connections [4], and in the
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secondary calculus invented by Vinogradov [9, 27, 48] which inspired the approach in this paper,
cf. in particular [27, Chapter 7]. It is to be expected that the theory of profinite dimensional
manifolds as set up in this paper will have further applications, for example for the (classical)
perturbation theory of PDEs in mathematical physics, where one should understand a pertur-
bation as a deformation, i.e., a smooth family of profinite dimensional solution manifolds of
a (formally integrable) PDE depending on a parameter. Work on this is in progress.

The paper consists of two main parts. The first, Section 3, lays out the foundations of the
theory of profinite dimensional manifolds. Besides the papers [7] and [1], where the latter is
taylored towards explaining the differential calculus by Ashtekar and Lewandowski [4], literature
on profinite dimensional manifolds is scarce. Moreover, our approach to profinite dimensional
manifolds is novel in the sense that we define them as ringed spaces together with a so-called
pfd structure, which consists not only of one but a whole equivalence class of representations
by projective systems of finite dimensional manifolds. The major point hereby is that all the
projective systems appearing in the pfd structure induce the same structure sheaf, which allows
to define differential geometric concepts depending only on the pfd structure and not a particular
representative. One way to construct differential geometric objects is by dualizing projective
limits of manifolds to injective limits of, for example, differential forms, and then sheafify the
thus obtained presheaves of “local” objects. Again, it is crucial to observe that these sheaves are
independent of the particular choice of a representative within the pfd structure, whereas the
“local” objects obtain a filtration which depends on the choice of a particular representative.
Using variants of this approach or directly the structure sheaf of smooth functions, we introduce
in Section 3 tangent bundles of profinite dimensional manifolds and their higher tensor powers,
vector fields, and differential forms.

The second main part is Section 4, where we introduce the formal solution space of a nonlinear
PDE. We first explain the necessary concepts from jet bundle theory and on prolongations
of PDEs in fiber bundles, following essentially Goldschmidt [24], cf. also [9, 36, 48, 49]. In
Section 4.2.2 we introduce in the jet bundle setting a notion of an operator symbol of a nonlinear
PDE such that, in the linear case, it coincides with the well-known (principal) symbol of a partial
differential operator up to canonical isomorphisms. The corresponding result, Proposition 4.18,
appears to be folklore; see [44] and [27, Section IV.2] for related work. Afterwards, we show
that the bundle of infinite jets is a profinite dimensional manifold. This result immediately
entails that the formal solution space of a formally integrable PDE is a profinite dimensional
submanifold of the infinite jet bundle. Finally, in Section 4.4, we consider scalar PDEs. We
prove there a widely applicable criterion for the formal integrability of scalar PDEs, which to
our knowledge has not appeared in the mathematical literature yet. Moreover, we conclude from
our criterion that the Euler–Lagrange equation of a relativistic scalar field with a polynomial
self-interaction on an arbitrary Lorentzian manifold is formally integrable, so its formal solution
space is a profinite dimensional manifold. We expect that this observation will be of avail
when clarifying the Poisson structure [33, 49, 50] and quantization theory – possibly through
deformation – of such scalar field theories, cf. [16, 38].

2 Some notation

Let us introduce some notation and conventions which will be used throughout the paper.
If nothing else is said, all manifolds and corresponding concepts, such as submersions, bundles

etc., are understood to be smooth and finite dimensional. The symbol Tk,l stands for the functor
of k-times contravariant and l-times covariant tensors, where as usual T := T1,0 and T∗ := T0,1.
If X is a manifold, then the corresponding tensor bundles will be denoted by πTk,lX : Tk,lX → X.
Moreover, we write X ∞ and Ωk for the sheaves of smooth vector fields and of smooth k-forms,
respectively.
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Given a fibered manifold, i.e., a surjective submersion π : E → X, we write Γ∞(π) for the
sheaf of smooth sections of π. Its space of sections over an open U ⊂ X will be denoted
by Γ∞(U ;π). The set of local smooth sections of π around a point p ∈ M is the set of smooth
sections defined on some open neighborhood of p and will be denoted by Γ∞(p;π). The stalk
at p then is a quotient space of Γ∞(p;π) and is written as Γ∞p (π).

The vertical vector bundle corresponding to the fibered manifold π is defined as the subvector
bundle

πV : V(π) := ker(Tπ) −→ E

of πTE : TE → E. If π′ : E′ → X is a second fibered manifold, the vertical morphism corre-
sponding to a morphism h : E → E′ of fibered manifolds over X is given by

hV : V(π) −→ V(π′), v 7−→ Th(v).

If π : E → X is a vector bundle, then the fibers of π are R-vector spaces, hence one can
apply tensor functors fiberwise to obtain the corresponding tensor bundles. In particular,
π�

k
: Sk(π)→ X will stand for the k-fold symmetric tensor product bundle of π.

Finally, unless otherwise stated, the notions “projective system” and “projective limit” will
always be understood in the category of topological spaces, where they of course exist; see [18,
Chapter VIII, Section 3]. In fact, given such a projective system (Mi, µij)i,j∈N,i≤j , a distinguished
projective limit is given as follows. Define

M :=

{
(pi)i∈N ∈

∏
i∈N

Mi |µij(pj) = pi for all i, j ∈ N with i ≤ j
}

to be the subspace of all threads in the product, and the continuous maps µj : M → Mj as
the restrictions of the canonical projections

∏
i∈NMi → Mj to M . Then one obviously has

µij ◦ µj = µi for all i, j ∈ N with i ≤ j. Note that a basis of the topology of M is given by the
set of all open sets of the form µ−1

i (U), where i ∈ N and U ⊂ Mi is open. In the following, we
will refer to the thus defined M together with the maps (µi)i∈N as the canonical projective limit
of (Mi, µij)i,j∈N,i≤j , and denote it by M = lim

←−
i∈N

Mi.

3 Profinite dimensional manifolds

In this section, we introduce the concept of profinite dimensional manifolds and establish the
differential geometric foundations of this new category. For comparison and further reading on
this topic we refer to [1, 14] and [34, Section 1.4].

3.1 The category of profinite dimensional manifolds

The following definition lies in the center of the paper:

Definition 3.1.

a) By a smooth projective system we understand a family (Mi, µij)i,j∈N,i≤j of smooth mani-
folds Mi and surjective submersions µij : Mj → Mi for i ≤ j such that the following
conditions hold true:

(SPS1) µii = idMi for all i ∈ N.

(SPS2) µij ◦ µjk = µik for all i, j, k ∈ N such that i ≤ j ≤ k.
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b) If (M ′a, µ
′
ab)a,b∈N, a≤b denotes a second smooth projective system, a morphism of smooth

projective systems between (Mi, µij)i,j∈N, i≤j and (M ′a, µ
′
ab)a,b∈N, a≤b is a pair (ϕ, (Fa)a∈N)

consisting of a strictly increasing map ϕ : N → N and a family of smooth maps Fa :
Mϕ(a) →M ′a, a ∈ N such that for each pair a, b ∈ N with a ≤ b the diagram

Mϕ(a)

Fa
��

Mϕ(b)

µϕ(a)ϕ(b)oo

Fb
��

M ′a M ′b
µ′aboo

commutes. We usually denote a smooth projective system shortly by
(
Mi, µij

)
and write

(ϕ, Fa) : (Mi, µij) −→ (M ′a, µ
′
ab)

to indicate that (ϕ, (Fa)a∈N) is a morphism of smooth projective systems. If each of the
maps Fa is a submersion (resp. immersion), we call the morphism (ϕ, Fa) a submersion
(resp. immersion).

c) Two smooth projective systems (Mi, µij) and (M ′a, µ
′
ab) are called equivalent, if there are

surjective submersions

(ϕ, Fa) : (Mi, µij) −→ (M ′a, µ
′
ab), (ψ,Gi) : (M ′a, µ

′
ab) −→ (Mi, µij)

such that the diagrams

Mi Mϕ(ψ(i))

µi ϕ(ψ(i))oo

Fψ(i)zz
M ′ψ(i)

Gi

aa and M ′a M ′ψ(ϕ(a))

µ′
aψ(ϕ(a))oo

Gϕ(a)zz
Mϕ(a)

Fa

bb

commute for all i, a ∈ N. A pair of such surjective submersions will be called an equivalence
transformation of smooth projective systems.

Remark 3.2. In the definition of smooth projective systems and later in the one of smooth
projective representations we use the partially ordered set N as index set. Obviously, N can
be replaced there by any partially ordered set canonically isomorphic to N such as an infinite
subset of Z bounded from below. We will silently use this observation in later applications for
convenience of notation.

Example 3.3.

a) Let M be a manifold. Then (Mi, µij) with Mi := M and µij := idM for i ≤ j is a smooth
projective system which we call constant and which we denote shortly by (M, idM ).

b) Assume that for i ≤ j one has given surjective linear maps λij : Vj → Vi between real
finite dimensional vector spaces such that (SPS1) and (SPS2) are satisfied. Then (Vi, λij) is
a smooth projective system. For example, this situation arises in deformation quantization
of symplectic manifolds when constructing the completed symmetric tensor algebra of
a finite dimensional real vector space; see [34] for details. Of course, a simpler example is
given by the canonical projections πij : Rj → Ri onto the first i coordinates, hence (Ri, πij)
is a (non-trivial) smooth projective system.
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c) In the structure theory of topological groups [8, 26] one considers smooth projective sys-
tems (Gi, ηij) such that each Gj is a Lie group and the ηij : Gj → Gi are continuous group
homomorphisms. See Example 3.8(c) below for a precise description of the projective
limits of such projective systems of Lie groups.

d) The tower of k-jets over a fiber bundle together with their canonical projections forms
a smooth projective system (see Section 4.1).

Within the category of (smooth finite dimensional) manifolds, a projective limit of a smooth
projective system obviously does in general not exist. In the following, we will enlarge the cate-
gory of manifolds by the so-called profinite dimensional manifolds (and appropriate morphisms).
The thus obtained category will contain projective limits of smooth projective systems.

Definition 3.4.

a) By a smooth projective representation of a commutative locally R-ringed space (M,C∞M )
we understand a smooth projective system (Mi, µij) together with a family of continuous
maps µi : M →Mi, i ∈ N, such that the following conditions hold true:

(PFM1) As a topological space, M together with the family of maps µi, i ∈ N, is a pro-
jective limit of (Mi, µij).

(PFM2) The section space C∞M (U) of the structure sheaf over an open subset U ⊂ M is
given by the set of all f ∈ C (U) such that for every p ∈ U there exists an i ∈ N,
an open Ui ⊂Mi and an fi ∈ C∞(Ui) such that p ∈ µ−1

i (Ui) ⊂ U and

f|µ−1
i (Ui)

= fi ◦ µi|µ−1
i (Ui)

hold true.

We usually denote a smooth projective representation briefly as a family (Mi, µij , µi).

b) A smooth projective representation (Mi, µij , µi) of (M,C∞M ) is said to be regular, if each
of the maps µij : Mj →Mi is a fiber bundle.

c) Two smooth projective representations (Mi, µij , µi) and (M ′a, µ
′
ab, µ

′
a) of (M,C∞M ) are

called equivalent, if there is an equivalence transformation of smooth projective systems

(ϕ, Fa) : (Mi, µij) −→ (M ′a, µ
′
ab), (ψ,Gi) : (M ′a, µ

′
ab) −→ (Mi, µij)

such that

µi = Gi ◦ µ′ψ(i) and µ′a = Fa ◦ µϕ(a) for all i, a ∈ N.

In the following, we will sometimes call such a pair of surjective submersions an equivalence
transformation of smooth projective representations. The equivalence class of a smooth
projective system (Mi, µij , µi) will be simply denoted by [(Mi, µij , µi)] and called a pfd
structure on (M,C∞M ).

Proposition 3.5. Let (M,C∞M ) be a commutative locally R-ringed space with a smooth projec-
tive representation (Mi, µij , µi). Assume further that (M ′a, µ

′
ab) is a smooth projective system

which is equivalent to (Mi, µij). Then there are continuous maps µ′a : M → M ′a, a ∈ N, such
that (M ′a, µ

′
ab, µ

′
a) becomes a smooth projective representation of (M,C∞M ) which is equivalent to

(Mi, µij , µi).
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Proof. Choose an equivalence transformation of smooth projective systems

(ϕ, Fa) : (Mi, µij) −→ (M ′a, µ
′
ab), (ψ,Gi) : (M ′a, µ

′
ab) −→ (Mi, µij).

Put µ′a := Fa ◦µϕ(a). Let us show first that M together with the family of continuous maps µ′a,
a ∈ N is a projective limit of

(
M ′a, µ

′
ab

)
. So assume that X is a topological space, and ha : X →

M ′a, a ∈ N a family of continuous maps such that ha = µ′ab ◦hb for a ≤ b. Since M is a projective
limit of (Mi, µij), there exists a uniquely determined h : X → M such that µi ◦ h = Gi ◦ hψ(i)

for all i ∈ N. But then

µ′a ◦ h = Fa ◦ µϕ(a) ◦ h = Fa ◦Gϕ(a) ◦ hψ(ϕ(a)) = µ′aψ(ϕ(a)) ◦ hψ(ϕ(a)) = ha.

Moreover, if h̃ : X → M is a continuous function such that µ′a ◦ h̃ = ha for all a ∈ N, one
computes

µi ◦ h̃ = µiϕ(ψ(i)) ◦ µϕ(ψ(i)) ◦ h̃ = Gi ◦ Fψ(i) ◦ µϕ(ψ(i)) ◦ h̃ = Gi ◦ µ′ψ(i) ◦ h̃ = Gi ◦ hψ(i).

Since M is a projective limit of (Mi, µij), this entails h̃ = h. This proves that M is a projective
limit of (M ′a, µ

′
ab).

Next let us show that (PFM2) holds true with the µi replaced by the µ′a. So let U ⊂ M be
open, f ∈ C∞M (M), and p ∈ U . Choose i ∈ N such that there is an open Ui ⊂Mi and a smooth
fi : Ui → R with p ∈ µ−1

i (Ui) ⊂ U and f|µ−1
i (Ui)

= fi ◦ µi|µ−1
i (Ui)

. Put a := ψ(i), Va := G−1
i (Ui),

and define f̃a : Va → R by f̃a := fi ◦Gi|Va . Then f̃a is smooth, and

f̃a ◦ µ′a|µ′a−1(Va) = fi ◦Gi ◦ Fψ(i) ◦ µϕ(ψ(i))|µ′a−1(Va)

= fi ◦ µiϕ(ψ(i)) ◦ µϕ(ψ(i))|µ′a−1(Va)
= fi ◦ µi|µ′a−1(Va) = f|µ′a−1(Va),

where we have used that µ′a
−1(Va) = µ−1

i (Ui). Similarly one shows that a continuous f̃ : U → R
is an element of C∞M (U), if for every p ∈ U there is an a ∈ N, an open Va ⊂ M ′a, and a smooth

function f̃a : Va → R such that p ∈ µ′a
−1(Va) ⊂ U and f̃a ◦ µ′a|µ′a−1(Va) = f̃|µ′a−1(Va).

Finally, it remains to prove that µi = Gi ◦ µ′ψ(i) for all i ∈ N, but this follows from

Gi ◦ µ′ψ(i) = Gi ◦ Fψ(i) ◦ µϕ(ψ(i))) = µiϕ(ψ(i))) ◦ µϕ(ψ(i))) = µi.

This finishes the proof. �

Remark 3.6. The preceding proposition entails that the structure sheaf of a commutative
locally R-ringed space (M,C∞M ) for which a smooth projective representation (Mi, µij , µi) exists
depends only on the equivalence class [(Mi, µij , µi)].

The latter remark justifies the following definition:

Definition 3.7.

a) By a profinite dimensional manifold we understand a commutative locally R-ringed space
(M,C∞M ) together with a pfd structure defined on it. The profinite dimensional manifold
(M,C∞M ) is called regular, if there exists a regular smooth representation within the pfd
structure on (M,C∞M ).

b) Assume that (M,C∞M ) and (N,C∞N ) are profinite dimensional manifolds. Then a contin-
uous map f : M → N is said to be smooth, if the following condition holds true:
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for every open U ⊂ N , and g ∈ C∞N (U) one has

g ◦ f|f−1(U) ∈ C∞M
(
f−1(U)

)
.

By definition, it is clear that the composition of smooth maps between profinite dimensional
manifolds is smooth, hence profinite dimensional manifolds and the smooth maps between them
as morphisms form a category, the isomorphisms of which can be safely called diffeomorphisms.
All of this terminology is justified by the simple observation Example 3.8(a) below.

Example 3.8.

a) Given a manifold M , the constant smooth projective system (M, idM ) defines a smooth
projective representation for the ringed space (M,C∞M ). Hence, every manifold is a profini-
te dimensional manifold in a natural way, and the category of manifolds a full subcategory
of the category of profinite dimensional manifolds.

b) Assume that (Mi, µij) is a smooth projective system. Let

M := lim
←−
i∈N

Mi

together with the natural projections µi : M → Mi denote the canonical projective limit
of
(
Mi, µij

)
. Then, (PFM1) is fulfilled by assumption, and it is immediate that M carries

a uniquely determined structure sheaf C∞M which satisfies (PFM2). The locally ringed
space (M,C∞M ) together with the pfd structure [(Mi, µij , µi)] then is a profinite dimensional
manifold. This profinite dimensional manifold is even a projective limit of the projective
system (Mi, µij) within the category of profinite dimensional manifolds. We therefore
write in this situation(

M,C∞M
)

= lim
←−
i∈N

(
Mi,C

∞
Mi

)
and call (M,C∞M ) (together with [(Mi, µij , µi)]) the canonical smooth projective limit of
(Mi, µij).

c) A locally compact Hausdorff topological group G is called Lie projective, if every neigh-
bourhood of the identity contains a compact Lie normal subgroup, i.e., a normal subgroup
N ⊂ G such that G/N is a Lie group. One has the following structure theorem [8, Theo-
rem 4.4], [26]. A locally compact metrizable group G is Lie projective, if and only if there is
a smooth projective system (Gi, ηij) as in Example 3.3(c) together with continuous group
homomorphisms ηi : G→ Gi, i ∈ N such that (G, ηi) is a projective limit of (Gi, ηij). Again,
it follows that G carries a uniquely determined structure sheaf C∞G satisfying (PFM2). The
locally ringed space (G,C∞G ) together with the pfd structure [(Gi, ηij , ηi)] becomes a re-
gular profinite dimensional manifold with a group structure such that all of its structure
maps are smooth.

d) The space of infinite jets over a fiber bundle canonically is a profinite dimensional manifold
(see Section 4.3).

Remark 3.9.

a) In the sequel, (M,C∞M ) or briefly M will always denote a profinite dimensional manifold.
Moreover, (Mi, µij , µi) always stands for a smooth projective representation defining the
pfd structure on M . The sheaf of smooth functions on a profinite dimensional manifold
will often briefly be denoted by C∞, if no confusion can arise.
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b) One of the intentions when constructing the category of profinite dimensional manifolds
was that it should be a category with projective limits which extends the one of smooth
manifolds and that it is minimal in a certain sense with respect to these properties. The
category of profinite dimensional manifolds fulfills these requirements. That it extends
the category of manifolds follows from Example 3.8(a). By a straightforward argument
using the ‘diagonal trick’ for doubly projective limits one concludes that the category of
profinite dimensional manifolds contains all projective limits. The minimality requirement
is a direct consequence of the definition of profinite dimensional manifolds as abstract
projective limits of manifolds.

c) The profinite dimensional manifolds defined in this paper coincide with the projective
limits of manifolds from [1], but are in general not plb-manifolds in the sense of [14,
Definition 3.1.2]. The latter have the property that they can be modelled locally on
Fréchet spaces representable as projective limits of Banach spaces. A profinite dimensional
manifold of infinite dimension, though, can in general not locally be modelled by open
subsets of R∞. In particular when the underlying profinite dimensional manifold is given
as the manifold of formal solutions of a formally integrable PDE in the sense of Proposition
and Definition 4.29 corresponding local charts with values R∞ appear to exist only in
particular cases. A more detailed study of this phenomenon is left for future work.

Let N ⊂M be a subset, and assume further that for some smooth projective representation
(Mi, µij , µi) of the pfd structure on M the following holds true:

(PFSM1) There is a stricly increasing sequence (li)i∈N such that for every i ∈ N the set Ni :=
µli(N) is a submanifold of Mli .

(PFSM2) One has N =
⋂
i∈N

µ−1
li

(Ni).

(PFSM3) The induced map

νij := µlilj |Nj
: Nj −→ Ni

is a submersion for all i, j ∈ N with j ≥ i.

Observe that the νij are surjective by definition of the manifolds Ni and by νi = νij ◦ νj , where
we have put νi := µ′li |N . In particular, (Ni, νij) becomes a smooth projective system.

Proposition and Definition 3.10. Let N ⊂ M be a subset such that for some smooth pro-
jective representation (Mi, µij , µi) of the pfd structure on M the axioms (PFSM1) to (PFSM3)
are fulfilled. Then N carries in a natural way the structure of a profinite dimensional manifold
such that its sheaf of smooth functions coincides with the sheaf C∞|N of continuous functions on
open subset of N which are locally restrictions of smooth functions on M . A smooth projective
representation of N defining its natural pfd structure is given by the family (Ni, νij , νi). From
now on, such a subset N ⊂ M will be called a profinite dimensional submanifold of M , and
(Mi, µij , µi) a smooth projective representation of M inducing the submanifold structure on N .

Proof. We first show that N together with the maps νi is a (topological) projective limit of
the projective system (Ni, νij). Let pi ∈ Ni, i ∈ N such that νij(pj) = pi for all j ≥ i. Since M
together with the µi is a projective limit of (Mi, µij), there exists an p ∈M such that µli(p) = pi
for all i ∈ N. By axiom (PFSM2), p ∈ N , hence one concludes that N is a projective limit of
the manifolds Ni.

Next, we show that C∞|N coincides with the uniquely determined sheaf C∞N satisfying axiom

(PFM2). Since the canonical embeddings Ni ↪→ Mli are smooth by (PFSM1), the embedding
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N ↪→M is smooth as well, and C∞|N is a subsheaf of the sheaf C∞N . It remains to prove that for

every open V ⊂ N a function f ∈ C∞N (V ) is locally the restriction of a smooth function on M .
To show this let p ∈ V and Vi an open subset of some Ni such that p ∈ ν−1

i (Vi) ⊂ V , and such
that there is an fi ∈ C∞(Vi) with f|ν−1

i (Vi)
= fi ◦ νi|ν−1

i (Vi)
. Since Ni is locally closed in Mli ,

we can assume after possibly shrinking Vi that there is an open Ui ⊂ Mli with Vi = Ni ∩ Ui
and such that Ni ∩ Ui is closed in Ui. Then there exists Fi ∈ C∞(Ui) such that Fi|Vi = fi. Put

F := Fi ◦ µli |µ−1
li

(Ui)
. Then F ∈ C∞(µ−1

li
(Ui)), and

f|ν−1
i (Vi)

= F|ν−1
i (Vi)

,

which proves that f ∈ C∞|N (V ). The claim follows. �

Example 3.11.

a) Every open subset U of M is naturally a profinite dimensional submanifold since for each
i ∈ N the set Ui := µi(U) is an open submanifold of Mi.

b) Consider the profinite dimensional manifold(
R∞,C∞R∞

)
:= lim

←−
n∈N

(
Rn,C∞Rn

)
,

and let Bn(0) be the open unit ball in Rn. The projective limit(
B∞(0),C∞B∞(0)

)
:= lim

←−
n∈N

(
Bn(0),C∞Bn(0)

)
then becomes a profinite dimensional submanifold of R∞. Note that it is not locally closed
in R∞.

c) The space of formal solutions of a formally integrable partial differential equation is a pro-
finite dimensional submanifold of the space of infinite jets over the underlying fiber bundle
(see Section 4.3).

We continue with:

Definition 3.12. Let U ⊂ M be open. A smooth function f ∈ C∞(U) then is called local, if
there is an open Ui ⊂ Mi for some i ∈ N and a function fi ∈ C∞(Ui) such that U ⊂ µ−1

i (Ui)
and f = fi ◦ µi|U . We denote the space of local functions over U by C∞loc(U).

Remark 3.13.

a) Observe that C∞loc forms a presheaf on M , which depends only on the pfd structure
[(Mi, µij , µi)]. Moreover, it is clear by construction that for every open U ⊂ M and
every representative (Mi, µij , µi) of the pfd structure, C∞loc(U) together with the family of
pull-back maps µ∗i : C∞(µi(U)) → C∞loc(U) is an inductive limit of the injective system of
linear spaces (C∞(µi(U)), µ∗ij)i∈N.

b) C∞loc is in general not a sheaf unlessM is a finite dimensional manifold. The sheaf associated
to C∞loc naturally coincides with C∞ since locally, every smooth function is local.

c) By naming sections of C∞loc local functions we essentially follow Stasheff [45, Definition 1.1]
and Barnich [6, Definition 1.1], where the authors consider jet bundles. Note that in [1],
local functions are called cylindrical functions.



10 B. Güneysu and M.J. Pflaum

d) The representative M := (Mi, µij , µj) leads to a particular filtration FM• of the presheaf
of local functions by putting, for l ∈ N,

FMl
(
C∞loc

)
:= µ∗l C

∞
Ml
.

Observe that this filtration has the property that

C∞loc =
⋃
l∈N
FMl

(
C∞loc

)
.

3.2 Tangent bundles and vector fields

The tangent space at a point of a finite dimensional manifold can be defined as a set of equiv-
alence classes of germs of smooth paths at that point or as the space of derivations on the stalk
of the sheaf of smooth functions at that point. The definition via paths can not be immediately
carried over to the profinite dimensional case, so we use the derivation approach.

Definition 3.14. Given a point p of the profinite dimensional manifold M , the tangent space
of M at p is defined as the space of derivations on C∞p , the stalk of smooth functions at p, i.e.,
as the space

TpM := Der
(
C∞p ,R

)
.

Elements of TpM will be called tangent vectors of M at p. The tangent bundle of M is the
disjoint union

TM :=
⋃
p∈M

TpM,

and

πTM : TM −→M, TpM 3 Y 7−→ p

the canonical projection.

Note that for every i ∈ N there is a canonical map Tµi : TM → TMi which maps a tangent
vector Y ∈ TpM to the tangent vector

Yi : C∞Mi,pi → R, [fi]pi 7→ Y
(
[fi ◦ µi]p

)
, where pi := µi(p).

By construction, one has Tµij ◦ Tµj = Tµi for i ≤ j. We give TM the coarsest topology such
that all the maps Tµi, i ∈ N are continuous. Now we record the following observation:

Lemma 3.15. The topological space TM together with the maps Tµi is a projective limit of the
projective system (TMi,Tµij).

Proof. Assume that X is a topological space, and
(
Φi

)
i∈N a family of continuous maps Φi : X →

TMi such that Tµij ◦ Φj = Φi for all i ≤ j. Since M is a projective limit of the projective
system

(
Mi, µij

)
, there exists a uniquely determined continuous map ϕ : X → M such that

πTMi ◦ Φi = µi ◦ ϕ for all i ∈ N. Now let x ∈ X, and put p := ϕ(x) and pi := µi(p). Then, for
every i ∈ N, Φi(x) is a tangent vector of Mi with footpoint pi. We now construct a derivation
Φ(x) ∈ Der(C∞p ,R). Let [f ]p ∈ C∞p , i.e., let f be a smooth function defined on a neighborhood U
of p, and [f ]p its germ at p. Then there exists i ∈ N, an open neighborhood Ui ⊂ Mi of pi and
a smooth function fi : Ui → R such that

µ−1
i (Ui) ⊂ U and f|µ−1

i (Ui)
= fi ◦ µi|µ−1

i (Ui)
.
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We now put

Φ(x)
(
[f ]p

)
:= Φi(x)

(
[fi]pi

)
, where pi := µi(p).

We have to show that Φ(x) is independent of the choices made, and that it is a derivation indeed.
So let f ′ : U ′ → R be another smooth function defining the germ [f ]p. Choose j ∈ N, an open
neighborhood U ′j ⊂Mj of pj , and a smooth function f ′j : U ′j → R such that

µ−1
j (U ′j) ⊂ U ′ and f|µ−1

j (U ′j)
= f ′j ◦ µj |µ−1

j (U ′j)
.

Without loss of generality, we can assume i ≤ j. By assumption [f ]p = [f ′]p, hence one concludes
that

fi ◦ µij |Vj = f ′j |Vj

for some open neighborhood Vj ⊂Mj of pj := µj(p). But this implies, using the assumption on
the Φi that

Φj(x)
(
[f ′j ]pj

)
= TµijΦj(x)

(
[fi]pi

)
= Φi(x)

(
[fi]pi

)
.

Hence, Φ(x) is well-defined, indeed.

Next, we show that Φ(x) is a derivation. So let [f ]p, [g]p ∈ C∞p be two germs of smooth
functions at p. Then, after possibly shrinking the domains of f and g, one can find an i ∈ N,
an open neighborhood Ui ⊂Mi of pi, and fi, gi ∈ C∞(Ui) such that

f|µ−1
i (Ui)

= fi ◦ µi|µ−1
i (Ui)

and g|µ−1
i (Ui)

= gi ◦ µi|µ−1
i (Ui)

.

Since Φi(x) acts as a derviation on C∞pi , one checks

Φ(x)
(
[f ]p[g]p

)
= Φi(x)

(
[fi]pi [gi]pi

)
= fi(pi)Φi(x)

(
[gi]pi

)
+ gi(pi)Φi(x)

(
[fi]pi

)
= f(p)Φ(x)

(
[g]p
)

+ g(p)Φ(x)
(
[f ]p

)
,

which means that Φ(x) is a derivation.

By construction, it is clear that

TµiΦ(x) = Φi(x) for all i ∈ N.

Let us verify that Φ(x) is uniquely determined by this property. So assume that Φ′(x) is
another element of TpM such that TµiΦ

′(x) = Φi(x) for all i ∈ N. For [f ]p ∈ C∞p of the form
f = fi ◦ µi|µ−1

i (Ui)
with Ui ⊂ Mi an open neighborhood of pi and fi ∈ C∞(Ui) this assumption

entails

Φ(x)
(
[f ]p

)
= Φi(x)

(
[fi]pi

)
= Φ′(x)

(
[f ]p

)
.

Since every germ [f ]p is locally of the form fi ◦ µi|µ−1
i (Ui)

, we obtain Φ(x) = Φ′(x).

Finally, we observe that Φ: X → TM is continuous, since all maps Φi = TµiΦ are continuous,
and TM carries the initial topology with respect to the maps Tµi.

This concludes the proof that TM together with the maps Tµi is a projective limit of the
projective system (TMi,Tµij). �
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Remark 3.16.

a) If p ∈M , Yp, Zp ∈ TpM , and λ ∈ R, then the maps Yp +Zp : C∞p → R and λYp : C∞p → R
are derivations again. Hence TpM becomes a topological vector space in a natural way
and one has TpM ∼= lim

←−
i∈N

Tµi(p)Mi canonically as topological vector spaces. In particular,

this implies that πTM : TM → M is a continuous family of vector spaces. Note that this
family need not be locally trivial, in general.

b) Denote by P∞
M,p the set of germs of smooth paths γ : (R, 0)→ (M,p). There is a canonical

map P∞
M,p → TpM which associates to each germ of a smooth path γ : (R, 0) → (M,p)

the derivation

γ̇ : C∞p −→ R, [f ]p 7−→ (f ◦ γ)˙ (0).

Unlike in the finite dimensional case, this map need not be surjective, in general, as
Example 3.18 below shows. But note the following result.

Proposition 3.17. In case the profinite dimensional manifold M is regular, the “dot map”

P∞
M,p −→ TpM, [γ]0 7−→ γ̇(0)

is surjective for every p ∈M .

Proof. We start with an auxiliary construction. Choose a smooth projective representation
(Mi, µij , µi) within the pfd structure on M such that all µij are fiber bundles. Put pi := µi(p)
for every i ∈ N. Then choose a relatively compact open neighborhood U0 ⊂ M0 of p0 which is
diffeoemorphic to an open ball in some Rn. In particular, U0 is contractible, hence the fiber
bundle µ01|µ−1

01 (U0) : µ−1
01 (U0)→ U0 is trivial with typical fiber F1 := µ−1

01 (p0). Let Ψ0 : µ−1
01 (U0)→

U0×F1 be a trivialization of that fiber bundle, and D1 ⊂ F1 an open neighborhood of p1 which
is diffeomeorphic to an open ball in some Euclidean space. Put U1 := Ψ−1

0 (U0 × D1). Then,
U1 is diffeomeorphic to a ball in some Euclidean space, and µ01|U1

: U1 → U0 is a trivial fiber
bundle with fiber D1. Assume now that we have constructed U0 ⊂ M0, . . . , Uj ⊂ Mj such that
for all i ≤ j the following holds true:

1) the set Ui is a relatively compact open neighborhood of pi diffeomorphic to an open ball
in some Euclidean space,

2) for i > 0, the identity µi−1i(Ui) = Ui−1 holds true,

3) for i > 0, the restricted map µi−1i|Ui : Ui → Ui−1 is a trivial fiber bundle with fiber Di

diffeomorphic to an open ball in some Euclidean space.

Let us now construct Uj+1 and Dj+1. To this end note first that µjj+1|µ−1
jj+1(Uj)

: µ−1
jj+1(Uj)→ Uj

is a trivial fiber bundle with typical fiber Fj := µ−1
jj+1(pj), since Uj is contractible. Choose

a trivialization Ψj+1 : µjj+1|µ−1
jj+1(Uj)

→ Uj×Fj , and an open neighborhood Dj+1 ⊂ Fj+1 of pj+1

which is diffeomorphic to an open ball in some Euclidean space. Put Uj+1 := Ψ−1
j+1

(
Uj ×Dj+1

)
.

Then, Uj is diffeomeorphic to a ball in some Euclidean space, and µjj+1|Uj+1
: Uj+1 → Uj is

a trivial fiber bundle with fiber Dj+1. This finishes the induction step, and we obtain Ui ⊂Mi

and Di such that the three conditions above are satisfied.

After these preliminaries, assume that Z ∈ TpM is a tangent vector. Let Zi := Tµi(Z) for
i ∈ N. We now inductively construct smooth paths γi : R→ Ui such that

γi(0) = pi, γ̇i(0) = Zi, and, if i > 0, µi−1i ◦ γi = γi−1. (3.1)
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To start, choose a smooth path γ0 : R → U0 such that γ0(0) = p0, and γ̇0(0) = Z0. Assume
that we have constructed γ0, . . . , γj such that (3.1) is satisfied for all i ≤ j. Consider the trivial
fiber bundle µjj+1|Uj+1

: Uj+1 → Uj , and let Ψj+1 : Uj+1 → Uj ×Dj+1 be a trivialization. Then,

TΨj+1(Zj+1) =
(
Zj , Yj+1

)
for some tangent vector Yj+1 ∈ Tpj+1Dj+1. Choose a smooth path

%j+1 : R→ Dj+1 such that %j+1(0) = pj+1, and %̇j+1(0) = Yj+1. Put

γj+1(t) = Ψ−1
j+1

(
γj(t), %j+1(t)

)
for all t ∈ R.

By construction, γj+1 is a smooth path in Uj+1 such that (3.1) is fulfilled for i = j + 1. This
finishes the induction step, and we obtain a family of smooth paths γi with the desired properties.

Since M is the smooth projective limit of the Mi, there exists a uniquely determined smooth
path γ : R → M such that µi ◦ γ = γi for all i ∈ N. In particular, this entails γ(0) = p, and
γ̇(0) = Z, or in other words that Z is in the image of the map P∞

M,p → TpM . �

Example 3.18. This example shows that there exist profinite dimensional manifolds having
tangent vectors which can not be represented as the derivative of a smooth path. Denote by
rSk ⊂ Rk+1 for k ∈ N∗ the k-sphere of radius r > 0. Moreover, denote for 1 ≤ i < j by
µij : Rj+1 → Ri+1 the projection onto the first i + 1 coordinates. We use the same symbols
for restrictions of µji to open subsets. Now we define inductively a pfd system (Mi, µij) with
Mi ⊂ Ri+1 open as follows:

M0 := R, M1 := R2 \ S1, M2 := (M1 × R) \ 1
2S

2, . . . , Mi+1 := (Mi × R) \ 1
i+1S

i+1.

Observe that all µij are still surjective submersions when regarded as mappings from Mj to Mi.
Next consider the point p = (pi)i∈N ∈ M := lim

←−
i∈N

Mi, where pi := 0 ∈ Mi. Now let Y ∈ TpM be

the tangent vector represented by the family (Yi)i∈N∗ of tangent vectors

Yi : C∞Mi,0 → R, [f ]0 7→
∂f

∂x1
(0),

where (x1, . . . , xi) are the canonical coordinates of Ri. Assume that there is a smooth path
γ : (−ε, ε) → M such that γ(0) = p and γ̇(0) = Y . Let γi := µi ◦ γ. Since γ̇1(0) = 1, one
can achieve after possibly shrinking ε that γ̇1(t) > 1

2 for all t ∈ (−ε, ε). This implies by the
mean value theorem that |γ(t)| ≥ 1

2 |t| for all t ∈ (−ε, ε). Now choose i ∈ N∗ such that 1
i <

1
4ε.

Then γi(0) = 0 but γi(
1
2ε) has to be outside the connected component of 0 in Mi. This is

a contradiction, so there does not exist a path γ with the claimed properties, and Y is not
induced by a smooth path.

Let us define a structure sheaf C∞TM on TM . To this end call a continuous map f ∈ C (U)
defined on an open set U ⊂ TM smooth, if for every tangent vector Z ∈ U there is an i ∈ N,
an open neighborhood Ui ⊂ TMi of Zi := Tµi(Z), and a smooth map fi ∈ C∞(Ui) such that
(Tµi)

−1(Ui) ⊂ U and f|(Tµi)−1(Ui) = fi ◦ (Tµi)|(Tµi)−1(Ui). The spaces

C∞TM (U) :=
{
f ∈ C (U) | f is smooth

}
for U ⊂ TM open then form the section spaces of a sheaf C∞TM which we call the sheaf of smooth
functions on TM . By construction, the family (TMi,Tµij ,Tµi) now is a smooth projective
representation of the locally ringed space (TM,C∞TM

)
, hence (TM,C∞TM ) becomes a profinite

dimensional manifold. Since µi◦πTM = πTMi ◦Tµi for all i ∈ N, one immediately checks that the
canonical map πTM : TM →M is even a smooth map between profinite dimensional manifolds.
With these preparations we can state:
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Proposition and Definition 3.19. The profinite dimensional manifold given by (TM,C∞TM )
and the pfd structure [(TMi,Tµij ,Tµi)] is called the tangent bundle of M , and πTM : TM →M
its canonical projection. The pfd structure [(TMi,Tµij ,Tµi)] depends only on the equivalence
class [(Mi, µij , µi)].

Proof. In order to check the last statement, consider a smooth projective representation
(M ′a, µ

′
ab, µ

′
a) which is equivalent to (Mi, µij , µi). Choose an equivalence transformation of

smooth projective representations

(ϕ, Fa) : (Mi, µij) −→ (M ′a, µ
′
ab), (ψ,Gi) : (M ′a, µ

′
ab) −→ (Mi, µij).

Then one obtains surjective submersions

(ϕ,TFa) : (TMi,Tµij) −→ (TM ′a,Tµ
′
ab), (ψ,TGi) : (TM ′a,Tµ

′
ab) −→ (TMi,Tµij)

such that the following diagrams commute for all i, a ∈ N:

TMi TMϕ(ψ(i))

Tµi ϕ(ψ(i))oo

TFψ(i)yy
TM ′ψ(i)

TGi

cc and TM ′a TM ′ψ(ϕ(a))

Tµ′
aψ(ϕ(a))oo

TGϕ(a)yy
TMϕ(a)

TFa

cc

Hence, (TM ′a,Tµ
′
ab) is a smooth projective system which is equivalent to (TMi,Tµij). Now

recall that the map Tµ′a : TM → TM ′a is defined by Tµ′a(Zp) = Zp ◦ (µ′a)
∗, where Zp ∈ TpM ,

p ∈M , and (µ′a)
∗ denotes the pullback by µ′a. One concludes that for all i ∈ N

TGi ◦ Tµ′ψ(i)(Zp) = TGi
(
Zp ◦ (µ′ψ(i))

∗) = Zp ◦ (µ′ψ(i))
∗ ◦G∗i = Zp ◦ µ∗i = Tµi(Zp),

and likewise that TFa ◦Tµϕ(a)(Yp) = Tµ′a(Yp) for all a ∈ N. This entails that the smooth projec-
tive representations (TMi,Tµij ,Tµi) and (TM ′a,Tµ

′
ab,Tµ

′
a) of the tangent bundle (TM,C∞TM )

are equivalent, and the proof is finished. �

Remark 3.20.

a) By Example 3.8(c), the induced smooth projective system (TMi,Tµij) has the canonical
smooth projective limit(

T̃M,C∞
T̃M

)
:= lim

←−
i∈N

(
TMi,C

∞
TMi

)
.

Denote its canonical maps by T̃µi : T̃M → TMi. By the universal property of projective
limits there exists a unique smooth map

τ : TM −→ T̃M

such that T̃µi◦τ = Tµi for all i ∈ N. By construction of the profinite dimensional manifold
structure on the tangent bundle TM , the map τ is even a linear diffeomorphism, and is
in fact given by

TM 3 Y 7−→
(
Tµi(Y )

)
i∈N ∈ T̃M.
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b) As a generalization of the tangent bundle, one can define for every k ∈ N∗ := N \ {0} the
tensor bundle Tk,0M of M . First, one puts for every p ∈M

Tk,0
p M :=

⊗̂k

TpM,

where ⊗̂ denotes the completed projective tensor product, see Example A.1(a) or [25, 47].
The canonical maps Tµp,i := Tµi|TpM : TpM → TpiMi, pi := µi(p) induce continuous
linear maps

Tk,0µp,i :=
⊗̂k

Tµp,i : Tk,0
p M −→ Tk,0

pi Mi

by the universal property of the completed projective tensor product. Likewise, one con-
structs for i ≤ j the continuous linear maps

Tk,0µpj ,ij : Tk,0
pj Mj −→ Tk,0

pi Mi,

which turn
(
Tk,0
pi Mi,T

k,0µpj ,ij
)

into a projective system of (finite dimensional) real vector
spaces. By Theorem A.4, its projective limit within the category of locally convex topologi-
cal Hausdorff spaces is given by Tk,0

p M together with the continuous linear maps Tk,0µp,i,
that means we have

Tk,0
p M = lim

←−
i∈N

Tk,0
pi Mi.

Now define

Tk,0M :=
⋃
p∈M

Tk,0
p M,

and give Tk,0M the coarsest topology such that all the canonical maps

Tk,0µi : Tk,0M −→ Tk,0Mi,

Z1 ⊗ · · · ⊗ Zk 7−→ Tµi(Z1)⊗ · · · ⊗ Tµi(Zk)

are continuous. By construction, Tk,0M together with the maps Tk,0µi has to be a pro-
jective limit of the projective system

(
Tk,0Mi,T

k,0µij
)
. The sheaf of smooth functions

C∞
Tk,0M

is uniquely determined by requiring axiom (PFM2) to hold true. One thus ob-
tains a profinite dimensional manifold which depends only on the equivalence class of the
smooth projective representation and which will be denoted by Tk,0M in the following.
Moreover, Tk,0 even becomes a functor on the category of profinite dimensional manifolds.
If (N,C∞N ) is another profinite dimensional manifold and f : M → N a smooth map, then
one naturally obtains the smooth map

Tk,0f : Tk,0M −→ Tk,0N,

Z1 ⊗ · · · ⊗ Zk 7−→ Tf(Z1)⊗ · · · ⊗ Tf(Zk),

which satisfies πTk,0N ◦ Tk,0f = f ◦ πTk,0M .

We continue with:

Definition 3.21. Let U ⊂M be open. Then a smooth section V : U → TM of πTM : TM →M
is called a smooth vector field on M over U . The space of smooth vector fields over U will be
denoted by X ∞(U).
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Assume that for U ⊂M open we are given a smooth vector field V : U → TM and a smooth
function f : U → R. We then define a function V f over U by putting for p ∈ U

V f(p) := V (p)
(
[f ]p

)
.

Lemma 3.22. For every V ∈X ∞(U) and f ∈ C∞(U), the function V f is smooth.

Proof. Choose a point p ∈ U , and then an open Ui ⊂Mi and a function fi ∈ C∞(Ui) for some
appropriate i ∈ N such that p ∈ µ−1

i (Ui) ⊂ U and

f|µ−1
i (Ui)

= fi ◦ µi|µ−1
i (Ui)

. (3.2)

Consider Vi : M → TMi, Vi := Tµi ◦ V . Since Vi takes values in a finite dimensional smooth
manifold, there exists an integer jp ≥ i (which we briefly denote by j, if no confusion can arise),
an open Upj ⊂Mj and a smooth vector field Vp : Upj → TMi along µij such that p ∈ µ−1

j (Upj),

Upj ⊂ µ−1
ij (Ui) and

Tµi ◦ V |µ−1
j (Upj)

= Vp ◦ µj |µ−1
j (Upj)

.

Now define gpj : Upj → R by

gpj(qj) := Vp(qj)
(
[fi]µij(qj)

)
for all qj ∈ Upj .

Then gpj is smooth, hence gp := gpj ◦µj |µ−1
j (Upj)

is an element of C∞
(
µ−1
j (Upj)

)
. Now one checks

for q ∈ µ−1
j (Upj) that

gp(q) = Vp(µj(q))
(
[fi]µi(q)

)
= Vi(q)

(
[fi]µi(q)

)
= V (q)

(
[f ]q
)

by equation (3.2). Hence

gp = (V f)|µ−1
j (Upj)

,

and V f is smooth indeed. �

Proposition 3.23. Every vector field V ∈X ∞(U) defined over an open subset U ⊂M induces
a derivation

δV : C∞(U) −→ C∞(U), f 7−→ V f.

Proof. By construction, it is clear that the map

C∞(U) 3 f 7−→ V f ∈ C∞(U)

is R-linear. It remains to check that δV is a derivation, or in other words that it satisfies Leibniz’
rule. But this follows immediately by the definition of the action of V on C∞(U) and the fact
that V (p) ∈ Der

(
C∞p ,R

)
for all p ∈ U . More precisely, one has, for p ∈ U and f, g ∈ C∞(U),

V (fg)(p) = V (p)
(
[fg]p

)
= f(p)V (p)

(
[g]p
)

+ g(p)V (p)
(
[f ]p

)
=
(
fV (g) + gV (f)

)
(p).

This finishes the proof. �

Definition 3.24. Let U ⊂ M be open. A smooth vector field V ∈ X ∞(U) is called local,
if for every i ∈ N there is an integer mi ≥ i and a smooth vector field Vimi : µmi(U) → TMi

along µimi such that

Tµi ◦ V = Vimi ◦ µmi |U . (3.3)

The space of local vector fields over U will be denoted by X ∞
loc(U).
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Remark 3.25.

a) Obviously, X ∞ is a sheaf of C∞-modules on M , and X ∞
loc a presheaf of C∞loc-modules.

Note that X ∞
loc depends only on the pfd structure [(Mi, µij , µi)].

b) Let V ∈ X ∞
loc(U), and pick a representative (Mi, µij , µi) of the underlying pfd structure.

If (mi)i∈N is a sequence of integers such that (3.3) holds true, we sometimes say that V is
of type (m0,m1,m2, . . .) with respect to the smooth projective representation (Mi, µij , µi).
The notion of the type of a local vector field is known from jet bundle literature [2],
where it makes perfect sense, since the profinite dimensional manifold of infinite jets has
a distinguished representative of the underlying pfd structure, see Section 4.3.

Now we are in the position to prove the following structure theorem:

Theorem 3.26. The map

δ : X ∞(M) −→ Der
(
C∞(M),C∞(M)

)
, V 7−→ δV

is a bijection. Moreover, for every V ∈ X ∞(M), the derivation δV leaves the algebra C∞loc(M)
of local functions on M invariant, if and only if one has V ∈X ∞

loc(M).

Proof. Surjectivity : Assume that D : C∞(M)→ C∞(M) is a derivation. Then one obtains for
each i ∈ N and point p ∈M a linear map

Dpi : C∞(Mi) −→ R, f 7−→ D(f ◦ µi)(p).

Note that for f, f ′ ∈ C∞(Mi)

Dpi(ff
′) = D

(
(ff ′) ◦ µi

)
(p) = f ◦ µi(p)D(f ′ ◦ µi)(p) + f ′ ◦ µi(p)D(f ◦ µi)(p)

= f ◦ µi(p)Dpi(f
′) + f ′ ◦ µi(p)Dpi(f),

which entails that there is a tangent vector Vpi ∈ Tµi(p)Mi such that Dpi = Vpi. Observe that
for j ≥ i the relation

Dpi(f) = D(f ◦ µi)(p) = D(f ◦ µij ◦ µj)(p) = Dpj(f ◦ µij)

holds true, which entails that Vpi = Tµij ◦ Vpj . Hence, the sequence of tangent vectors (Vpi)i∈N
defines an element Vp in

TpM ∼= lim
←−
i∈N

Tµi(p)Mi.

We thus obtain a section V : M → TM , p 7→ Vp. Let us show that V is smooth. To this end,
consider the composition

Vi := Tµi ◦ V : M −→ TMi.

By construction Vi(p) = Vpi for all p ∈ M . It suffices to show that each of the maps Vi is
smooth. To show this, choose a coordinate neighborhood Ui ⊂Mi of µi(p), and coordinates(

x1, . . . , xk
)

: Ui −→ Rk.

Then (
x1 ◦ πTUi , . . . , x

k ◦ πTUi ,dx
1, . . . ,dxk

)
: TUi −→ R2k
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is a local coordinate system of TMi. The map Vi now is proven to be smooth, if dxl ◦ Vi is
smooth for 1 ≤ l ≤ k. But

dxl ◦ Vi|µ−1
i (Ui)

= D
(
xl ◦ µi|µ−1

i (Ui)

)
,

since for q ∈ µ−1
i (Ui)

dxl ◦ Vi|µ−1
i (Ui)

(q) = Vqi(q)
(
[xl]µi(q)

)
= Dqi

(
xl
)

= D
(
xl ◦ µi|µ−1

i (Ui)

)
(q).

Hence each Vi is smooth, and V is a smooth vector field on M which satisfies δV = D. This
proves surjectivity.

Injectivity : Assume that V is a smooth vector field on M such that δV = 0. This means that
δV f(p) = 0 for all f ∈ C∞(M) and p ∈M . Choose now a i ∈ N and let fi be a smooth function
on Mi. Put f := fi ◦ µi and Vi = Tµi ◦ V . Then, we have for all p ∈M

Vi(p)
(
[fi]µi(p)

)
= δV f(p) = 0,

which implies that Vi(p) = 0 for all p ∈ M . Since V (p) is the projective limit of the Vi(p), we
obtain V (p) = 0 for all p ∈M , hence V = 0. This finishes the proof that δ is bijective.

Local vector fields: Next, let us show that for a local vector field V : M → TM the deriva-
tion δV maps local functions to local ones. To this end choose for every i ∈ N an integer mi ≥ i
such that there exists a smooth vector field Vimi : Mmi → TMi along µimi which satisfies

Tµi ◦ V = Vimi ◦ µmi .

Now let f be a local function onM , which means that f = fi◦µi for some i ∈ N and fi ∈ C∞(Mi).
Define gmi ∈ C∞(Mmi) by gmi(q) = Vimi(q)

(
[fi]µimi (q)

)
for all q ∈ Mmi . Then, one obtains for

p ∈M

δV f(p) = Vimi(µmi(p))
(
[fi]µi(p)

)
= gmi(µmi(p)),

which means that δV f = gmi ◦ µmi is local.
Invariance of C∞loc(M): Finally, we have to show that if δV for V ∈X ∞(M) leaves the space

C∞loc(M) invariant, the vector field V has to be local. To this end fix i ∈ N and choose a proper
embedding

χ = (χ1, . . . , χN ) : Mi ↪−→ RN .

Then χl ◦ µi ∈ C∞loc(M) for l = 1, . . . , N , hence there exist by assumption j1, . . . , jN ∈ N and
gil ∈ C∞(Mjl) such that

δV (χl ◦ µi) = gil ◦ µjl .

After possibly increasing the jl, we can assume that mi := j1 = · · · = jN ≥ i. Denote by
zl : RN → R the canonical projection onto the l-th coordinate, and define the vector field
Ṽimi : Mmi → TRN along χ ◦ µimi by

Ṽimi(q) :=
N∑
l=1

gljl(q)
∂

∂zl |χ(µimi (q))
for q ∈Mmi .

Since by construction

Ṽimi(µmi(p))
(
[zl]χ(µi(p))

)
= gil(µmi(p)) = (Tµi ◦ V )(p)

(
[χl]µi(p)

)
for all p ∈M , Ṽimi(y) is in the image of Tqχ for every q ∈Mmi , hence

Vimi : Mmi −→ TMi, q 7−→ (Tyχ)−1
(
Ṽimi(q)

)
is well-defined and satisfies Tµi ◦ V = Vimi ◦ µmi . Therefore, V is a local vector field. �
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The following result is an immediate consequence of Theorem 3.26.

Corollary 3.27. For all V,W ∈X ∞(M), the map

[V,W ] : C∞(M) −→ C∞(M), f 7−→ V (Wf)−W (V f)

is a derivation on C∞(M). Its corresponding underlying vector field will be denoted by [V,W ]
as well, and will be called the Lie bracket of V and W . The Lie bracket of vector fields
turns X ∞(M) into a Lie algebra.

Remark 3.28. Unlike in the finite dimensional case, smooth vector fields on a profinite dimen-
sional manifold of infinite dimension need not be integrable. See [12, Section 3 & Concluding
comments] and references therein for further information on this phenomenon and an integra-
bility criterion in the particular case of the solution manifold of a formally integrable PDE.

3.3 Differential forms

In the finite dimensional case, differential forms are usually defined as smooth sections of alter-
nating powers of the cotangent bundle. This approach can not directly be carried over to the
profinite dimensional case, since there is no canonical construction of the cotangent bundle of
a profinite dimensional manifold. The reason for this is that unlike for the tangent bundle
functor, which is a covariant functor and transforms a smooth projective system (Mi, µij) into
a projective system (TMi, Tµij), forming the cotangent bundle is neither covariant nor con-
travariant functorial on the category of finite dimensional smooth manifolds and smooth maps.
The way out is to define differential forms on profinite dimensional manifolds as continuous
maps on a tensor product of the tangent bundle such that these maps are locally pull-backs of
differential forms on the components of a smooth projective representation.

Definition 3.29. Let k ∈ N and U ⊂M open.

a) A continuous map

ω : (πTk,0M )−1(U) −→ R

is called a differential form of order k or a k-form on M over U , if for every point p ∈ U
there is some i ∈ N, an open subset Ui ⊂ Mi with p ∈ µ−1

i (Ui) ⊂ U and a k-form
ωi ∈ Ωk(Ui) such that

ω|(µi◦πTk,0M )−1(Ui) = ωi ◦ Tk,0µi|(µi◦πTk,0M )−1(Ui).

More precisely, this means that for all y ∈ µ−1
i (Ui), and V1, . . . , Vk ∈ π−1(y) ⊂ TM the

relation

ω(V1 ⊗ · · · ⊗ Vk) = ωi
(
Tµi(V1)⊗ · · · ⊗ Tµi(Vk)

)
holds true. In particular, a k-form ω over U is antisymmetric and k-multilinear in its
arguments. The space of k-forms over U will be denoted by Ωk(U).

b) A k-form ω ∈ Ωk(U) is called local, if there is an open Ui ⊂Mi for some i ∈ N and a k-form
ωi ∈ Ωk(Ui) such that U ⊂ µ−1

i (Ui) and ω = (µ∗iωi)|U , where here and from now on we

use the notation µ∗iωi for the form ωi ◦ Tk,0µi. The space of local k-forms over U will be
denoted by Ωk

loc(U).
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Remark 3.30.

a) By a straightforward argument one checks that the spaces Ωk(U) and Ωk
loc(U) only depend

on the pfd structure [(Mi, µij , µi)]. Moreover, for every representative (Mi, µij , µi) of the
pfd structure, Ωk

loc(U) together with the family of pull-back maps µ∗i : Ωk(µi(U))→ Ωk
loc(U)

is an inductive limit of the injective system of linear spaces
(
Ωk(µi(U)), µ∗ij

)
i∈N.

b) By construction, it is clear that Ωk forms a sheaf of C∞-modules on M and Ωk
loc a presheaf

of C∞loc-modules. Moreover, Ωk coincides with the sheaf associated to Ωk
loc.

c) The representative M := (Mi, µij , µj) of the pfd structure on M leads to the particular
filtration FM• of the presheaf Ωk

loc of local k-forms on M by putting, for l ∈ N,

FMl
(
Ωk

loc

)
:= µ∗l Ω

k
Ml
.

Observe that this filtration has the property that

Ωk
loc =

⋃
l∈N
FMl

(
Ωk

loc

)
.

Proposition and Definition 3.31.

a) There exists a uniquely determined morphism of sheaves d: Ωk → Ωk+1 such that

d(µ∗iωi) = µ∗i (dωi) for all i ∈ N, Ui ⊂Mi open, ωi ∈ Ωk(Ui).

The morphism d is called the exterior derivative, fulfills d◦d = 0, and maps Ωk
loc to Ωk+1

loc .

b) There exists a uniquely determined morphism of sheaves

∧ : Ωk × Ωl −→ Ωk+l,

called the wedge product, such that for all i ∈ N, Ui ⊂ Mi open, ωi ∈ Ωk(Ui), and
µi ∈ Ωl(Ui) one has

µ∗iωi ∧ µ∗iµi = µ∗i (ωi ∧ µi).

The wedge product also leaves Ω•loc invariant.

c) Given a vector field V ∈ X ∞(M), there exists the contraction with V that means the
sheaf morphism

iV : Ωk −→ Ωk−1,

which is uniquely determined by the requirement that for all ω ∈ Ωk(U) with U ⊂M open,
p ∈ U , and W1, . . . ,Wk−1 ∈ TpM the relation

iV (ω)(W1 ⊗ · · · ⊗Wk−1) = ω
(
V (p)⊗W1 ⊗ · · · ⊗Wk−1

)
holds true. If V is a local vector field, contraction with V leaves Ω•loc invariant.

Proof. Using the sheaf property of Ωk one can reduce the claims to local statements which are
immediately proved. �
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4 Jet bundles and formal solutions of nonlinear PDEs

The aim of this section is to develop a precise geometric notion of formally integrable (systems
of) partial differential equations, and to show that the formal solution spaces of these equations
canonically become a profinite dimensional manifold in the sense of Section 3. Finally, we
are going to give a criterion for the formal integrability of nonlinear scalar partial differential
equations, and apply this result to a class of interacting relativistic scalar field theories that
arise in theoretical physics.

We refer the reader to [9, 23, 27, 41] and also to [36, 42] for introductionary texts on jet
bundles, where the latter two references have a strong focus on the highly nontrivial algorithmic
aspects of this theory. A nice short overview is also included in the introduction of [49].

4.1 Finite order jet bundles

For the rest of the paper, we fix a fiber bundle π : E → X. Moreover, F will denote the typical
fiber of π and we set m := dimX, n := dimF .

Then one has dimE = m+n and the fibers π−1(p) ⊂ E become n-dimensional submanifolds,
which are diffeomorphic to F . There are distinguished charts for E:

Definition 4.1. A manifold chart (x, u) : W → Rm × Rn of E defined over some open W ⊂ E
is called a fibered chart of π, if for all e, e′ ∈W with π(e) = π(e′) the equality x(e) = x(e′) holds
true.

Remark 4.2.

a) Sometimes, fibered charts are called adapted charts.

b) Note that a fibered chart (x, u) : W → Rm×Rn for π canonically gives rise to a well-defined
manifold chart on X. It is given by

x̃ : π(W ) −→ Rm, p 7−→ x(e), (4.1)

where e ∈W ∩ π−1(p) is arbitrary.

c) On the other hand, a manifold atlas for E that consists of fibered charts for π can be
constructed from manifold charts for X and from the local triviality of E as follows: For
an arbitrary e ∈ E, take a bundle chart φ : π−1(U)→ U × F around π(e), that is, U is an
open neighbourhood of π(e) and φ : π−1(U)→ U × F is a diffeomorphism such that

π−1(U)

π

��

φ // U ×B

pr1
yy

U

(4.2)

commutes. Let x̃ : U → Rm be a manifold chart of X (here we assume that U is small
enough), and let ũ : B → Rn be a manifold chart of F . Then

(x̃ ◦ π, ũ ◦ pr2 ◦ φ) = (x̃ ◦ pr1 ◦ φ, ũ ◦ pr2 ◦ φ) : π−1(U) −→ Rm × Rn

is a fibered chart of π. Note here that by the commutativity of (4.2), the notation “x̃” is
consistent with (4.1).
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Let us introduce the following notation for multi-indices, which will be convenient in the
following: For any k1, k2 ∈ N with k1 ≤ k2 let Nmk1,k2 denote the set of all multi-indices I ∈ Nm
such that

k1 ≤ |I| :=
m∑
j=1

Ij ≤ k2

and let F(m, k1, k2) denote the linear space of all maps Nmk1,k2 → R. For any l ≤ m, i1, . . . , il ∈
{1, . . . ,m}, the symbol 1i1...il ∈ Nm will denote the multi-index which has a 1 in its ij ’s slot for
j = 1, . . . , l, and a 0 elsewhere.

Any ψ ∈ Γ∞(p;π) allows the following local description: Choose a fibered chart (x, u) : W →
Rm×Rn of π with W ∩ π−1(p) 6= ∅. Then one has x ◦ψ = x̃ near p, so that ψ is determined by
the coordinates (u1 ◦ ψ, . . . , un ◦ ψ) = u ◦ ψ near p. The special form of the following definition
is motivated by the latter fact:

Definition 4.3. Let p ∈ X, k ∈ N. Any two ψ,ϕ ∈ Γ∞(p;π) are called k-equivalent at p, if for
every fibered chart (x, u) : W → Rm × Rn of π with W ∩ π−1(p) 6= ∅ one has

∂|I| (uα ◦ ψ)

∂x̃I
(p) =

∂|I| (uα ◦ ϕ)

∂x̃I
(p) (4.3)

for all α = 1, . . . , n and all I ∈ Nm0,k. The corresponding equivalence class jkpψ of ψ is called the
k-jet of ψ at p.

Remark 4.4. In fact, it is enough to check (4.3) in some fibered chart. This can be proved
by induction on k, using the multivariate version of Faa di Bruno’s formula [13, Theorem 2.1]
(details can be found in Lemma 6.2.1 in [41]).

Let us now come to several structures that can be defined via jets. Denoting by

Jk(π) :=
⋃
p∈X

{
jkpψ |ψ ∈ Γ∞(p;π)

}
the collection of all k-jets in π, we obtain the surjective maps

πk : Jk(π) −→ X, jkpψ 7−→ p, π0,k : Jk(π) −→ E, jkpψ 7−→ ψ(p).

Using these maps, one can give Jk(π) the structure of a finite dimensional manifold in a canonical
way: For every fibered chart (x, u) : W → Rm × Rn of π and every I ∈ Nm0,k, one defines the
map

(xk, uk,I) : π−1
0,k(W ) −→ Rm × Rn dimF(m,0,k),

jkpψ 7−→

(
x̃(p),

∂|I|(u1 ◦ ψ)

∂x̃I
(p), . . . ,

∂|I| (un ◦ ψ)

∂x̃I
(p)

)
. (4.4)

The following result is checked straightforwardly (cf. [41]).

Proposition and Definition 4.5. The maps (4.4) define an m+n dimF(m, 0, k)-dimensional
manifold structure on Jk(π). In view of this fact, Jk(π) is called the k-jet manifold corresponding
to π.
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For convenience, we set J0(π) := E and j0pψ := ψ(p) for any ψ ∈ Γ∞(p;π), and π0 := π. More
generally, we have for any k1 ≤ k2 the smooth surjective maps

πk1,k2 : Jk2(π) −→ Jk1(π), jk2p ψ 7−→ jk1p ψ,

which satisfy πk,k = idJk(π), and if one also has k2 ≤ k3, then the following diagram commutes:

Jk3(π)
πk2,k3 //

πk1,k3

��

Jk2(π)

πk1,k2

||

πk2

��
Jk1(π)

πk1 // X

(4.5)

Let us collect all structures underlying the above maps. Let (x, u) : W → Rm×Rn be a fibered
chart of π. Then we set

(πk, uk) : π−1
k,0(W ) −→ π(W )× F(m, 0, k)n,

jkpψ 7−→

p,{∂|I| (u ◦ ψ)

∂x̃I
(p)

}
I∈Nm0,k


=

p,{∂|I|(u1 ◦ ψ)

∂x̃I
(p)

}
I∈Nm0,k

, . . . ,

{
∂|I| (un ◦ ψ)

∂x̃I
(p)

}
I∈Nm0,k

 ,

(4.6)

(πk1,k2 , uk1,k2) : π−1
k2,0

(W ) −→ π−1
k1,0

(W )× F(m, k1 + 1, k2)n,

jk2p ψ 7−→

jk1p ψ,

{
∂|I|(u ◦ ψ)

∂x̃I
(p)

}
I∈Nmk1+1,k2

 .
(4.7)

If π is a vector bundle, then, for every p ∈ X, the fiber π−1
k (p) canonically becomes a linear

space through

c1

(
jkpψ
)

+ c2

(
jkpϕ
)

:= jkp(c1ψ + c2ϕ), cj ∈ R.

Furthermore, if k2 = k, k1 = k−1 and if a ∈ Jk−1(π), then the fiber π−1
k−1,k(a) carries a canonical

affine structure which is modelled on the linear space

Sk
(
T∗πk−1(a)X

)
⊗ ker

(
Tπ|π0,k−1(a)

)
. (4.8)

To see the latter fact, assume that π0,k−1(a) ∈ W , let jkπk−1(a)ψ ∈ π−1
k−1,k(a) and let v be an

element of (4.8). Then v can be uniquely expanded as

v =
∑
I∈Nmk,k

n∑
α=1

vαI dx̃I |πk−1(a) ⊗
∂

∂uα |π0,k−1(a)
, vαI ∈ R,

where we have used the abbreviation

dx̃I := (dx̃1)⊗I1 � · · · � (dx̃m)⊗Im ,
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so that one can define jkπk−1(a)ψ + v ∈ π−1
k−1,k(a) to be the uniquely determined element whose

image under (4.7) is given byjk−1
πk−1(a)ψ,

{
∂|I| (u ◦ ψ)

∂x̃I |πk−1(a)
+ vI

}
I∈Nmk,k

 .

With these preparations, one has:

Lemma 4.6. Let k, k1, k2 ∈ N with k1 ≤ k2. Then the following assertions hold.

a) The maps (4.6) turn πk : Jk(π)→ X into a fiber bundle with typical fiber F(m, 0, k)n. If π
is a vector bundle, then so is πk.

b) The maps (4.7) turn πk1,k2 : Jk2(π)→ Jk1(π) into a fiber bundle with typical fiber F(m, l+
1, k)n, and πk−1,k : Jk(π) → Jk−1(π) becomes an affine bundle, modelled on the vector
bundle

π∗k−1S
k
(
πT∗X

)
⊗ π∗k−1,0V(π) −→ Jk−1(π).

Proof. The reader can find a detailed proof of Lemma 4.6 in Chapter 6 of [41]. �

We close this section with a simple observation about distinguished elements of Γ∞(πk). Let
U ⊂ X be an open subset for the moment. Then for any ψ ∈ Γ∞(U ;π), the map U → Jk(π),
p 7→ jkpψ, defines an element of Γ∞(U ;πk), called the k-jet prolongation of ψ. In fact, this

construction induces a morphism of sheaves jk : Γ∞(π) → Γ∞(πk) (with values in the category
of sets) such that

πk1,k2 ◦ jk2 = jk1 for k1 ≤ k2. (4.9)

It should be noted that it is not possible to write an arbitrary element of Γ∞(U ;πk) as jkUψ for
some ψ ∈ Γ∞(U ;π). The elements of Γ∞(U ;πk) having the latter property are called projectable.
This notion is motivated by the following simple observation which follows readily from (4.9).

Lemma 4.7. Let U ⊂ X be an open subset and Ψ ∈ Γ∞(U ;πk). Then the map p 7→ π0,k(Ψ(p))
defines an element of Γ∞(U ;π), and Ψ is projectable, if and only if one has jk(π0,k ◦Ψ) = Ψ.

4.2 Partial differential equations

The aim of this section is to give a precise global definition of partial differential equations and
the solutions thereof in the setting of arbitrary fiber bundles. We shall first consider the general
(possibly nonlinear) situation in Section 4.2.1. Then, in Section 4.2.2, we are going to relate
everything with the corresponding classical linear concepts.

Throughout this section, let π : E → X be a second fiber bundle, with typical fiber F and
fiber dimension n.

4.2.1 General facts

Definition 4.8.

a) A subset E ⊂ Jk(π) is called a partial differential equation on π of order ≤ k, if πk |E : E→ X
is a fibered submanifold of πk.
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b) Let E ⊂ Jk(π) be a partial differential equation on π of order ≤ k. Some ψ ∈ Γ∞(p;π) is
called a solution of E in p, if jkpψ ∈ E. For an open U ⊂ X, a section ψ ∈ Γ∞(U ;π) will
simply be called a solution of E, if ψ is a solution of E in p for every p ∈ U , that is, if
im(jkψ) ⊂ E.

Remark 4.9.

a) The definition of a PDE we present here appears to go back to Goldschmidt [24] and is now
widely used in the geometric PDE literature [32, 36, 37, 39, 40, 42]. One of its virtues is
that it allows to clearly separate and globalize the notions “partial differential equation”,
“solution of a partial differential equation” and “partial differential operator”.

b) By the Cartan–Kuranishi prolongation theorem [31], an analytic PDE either has no solu-
tions or becomes involutive after finitely many prolongations, which means that it admits
integral manifolds as stated in the Cartan–Kähler theorem [11]. In Goldschmidt’s work,
this observation is always in the background. Since we are mainly interested in the infinite
prolongation or in other words the formal solution space of a PDE as in Proposition and
Definition 4.29, Goldschmidt’s approach fits perfectly for our purposes. For a slightly
different general setup of non-linear PDEs of various orders (and their symbols) see [30].

c) There exist non-fibered submanifolds E ⊂ Jk(π) which one could refer to as “partial
differential equations” as well. The problem with this more general concept of a PDE
though is that then independent variables might not really be independent anymore, cf. [42,
Section 2.3]. Moreover, only the fibered variant leads in general to profinite dimensional
manifolds (cf. Proposition 4.29 below).

Definition 4.10. A morphism h : Jk(π) → E of fibered manifolds over X is called a partial
differential operator of order ≤ k from π to π.

Of course, the notion “operator” in Definition 4.10 is justified by the fact that as a morphism
of fibered manifolds, any h as in Definition 4.10 induces the morphism of set theoretic sheaves

P h := h ◦ jk : Γ∞(π) −→ Γ∞(π).

We define Dk(π, π) to be the set of all partial differential operators of order ≤ k from π to π, and
remark that the assignment h 7→ P h induces an injection P • of Dk(π, π) into the set theoretic
sheaf morphisms Γ∞(π) → Γ∞(π). The connection between partial differential operators and
partial differential equations is given in this abstract setting as follows: For every h ∈ Dk(π, π)
and O ∈ Γ∞(X;π), the set ZO(h) is defined by ZO(h) := h−1(im(O)) ⊂ Jk(π), with the usual
convention ker(h) := ZO(h) if π and π are vector bundles and h is linear. Observe that one has
by definition

ZO(h) =
{
a ∈ Jk(π) |h(a) = O(πk(a))

}
.

The following fact is well-known:

Proposition 4.11. If h ∈ Dk(π, π) has constant rank, and if O ∈ Γ∞(X;π) fulfills im(O) ⊂
im(h), then ZO(h) ⊂ Jk(π) is a partial differential equation.

It is clear that with an open subset U ⊂ X, a section ψ ∈ Γ∞(U ;π) is a solution of ZO(h)
(in p ∈ U), if and only if one has P hU (ψ) = O (in p).

Next, we explain how the affine structure of πk−1,k can be used to introduce the notion of
“operator symbols of (possibly nonlinear) partial differential operators”. To avoid any confusion,
we remark that with “symbol” we will exclusively mean “principal symbol” in this paper.
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To this end, note that the assignment

µπk : π∗kS
k
(
πT∗X

)
⊗ π∗0,kV(π) −→ V(πk), µπk |a(v) :=

d

dt
[a+ tv]|t=0,

for a ∈ Jk(π), v ∈ Sk
(
T∗πk(a)X

)
⊗ker(π|π0,k(a)), is a (mono)morphism of vector bundles over Jk(π).

Note here that µπk essentially extracts the pure k-th order part of vertical k-jets. Using the
map µπk , we can provide the following definition (see also [11]):

Definition 4.12. For every h ∈ Dk(π, π), the morphism σ(h) of vector bundles over h given by
the composition

π∗kS
k
(
πT∗X

)
⊗ π∗k,0V(π)

σ(h) //

µπk ((

V(π)

V(πk)

hV

;;

is called the operator symbol of h.

Given a partial differential operator, one can use its symbol to check whether it defines
a partial differential equation in the sense of Proposition 4.11 (see also Theorem 4.31 below):

Proposition 4.13. Let h ∈ Dk(π, π). If σ(h) is surjective, then so is h. If σ(h) is a submersion,
then h is a submersion, too, which in particularly means that for every O ∈ Γ∞(X;π) with
im(O) ⊂ im(h) the set ZO(h) ⊂ Jk(π) is a partial differential equation.

Proof. We have the following commuting diagrams

V(πk)
hV //

(πk)V

��

V(π)

πV

��
Jk(π)

h // E

TV(πk) //

��

TV(π)

��
TJk(π) // TE

where the maps for the second diagram are given by the tangential maps corresponding to the
first one. If σ(h) = hV ◦ µπk is surjective, then so is hV and πV ◦ hV, so that the first assertion
follows from the first diagramm. If σ(h) is a submersion, then one can use the analogous
argument for the second diagram to deduce that Th has full rank everywhere. �

4.2.2 Linear partial differential equations

We are now going to explain how the classical concepts of linear partial differential equations
and partial differential operators fit into the general setting of Section 4.2.1. In fact, it will
turn out that the notions “linear partial differential equation” and “linear partial differential
operator” correspond to each other under natural assumptions in the following sense: ker(h)
is a linear partial differential equation for every k-th order linear differential operator and,
conversely, for every linear k-th order partial differential equation E there exists a (not uniquely
determined) k-th order linear differential operator h with E = ker(h). Note that an analogous
correspondence statement for the nonlinear case is only locally true [21]. Finally, the space of
linear partial differential operators coincides with the space of classical linear partial differential
operators (see Theorem 4.17 below). We begin with:
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Definition 4.14. Let π and π be vector bundles.

a) A subset E ⊂ Jk(π) is called a linear partial differential equation on π of order ≤ k, if
πk |E : E→ X is a sub-vector-bundle of πk.

b) A morphism h : Jk(π) → E of vector bundles over X is called a linear partial differential
operator of order ≤ k from π to π.

Remark 4.15. Let π and π be vector bundles. Then h ∈ Dk(π, π) is linear, if and only if
P hX : Γ∞(X;π) → Γ∞(X;π) is linear. We denote the linear space of linear partial differential
operators by Dk

lin(π, π) ⊂ Dk(π, π) and remark that if h ∈ Dk
lin(π, π), then one has h(l) ∈

Dk+l
lin (π, πl) for all l ∈ N.

Let us recall the definition of “classical” linear partial differential operators:

Definition 4.16. Let π and π be vector bundles. A classical linear partial differential operator
of order ≤ k from π to π is a morphism of sheaves

D : Γ∞(π) −→ Γ∞(π)

with the following property: For every manifold chart x̃ : U → Rm ofX for which there are frames
e1, . . . , en ∈ Γ∞(U ;π) and e1, . . . , en ∈ Γ∞(U ;π) there exist (necessarily unique) functions

Dα,β
I ∈ C∞(U) for α = 1, . . . , n, β = 1, . . . , n, and I ∈ Nm0,k such that one has for all ψ1, . . . , ψn ∈

C∞(U)

DU

 n∑
j=1

ψαeα

 =

n∑
β=1

n∑
α=1

∑
I∈Nm0,k

Dα,β
I

∂|I|ψα

∂x̃I
eβ.

The linear space of classical partial differential operators will be denoted by Dk
cl,lin(π, π).

Now one has:

Theorem 4.17. Let π and π be vector bundles.

a) P • induces the isomorphism of linear spaces

P •lin : Dk
lin(π, π) −→ Dk

cl,lin(π, π), h 7−→ P h.

b) If h ∈ Dk
lin(π, π) has constant rank, then ker(h) ⊂ J(πk) is a linear partial differential

equation. Conversely, if E ⊂ Jk(π) is a linear partial differential equation, then there is
a vector bundle π : E → X and an h ∈ Dk

lin

(
π, π

)
with constant rank such that E = ker

(
h
)
.

Proof. a) We first have to show that P •lin is well-defined, which means that for any h ∈
Dk

lin(π, π), P h is in Dk
cl,lin(π, π). It is then clear that P •lin is a linear monomorphism. To this end,

let x̃, eα, eβ, ψα be as in Definition 4.16 and let aα be a basis for F . Then we have the vector
bundle chart

φ : π−1(U)→ U × F,
n∑

α=1

vαeα(p) 7−→

(
p,

n∑
α=1

vαaα

)
, p ∈ U,

so that we get the fibered chart

(x, u) : π−1(U) −→ Rm × Rn,
n∑

α=1

vαeα(p) 7−→
(
x̃(π(p)),

(
v1, . . . , vn

))
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of π as in Remark 4.2(c). Then

(πk, uk) : π−1
k (U) −→ U × F(m, 0, k)n

is a vector bundle chart of πk by Lemma 4.6, and we get the frame eI,α ∈ Γ(U ;πk), α = 1, . . . , n,
I ∈ Nm0,k, given by

eI,α := (πk, uk)
−1(•, δI,α).

Hereby, δI,α : Nm0,k → Rn is defined by δI,α(J) := 1α, if I = J , and to be 0 elsewhere. Since h is

a homomorphism of linear bundles over X, there are uniquely determined hα,βI ∈ C∞(U) such
that one has for all α = 1, . . . , n, I ∈ Nm0,k and ψα,I ∈ C∞(U)

h

 n∑
α=1

∑
I∈Nm0,k

ψα,Ieα,I

 =

n∑
β=1

n∑
α=1

∑
I∈Nm0,k

hα,βI ψα,Ieβ.

The proof of the asserted well-definedness of P •lin is completed by observing that by the above
construction of the frame eI,α for Γ∞(U ;πk) the following equality holds true:

jk

(
n∑

α=1

ψαeα

)
=

n∑
α=1

∑
I∈Nm0,k

∂|I|ψα

∂x̃I
eα,I .

In order to prove surjectivity of P •lin, let D ∈ Dk
cl,lin(π, π), and let jkpψ ∈ J(πk), with p from an

open subset U ⊂ X. Then h(jkpψ) := DUψ(p) gives rise to a well-defined element h ∈ Dk
lin(π, π),

which of course satisfies P hlin = D.
b) The first fact is well-known. For the second assertion, we can simply take E → X to

be given by the quotient bundle Jk(π)/E → X, and h to be given by the canonical projection

Jk(π)→ Jk(π)/E (see [32, Proposition 3.10] for a more general statement). �

Finally, we explain in which sense the classical concept of linear operator symbols fits into
the general setting of Section 4.2.1.

Let π and π be vector bundles for the moment. From the canonical identification of ker(Tπ|e)
with π−1(π(e)), for e ∈ E, (and analogous ones for π), we obtain canonical morphisms of vector
bundles over the base map π (resp. π)

σπ : V(π) −→ E,

σπ | ker(Tπ|e) : ker(Tπ|e) −→ π−1(π(e)), e ∈ E, and
(4.10)

σπ : V(π) −→ E,

σπ | ker(Tπ|e)
: ker(Tπ|e) −→ π−1(π(e)), e ∈ E,

(4.11)

which both are fiberwise isomorphisms. It follows that for each k ∈ N∗ the map

σπk : π∗kS
k
(
πT∗X

)
⊗ π∗k,0V(π) −→ Sk

(
πT∗X

)
⊗ E,

σπk (v ⊗ w) := v ⊗ σπ(w),
(4.12)

where v⊗w ∈ Symk
(
T∗πk(a)X

)
⊗ ker

(
Tπ|π0,k(a)

)
for a ∈ Jk(π), is a morphism of vector bundles

over the base map πk and also acts by ismorphisms, fiberwise. Furthermore, for later reference,
we record that there is a canonical (mono)morphism of vector bundles over X which is defined by

µπk,lin : Sk
(
πT∗X

)
⊗ E −→ Jk(π),

df1(p)� · · · � dfk(p)⊗ ψ(p) 7−→ jkp(f1 · · · fkψ).
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Here, the fj run through the elements of C∞(p;X) satisfying fj(p) = 0, and ψ ∈ Γ∞(p;π). Ana-
logously to µπk , the map µπk,lin also extracts the pure k-th order part of k-jets in an appropriate
sense (taking into account the canonical isomorphisms (4.11) and (4.12)).

The following result recalls the classical definition of linear operator symbols and shows the
naturality of Definition 4.12, in the sense that in the linear case, the linear operator symbol
coincides with the operator symbol up to the canonical isomorphisms (4.11) and (4.12):

Proposition and Definition 4.18. Let π and π be vector bundles and let h ∈ Dk
lin(π, π).

a) There is a unique morphism of vector bundles over X

σlin(h) : Sk(πT∗X)⊗ E −→ E

with the following property: For every manifold chart x̃ : U → Rm of X for which there
are frames e1, . . . , en ∈ Γ∞(U ;π) and e1, . . . , en ∈ Γ∞(U ;π), one has

σlin(h)

 ∑
I∈Nmk,k

n∑
α=1

vαI dx̃I ⊗ eα

 =

n∑
β=1

n∑
α=1

∑
I∈Nmk,k

(P hlin)α,βI vαI eβ, (4.13)

where vαI ∈ C∞(U), and where we have used the notation from Definition 4.16 and Theo-
rem 4.17. The morphism σlin(h) is called the linear operator symbol of h.

b) The following diagram commutes

π∗kS
k(πT∗X)⊗ π∗k,0V(π)

σ(h) //

σπk

��

V(π)

σπ

��
Sk(πT∗X)⊗ E

σlin(h) // E

Proof. a) Here, one only has to prove that the representation (4.13) does not depend on
a particular choice of local data. In fact, the easiest way to see this, is to note that one can
simply define σlin(h) by the diagram

Sk(πT∗X)⊗ E
σlin(h) //

µπk,lin &&

E

Jk(π)

h

==

To see that σlin(h) defined like this satisfies (4.13), let x̃ : U → Rm be a manifold chart of X
such that there are frames e1, . . . , en ∈ Γ∞(U ;π), e1, . . . , en ∈ Γ∞(U ;π). Then, as in the proof
of Theorem 4.17(a), picking a basis aα for F , we get the corresponding frame eI,α ∈ Γ∞(U ;πk),

α = 1, . . . n, I ∈ Nm0,k, and we denote the representation of h with respect to eI,α and eβ by hα,βI .

Furthermore, by the proof of Theorem 4.17(a), we have hα,βI = (P hlin)α,βI . Now one has

µπk,lin

 ∑
I∈Nmk,k

n∑
α=1

vαI dx̃I ⊗ eα

 =
∑
I∈Nmk,k

n∑
α=1

vαI eI,α,
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so that

h ◦ µπk,lin

 ∑
I∈Nmk,k

n∑
α=1

vαI dx̃I ⊗ eα

 =

n∑
β=1

n∑
α=1

∑
I∈Nmk,k

hα,βI vαI eβ,

which completes the proof of part a).
b) Let a ∈ Jk(π) be arbitrary, and let x̃ : U → Rm be a manifold chart of X around πk(a)

such that there are frames e1, . . . , en ∈ Γ∞(U ;π), e1, . . . , en ∈ Γ∞(U ;π). Then, again as in the
proof of Theorem 4.17(a), picking a basis aα for F and a basis aβ for F , we get the corresponding
adapted coordinates

(x, u) : π−1(U) −→ Rm × Rn, (x, u) : π−1(U) −→ Rm × Rn.

We can expand an arbitrary

v ∈ Sk
(
T∗πk(a)X

)
⊗ ker(Tπ|π0,k(a))

uniquely as

v =
∑
I∈Nmk,k

n∑
α=1

vαI dx̃I |πk(a) ⊗
∂

∂uα |π0,k(a)
, vαI ∈ R,

so that

σπk(v) =
∑
I∈Nmk,k

n∑
α=1

vαI dx̃I ⊗ eα |πk(a),

and we arrive at

σlin(h) ◦ σπk|v =

n∑
β=1

n∑
α=1

∑
I∈Nmk,k

(P hlin)α,βI vαI eβ |πk(a). (4.14)

Let us now evaluate σπ ◦ σ(h) = σπ ◦ hV ◦ µπk in v: By Proposition 4.5 and Lemma 4.6 we have
the frame

∂

∂ukI,α
∈ Γ∞

(
π−1
k (U); (πk)

V
)
, I ∈ Nm0,k, α = 1, . . . , n.

As h is a linear morphism, the linear morphism hV is represented with respect to the frames
∂

∂uαk,I
and ∂

∂uβ
precisely by the functions

hα,βI ◦
(
πk |π−1

k (U)

)
∈ C∞

(
π−1
k (U)

)
,

where hα,βI ∈ C∞(U) is the representation of h with respect to (x, u) and (x, u) (cf. the proof of
Theorem 4.17(a)). Thus, in view of

µπk(v) =

n∑
α=1

∑
I∈Nmk,k

vαI
∂

∂uαk,I |a
,

we have

σ(h)|v =

n∑
β=1

n∑
α=1

∑
I∈Nmk,k

vαI h
α,β
I |πk(a)

∂

∂uβ |π0,k(a)

,
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so that

σπ ◦ σ(h)|v =

n∑
β=1

n∑
α=1

∑
I∈Nmk,k

hα,βI vαI eβ |πk(a).

But this is equal to (4.14), in view of (P hlin)α,βI = hα,βI . The claim follows. �

4.3 The manifold of ∞-jets and formally integrable PDEs

Throughout Section 4.3, π will again be an arbitrary fiber bundle.
Finally, in this section we are going to make contact with the abstract theory on profinite

dimensional manifolds from Section 3: We are going to prove that the space of “∞-jets” in π
canonically becomes a profinite dimensional manifold (see Proposition 4.21), and that the space
of “formal solutions” of a “formally integrable” partial differential equation on π canonically is
a profinite dimensional submanifold of the latter (see Proposition 4.29).

We start by introducing the space of ∞-jets. In analogy to Definition 4.3, we have:

Definition 4.19. Let p ∈ X. Any two ψ,ϕ ∈ Γ∞(p;π) are called ∞-equivalent at p, if ψ(p) =
ϕ(p) and if for every fibered chart (x, u) : W → Rm × Rn of π with W ∩ π−1(p) 6= ∅ one has

∂|I|(uα ◦ ψ)

∂x̃I
(p) =

∂|I|(uα ◦ ϕ)

∂x̃I
(p)

for all α = 1, . . . , n and all I ∈ Nm with 1 ≤ |I| <∞. The corresponding equivalence class j∞p ψ
of ψ is called the ∞-jet of ψ at p.

Remark 4.20. In view of Remark 4.4, ∞-equivalence also only has to be checked in some
fibered chart.

It will be convenient in what follows to set J−1(π) := X, j−1
p ψp := p, and π−1,0 := π. We

define

J∞(π) :=
⋃
p∈X

{
j∞p ψ |ψ ∈ Γ∞(p;π)

}
,

and obtain for every i ∈ Z≥−1 a surjective map

πi,∞ : J∞(π) −→ Ji(π), j∞p ψ 7−→ jipψ. (4.15)

We equip J∞(π) with the initial topology with respect to the maps πi,∞, i ∈ Z≥−1. Furthermore,
we define C∞π to be the sheaf on J∞(π), whose section space C∞π (U) over an open U ⊂ J∞(π)
is given by the set of all f ∈ C (U) such that for every x ∈ U there is an i ∈ Z≥−1, an open
Ui ⊂ Ji(π) and an fi ∈ C∞(Ui) with x ∈ π−1

i,∞(Ui) ⊂ U and

f|π−1
i,∞(Ui)

= fi ◦ πi,∞|π−1
i,∞(Ui)

.

In particular, (J∞(π),C∞π ) becomes a locally R-ringed space. Now observe that we have, in view
of (4.5), a smooth projective system

(
Ji(π), πi,j

)
, which graphically can be depicted by

J−1(π)
π−1,0←−−− J0(π)

π0,1←−− · · · ←− Ji(π)
πi,i+1←−−− Ji+1(π)←− · · · , (4.16)

together with a family of continuous maps

πi,∞ : J∞(π) −→ Ji(π), i ∈ Z≥−1.

These data have the following crucial property.
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Proposition and Definition 4.21. The family
(
Ji(π), πi,j , πi,∞

)
is a smooth projective rep-

resentation of (J∞(π),C∞π ). In particular, when equipped with the corresponding pfd structure,
(J∞(π),C∞π ) canonically becomes a smooth profinite dimensional manifold, called the manifold
of ∞-jets given by π.

Proof. Let J∞(π)′ := lim
←−

i∈Z≥−1

Ji(π) denote the canonical projective limit of (4.16), that means

let

J∞(π)′ =

{
b = (b−1, b0, b1, . . . ) ∈

∏
i∈Z≥−1

Ji(π) | bi = πi,j(bj) for all i ≤ j
}
,

and let π′i,∞ : J∞(π)′ → Ji(π) denote the canonical projections. We are going to prove the
existence of a homeomorphism Ξ such that the diagrams

J∞(π)
Ξ //

πi,∞ ##

J∞(π)′
Ξ−1

oo

π′i,∞zz
Ji(π)

(4.17)

commute for all i ∈ Z≥−1. Then the universal property of (J∞(π)′, π′i,∞) will directly imply
the same property for (J∞(π), πi,∞), which is precisely (PFM1). As a consequence, (PFM2) is
trivially satisfied by the definition of the structure sheaf C∞π .

We now simply define Ξ(a)j := πj,∞(a) for a ∈ J∞(π) and j ∈ Z≥−1. Then it is obvious that Ξ
is a well-defined injective map, and that the Ξ-diagram in (4.17) commutes. In particular, the
continuity of Ξ is directly implied by that of the maps πi,∞. In order to see that Ξ is surjective
and that Ξ−1 is continuous, let us recall that Borel’s theorem states that for any map

t : Nm =
⋃
j∈N

Nm0,j −→ Rn

there is a smooth function ψ̃ : Rm → Rn such that tI = ∂I ψ̃(0)/I! for all I ∈ Nm. Let b ∈ J∞(π)′

and let x̃ : U → Rm be a manifold chart of X around b−1 with x̃(b−1) = 0. Choosing furthermore
a bundle chart φ : π−1(U) → U × F and a manifold chart ũ : B → Rn of F , we get the fibered
chart

(x, u) := (x̃ ◦ π, ũ ◦ pr2 ◦ φ) : π−1(U) −→ Rm × Rn

of π by Remark 4.2(c). Moreover, the function t : Nm → Rn, tI := uj,I(bj)/I!, if I ∈ Nm0,j , is

well-defined. Borel’s theorem then produces a function ψ̃ : Rm → Rn such that tI = ∂I ψ̃(0)/I!.
It is clear that the section ψ ∈ Γ∞b−1

(π) defined by

ψ := φ−1
(
•, ũ−1 ◦ ψ̃ ◦ x̃

)
satisfies xj(j

j
b−1
ψ) = 0, and uj,I(j

j
b−1
ψ) = uj,I(bj) for all j∈Z≥−1 and I ∈ Nm0,j , thus Ξ(j∞b−1

ψ) = b,

and Ξ is surjective, indeed. Furthermore, by the construction of Ξ−1(b), it is also clear that the
Ξ−1-diagram in (4.17) commutes, so that the continuity of Ξ−1 trivially follows from that of
the π′i,∞. This completes the proof. �

Remark 4.22. An important additional structure on the profinite dimensional manifold J∞(π)
is given by its Cartan distribution, a canonically given (involutive) distribution. This additional
structure is the key to the so-called secondary calculus. We shall not touch this here and refer
the interested reader to [48].
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Next, we will prepare the notion of formal integrability. Let us first note the following simple
result:

Proposition and Definition 4.23.

a) For every h ∈ Dk(π, π) there exists a unique h(l) ∈ Dk+l(π, πl) such that the following
diagram of set theoretic sheaf morphisms

Γ∞(πk+l)
h(l) // Γ∞(πl)

Γ∞(π)

jk+l

OO

h◦jk // Γ∞(π)

jl

OO

commutes. The partial differential operator h(l) is called the l-jet prolongation of h.

b) The partial differential operator

ιπl,k
(
=id

(l)

Jk(π)

)
: Jk+l(π) −→ Jl(πk), jk+l

p ψ 7−→ jlp(j
kψ)

is an embedding of manifolds.

Let E ⊂ Jk(π) be an arbitrary partial differential equation for the moment. Since, by
definition, the map

πk |E : Jk(π) ⊃ E −→ X

is again a fibered manifold, there exists for every l ∈ N an obvious well-defined map

ιl,E : Jl(πk |E) −→ Jl(πk),

which comes from considering a locally defined section in πk |E as taking values in Jk(π).

Definition 4.24. Let E ⊂ Jk(π) be a partial differential equation. Then the set

E(l) :=

{
E, for l = 0,

ιπ,−1
l,k

(
ιl,E
(
Jl(πk |E)

))
⊂ Jk+l(π), for l ∈ N∗,

is called the l-jet prolongation of E.

If the underlying partial differential equation is actually given by a partial differential oper-
ator, then there is an explicit description of the corresponding l-jet prolongation [24, p. 294]:

Proposition 4.25. Let h ∈ Dk(π, π) with constant rank and let O ∈ Γ∞(X;π) with im(O) ⊂
im(h). Then one has, for every l ∈ N,

ZO(h)(l) = ZjlO

(
h(l)
)
⊂ Jk+l(π).

Let us note the simple fact that the following diagramm commutes, for every r ∈ N,

Jk+l+r(π)
ιπl+r,k //

πk+l,k+l+r

��

Jl+r(πk)

(πk)l+r,l

��
Jk+l(π)

ιπl,k // Jl(πk)
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Applying this in the case r = 1 implies πk+l,k+l+1

(
E(l+1)

)
⊂ E(l) for any partial differential

equation E ⊂ Jk(π) and every l ∈ N, so that we obtain the maps

E(l+1) −→ E(l), a 7−→ πk+l,k+l+1(a). (4.18)

Now we have the tools to give

Definition 4.26. A partial differential equation E ⊂ Jk(π) is called formally integrable, if E(l)

is a submanifold of Jk+l(π) and if (4.18) is a fibered manifold for every l ∈ N.

Remark 4.27.

a) Here, it should be noted that E itself can always be considered as a trivial formally
integrable partial differential equation on π of order 0, where in this case one has E(l) =
Jl(π) for all l ∈ N.

b) Furthermore, there are abstract cohomological tests for partial differential equations to be
formally integrable [24]. In fact, we will use such a test in the proof of Theorem 4.31 below;
we refer the reader to [36] and particularly to [42] for the algorithmic aspects of these tests.
Although it can become very involved to verify these test properties in particular examples,
formal integrability could be shown for some particular equations of mathematical physics
such as the Yang–Mills–Higgs equations [22, 23] or the Einstein’s field equations [28]. In
accordance with this, Theorem 4.31 below states that all reasonable (possibly nonlinear)
scalar partial differential equations are formally integrable. But formal integrability need
not always be given, as the example of a system of PDEs describing the isometries of
a Riemannian metric shows, which is formally integrable if and only if the corresponding
curvature is constant. See Pommaret [37, Introduction, p. 9] for more information.

An important purely analytic consequence of formal integrability is given by the highly non-
trivial Theorem 4.28 below, which essentially states that if all underlying data are real analytic,
then formal integrability implies the existence of local analytic solutions with prescribed finite
order Taylor expansions. Theorem 4.28 goes back to Goldschmidt [24] and heavily relies on (co-
homological) results by Spencer [43] and Ehrenpreis–Guillemin–Sternberg [17]. This result can
also be regarded as a variant of Michael Artin’s approximation theorem [3] or as an interpretation
of the Cartan–Kähler theorem, cf. [35, Theorem 4.4.3] and [11].

Theorem 4.28. Assume that X is real analytic, that π is a real analytic fiber bundle (then so
is πk), and that E ⊂ Jk(π) is formally integrable such that in fact πk |E : E→ X is a real analytic

fibered submanifold of πk. Then, for every l ∈ N and a ∈ E(l) there exists an open neighborhood
U ⊂ X of πk+l(a) and a real analytic solution ψ ∈ Γ∞(U ;π) of E such that jk+l

πk+l(a)ψ = a.

Proof. This result follows directly from Theorem 9.1 in [24] (in combination with Proposi-
tion 7.1 therein). �

Now let E ⊂ Jk(π) be a formally integrable partial differential equation. Then we can define
a subset E(∞) ⊂ J∞(π) by E(∞) := π−1

∞,k(E). Inductively, one checks that the maps (4.15) restrict
to surjective maps

E(∞) −→ E(i), a 7−→ πk+i,∞(a), i ∈ N,

E(∞) −→ X, a 7−→ πk−1,∞(a),

so that

E(∞) =
⋂
i∈N

π−1
∞,k+i(E).
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In other words, this means that axioms (PFSM1) to (PFSM3) are satisfied for the subset
E(∞) ⊂ J∞(π) and the smooth projective representation

(
Ji(π), πi,j , πi,∞

)
. Hence, one readily

obtains

Proposition and Definition 4.29. Let E ⊂ Jk(π) be a formally integrable partial differen-
tial equation. Then

(
Ji(π), πi,j , πi,∞

)
induces on E(∞) the structure of a prof inite dimensional

submanifold of (J∞(π),C∞π ). In view of this fact, E(∞) will be called the manifold of formal
solutions of E.

Remark 4.30. In the above situation, the Cartan distribution on J∞(π) restricts to a well-
defined distribution on E(∞).

4.4 Scalar PDEs and interacting relativistic scalar fields

Let us first clarify that throughout Section 4.4, π : X × R → X will denote the canonical line
bundle.

4.4.1 A criterion for formal integrability of scalar PDEs

We now come to the aforementioned result on formal integrability of PDEs. In order to keep
the notation simple and in view of the applications that we have in mind, we restrict ourselves
in this paper to scalar PDEs.

In the scalar situation, the sheaf of sections of π can be identified with the sheaf of smooth
functions on X. Recall that the space of smooth functions defined near p ∈ X is denoted
by C∞(p;X). Likewise, the space of k-th order partial differential operators Dk(π, π) can be
canonically identified as a linear space with C∞(Jk(π)). Given such an h ∈ Dk(π, π), the space
of vector bundle morphisms

π∗kS
k(πT∗X)⊗ π∗k,0V(π) −→ V(πk)

over h can be identified canonically as a linear space (remember here the maps (4.11) and (4.12))
with the space of vector bundle morphisms π∗kS

k(πT∗X) → X × R over πk. It follows that for
every a ∈ Jk(π) the symbol σ(h) induces a linear map

σ(h)
|Sk
(

T∗
πk(a)

X
) : Sk

(
T∗πk(a)X

)
−→ {πk(a)} × R.

With these preparations, we have:

Theorem 4.31. Let h ∈ C∞(Jk(π)), and recall that

Z0(h) := {a ∈ Jk(π) |h(a) = 0}.

Assume furthermore that the following assumptions are satisfied:

(1) One has σ(h)|a 6= 0 for all a ∈ Jk(π).

(2) The map Z0(h)(1) → Z0(h), a 7→ πk,k+1(a) is surjective.

Then Z0(h) ⊂ Jk(π) is a formally integrable partial differential equation on π.

Remark 4.32. Note that assumption (1) together with Proposition 4.13 implies that Z0(h)
indeed is a partial differential equation, as σ(h) is surjective.
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Proof of Theorem 4.31. The seemingly short proof that we are going to give actually com-
bines two heavy machineries: The already mentioned abstract cohomological criterion for formal
integrability of partial differential equations from [24], with a highly nontrivial reduction result
for the cohomology of Cohen–Macaulay symbolic systems [29]. There seems to be no reasonable
elementary proof of Theorem 4.31.

First observe that (1) is equivalent to

(1′) For all a ∈ Jk(π) there exists v ∈ T∗πk(a)X such that σ(h)(v⊗k) 6= 0.

Namely, if σa(h)(v⊗k) = 0 for all v ∈ T∗πk(a)X, then σa(h) = 0 by polarization.

To prove our claim, let an arbitrary a ∈ Jk(π) be given and pick some v ∈ T∗πk(a)X with

σ(h)(v⊗k) 6= 0. Then, in the terminology of [28],

V ∗ := Cv ⊂
(
T∗πk(a)X

)
C

is a one-dimensional noncharacteristic subspace corresponding to the Cohen–Macaulay symbolic
system g(h; a) given by Z0(h) over a. Thus we may apply Theorem A from [29] to deduce that all
Spencer cohomology groups Hi,j(g(h; a)) except possibly H0,0(g(h; a)) and H1,1(g(h; a)) vanish.
But now the result follows from combining (2), [24, Theorem 8.1] and [24, Proposition 7.1], once
we have shown that the first prolongation⋃

a∈Z0(h)

g(h; a)(1) −→ Z0(h) (4.19)

becomes a vector bundle. To prove the latter claim, note first that h induces the morphism of
vector bundles

σ(h)(1) : π∗kS
k+1(πT∗X) −→ π∗kT

∗X,

which, for every a ∈ Jk(π), is given by

σ(h)(1)

|Sk+1
(

T∗
πk(a)

X
) : Sk+1

(
T∗πk(a)X

)
−→ T∗πk(a)X,

v1 � · · · � vk+1 7−→ σ(h)(v2 � · · · � vk+1)︸ ︷︷ ︸
∈R

v1.

The assumption (1) immediately implies that the latter linear map is surjective (in fact for every
a ∈ Jk(π)), in particular, as one has [24]

g(h; a)(1) = ker
(
σ(h)(1)

|Sk+1
(

T∗
πk(a)

X
)),

it follows that (4.19) is a vector bundle. �

The assumption (2) from Theorem 4.31 is a technical regularity assumption (which can
become tedious to check in applications), whereas the reader should notice that assumption (1)
therein is essentially trivial and means nothing but that the underlying differential operator
globally is a “genuine” k-th order operator.

4.4.2 Interacting relativistic scalar fields

As an application of Theorem 4.31, we will now consider evolution equations that correspond to
(possibly nonlinearly!) interacting relativistic scalar fields on semi-Riemannian manifolds. To



Formal Solution Spaces of Formally Integrable PDEs 37

this end, let (X, g) be a smooth Lorentzian m-manifold. The corresponding d’Alembert operator
will be written as

2g : C∞(X) −→ C∞(X).

With functions F1, F2 ∈ C∞(X), K ∈ C∞(R), we consider the partial differential operator
hg,F1,F2,K ∈ C∞(J2(π)) given for p ∈ X, ϕ ∈ C∞(p;X) by

hg,F1,F2,K

(
j2pϕ
)

:= 2gϕ(p) + F1(p)ϕ(p) + F2(p)K(ϕ(p)).

What we have in mind here is:

Example 4.33. Let us assume that m = 4, that (X, g) has a Lorentz signature, and that

F1 = α1 scalg +α2
2, F2 ≡ 1, K = α3K,

where α1, α3 ∈ R, α2 ≥ 0, scalg ∈ C∞(X) denotes the scalar curvature of g and K ∈ C∞(R).
Then Z0(hg,F1,0,K) ⊂ J2(π) describes the on-shell dynamics of a relativistic (real) scalar field
with mass α2, where K is the field self-interaction with coupling strength α3, and where the
number α1 is an additional parameter, which is sometimes set equal to zero. For example,
K(z) = z3 corresponds to what is called a ϕ4-perturbation in the physics literature (since the
corresponding potential in the Lagrange density which has Z0(hg,F1,0,K) as its Euler–Lagrange
equation is given by V (ϕ) = ϕ4). We refer the reader to [19] for the perturbative aspects of this
equation in the flat ϕ4 case.

Returning to the general situation, we can now prove the following result on scalar partial
differential equations on semi-Riemannian manifolds:

Proposition 4.34. In the above situation, the assumptions (1) and (2) from Theorem 4.31
are satisfied by hg,F1,F2,K . In particular, Z0(hg,F1,F2,K) ⊂ J2(π) is formally integrable, and the
corresponding space of formal solutions canonically becomes a profinite dimensional manifold via
Proposition 4.29.

Proof. In view of Theorem 4.28, we only have to prove that the assumptions (1), (2) from
Theorem 4.31 are satisfied. To this end, we set h := hg,F1,F2,K and assume F2 = 0. Firstly, in
view of

σ(h)
|S2
(

T∗
π2(a)

X
)(v � v) = g∗π2(a)(v, v) for all a ∈ J2(π), v ∈ T∗π2(a)X,

assumption (1) is obviously satisfied and Z0(h) indeed is a partial differential equation.

It remains to prove that the map Z0(h)(1) → Z0(h), a 7→ π2,3(a) is surjective. To see this,
assume to be given b ∈ Z0(h) and consider a g-exponential manifold chart x̃ : U → Rm of X
centered at π2(b). Then one gets the trivial fibered chart

(x, u) := (x̃, idR) : U × R −→ Rm × R

of π, and b ∈ Z0(h) means nothing but b ∈ J2(π) and

m∑
i,j=1

gij(π2(b))u2,1ij (b)−
m∑

i,j,k=1

gij(π2(b))Γkij(π2(b))u2,1k(b)

+ F1(π2(b))u2,(0,...,0)(b) +K(u2,(0,...,0)(b)) = 0,
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where gij ,Γkij ∈ C∞(U) denote the components of the metric tensor and the Christoffel symbols

of g with respect to x̃, respectively. Noting that Proposition 4.25 implies Z0(h)(1) = Z0(h(1)),
one easily finds that some a ∈ J3(π) is in Z0(h)(1), if and only if

m∑
i,j=1

gij(π3(a))u3,1ij (a)−
m∑

i,j,k=1

gij(π3(a))Γkij(π3(a))u1k(a)

+ F1(π3(a))u3,(0,...,0)(a) +K
(
u3,(0,...,0)(a)

)
= 0,

and, for all l = 1, . . . ,m,

m∑
i,j=1

(
∂lg

ij(π3(a))u3,1ij (a) + gij(π3(a))u3,1ijl(a)
)

−
m∑

i,j,k=1

(
∂lg

ij(π3(a))Γkij(π3(a))u3,1k(a)− gij(π3(a))∂lΓ
k
ij(π3(a))u3,1k(a)

)
−

m∑
i,j,k=1

gij(π3(a))Γkij(π3(a))u3,1lk(a) + ∂lF1(π3(a))u3,(0,...,0)(a)

+ F1(π3(a))u3,1l(a) +K ′
(
u3,(0,...,0)(a)

)
u3,1l(a) = 0.

Here, we have used ∂l := ∂
∂x̃l

. Let us now assume that the signature of g is given by (ε1, . . . , εm) =
(1,−1, . . . ,−1). The general case can be treated with the same method. We define some
a ∈ J3(π) by requiring x̃3(a) := x̃(π2(b)), and, for I ∈ Nm0,3,

u3,I(a) :=



u2,I(b), if I ∈ Nm0,2,

−
m∑

i,j=1
∂lg

ij(π2(b))u2,1ij (b) +
m∑

i,j,k=1

∂lg
ij(π2(b))Γkij(π2(b))u2,1k(b)

+
m∑

i,j,k=1

gij(π2(b))∂lΓ
k
ij(π2(b))u2,1k(b) +

m∑
i,j,k=1

gij(π2(b))Γkij(π2(b))u2,1lk(b)

− ∂lF1(π2(b))u2,(0,...,0)(b)− F1(π2(b))u2,1l(b)

−K ′
(
u2,(0,...,0)(b)

)
u2,1l(b), if I = 111l for some l = 1, . . . ,m,

0, else.

Now we are almost done: Indeed, our construction of a directly gives π2,3(a) = b, so π3(a) =
π2(b). Since we have

gij(π3(a)) = gij(π2(b)) =

{
εj , if i = j,

0, else,

it follows immediately that a ∈ Z0(h)(1), and the proof is complete, noting that F2 has not
played a role in the above argument. �

A Two results on completed projective tensor products

Assume to be given two locally convex topological vector spaces V and W , and consider their
algebraic tensor product V ⊗W . A topology τ on V ⊗W is called compatible (in the sense of
Grothendieck [25]) or a tensor product topology, if the following axioms hold true:

(TPT1) V ⊗ W equipped with τ is a locally convex topological vector space which will be
denoted by V ⊗τ W .
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(TPT2) The canonical map V ×W → V ⊗τ W is separately continuous.

(TPT3) For every equicontinuous subset A of the topological dual V ′ and every equicontinuous
subset B of the topological dual W ′, the set A ⊗ B := {λ ⊗ µ |λ ∈ A, µ ∈ B} is an
equicontinuous subset of

(
V ⊗τ W

)′
.

If τ is a tensor product topology on V ⊗W , we denote by V ⊗̂τW the completion of V ⊗τ W .

Example A.1.

a) The projective tensor product topology is the finest locally convex vector space topology
on V ⊗W such that the canonical map V ×W → V ⊗W is continuous, cf. [25, 47]. The
projective tensor product topology is denoted by π. It is generated by seminorms pA⊗π qB,
where pA, A ∈ A and qB, B ∈ B each run through a family of seminorms generating the
locally convex topology on V respectively W , and pA ⊗π qB is defined by

pA ⊗π qB(z) := inf

{
n∑
l=1

pA(vl) qB(wl) | z =

n∑
l=1

vl ⊗ wl

}
.

The seminorm pA ⊗π qB is in particular a cross seminorm, i.e., it satisfies the relation

pA ⊗π qB(v ⊗ w) = pA(v)qB(w) for all v ∈ V, w ∈W.

b) The injective tensor product topology on V ⊗ W , denoted by ε, is the locally convex
topology inherited from the canonical embedding V ⊗W ↪→ Bs(V ′s⊗W ′s), where Bs(V ′,W ′)
denotes the space of separately continuous bilinear forms on the product V ′ ×W ′ of the
weak topological duals V ′ and W ′ endowed with the topology of uniform convergence on
products of equicontinuous subsets of V ′ and W ′. See [25] and [47, Section 43] for details.

Remark A.2.

a) By definition, the ε-topology on V ⊗ W is coarser than the π-topology. If V (or W )
is a nuclear locally convex topological vector space, then these two topologies coincide,
cf. [25, 47]. Since finite dimensional vector spaces over R are nuclear, this entails in
particular that for finite dimensional V and W the natural vector space topology on
V ⊗W coincides with the (completed) π- and ε-topology.

b) The projective tensor product, the injective tensor product, and their completed versions
are in fact functors, so it is clear what is meant by f ⊗ε g, f⊗̂πg, and so on, where f and g
denote continuous linear maps.

Theorem A.3. Let (Vi)i∈N and (Wi)i∈N be two families of finite dimensional real vector spaces.
Denote by V and W their respective product (within the category of locally convex topological
vector spaces), i.e., let

V :=
∏
i∈N

Vi and W :=
∏
i∈N

Wi.

Then V , W , and the completed projective tensor product V ⊗̂πW are nuclear Fréchet spaces.
Moreover, one has the canonical isomorphism

V ⊗̂πW ∼=
∏

(k,l)∈N×N

Vk ⊗Wl. (A.1)
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Proof. Since each of the vector spaces Vi and Wi is a nuclear Fréchet space, and countable
products of nuclear Fréchet are again nuclear Fréchet spaces by [47], the spaces V and W
are nuclear Fréchet. Moreover, the same argument shows that V ⊗̂πW is nuclear Fréchet, if
equation (A.1) holds true. So let us show equation (A.1). To this end recall first [10, Section 3.7]
that there is a canonical injection

ι : V ⊗W ↪−→
∏

(i,j)∈N×N

Vi ⊗Wj ,

(vi)i∈N ⊗ (wj)j∈N 7−→ (vi ⊗ wj)(i,j)∈N×N.

Choose norms pi : Vi → R and qi : Wi → R. The product topology on
∏

(i,j)∈N×N Vi ⊗Wj then
is defined by the sequence of seminorms

rk,l :
∏

(i,j)∈N×N

Vi ⊗Wj −→ R, (zi,j)(i,j)∈N×N 7−→ (pk ⊗π ql)(zk,l).

The product topology on V is generated by the seminorms pVk : V → R,
(
vi
)
i∈N 7→ pk(vk), the

topology on W by the seminorms qWl : W → R,
(
wi
)
i∈N 7→ ql(wl). Hence, the π-topology on

V ⊗W is generated by the seminorms pVk ⊗π qWl . But since these are cross seminorms, one
obtains for (vi)i∈N ∈ V and (wi)i∈N ∈W the equality

pVk ⊗π qWl
(
(vi)i∈N ⊗ (wi)i∈N

)
= pVk

(
(vi)i∈N

)
qWl
(
(wi)i∈N

)
= pk(vk)ql(wl)

= pk ⊗π ql(vk ⊗ wl) = rk,l
(
(vi ⊗ wj)(i,j)∈N×N

)
.

This entails pVk ⊗π qWl = rk,l ◦ ι, or in other words that the π-topology on V ⊗W coincides
with the pull-back of the product topology on

∏
(i,j)∈N×N Vi ⊗ Wj by the embedding ι. The

claim now follows, if we can yet show that the image of ι is dense in its range. To prove this let
z = (zi,j)(i,j)∈N×N be an element of the product

∏
(i,j)∈N×N Vi ⊗Wj . Choose representations

zi,j =

ni,j∑
l=1

vi,j,l ⊗ wi,j,l, where vi,j,l ∈ Vi, wi,j,l ∈ Vj .

Put vi,j,l = 0 and wi,j,l = 0, if l > ni,j . Let ιVi : Vi → V the embedding of the i-th factor in V ,
i.e., the map which associates to vi ∈ Vi the family (vj)j∈N, where vj := 0, if j 6= i. Likewise,
denote by ιWi : Wi ↪→W the embedding of the i-th factor in W . Then define for n ∈ N

zn :=
∑
i,j≤n

∑
l∈N

ιVi (vi,j,l)⊗ ιWj (wi,j,l),

and note that by construction the sum on the right side is finite. The sequence (zn)n∈N then is
a family in V ⊗π W . By construction, it is clear that lim

n→∞
ι(zn) = z. The proof is finished. �

Theorem A.4. Assume that V and W are projective limits of projective systems of finite dimen-
sional real vector spaces (Vi, λij) and (Wi, µij), respectively. Denote by

λi : V −→ Vi, respectively by µi : W −→Wi,

the corresponding canonical maps. The completed π-tensor product V ⊗̂πW together with the
family of canonical maps

λi⊗̂πµi : V ⊗̂πW −→ Vi ⊗Wi

then is a projective limit of the projective system (Vi⊗Wi, λij⊗µij) within the category of locally
convex topological vector spaces. Moreover, both V and W are nuclear, hence V ⊗̂πW = V ⊗̂εW .
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Proof. First observe that
(
Vi ⊗Wi, λij ⊗ µij

)
is a projective systems of finite dimensional real

vector spaces, indeed. Next recall that projective limits of nuclear Fréchet spaces are nuclear
by [47]. This proves the second claim. It remains to show the first one. To this end put Ṽ0 := V0,

W̃0 := W0, and denote for every i ∈ N∗ by Ṽi be the kernel of the map λi−1i and by W̃i the kernel
of µi−1i. Moreover, choose for every i ∈ N∗ a splitting fi : Vi−1 → Vi of λi−1i, and a splitting
gi : Wi−1 →Wi of µi−1i. Put

Ṽ :=
∏
i∈N

Ṽi and W̃ :=
∏
i∈N

W̃i.

Let πṼi : Ṽ → Ṽi be the projection onto the i-th factor of Ṽ , and πW̃j : W̃ → W̃j the projection

on the j-th factor of W̃ .

Now we inductively construct λ̃i : Ṽ → Vi and µ̃i : W̃ → Wi. First, put λ̃0 := πṼ0 and

µ̃0 := πW̃0 . Next, assume that we have constructed λ̃0, . . . , λ̃j and µ̃0, . . . , µ̃j such that for
i ≤ k ≤ j

λ̃i = λik ◦ λ̃k and µ̃i = µik ◦ µ̃k. (A.2)

Then we define λ̃j+1 : Ṽ → Vj+1 and µ̃j+1 : W̃ →Wj+1 by

λ̃j+1(v) = πṼj+1(v) + fj+1λ̃j(v) and µ̃j+1(w) = πW̃j+1(w) + gj+1λ̃j(w),

where v ∈ Ṽ , and w ∈ W̃ . By assumption on fj+1 and gj+1 one concludes that

λ̃j = λj+1j ◦ λ̃j+1 and µ̃j = µj+1j ◦ µ̃j+1,

which entails that equation (A.2) holds true for i ≤ k ≤ j + 1. We now claim that Ṽ together

with the family (λ̃i) is a projective limit of (Vi, λij), and likewise for W̃ . We only need to prove

the claim for Ṽ . Let Z be a locally convex topological vector space, and νi : Z → Vi a family of
continuous linear maps such that νi = λij ◦ νj for i ≤ j. Put for every z ∈ Z

ν̃0(z) := ν0(z) and ν̃i(z) := νi(z)− fi(νi−1(z))) for i ∈ N∗.

Then ν̃i(z) ∈ Ṽi for all i ∈ N, and

ν : Z −→ Ṽ , z 7−→
(
ν̃i(z)

)
i∈N

is well-defined, linear, and continuous. Moreover, it follows by induction on i ∈ N that

λ̃iν = νi.

For i = 0 this is clear, so assume that we have shown this for some i ∈ N. Then, for z ∈ Z,

λ̃i+1ν(z) = νi+1(z)− fi+1(νi(z)) + fi+1λ̃i(ν(z)) = νi+1(z),

which finishes the inductive argument. Assume that ν ′ : Z → Ṽ is another continuous linear
map such that λ̃iν

′ = νi for all i ∈ N. First, this entails that

πṼ0 ν
′ = λ̃0ν

′ = ν0 = ν̃0.

Assume that πṼi ν
′ = ν̃i for some i ∈ N. Then

πṼi+1ν
′ = λ̃i+1ν

′ − fi+1λ̃iν
′ = νi+1 − fi+1νi = ν̃i+1.
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Hence, one obtains, for all i ∈ N,

πṼi ν
′ = ν̃i = πṼi ν,

which proves ν ′ = ν. So Ṽ is a projective limit of (Vi, λij), and W̃ a projective limit of (Wi, µij).

Moreover, Ṽ is canonically isomorphic to V , and W̃ to W . The theorem is now proved, if we
can show that Ṽ ⊗π W̃ together with the family of canonical maps λ̃i⊗̂πµ̃i : Ṽ ⊗π W̃ → Vi ⊗Wi

is a projective limit of the projective system (Vi ⊗Wi, λij ⊗ µij). But this is clear, since by the
preceding theorem,

Ṽ ⊗π W̃ ∼=
∏

(i,j)∈N×N

Ṽi ⊗ W̃j
∼= lim
←−
k∈N

∏
(i,j)∈N×N
i,j≤k

Ṽi ⊗ W̃j

and, for k ∈ N,∏
(i,j)∈N×N
i,j≤k

Ṽi ⊗ W̃j
∼=
∏
i≤k

Ṽi ⊗
∏
j≤k

W̃j
∼= Vk ⊗Wk. �
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