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Abstract. We construct the rings of generalized differential operators on the h-deformed
vector space of gl-type. In contrast to the g-deformed vector space, where the ring of
differential operators is unique up to an isomorphism, the general ring of h-deformed
differential operators Diffy, ,(n) is labeled by a rational function o in n variables, satisfying
an over-determined system of finite-difference equations. We obtain the general solution of
the system and describe some properties of the rings Diffy, ,(n).
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1 Introduction

As the coordinate rings of ¢g-deformed vector spaces, the coordinate rings of h-deformed vector
spaces are defined with the help of a solution of the dynamical Yang—Baxter equation. The
coordinate rings of h-deformed vector spaces appeared in several contexts. In [4] it was observed
that such coordinate rings generate the Clebsch—Gordan coefficients for GL(2). These coordinate
rings appear in the study of the cotangent bundle to a quantum group [1] and in the study of
zero-modes in the WZNW model [1, 5, 7].

The coordinate rings of h-deformed vector spaces appear naturally in the theory of reduction
algebras. The reduction algebras [9, 14, 17, 22] are designed to study the decompositions of
representations of an associative algebra B with respect to its subalgebra B’. Let B’ be the
universal enveloping algebra of a reductive Lie algebra g. Let M be a g-module and B the
universal enveloping algebra of the semi-direct product of g with the abelian Lie algebra formed
by N copies of M. Then the corresponding reduction algebra is precisely the coordinate ring
of N copies of h-deformed vector spaces.

We restrict our attention to the case g = gl(n). Let V be the tautological gl(n)-module
and V* its dual. We denote by V(n, N) the reduction algebra related to N copies of V' and
by V*(n, N) the reduction algebra related to N copies of V*.

In this article we develop the differential calculus on the h-deformed vector spaces of gl-type
as it is done in [19] for the g-deformed spaces. Formulated differently, we study the consistent,
in the sense, explained in Section 3.2.1, pairings between the rings V(n,N) and V*(n,N').
A consistent pairing allows to construct a flat deformation of the reduction algebra, related to N
copies of V and N’ copies of V*. We show that for N > 1 or N’ > 1 the pairing is essentially
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unique. However it turns out that for N = N’ = 1 the result is surprisingly different from that
for g-deformed vector spaces. The consistency leads to an over-determined system of finite-
difference equations for a certain rational function o, which we call “potential”, in n variables.
The solution space W can be described as follows. Let K be the ground ring of characteristic 0
and K][t] the space of univariate polynomials over K. Then W is isomorphic to K[¢]” modulo
the (n — 1)-dimensional subspace spanned by n-tuples (¢/,...,t/) for j = 0,1,...,n — 2. Thus
for each 0 € W we have a ring Diffy, ,(n) of generalized h-deformed differential operators.
The polynomial solutions ¢ are linear combinations of complete symmetric polynomials; they
correspond to the diagonal of K[t|”. The ring Diffy, ,(n) admits the action of the so-called
Zhelobenko automorphisms if and only if the potential ¢ is polynomial.

In Section 2 we give the definition of the coordinate rings of h-deformed vector spaces of
gl-type.

Section 3 starts with the description of two different known pairings between h-deformed
vector spaces, that is, two different flat deformations of the reduction algebra related to V @ V™.
The first deformation is the ring Diffy,(n) which is the reduction algebra, with respect to gl , of
the classical ring of polynomial differential operators. The second ring is related to the reduction
algebra, with respect to gl,,, of the algebra U(gl, ;). These two examples motivate our study.
Then, in Section 3, we formulate the main question and results. We present the system of the
finite-difference equations resulting from the Poincaré-Birkhoff-Witt property of the ring of
generalized h-deformed differential operators. We obtain the general solution of the system and
establish the existence of the potential. We give a characterization of polynomial potentials.
We describe the centers of the rings Diffy, ,(n) and construct an isomorphism between a certain
ring of fractions of the ring Diffy, ,(n) and a certain ring of fractions of the Weyl algebra. We
describe a family of the lowest weight representations and calculate the values of central elements
on them. We establish the uniqueness of the deformation in the situation when we have several
copies of V or V*.

Section 4 contains the proofs of the statements from Section 3.

Notation. We denote by S,, the symmetric group on n letters. The symbol s; stands for the
transposition (7,7 + 1).

Let h(n) be the abelian Lie algebra with generators h;, i = 1,...,n, and U(n) its universal
enveloping algebra. Set h;; = h; — hj € h(n). We define U(n) to be the ring of fractions of the
commutative ring U(n) with respect to the multiplicative set of denominators, generated by the
elements (7%] + a)_l, a€Z,i,j=1,...,n,1%# j. Let

"(bl‘ = H ilik, w; = H ]lek and Xi ‘= wlw;, 1= 1, ceeyn. (1.1)
k: k>i k: k<i
Let €, j = 1,...,n, be the elementary translations of the generators of U(n), €;: hi — h; + 65

For an element p € U(n) we denote £;(p) by ple;]. We shall use the finite-difference operators A;
defined by

Ajf = f— fl—gjl

~ We denote by er, L = 0,...,n, the elementary symmetric polynomials in the variables
hi,...,hn, and by e(t) the generating function of the polynomials ey,

n

er = Z ilil"‘iliL, e(t):ZeLtL:H(l—Filit).
L=0

i1< - <ip, =1

We denote by R € Endg,, (U(n)™ R (n) U(n)") the standard solution of the dynamical
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Yang-Baxter equation
STRY R o ReY, = Y RIY[—ei] Ri%, RE [—en]
a,b,u a,bu

of type A. The nonzero components of the operator R are

1 o1
. . .. — s < ,
Rj=-— i#j, ad  Rj={ 72 reJ (1.2)
Y 1, i> .
We shall need the following properties of R:
Rz[5i+6J]ZRZ7 i,j,k:,l:L...,n, (13)
R =0 if (i) # (k1) or (I,k), (1.4)

R? = Id.

We denote by ¥ € Endg,, (U(n)™ T (n) U(n)™) the dynamical version of the skew inverse of
the operator R, defined by

> R [em] = 5,67 (1.6)
k,l

The nonzero components of the operator U are, see [13],

1, 1< 7,
Vi=Qf Q= Vi=q (hy-1)° (1.7)
hij +1 m, . > ],
17 \ Mg
where
Qf = xil£ei]
Xi

2 Coordinate rings of h-deformed vector spaces

Let F(n, N) be the ring with the generators 2'*,i = 1,...,n,a = 1,..., N, and hi,i=1,...,n,
with the defining relations

>

:h; = hih;, ij=1,...,n, (2.1)
Y = I (hi—i-ég), i,j=1,....,n, a=1,...,N. (2.2)

=

We shall say that an element f € F(n, N) has an h(n)-weight w € h(n)* if
ilzf:f(ilz+W(iLZ)), 1=1,...,n. (2.3)

The ring U(n) is naturally the subring of F(n,N). Let F(n,N) := U(n) Qu, F(n, N). The
coordinate ring V(n, N) of N copies of the h-deformed vector space is the factor-ring of F(n, N)
by the relations

202 =N "R aMale, ij=1,...n, a,B=1,..,N. (2.4)
k,l
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The ring V(n, N) is the reduction algebra, with respect to gl,,, of the semi-direct product of gl
and the abelian Lie algebra V@V @---@®V (N times) where V is the (tautological) n-dimensional
gl -module. According to the general theory of reduction algebras [9, 12, 22], V(n, N) is a free

left (or right) U(n)-module; the ring V(n, N) has the following Poincaré-Birkhoff-Witt property:

given an arbitrary order on the set /%, i =1,...,n, a =1,..., N, the set
of all ordered monomials in z'* is a basis of the left U(n)-module V(n, N). (2.5)
Moreover, if {Rf]l }j k=1 is an arbitrary array of functions in hi,i=1,...,n, then the Poincaré—

Birkhoff-Witt property of the algebra defined by the relations (2.4), together with the weight
prescriptions (2.2), implies that R satisfies the dynamical Yang-Baxter equation when N > 3.

Similarly, let F*(n, N) be the ring with the generators 0;, i = 1,...,n,a =1,..., N, and h,,
i=1,...,n, with the defining relations (2.1) and

hibja = Oja(hi — &),  i,j=1,...,n, a=1,...,N. (2.6)

Let F*(n, N) := U(n) ®u(n) F*(n, N). The h(n)-weights are defined by the same equation (2.3).
The coordinate ring V*(n, N) of N copies of the “dual” h-deformed vector space is the factor-ring
of F*(n, N) by the relations

Oalkp =Y 0ip0ia Ry}, kl=1,....n, a,f=1,... N (2.7)

2%
Again, the ring V*(n, N) is the reduction algebra, with respect to gl,,, of the semi-direct product
of gl, and the abelian Lie algebra V* @ V* @ --- @ V* (N times) where V* is the gl -module,

dual to V. The ring V*(n, N) is a free left (or right) U(n)-module; it has a similar to V(n, N)
Poincaré-Birkhoff-Witt property:

given an arbitrary order on the set 9;o , i =1,...,m, a =1,..., N, the set

of all ordered monomials in ;, is a basis of the left U(n)-module V*(n, N). (2.8)
Again, the Poincaré-Birkhoff-Witt property of the algebra defined by the relations (2.7), to-
gether with the weight prescriptions (2.6), implies that R satisfies the dynamical Yang-Baxter

equation when N > 3.
For N =1 we shall write V(n) and V*(n) instead of V(n,1) and V*(n,1).

3 Generalized rings of h-deformed differential operators

3.1 Two examples

Before presenting the main question we consider two examples.
1. We denote by W,, the algebra of polynomial differential operators in n variables. It is the
algebra with the generators X7, Dj, j=1,...,n, and the defining relations

X'X?=XIX', D;Dj=D;D;, D X?=§ +X'D;, i,j=1,...,n.
The map, defined on the set {e;;}';_; of the standard generators of gl,, by
€ij — XiDj,

extends to a homomorphism U(gl,) — Wy,. The reduction algebra of W;, @ U(gl,,) with respect
to the diagonal embedding of U(gl,,) was denoted by Diffy,(n) in [13]. It is generated, over U(n),
by the images 2* and 0;, i = 1,...,n, of the generators X* and D;. Let
5 Vi
0; == 0; ,
C il
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where the elements v; are defined in (1.1). Then

Zaksz ! 5§U§Diff)’ (3.1)

where O'(D iff) — =1,i=1,...,n. The h(n)-weights of the generators are given by (2.2) and (2.6).

Moreover, the set of the defining relations, over U(n), for the generators x* and d;,i=1,...,n,
consists of (2.4), (2.7) (with N =1) and (3.1) (see [13, Proposition 3.3]).

The algebra Diffy(n, N), formed by N copies of the algebra Diffy,(n), was used in [8] for the
study of the representation theory of Yangians, and in [13] for the R-matrix description of the
diagonal reduction algebra of gl,, (we refer to [10, 11] for generalities on the diagonal reduction
algebras of gl type).

2. Identifying each n X n matrix a with the larger matrix (¢ 9) gives an embedding of gl,

(g n+1)

into gl,, ;. The resulting reduction algebra R , or simply Rg "“, was denoted by AZ,

n [22]. Tt is generated, over U(n), by the elements 2 yii=1,...,n, and hpp =2 — (n+1),
Where x" and y; are the images of the standard generators e; 11 and e,11; of U(gl, ;) and z
is the image of the standard generator €1 n+1. Let

5 ._ . Vi
0; == yz%[ ]

where the elements ¢); are defined in (1.1) (they depend on hi, ..., h, only). The h(n)-weights
of the generators are given by (2.2) and (2.6) while

hpira' = 2t (iln+1 - 1), P15 = 0; (iln—H +1), i=1,...,n.

The set of the remaining defining relations consists of (2.4), (2.7) (with N =1) and

a:iéj = Z 6k Rfji :I,’l - 5§U§AZ), (3'2)
where

The algebra AZ, was used in [18] for the study of Harish-Chandra modules and in [20] for
the construction of the Gelfand-Tsetlin bases [6].
The algebra AZ, has a central element

In the factor-algebra AZ, of AZ, by the ideal, generated by the element (3.3), the relation (3.2)
is replaced by

Z kz l_(Sz (AZ), (34)

k,l

with

_ n
Z):—hi—th—Fl, 1=1,...,n.
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3.2 Main question and results
3.2.1 Main question

Both rings, Diffy(n) and AZ, satisfy the Poincaré-Birkhoff-Witt property. The only difference

between these rings is in the form of the zero-order terms JZ-(Diff) l(AZ)

commutation relations (3.1) and (3.4) (compare to the ring of g-differential operators [19] where
the zero-order term is essentially — up to redefinitions — unique). It is therefore natural to inves-
tigate possible generalizations of the rings Diffy,(n) and AZ,. More precisely, given n elements
o1,...,0n of U(n), we let Diffy(cy, ..., 0,) be the ring, over U(n), with the generators z* and 0,
i =1,...,n, subject to the defining relations (2.4), (2.7) (with N = 1) and the oscillator-like
relations

and o in the cross-

J}iéj = Z 5k R;gf xl — (5;01 (3.5)
k1l

The weight prescriptions for the generators are given by (2.2) and (2.6). The diagonal form of
the zero-order term (the Kronecker symbol 6; in the right hand side of (3.5)) is dictated by the
h(n)-weight considerations.

We shall study conditions under which the ring Diffy(oq,...,0,) satisfies the Poincaré—
Birkhoff-Witt property. More specifically, since the rings V(n) and V*(n) both satisfy the
Poincaré-Birkhoff-Witt property, our aim is to study conditions under which Diffy(o1,...,0p)
is isomorphic, as a U(n)-module, to V*(n) ®g,) V(n).

The assignment

deg (acz) = deg (51) =1, i=1,...,n, (3.6)
defines the structure of a filtered algebra on Diffy (o1, ...,0,). The associated graded algebra is
the homogeneous algebra Diffy, (0,...,0). This homogeneous algebra has the desired Poincaré—

Birkhoff-Witt property because it is the reduction algebra, with respect to gl ,, of the semi-direct
product of gl,, and the abelian Lie algebra V & V*.

The standard argument shows that the ring Diffy, (o1, ...,0,) can be viewed as a deforma-
tion of the homogeneous ring Diffy(0,...,0): for the generating set {:z:’i, 51-}, where /' = ha',
all defining relations are the same except (3.5) in which o; gets replaced by ho;; one can con-
sider h as the deformation parameter. Thus our aim is to study the conditions under which this
deformation is flat.

3.2.2 Poincaré—Birkhoff-Witt property

It turns out that the Poincaré—Birkhoff-Witt property is equivalent to the system of finite-
difference equations for the elements oy,...,0, € U(n).

Proposition 3.1. The ring Diffy(01,...,0,) satisfies the Poincaré-Birkhoff-Witt property if

and only if the elements o1, ...,0, € U(n) satisfy the following linear system of finite-difference
equations
iLijAjO'i = 0 — 0y, ’L',j: 1,...,n. (37)

We postpone the proof to Section 4.1.
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3.2.3 A-system

The system (3.7) is closely related to the following linear system of finite-difference equations
for one element o € U(n):

AVIAY (Bija) =0, i,j=1,...,n. (3.8)
We shall call it the “A-system”. The A-system can be written in the form
BijAina = Ajo — Ajo, ,7=1,...,n.
We describe the most general solution of the system (3.8).
Definition 3.2. Let W;, j = 1,...,n, be the vector space of the elements of U(n) of the form
m(h;)
X3
and x; is defined in (1.1). Let W be the sum of the vector spaces W;, j =1,...,n.
Theorem 3.3. An element o € U(n) satisfies the system (3.8) if and only if 0 € W.

where W(ﬁj) is a univariate polynomial in fzj,

The proof is in Section 4.2.
The sum ) Wj; is not direct.

Definition 3.4. Let H be the K-vector space formed by linear combinations of the complete

symmetric polynomials Hy, L = 0,1,2,..., in the variables /~11, ceoyhn,
Hy= S i,
11 <<ig,

Lemma 3.5.
(1) Let L € Z>o. We have
n Bf_{o, L=0,1,...,n—2,

(3.9)
HL*H+17 LG_]-

(1) The space H is a subspace of W. Moreover, an element o € U(n) satisfies the system (3.8)
if and only if o € H, that is,

H=WnU(n). (3.10)
The symmetric group Sy, acts on the ring U(n) and on the space W by permutations of the
variables hy, ..., h,. We have

H =W, (3.11)
where WS denotes the subspace of Sy, -invariants in W.

(1it) Select j € {1,...,n}. Then we have a direct sum decomposition
W= P WeH. (3.12)
E: k)

The proof is in Section 4.2.
Let ¢ be an auxiliary indeterminate. We have a linear map of vector spaces K[t]" — W
defined by
n -
i (h;
(v ) o 30 )
— X
J
It follows from Lemma 3.5 that this map is surjective and its kernel is the vector subspace
of K[t]" spanned by n-tuples (#/,...,#/) for j = 0,1,...,n — 2. The image of the diagonal
in K[t]”, formed by n-tuples (m,..., ), is the space H.
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3.2.4 Potential

We shall give a general solution of the system (3.7).

Proposition 3.6. Assume that the elements oy, ...,0, € U(n) satisfy the system (3.7). Then
there exists an element o € U(n) such that

O'i:AiO‘, iZl,...,TL.

We shall call the element o the “potential” and write Diffy, ,(n) instead of Diffy (o1, ..., 0n)
ifo;=00,i=1,...,n.

According to Proposition 3.1, the ring Diffy, ,(n) satisfies the Poincaré-Birkhoff-Witt prop-
erty iff the potential o satisfies the A-system (3.8).

In Section 4.4 we give two proofs of Proposition 3.6. In the first proof we directly describe
the space of solutions of the system (3.7). As a by-product of this description we find that the
potential exists and moreover belongs to the space W.

The second proof uses a partial information contained in the system (3.7) and establishes
only the existence of a potential and does not immediately produce the general solution of
the system (3.7). Given the existence of a potential, the general solution is then obtained by
Theorem 3.3.

Let H' be the K-vector space formed by linear combinations of the complete symmetric
polynomials Hy, L =1,2,..., and let

W= wio (3.13)
k: k#1

The potential o is defined up to an additive constant, and it will be sometimes useful to uniquely
define o by requiring that o € W'.

3.2.5 A characterization of polynomial potentials

The polynomial potentials o € W can be characterized in different terms. The rings Diffy(n)

and AZ, admit the action of Zhelobenko automorphisms qy, ..., d, 4 [9, 21]. Their action on
the generators 2* and 0;, i = 1,...,n, is given by (see [13])
4; (:UZ) — _pitl _ifl , qi(x’""l) =z, ql(x]) = a7, jFE i+ 1,
hiiv1 —1
Ay hiip—15 = =

O

-

—

&

~
|

ai-‘rla (jz(él-i-l) :au Qz(éj) 26]7 j #7’71_’_]—5
hiiv1

a;(hy) = hs,)- (3.14)
Lemma 3.7. The ring Diffy, ,(n) admits the action of Zhelobenko automorphisms if and only
if 0 is a polynomial,

o €H.

The proof is in Section 4.5.
In the examples discussed in Section 3.1, the ring Diffn(n) corresponds to o = H; and the

ring AZ, corresponds to 0 = —Hy = — Y hih;,
5,j:1<]

A;Hy :}NLZ—I—Z]NIk—l
k=1

The question of constructing an associative algebra which contains U(gl,,) and whose reduction
with respect to gl, is Diffy, ,(n) for o = Hy, k > 2, will be discussed elsewhere.
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3.2.6 Center

In [16] we have described the center of the ring Diffy(n). The center of the ring Diffy ,(n),
o € W, admits a similar description. Let

I = 0z’ for 1=1,...,n.

Let

_ e(t) . R okl
w—zuﬁﬁ;M—;u , (3.15)

i
where ¢ is an auxiliary variable and p(t) a polynomial of degree n — 1 in t with coefficients
in U(n).

Proposition 3.8.

(1) Let 0 € W and 0 = Ajo, j =1,...,n. The elements ci,...,c, are central in the ring
Diffy »(n) if and only if the polynomial p satisfies the system of finite-difference equations

e(t)

Ajip(t) = 0. 3.16
0 =1 (3.16)
(13) For an arbitrary o € W the system (3.16) admits a solution. Since the system (3.16) is
linear, it is sufficient to present a solution for an element o € Wy, for each k =1,...,n,

that is, for

A(hy) _ o .
o= , where A is a univariate polynomial. (3.17)
Xk

The solution of the system (3.16) for the element o of the form (3.17) is, up to an additive
constant from K,

_ e
p() = U+ Jt

(t3i) The center of the ring Diffy, 5(n) is isomorphic to the polynomial ring K[tq, ..., t,]; the
isomorphism is given by t; —cj, j=1,...,n.

The proof is in Section 4.6.

3.2.7 Rings of fractions

In [16] we have established an isomorphism between certain rings of fractions of the ring Diffy (n)
and the Weyl algebra W,. It turns out that when we pass to the analogous ring of fractions
of the ring Diffy, (n), we loose the information about the potential o. Thus we obtain the
isomorphism with the same, as for the ring Diffy,(n), ring of fractions of the Weyl algebra W,
We denote, as for the ring Diff,(n), by S;' Diffp ,(n) the localization of the ring Diffy, ,(n)
with respect to the multiplicative set S, generated by 27, j =1,...,n.

Lemma 3.9. Let o and o’ be two elements of the space W', see (3.13).
(i) The rings S; ' Diffy, »(n) and S, 'Diffy, ,/(n) are isomorphic.

(1) However, the rings Diffn ,(n) and Diffy ./ (n) are isomorphic, as filtered rings over U(n)
(where the filtration is defined by (3.6)), if and only if

o=n~o' for some € K*.

The proof is in Section 4.7.



10 B. Herlemont and O. Ogievetsky

3.2.8 Lowest weight representations

The ring Diffy, ,(n) has an n-parametric family of lowest weight representations, similar to the
lowest weight representations of the ring Diffy,(n), see [16]. We recall the definition. Let ©,,
be an U(n)-subring of Diffy, ,(n) generated by {9;}™ ;. Let X = {A1,...,A\n} be a sequence, of
length n, of complex numbers such that A\; — \; ¢ Z for all 4,j = 1,...,n, i # j. Denote by M
the one-dimensional K-vector space with the basis vector | ). The formulas

Bii |>i—>>\l‘>, 5z |>l—>0, 1=1,...,n, (3.18)
define the ®,-module structure on My. The lowest weight representation of lowest weight X is
the induced representation Indglffh"’(n) M;.

We describe the values of the central polynomial ¢(t), see (3.15), on the lowest weight repre-
sentations.

Proposition 3.10. The element c(t) acts on Indgffh“’(n) My, by the multiplication on the scalar
—p(t)[—¢l, where e =e1 + -+ p. (3.19)

The proof is in Section 4.8.

3.2.9 Several copies

The coexistence of several copies imposes much more severe restrictions on the flatness of the
deformation. Namely, let £ be the ring with the generators z**, i = 1,...,n, a = 1,..., N,
and 0;3, j = 1,...,n, B = 1,...,N subject to the following defining relations. The h(n)-
weights of the generators are given by (2.2) and (2.6). The generators z'® satisfy the rela-
tions (2.4). The generators 0;z satisfy the relations (2.7). We impose the general oscillator-
like cross-commutation relations, compatible with the h(n)-weights, between the generators z°®
and 03:

xia}ﬂ = ZékgRZ»i:cla —6;-01@5, i,j=1,....,n, a=1,....N', B=1,...,N,
k1l
with some ;s € U(n).
Lemma 3.11. Assume that at least one of the numbers N and N’ is bigger than 1. Then the
ring L has the Poincaré—Birkhoff—Witt property if and only if
TiaB = Oap for some o045 € K. (3.20)

The proof is in Section 4.9.

Making the redefinitions of the generators, z'® ~ Ag/xi"" and 51»5 ~ Bg/@ﬁ/ with some
A € GL(N',K) and B € GL(N,K) we can transform the matrix o, to the diagonal form, with
the diagonal (1,...,1,0,...,0). Therefore, the ring £ is formed by several copies of the rings
Diffp(n), V(n) and V*(n).

4 Proofs of statements in Section 3.2

4.1 Poincaré—Birkhoff-Witt property. Proof of Proposition 3.1

The explicit form of the defining relations for the ring Diffy (o1, ...,0,) is

o R4l
r'r) = Z{ix]xz, 1<i<y<n, (4.1)
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o hoi—1 -

,0; = —2—=0,0;, 1<i<j<n, (4.2)
5j331, 1 <1<y <n,

9. = { hij(hij —2) - . :

v Masz, n>i>j>1, (4:3)
(hz‘j—l)

azigi:zl h Ojx — i=1,...,n. (4.4)

Proof of Proposition 3.1. We can consider (4.1), (4.2) and (4.3) as the set of ordering
relations and use the diamond lemma [2, 3] for the investigation of the Poincaré-Birkhoff-
Witt property. The relations (4 1), (4.2) and (4.3) are compatible with the h(n)-weights of the
generators z" and 0;, i = 1,...,n, so we have to check the possible ambiguities involving the
generators ' and 0;, i = 1,...,n, only. The properties (2.5) and (2.8) show that the ambiguities
of the forms zzx and 900 are resolvable. It remains to check the ambiguities

20,0y, and 27 20 (4.5)

It follows from the properties (2.5) and (2.8) that the choice of the order for the generators
with indices j and k in (4.5) is irrelevant. Besides, it can be verified directly that the ring

Diffy, (o1, . ..,0n), with arbitrary oy, ..., 0, € U(n) admits an involutive anti-automorphism e,
defined by
e(hi) = hi, €(0;) = pix’, e(z') = dip; ', (4.6)
where
o e Yi ~sz 7 i=1... ..
dil=eil L hae — 1

By using the anti-automorphism e we reduce the check of the ambiguity @?/z*9; to the check of
the ambiguity xiéjgk.

Since the associated graded algebra with respect to the filtration (3.6) has the Poincaré-
Birkhoff-Witt property, we have, in the check of the ambiguity :Ciéjék, to track only those
ordered terms whose degree is smaller than 3. We use the symbol u‘l' 4, to denote the part of
the ordered expression for u containing these lower degree terms.

Check of the ambiguity xiéjék. We calculate, for i, 7,k =1,...,n,

(‘Tigj)ak’l.d.t. = (Z R%‘ [eu]Ouz” — 5ji‘ai> 5k|l.d,t. == Z R%‘ [eu]Ouoy; — 5§Ji5k’ (4.7)

and

' (0;0%) ‘l.d.t. =’ Z RZS’ 5b5a‘l.d.t. = Z R%?'[_Ei] Z dblec)Ocx — S04 é“'l.d.t.

a,b a,b c,d
==Y R [~cilRilec|0coa — > Ri[—ei]oi0a. (4.8)
a,b,c a

Comparing the resulting expressions in (4.7) and (4.8) and collecting coefficients in Oy, we find
the necessary and sufficient condition for the resolvability of the ambiguity 29;0:

Rk,] [eu]oled] + 0 0o = ZR Uleoaled] + Rk][ eilo, (4.9)

Lk, j,u=1,....n
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Shifting by —e, and using the property (1.3) together with the ice condition (1.4), we rewri-
e (4.9) in the form

1 (o) — oil—eu]) + 0i61 o[ —eu] ZR RY o, (4.10)

For j = k the system (4.10) contains no equations. For j # k we have two cases:

e u =j and i = k. This part of the system (4.10) reads explicitly (see (1.2))

1
O — O'k[—&‘j] = ~7(O'k — O’j).
hy;
This is the system (3.7).

e u =k and i = j. This part of the system (4.10) reads explicitly
1 1 h,ij -1

(o —0j|—¢€k]) +04]—¢€ o+
iy o il el = ot S

which reproduces the same system (3.7).

4.2 General solution of the system (3.8).
Proofs of Theorem 3.3 and Lemma 3.5

We shall interpret elements of U(n) as rational functions on h* with possible poles on hyperplanes
fzij +a=0,a€%Z,i,5=1,...,n,i%# j. Let M be a subset of {1,...,n}. The symbol RyU(n)
denotes the subring of U(n) consisting of functions with no poles on hyperplanes ﬁij +a =0,
a €7Z,i,j €M, j#i. The symbol NyU(n) denotes the subring of U(n) consisting of functions
which do not depend on variables h;, i € M. We shall say that an element f € U(n) is regular
in h if it has no poles on hyperplanes h]m +a=0,a€Z, m=1,...,n, m=#j.

1. Partial fraction decompositions. We will use partial fractlon decompositions of an ele-
ment f € U(n) with respect to a variable ﬁj for some given j. The partial fraction decomposition
of f with respect to iL is the expression for f of the form

f="Pj(f) +reg;(f),
where the elements P;( f ) and reg;(f) have the following meaning. The “regular” part reg;(f)
is an element, regular in h The “principal” in hj part P;(f) is

Pi(f)= > Pixr(f)
k: k#j
where
= Z “’“W“ - (4.11)
aEZua€Z>O hj, — a)

with some elements g, € N;U(n); the sums are finite.
The fact that the ring U(n) admits partial fraction decompositions (that is, that the ele-
ments Upqy, and reg;(f) belong to U(n)) is a consequence of the formula

1 B 1 1 1
(iij — a) (;le — b) (ilkl +a— b) iljk —a ile —-b ‘
2. Let D be a domain (a commutative algebra without zero divisors) over K. Let f be an
element of D @k U(n). Set

Yij(f) = A (hijf). (4.12)



Differential Calculus on h-Deformed Spaces 13

Lemma 4.1. If Y;;(f) =0 for some i and j, i # j, then f can be written in the form
A
f=2 1B, (4.13)
ij

with some A, B € D ®x R; jU(n).

Proof. We write f in the form

A
f = 7 1% 7 14 7 14 —"_ B7
(s o) (i — )™y o)
where a1 < ag < --- < apr, Vi,V9,..., VM € Zso, A, B € D@k R;;U(n) and the element A is

not divisible by any factor in the denominator. There is nothing to prove if A = 0. Assume that
A # 0. Then
;lijA (iLlj - 1)A[_€’L]

0=1Yy = 7= v = s /3 v 7 v
) (hij —a1)™ -+ (hij —am)™  (hij —ar = 1) -+ (hij —apy = 1)™
B (;L” + 1)A[—€j} " ill‘jA[—Ez‘ - 5j] 1Y, (B)
(ﬁ” —a + 1)1/1 . (;sz —ay + 1)VM (}'LZJ _ al)m . (;Lz] _ aM)VM () .

(4.14)

The denominator (fzw —ap— 1) appears only in the second term in the right hand side of (4.14).
It has therefore to be compensated by (ﬁm — 1) in the numerator. Hence the only allowed value
of aps is apy = 0 and moreover we have vp; = 1. Similarly, the denominator (fL,J — a1 + 1)
appears only in the third term in the right hand side of (4.14) and has to be compensated by
(iLZ’j + 1) in the numerator. Hence the only allowed value of a; is a; = 0 and we have v; = 1.
The inequalities a1 < ag < -+ < apy imply that M = 1 and we obtain the form (4.13) of f. W

3. Let f € D ®kg U(n). We shall analyze the linear system of finite-difference equations
Yii(f)=0 forall 4,5=1,...,n, (4.15)

where Y;; are defined in (4.12).
First we prove a preliminary result. We recall Definition 3.2 of the vector spaces Wj, i =
1,...,n. We select one of the variables h;, say, hi.

Lemma 4.2. Assume that an element f € D @k U(n) satisfies the system (4.15). Then

n
f=Y Fi+9, (4.16)
j=2
where ¥ € D ®g U(n) and
wuj(hj
Fj:M € D ek W; (4.17)
Xij
with some univariate polynomials u; (ﬁj), 7 =2,...,n, with coefficients in D.
Proof. Since Yin(f) =0, m =2,...,n, Lemma 4.1 implies that the partial fraction decompo-

sition of f with respect to hy has the form

=% fm +, (4.18)
m=2 'tml
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where 3, € D®x N1U(n), m =2,...,n, and ¥ € D[ﬁl] ®@x N1U(n). Substituting the expres-
sion (4.18) for f into the equation Yi;(f) =0, j =2,...,n, we obtain

1 Bm -
0=Yy,(f) =210 > 150 — B + hy;0

m: m#l,j hima
Fifn
=ain | Y 155 + hyj0 (4.19)
m:m#l,; ml
P s hii + 1) B~ hi; — D) Bm  hiiBm—ci -
= > h}]ﬁm—( 1J+~)ﬁ =e) | - )5 4 s i) + A1A; (hij).
m: m#1,j hima hm1 hmi +1 hmi+1

We used that 5, € D®g NlI:J(n) in the third and fourth equalities. For any m # 1, j, the terms
containing the denominator hy,; in the expression (4.19) for Y1;(f) read

]Nll (ihjﬁm — (illj + 1)6m[_€j])'

ml

Therefore, ﬁljﬁm — (lej + l)ﬁm[—sj] is divisible, as a polynomial in i1, by hp1, or, what is the
same, the value of Bljﬂm — (ﬁlj + l)ﬁm[—ej} at hy = Ay, is zero. This means that

0= iLm]Bm - (iLm] + 1)Bm[_€j] = Aj (ilmjﬂm)

Therefore, the element izmj B does not depend on l~1j for any j > 1. We conclude that

_tm(bm)
Bn = — T

k: kA1,m

with some univariate polynomial .

We have proved that the element f has the form (4.16) where Fj, j = 2,...,n, are given
by (4.17) and the element ¥ is regular in h;.

A direct calculation shows that for any j = 2,...,n, the element Fj, given by (4.17), is
a solution of the linear system (4.15). Therefore the regular in hj part ¢ by itself satisfies the
system Y;;(9) = 0. It is left to analyze the regular part 9.

We use induction in n. For n = 2, the element ¥ is, by construction, a polynomial in hq
and hy. This is the induction base. We shall now prove that ¢ is a polynomial, with coefficients
in D, in all n variables Ay, ..., hy,.

For arbitrary n > 2 we have ¥ € D[ﬁl] @k U'(n — 1) where we have denoted by U'(n — 1)
the subring N1U(n) of U(n) consisting of functions not depending on Bl' Since Y;;() = 0 for

i,j =2,...,n, we can use the induction hypothesis with n — 1 variables hs, ..., hy,, over the ring
D' =Dl[hy].
We now select the variable ho. It follows from the induction hypothesis that
e
h
9= m + (4.20)
. l
mimELZ A
where 7/, (fzm), m = 3,...,n, are univariate polynomials, with coefficients in D', and the ele-

ment ¥ is a polynomial, with coefficients in D’, in the variables ilg, e hn. We rewrite the
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equality (4.20) in the form

Tm (ilfm hl) /
Y= — 4, (4.21)
m'%;él 2 hant
' Tl l#£Lm
with some polynomials v, m = 3,...,n, in two variables, with coefficients in D; the element W
is a polynomial in all variables hq, ..., h, with coefficients in D.

The equation Yi2() = 0 for ¢ given by (4.21) reads

0— Z h12Ym B (h12 — 1)ym[—e1] B (h12 + 1)y
m: m#1,2 hmz 11 hu hmz TT 0 B (hm? + 1) II P
’ 1: 1#£1,2,m 1: 1#1,2,m 1: 1#1,2,m
illﬂm[—El] /
- = + Yi2(¢). (4.22)
(hm2 + 1) H Rt
l: 1#1,2,m

The terms containing the denominator Ay in (4.22) read

1

_ — (h127m — (h12 — D)ym[—e1]).
hm2 11 1#1,2,m B ( ( ) )

Therefore, the expression ingfym — (ﬁlg — 1)7m[—51] is divisible, as a polynomial in ha, by
hgm = h2 — hm, SO

0= Blm'Ym - (illm - 1)’7m[_51] = A (ﬁlm’}/m)-

Thus the product him¥m, m = 3,...,n, does not depend on hi. Since Yy M = 3,...,n, iS
a polynomial, this implies that v, = 0. We conclude that J = ¥ and is therefore a polynomial
in all variables h1, ..., hy. |

4. Now we refine the assertion of Lemma 4.2. We shall, at this stage, obtain the general
solution of the system (4.15) in a form which does not exhibit the symmetry with respect to the
permutations of the variables hi, ..., hn.

We recall Definition 3.4 of the vector space H.

Lemma 4.3.

(i) The general solution of the linear system (4.15) for an element f € D ®g U(n) has the
form

=2

where F; € D @xg W; and

Y eD ek H. (4.24)

(t7) The elements Fj, j =2,...,n, and ¥ are uniquely defined.
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Proof. (i) In Lemma 4.2 we have established the decomposition (4.23) with ¥ € D @k U(n).
We now prove the assertion (4.24). We first study the case n = 2. Let p € D[hl,hz] be a

polynomial such that Yi2(p) = 0. Since A;Ag (illgp) = 0 we have Ag(illgp) eD [ﬁg]
It is a standard fact that the operator A, is surjective on D[Bg]. This can be seen, for
example, by noticing that the set

ilgm::Bg(ﬁ2+1)"'(ﬁ2+m—1), mEZZo,
is a basis of D [712] over D, and
AQ (Bgm) = mﬁgm—l.

The surjectivity of Ay implies that Aq (Elgp) = Ag (w (izg)) for some polynomial w(ﬁg) eD VLQ] .
Then A, (ﬁlgp — w(fzg)) =0 so ﬁlgp — w(ﬁg) = v(ﬁl) for some polynomial v(ﬁl) € D[ﬁl].
Therefore

0(711) + w(ilg) v(hl) - U(hg) N v(ilz) + w(ilg).

p — — = — =
h1o hi2 hio
Since p is a polynomial we must have w = —v. Thus
v iLl — v }NLQ

}NL12

that is, p is a D-linear combination of complete symmetric polynomials in hi, ho.

For arbitrary n, our polynomial ¥ is symmetric since, by the above argument, it is symmetric
in every pair Bi, iLj of variables. Moreover, considered as a polynomial in a pair iLZ‘, ilj, it is
a D-linear combination of complete symmetric polynomials in hi, Bj. It is then immediate that ¢
is a D-linear combination of complete symmetric polynomials in hi,..., I

To finish the proof of the statement that the formula (4.23) gives the general solution of the
system (4.15) it is left to check that the complete symmetric polynomials Hy, L = 0,1,..., in
the variables hy, ..., hy satisfy the system (4.15). Let s be an auxiliary variable and

o0

1

H(s)=Y Hps" = = 4.25

=3 st =TT (1.25)

be the generating function of the elements Hy, L = 0,1,... It is sufficient to show that the

formal power series (4.25) satisfies the system (4.15). Fix 4,5 € {1,...,n}, i # j, and let
1

Gij = () The element

> ((1 - ;;Z-s};i(jl - Bjs)> i _lizjs (1 fzs 1 —ﬁ(%i_—ll)8>
(1= har) (11— (hi —1)7)

does not depend on h; so Y;;((;;) = 0. Therefore Y;;(H(s)) = 0 since the factors other than (;;
in the product in the right hand side of (4.25) do not depend on h; and ﬁj.

(ii) Finally, the summands in (4.23) are uniquely defined since (4.23) is a partial fraction
decomposition of the element f in hi. |
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5. Proof of Lemma 3.5(i). Let ¢ be an auxiliary indeterminate. Multiplying by t~%~1 and
taking sum in L, we rewrite (3.9) in the form

n

1 1 1
T T

PR ﬁ (t*hj).

The left hand side is nothing else but the partial fraction decomposition, with respect to ¢, of
the product in the right hand side.

6. Proof of Theorem 3.3. The assertion of the Theorem follows immediately from the
decomposition (4.23) in Lemma 4.3 and the identity (3.9).

7. Proof of Lemma 3.5(ii) and (iii). (ii) The formula (3.10) follows from the uniqueness
of the decomposition (4.23) in Lemma 4.3.

The element f of the form (4.23) is S,-invariant if and only if f € H and the assertion (3.11)
follows.

(iii) For j = 1 formula (3.12) is the uniqueness statement of Lemma 4.3. In the proof of
Lemma 4.3 we could have selected any iLj instead of hj.

4.3 System (3.7)
We proceed to the study of the system (3.7), that is, the system of equations

Zij :0, i,j:1,...,n, (4.26)
where
Zi; = }NlijAjai —o0;+to;= —Aj((ilji + 1)ai) + 0.

for the n-tuple o1,...,0, € U(n).
1. We use the equations Zij, j = 2,...,n, to express the elements o, j = 2,...,n, in terms
of the element o7q:

0j = 8j((hj1 +1)o1) = hjAj(o1) +o1. (4.27)
Substituting the expressions (4.27) into the equations Z;1, ¢ = 2,...,n, we find

fm (Al (ililAiO'l + 01) — Aial) =0.
Simplifying by hi; we obtain

W, =0, i=2,...,n, (4.28)
where

W, = Av(ha Aoy +a1) — Aoy = A (A1 ((ha + 1)a1) — a1)

=A; (imal — (im + 2) 01[—61]).

Substituting the expressions (4.27) into the equations Z;;, i,j = 2,...,n, we find

hit (hijAiAjor + Ajor — Do) = 0.
Simplifying by h;1, we obtain, with the notation (4.12),

Yij(o1) =0, 0, =2,...,n. (4.29)

This is our first conclusion which we formulate in the following lemma.
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Lemma 4.4. If 01,...,0, € U(n) is a solution of the system (4.26) then the element o1 sa-
tisfies the equations (4.28) and (4.29). Conversely, if an element o1 € U(n) satisfies the equa-
tions (4.28) and (4.29) then we reconstruct a solution of the system (4.26) with the help of the
formulas (4.27).

2. We shall now analyze the consequences imposed by the equations (4.28) on the partial
fraction decomposition of the element o1 with respect to h;. The full form of the expression W;
reads

Wi = iLilo'l — (iLzl + 2)0’1 [—61] — (;Lzl - 1)01[—61'] + (ilzl + 1)01[—61 — Si]. (4.30)
We write the element o; in the form (keeping the notation of Section 4.2)

A

7 v = UL 4.31
(hir —a1)™ -+ (hir —ar)™ (431)

o1 =

where a; < ag < --- < ap, v1,V2,...,Vp € Z>o and A € R;;U(n) is not divisible by any factor
in the denominator.

Substitute the expression (4.31) into the equation W; = 0. The denominator (ﬁﬂ —ay, — 1) is
present only in term (im —1)o1[—¢] in (4.30). It has therefore to be compensated by (im —1).
Hence the only allowed value of ay, is a;, = 0 and we have v;, < 1. Similarly, the denominator
(ﬁij —a + 1) appears only in the term (im + 2) o1[—¢e1] in (4.30). It has to be compensated
by (im + 2). Hence the only allowed value of a1 is a; = 0 and we have 11 < 1.

It follows that the partial fraction decomposition of the element o1 with respect to hi reads

" A Al
01:Z<~’“+ k )+B, (4.32)

= \hey g +1

where Ay, A}, k=2,...,n, do not depend on hi and B is regular in h.

3. The equations (4.28) impose further restrictions on the constituents of the decomposi-
tion (4.32) of the element oy. Substitute the decomposition (4.32) into the equation W; = 0.
The terms which have denominators of the form h;; +m, m € Z, in (4.30) are

h (iill ! h1A+ 1> = (ha+2) <h1A+ r BnAi2>
— (hi — 1) <fli[_€i] + Agb”) + (bt +1) (Ail_gi] + {%[—ai]) . (4.33)

hi1 —1 hit hit hii+1

In the expression (4.33), the terms with the denominator h; + 1 read

ilz' Al — ;LZ 2)A; ﬁl 1) Al i ‘
14; ( 1+ 2 +( 1+ ) z[ 6]:_4Z+AZ+A;—A1+A;[—E'J
hip +1 hir +1

Therefore,
Al-f—A;:O, 1=2,...,n.

With this condition, the expression (4.33) vanishes.
We conclude that

al—z<i4’“— A )+B. (4.34)
k=2 hkl hk:l +1
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4. Now we substitute the obtained expression (4.34) for o7 into the equation W; = 0 with
j # i and follow the singularities of the form h;; + m, m € Z. The singular terms are

(A A > A A
hj1<~—~ )—(hj1+2)<~ — = )
hii hia+1 hit +1  hi1+2

= (A=l Aile] . Ail—e;]  Ail-¢j]
-l =) ( hit hi + 1 > BRI (fm +1  ha+ 2> ' (4.35)

In the expression (4.35), the terms with the denominator h;; read

hjrAi = (hj — 1) Ai[—¢]
iLil .

Therefore, the numerator, as a polynomial in i~11, must be divisible by the denominator hi1. The
polynomial remainder of this division equals

}NlZJAZ — (}lej + 1)Ai[_z€j] = Aj (iLl]AZ)

Therefore, for any j = 2,...,n, j # 1, the combination fLiin does not depend on Ej. It follows
that

where each «; is a univariate polynomial.
For the moment, we have found that

o1 = O'gs) + B,

where the element B is regular in h; and

) _N~(1 1 >ai(5i)
0-1 Z(ﬁzl h H iL’il‘

=2 hil + 1
l:1#1

A direct calculation shows that the element O’%s) satisfies the equations (4.28) and (4.29), so it

is left to analyze the regular in hy part B.

5. Since the element B satisfies the system of equations (4.29), we can use the results of
Lemma 4.3 with D = K[h;]. According to Lemma 4.3, we can write (with an obvious shift in
indices) the partial fraction decomposition of the element B with respect to hs in the form

l:1#1,5
where u; (izj,izl), j = 3,...,n, is a polynomial in ﬁj, hi and C is a linear combination of
complete symmetric polynomials in hg, ..., h, with coefficients in K[h4].

The equation Wa(B) = 0 implies that the expression

ilng — (ilgl + Q)B[—El]
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does not depend on hs. In the notation of paragraph 1 in Section 4.2, the part Po.;, j = 3,...,n,
of this expression is

1 (iLQlUj (ilj, Bl) - (l~121 + Q)Uj (;Lj, ill — 1))

iL]‘l hjg

1: 1£12,5

Therefore, fzgluj (ﬁj, iLl) — (iLgl + 2)uj (ij, iLl - 1) is divisible, as polynomial in Bg, by ing. So
the value of iLQlu]' (iLj7 ill) — (}~I21 + Q)Uj (iLj, iLl — 1) at ;LZ = ilj is zero,

ileu]' (ilj, iLl) — (ile + Q)Uj (ilj, iLl — 1) =0. (4.36)
Set

B

Pl 1) (4.37)

U; =

Then equation (4.36) becomes

B plal
hj1+1 h]’l—l—l

or Aq(Bj) =0, so 8 depends only on fzj. But then if 5; # 0, the formula (4.37) shows that u;
cannot be a polynomial in h.

We conclude that the principal part of the element B with respect to hs vanishes, and B = C
is a polynomial in all its variables.

6. We claim that C' is a K-linear combination of the elements Ay (Hp), L = 1,2,..., where H,

are the complete symmetric polynomials in le, ey hy.
Consider first the case n = 2. Set
£

N hot (521 + 1) ’

where £ is some polynomial in h; and hy. With this substitution the equation Wo(C) =0
becomes

1
Ay (= ALE)) =0,
2<h21+1 1(§)>
that is,
1
A =g
A 16) =

where p does not depend on hs. Note that by construction, the polynomial ¢ is divisible by
ha1 (h21 + 1), which implies that p is a polynomial in hy. Since A; is surjective on polynomials,
we can write u = A? (z (hl)) for some univariate polynomial z, that is

Aq(§) = (521 + I)Af (z(izl)).

We have

(ha1 +1)A2(2(h1)) = A1 (o121 (2(h1)) + 2(h1)).



Differential Calculus on h-Deformed Spaces 21

Therefore,
Al(f—ilglAl(Z(iLl)) —Z(iljl)) =0, or &= iLQlAl(Z(ill)) +Z(iL1) +w(ﬁ2),
where w(izg) is a polynomial in hs. That is,

_ 8a(e() | #(n) +w(ha)

C = — .
ho1 +1 ho1(ho1 + 1)

(4.38)

Since the element C' is a polynomial, the denominator ho1 in the second term in the right hand
side of (4.38) shows that w = —z. Therefore,

o i (o() + 2(n) = 2(F2) _ (4%) —z(f*m)) |

ho1 (7121 +1) ho1

as claimed.

The claim for arbitrary n follows since for any j > 2 the element C' is a linear combination
of Ay (Hp(hi,hy)), L=1,2,...

7. We summarize the results of this section in the following proposition.

Proposition 4.5. The general solution of the system (4.28) and (4.29) has the form

i 1 1 (673 (iLz)
o= [+ —= I+ A(v), veH (4.39)
— \hi1 hia+1 [T ha
I: 141,
and ao, ..., ap are univariate polynomials. The elements ao, ..., a, and v are uniquely defined.

4.4 Potential. Proof of Proposition 3.6

First proof. We rewrite the formula (4.39) in the form

" oi(i)
o1 = Aq(0), where Jzzi—i—yew.

i X
Then the expressions for the elements o;, j = 2,...,n, see (4.27), read
~ n (67 (BZ) ~
o;=A; | (hj1+1 ———— 4 (hj1 + 1)A1(v) ] . 4.40
J J (( g1 ); (hi1+1)Xi ( J1 ) 1 )) ( )

Since, for v € H,
A1Aj(hjiv) =0,
we find that
Aj((hj1 +1) A1 () = A (v).
The term with ¢ = j in the sum in the right hand side of (4.40) is simply

a;(hy) '
X;
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Since

hj1+1_hi1+1+hji_1+ hji

hiv+1  hip+1 hip+1

we can rewrite the term with i # j in the right hand side of (4.40) in the form

A, ((ﬁjl + 1)(hCIJ(rhl))X> =4, aih) (o jl()hi'[ =% <oz>(<h)> |

Therefore,

oj =Aj(0) forall j=1,...,n

The proof of Proposition 3.6 is completed.

Second proof. Let p € U(n) be a polynomial such that AjAy(p) = 0. Thus, As(p) does
not depend on A so, by surjectivity of Ao on polynomials in ho, there exists a polynomial p;
which does not depend on hq and Ao (p) = Az(p1). The polynomial ps := p—p; does not depend
on hy. The next lemma generalizes this decomposition

P = p1+ P2, Ai(p1) =0, As(p2) =0, (4.41)
to the ring U(n).
Lemma 4.6. Let f € U(n). If

A1da(f) =0

the@ there exist elements f1, fo € I_J(n) such that f1 does not depend on i~11, fa does not depend
on ho, and

f=h+fa. (4.42)

Proof. Decompose f into partial fractions with respect to hi.
We have Pi.2(f) = 0. Indeed, write P1,2(f) in the form

u
7) - _ _ — b
1:2(f) (h12 _ al)”l ... (h12 - CLL)VL

where a1 < as < --- < ayp, V1,V,...,v1, € Z~g and u € RLQI—J(n) is not divisible by any factor
in the denominator. Assume that u # 0. Then

u+ u[—e1 — &2 _ u[—eq]
(ilm —ap)” (ilm —ar)"™" (il12 —a;—1)" - (il12 —ar, —1)""
B u[—e2]
(ile —a] + 1)V1 e (iL12 —ay, + 1)VL

A1 A2(Pra(f)) =

The factor (leg —ay, — 1) appears only in the denominator of the second term in the right hand
side and cannot be compensated by the numerator. Thus Pi.2(f) = 0 (the consideration of the
factor (illz —a1 + 1) in the denominator of the third term proves the claim as well).

Now we write the part Pi.;(f), 7 > 2, in the form (4.11),

U4
j : j : _ Yjave
P17] . Va

a€Z Ve €L hlJ - a
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where 4y, € N1U(n) and the sums are finite. Then

ADs(Pri(f)) =D D A2(Ujaua)< ! - : ) (4.43)

a€Z vo€Z>0 (hlj - a)ua (iLlj —a — 1)Va

We prove that the elements 44, do not depend on ﬁg. Indeed, if this is not true then there is
a minimal a € Z for which As(ujqy,) # 0 for some v,. But then the denominator (iLlj —a)¥ in
the right hand side in (4.43) cannot be compensated.
We conclude that f = fo0+g where fog = > P1.;(f) does not depend on hs and g is regular
j>2
in iLl.
We decompose g with respect to he. As above, the part P2.1(g) vanishes and the calculation,

parallel to (4.43), shows that Pa.;(g), j > 2, does not depend on h;. Now we have
f=foo+ fro+fT,

where f1 0= ) Pa.;(g) does not depend on hy and fT is regular in hy and ho.
7>2
We use the decomposition (4.41) for the regular part f + and write f* = f;7 + f,f, where f;"
does not depend on hy and f;r does not depend on ho. This leads to the required decomposi-

tion (442) with f1 = fLO + f1+ and fg = fg}o -+ f2+ |
Lemma 4.7. Let 01,...,01, k < n, be a k-tuple of elements in U(n) such that
Ag(op) = Ap(0a), a,b=1,...,k.

Assume that o, belongs to the image of Ay for all a = 1,...,k, that is, there exist elements
fi,-- s fr € U(n) for which 0, = Au(fa), a =1,...,k. Then there exists a potential f € U(n)
such that

oq = Ag(f) =0, a=1,...,k.

Proof. For k =1 there is nothing to prove. Let now k > 1. We use the induction in k. By the
induction hypothesis, there exist elements F, G € U(n) such that

00 = Ag(F) for a=1,3,...,k and o = Ap(G) for b=2,3,... k.
Then
AC(F) = AC(G) for c¢= 3,...,k3 and AlAQ(G) = AgAl(F)

The element F' — G does not depend on fzc,_c =3,...,k,and AjA(F — G) = 0. According to
Lemma 4.6, there exist two elements u,v € U(n) such that u does not depend on hg, v does not
depend on hy, and F' — G = v — v. Then

f=F+v=_G+u
is the desired potential. |

Second proof of Proposition 3.6. The symmetric, in i and j, part of the equation (3.7)

is
AiO'j = AjO'i. (444)
The system (4.44) by itself does not imply the existence of a potential. However, the equa-
tion (3.7) can be written in the form o; = Aj((hj + 1)0;). So for each j = 1,...,n the

element o; belongs to the image of the operator A;. Then, according to Lemma 4.7, there exists
o € U(n) such that o; = Aj(0).
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4.5 Polynomial potentials. Proof of Lemma 3.7

The operator §; defined by (3.14) can be an automorphism of the ring Diffy, ,(n) only if

qi(O'j) :O'si(j) :Asi(j)(o')v i,j = 1,...,71. (4.45)
On the other hand,
4i(0) = 6:(84(0)) = By p(@l0)), 45 =1,....n. (4.46)

Comparing (4.45) and (4.46) we obtain

AJ(J_Q1(U)):07 i)jzlw"an’

which implies that o is S,-invariant. The assertion now follows from Lemma 3.5(ii).

4.6 Central elements. Proof of Proposition 3.8

(i) To analyze the relation a/¢(t) — c(t)a? = 0, we shall write the expression /c(t) — ¢(t)a’ in
the ordered form, in the order 0xx. The element

() = Z 1 j—(ti)utri

%

is central in the homogeneous ring Diffy, o(n), see the calculation in [16, Proposition 3]. Hence
we have to track only those ordered terms whose filtration degree, see (3.6), is smaller than 3.
As before, we use the symbol u} Lat, to denote these lower degree terms in an expression u. We
have

e(t)

(c(t) = e(t)a?)] 4, = ( 7 = el pm) -

1+ byt
Thus the element c(t) commutes with the generators 27, j = 1,...,n, if and only if the poly-
nomial p(t) satisfies the system (3.16). The use of the anti-automorphism (4.6) shows that the
element c(t) then commutes with the generators d;, j =1,...,n, as well.
(ii) We check the case j = 1. The calculation for o € Wj; is similar.
. S ¢ 7 ¢
Since the combination %ﬁ)ﬂ does not depend on hy, we have, for p(t) = 1i(}~l)lta,
e(t e(t
Alp(t) = (~) A10 = (~) o1.
14 hit 14 hgt
For 7 > 1 we have
o= (hij+1)Ajo,  j=2,....n, (4.47)

and we calculate

oy e(t) e
Banlt) = (1+ﬁ1t)(1+ﬁjt)AJ((1+h”t) )
_ e(t) P Yo )
B (1+E1t)(1+hj)(ta+(1+(hj 1)t)ase) 1+hit 7

according to the formula (4.47).
(iii) The proof is the same as for the ring Diffy,(n), see [16, Lemma 8§].
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4.7 Rings of fractions. Proof of Lemma 3.9

(i) The set Bp := {BZ, x'°t, Ci}?:p where 2/° := x%)!, i = 1,...,n, generates the localized ring
Sy ! Diffy, »(n). Moreover, the complete set of the defining relations for the generators from the
set Bp does not remember about the potential o. It reads

I 7 77 7 107 107 (7. j 0% 10j 105 103 ..
hihj = hjh;, hix]:x](hi—l—(ﬁ), xx = 2" ,j=1,....,n,
¢; are central, i=1,...,n.

The proof is the same as for the ring Diffy,(n), see [16]. The isomorphism is now clear.
(ii) Assume that ¢: Diffy, ,(n) — Diffy ./ (n) is an isomorphism of filtered rings over U(n).
To distinguish the generators, we denote the generators of the ring Diffy, ,/(n) by z'" and 5{» .
The e;-weight subspace &; of the ring Diffy, ,(n) consists of elements of the form 0" where 6
is a polynomial in the elements I';, j = 1,...,n, with coefficients in U(n). Since the space of
the elements of &; of filtration degree < 1 is U(n)x?, we must have

voat e 0; > Ol (4.48)

with some invertible elements u;,v; € U(n), i = 1,...,n. Let v := pivs, i = 1,...,n. The
defining relation (4.4) and the corresponding relation for the ring Diffy, ,»(n) shows that the
formulas (4.48) may define an isomorphism only if

’Yl:’)/][gjL 2,]21,,n, (449)
and
’yiO'QZO'i, z':l,...,n. (450)

The condition (4.49) implies that ; = « for some v € K. The condition (4.50) then becomes
vo, = 0; and the assertion follows.

4.8 Lowest weight representations. Proof of Proposition 3.10

We need the following identity (see [16, Lemma 5]):

> — Qr =1- guit (4.51)

— hj+ 1 e(t)
and its several consequences. At t = (1 — fzm)_l, m =1,...,n, the equality (4.51) becomes
1
> = Q=1 (4.52)
; hjm +1 7

Then,

1 1 1 1t N
Zl+tﬁiﬁik+1Qi_1+t(fzk—1)z<fzik+1 1+tﬁi>Q’

_ 1 e(t)[—e]
1+t(hy—1) e(t)

(4.53)

We used (4.51) and (4.52) in the last equality. The substitution hi~ —hi+1,i=1,...,n, and
t ~» —t into (4.53) gives

. PN S ()
2 L+t (hi — 1) by + 1 % =17 thy, e(t)[—e]’ (4.54)

i
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Proof of Proposition 3.10. Since the element c(¢) is central, it is sufficient to calculate
its value on the vector | ). Denote

c(t)]) =w®)).
We have

=Y vfald + Z ok, (4.55)

k.l

where U is the skew inverse of the operator R, see (1.6) (we refer, e.g., to [15, Section 4.1.2] for
details on skew inverses).

Since the generators 9;, i = 1,...,n, annihilate the vector | ), see (3.18), we find, in view
of (4.55), that

5 ) gy, .
1 _

We used (1.7) in the second equality and (4.53) in the third equality.
We shall verify (3.19) for every representative of the space WW. As in the proof of Proposi-
tion 3.8(ii), it is sufficient to establish (3.19) for

A(hl) . . .
o= , where A is a univariate polynomial.
X1
Then
! =2 (4.57)
0j = = o, j=2,...,n, .
J hlj +1

and, according to Proposition 3.8(ii),

_ et
p(t) = S (4.58)

Denote the underlined sum in (4.56) by £. Taking into account (4.57) we calculate

1 _ 1
1+t(hy — 1) (o -ol-al@ +U]Z_; L4 t(hy —1) hyj + 1 %

&=

n

[ €1 Ql Z 1 1 _
= —+ — = .
1+t(h — 1) U] 11+t(hj—1)h1j+1QJ

olelQr 1 oe(t
T t(n—1) 1+ th 0[]

We have used (4.54) in the last equality. Note that

. - A(iLl — 1) Xl[_gl] o A(ill - 1) — ol—¢
O'[ 1} Ql - Xl[_gl] Y1 - X1 - [ ]v
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o[—¢] 1 oe(t)

I =) Tt el

Substituting the obtained expression for £ into (4.56) and taking into account (4.58) we conclude

that
P L oet) | _ _e®)
w(t) = e(t)[—¢] ( 1+ t(ill _ 1) - 1+ tﬁl e(t)[—€]> 1+ tibl

- €(t)[—€] O'[
1+t(hy — 1)

—e] = —p(t)[—cl,
as stated.

4.9 Several copies. Proof of Lemma 3.11

Assume that, say, N > 1. Repeating the calculations (4.7) and (4.8) for one copy in Section 4.1,
we find, for 7,5,k =1,...,n,

(xiaéjﬁ)élﬂ‘l.d.t. = (Z R%’ [euOusz™ — 5§0’m5> 5k7}1.d.t.
== RiileulOusOray — 0ianOky, (4.59)

2" (930ky) ‘1.d.t. =" Z RZ?’ éb'Yé“rB'l.d.t.
a,b

- Z Ri?[_ei] Z R ec]0cr ™™ = 600y Oasyqs.
a,b c,d
== Z Ri?[_gi] RZ%[ECWC’YUMB - Z R%'[_‘si]aicwéaﬁ‘ (4.60)
a,b,c a
Take 3 # 7. Equating the coefficients in O,p, u = 1,...,n, in (4.59) and (4.60), we find
R};; leu]Okayleu] = R%[—&]aim, ik,j,u=1,...,n. (4.61)

Equating the coefficients in 9y, u=1,...,n, in (4.59) and (4.60), we find

0iokoias = > Ri[—ei| Ritleuloanplenl, 6k, jiu=1,...,n. (4.62)
a,b

Shifting by —e,, and using the property (1.3) we rewrite the equality (4.61) in the form
R% (Ukoz'y - O—ia'y[_gu]) = 0. (463)
Setting u = k and j = ¢ (with arbitrary ¢,k =1,...,n) in (4.63), we obtain
Okay = O'ioz'y[_gk],

which implies the assertion (3.20).

A direct calculation, with the help of the properties (1.3), (1.4) and (1.5) of the operator R,
shows that the condition (3.20) implies the equalities (4.61) and (4.62) as well as all the remaining
conditions for the flatness of the deformation.
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