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Circuito Exterior, C.U., 04510, Mexico City, Mexico

E-mail: mdi29@im.unam.mx

URL: http://www.matem.unam.mx/mdi29/

Received March 28, 2018, in final form July 16, 2018; Published online July 21, 2018

https://doi.org/10.3842/SIGMA.2018.076

Abstract. Consider the Laguerre polynomials and deform them by the introduction
in the measure of an exponential singularity at zero. In [Chen Y., Its A., J. Approx.
Theory 162 (2010), 270–297] the authors proved that this deformation can be described
by systems of differential/difference equations for the corresponding recursion coefficients
and that these equations, ultimately, are equivalent to the Painlevé III equation and its
Bäcklund/Schlesinger transformations. Here we prove that an analogue result holds for
some kind of semiclassical matrix-valued orthogonal polynomials of Laguerre type.
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1 Introduction

The relation between integrable systems and orthogonal polynomials goes back to the seminar
paper of Moser [18]. There, the author made the remarkable observation that, given a family
of orthogonal polynomials associated to a measure w on the real axis, the related tridiagonal
Jacobi matrix can be interpreted as a Lax matrix for the Toda equations, where the independent
variable of equations plays the role of deformation parameters for the measure w. Starting
from the nineties, this result and various generalizations (to orthogonal polynomials on the
unit circle, to multiple orthogonal polynomials and many other types of special polynomials)
played a central role in the field of random matrices, and the study of the equations satisfied by
orthogonal polynomials found applications to 2D quantum gravity [14] and to the computations
of gap probabilities and partition functions associated to random models, both in the discrete
and continuous setting (see, for instance, [1] and [16]).

The scope of this paper is to work on the relation between matrix-valued orthogonal poly-
nomials and non-commutative integrable equations. This is a relatively new field, in which
few examples have been worked out. In [17], it had been shown that matrix-valued orthogonal
polynomials (on the real line) satisfy a non-commutative version of the Toda equations, and
in [6] one of the authors provided an analogue result for matrix-valued orthogonal polynomials
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on the unit circle, upon replacing Toda equations with the (multi-component) Ablowitz–Ladik
hierarchy (a well known integrable discretisation of the non-linear Schrödinger one). In both
cases, the main tool had been the theory of quasi-determinants (Schur complements), which
were known to be related to non-commutative integrable systems since the pioneering work
of Etingof, Gelfand and Retakh [13]. Schur complements had been used also in the series of
papers [2, 3, 4] and in [19], where a non-commutative version of the Painlevé II equation was
introduced, and studied later on in [5] using Riemann–Hilbert techniques.

In 2011, independently in [8] and [15], it was established a general theory to study matrix-
valued orthogonal polynomials through Riemann–Hilbert problems, thus extending the well
known result of Fokas, Its and Kitaev [14] from the scalar to the matrix case. This theory, in
our opinion, provides one of the best ways to deduce, in a uniform way, non-linear equations
related to matrix-valued orthogonal polynomials, using the well known technique of reducing
the Riemann–Hilbert problem to a simpler one, where the jumps are constant. In [8], this
technique has been used to deduce a matrix version of the discrete Painlevé I equation, while
in [7] we proved that the Christoffel–Darboux kernel associated to certain matrix-valued Hermite
polynomials satisfies a non-commutative version of the Painlevé IV equation.

The goal of this paper is to give another instance of this relation between non-commutative
Painlevé equations and matrix-valued orthogonal polynomials. The results we present are to
be thought as a non-commutative analogue of the results in [9]. There, the authors studied the
(scalar) orthogonal polynomials associated to the measure w(x, s) := xαe−x−s/x on R+, which
is a deformation of the usual Laguerre measure, where the deformation is induced by the pa-
rameter s and changes the behaviour of the measure at zero. Using two different approaches
(ladder operators and Riemann–Hilbert techniques) Chen and Its proved that some quanti-
ties an(s) and bn(s), which ultimately can be expressed through the recursion coefficients of the
orthogonal polynomials, satisfy a differential and a difference system, which can be reduced,
respectively, to the Painlevé III equation and a discrete analogue of it, which is conjectured to
be a composition of the basic Schlesinger transformations of Painlevé III.

The non-commutative analogue of the difference and differential systems for an and bn are
given here in Theorems 4.3 and 4.5. The derivation, which is based upon the Riemann–Hilbert
method established in [15], is not a straightforward generalisation of the one for the scalar case:
namely one has to push a little bit further the analysis of the behavior of the solution of the
Riemann–Hilbert problem at the two singular points 0 and ∞. Also, while the systems of an
and bn were of first-order, here our two systems are of second-order, which is a phenomenon
that, in some way, we already observed in the previous paper [7] (and also, to some extent, in [5]
for the case of Painlevé XXXIV).

The paper is organized as follows: in the first section we define the matrix-valued orthogonal
polynomials we want to study, construct the related Riemann–Hilbert problem and the corre-
sponding Lax triple (2.15). In the second section, the compatibility conditions of the Lax triples
are computed, together with some additional relations that, in the scalar case, are deduced from
the compatibility conditions but here they have to be computed in a different way (see Propo-
sition 3.4). Finally, in the third section, our main results, Theorems 4.3 and 4.5, are stated and
deduced, with straightforward (but sometimes lengthy) computations. The last section gives
some additional relations holding for a special class of matrix-valued orthogonal polynomials
that were introduced in [10].

2 From the Riemann–Hilbert problem to the Lax system

Consider the following N ×N weight matrix

W (s;x) := xαe−x−s/xT (x)T ∗(x), x ∈ [0,∞), α > 0, s > 0.
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Observe that W (s;x) is a weight matrix of Laguerre type perturbed by a multiplicative fac-
tor e−s/x, which induces an infinitely strong zero at the origin. For simplicity, the matrix-valued
function T (x) is chosen such that

(
∂xT (x)

)
T−1(x) =

B

x
, (2.1)

where B is an arbitrary N × N constant matrix, independent of s, such that all moments
of W (s;x) are finite (entrywise). Observe that in this case, the solution of (2.1) is given by
T (x) = xB = eB log x.

Given such a weight we construct (if existing) a sequence of monic matrix-valued orthogonal
polynomials {P̂n(s;x)}n≥0 which is uniquely characterized by these two conditions:

• P̂n(s;x) is monic of order n:

P̂n(s;x) = xnIN + · · · ,

• For any n,m ≥ 0,∫ ∞
0
P̂n(s;x)W (s;x)P̂ ∗m(s;x)dx = γ−1n (s)δn,m,

where γn(s) is the inverse of the nth (matrix-valued) norm of our family of matrix-valued
orthogonal polynomials. Note that, for any n, γn(s) is a Hermitian matrix.

As in the scalar case, the existence of the sequence of matrix-valued orthogonal polyno-
mials can be equivalently restated as the existence of the solution to a certain (matrix-valued)
Riemann–Hilbert boundary value problem, as it has been proven in [15]. This is a general result
that does not depend on the particular form of the measure W (s;x) and we make reference
to [15] for its general formulation. Applied to our case, we have the following proposition:

Proposition 2.1. The sequence of matrix-valued orthogonal polynomials {P̂n(s;x)}n≥0 exists
if and only if, for any n ≥ 0, it exists a block matrix-valued function Y (n)(s; z) which is analytic
on C \ [0,∞) and such that the following three conditions are satisfied:

• The boundary values Y
(n)
+ , Y

(n)
− on the (standardly oriented) contour (0,∞) satisfy the

following jump condition:

Y
(n)
+ (s;x) = Y

(n)
− (s;x)

(
IN xαe−x−s/xT (x)T ∗(x)
0 IN

)
, x ∈ (0,∞). (2.2)

• At infinity the solution Y (n) has the following asymptotic behaviour:

Y (n)(s; z) =

(
I2N +

∞∑
k=1

Y
(n)
−k (s)

zk

)(
znIN 0

0 z−nIN

)
, z →∞. (2.3)

• At the point 0 the solution Y (n) is non–singular:

Y (n)(s; z) = Q(n)(s)

(
I2N +

∞∑
k=1

Y
(n)
k (s)zk

)
, z → 0. (2.4)
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Indeed, one can write the solution of the Riemann–Hilbert problem above in terms of matrix-
valued orthogonal polynomials1 as follows

Y (n)(s; z) =

(
P̂n(s; z) C(P̂nW )(s; z)

−2πiγn−1(s)P̂n−1(s; z) −2πiγn−1(s)C(P̂n−1W )(s; z)

)
. (2.5)

Here we denoted with C the Cauchy transform, applied to (possibly) matrix-valued functions
F (x) in such a way that

C(F )(z) :=
1

2πi

∫ ∞
0

F (x)

x− z
dx.

We can normalize our polynomials in the following way

Pn(s;x) = κn(s)P̂n(s;x), with γn(s) = κ∗n(s)κn(s).

As it is customary, in order to derive differential and difference equations from our family of
matrix-valued orthogonal polynomials we will reduce the Riemann–Hilbert problem (2.2)–(2.4)
to a one with constant jumps for Ψ(n)(s; z) := Y (n)(s; z)R(s; z), with R(s; z) to be defined.
Then Ψ(n)(s; z) will satisfy a Lax system of three equations, whose coefficients will depend

on the entries of Y
(n)
−1 (s) and Q(n)(s) defined below. The two propositions and the corollary

below express Y
(n)
−1 (s) and Q(n)(s) in function of meaningful quantities for the corresponding

matrix-valued orthogonal polynomials. In the following, we denote

P̂n(s;x) = xnIN +
n−1∑
j=0

an,j(s)x
j .

Proposition 2.2 ([15, Corollary 2.12]). All coefficients an,j(s) of the monic matrix-valued or-
thogonal polynomials are real matrices. Additionally we have

Y
(n)
−1 (s) =

 an,n−1(s) − 1

2πi
γ−1n (s)

−2πiγn−1(s) −a∗n,n−1(s)

 . (2.6)

For the next proposition, we introduce the quantities pn(s), qn(s), defined by

pn(s) := C(P̂nW )(s; 0)P̂ ∗n (s; 0),

qn(s) := 2πiγn−1(s)P̂n−1(s; 0)P̂−1n (s; 0). (2.7)

Proposition 2.3. The matrix Q(n)(s) = Y (n)(s; 0) and its inverse Q(−n)(s) can be written as

Q(n)(s) =

(
IN pn(s)
−qn(s) IN + qn(s)p∗n(s)

)(
P̂n(s; 0) 0

0 P̂−∗n (s; 0)

)
, (2.8)

Q(−n)(s) =

(
P̂−1n (s; 0) 0

0 P̂ ∗n (s; 0)

)(
IN + pn(s)q∗n(s) p∗n(s)

−q∗n(s) IN

)
. (2.9)

Proof. The first formula (2.8) is a direct computation of the definition of Y (n)(s; z) evaluated
at z = 0 (see (2.5)), the definition of pn(s), qn(s) in (2.7) and the Liouville–Ostrogradski formula
(see [15, Proposition 2.8]), i.e.,

2πiγn−1(s)
(
P̂n−1(s; z)C(WP̂ ∗n )(s; z)− C(P̂n−1W )(s; z)P̂ ∗n (s; z)

)
= IN , (2.10)

1While P̂n(s;x) is, strictly speaking, defined on the positive real axis, below we denote with P̂n(s; z) its analytic
continuation on the complex plane. Also, we adopt the convention that for any matrix-valued function P (z), we
have that P ∗(z) := (P (z̄))∗.
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evaluated at z = 0. The second formula (2.9) is a consequence of the definition of the inverse of
the Riemann–Hilbert problem (2.5), which can be found in formula (2.16) of [15]. Indeed,

Y (−n)(s; z) =

(
−2πiC(WP̂ ∗n−1)(s; z)γn−1(s) −C(WP̂ ∗n )(s; z)

2πiP̂ ∗n−1(s; z)γn−1(s) P̂ ∗n (s; z)

)
.

Therefore Q(−n)(s) = Y (−n)(s; 0) is a consequence of the definition of pn(s), qn(s) in (2.7) and
the Hermitian transpose version of the Liouville–Ostrogradski formula (2.10). �

A simple but important consequence of this proposition is the corollary below.

Corollary 2.4. For any n ≥ 0 the matrices pn(s) and qn(s) in (2.7) are skew-Hermitian.
Therefore Q(n)(s) and Q(−n)(s) can be rewritten in the following simplified way

Q(n)(s) =

(
IN pn(s)
−qn(s) IN − qn(s)pn(s)

)(
P̂n(s; 0) 0

0 P̂−∗n (s; 0)

)
,

Q(−n)(s) =

(
P̂−1n (s; 0) 0

0 P̂ ∗n (s; 0)

)(
IN − pn(s)qn(s) −pn(s)

qn(s) IN

)
.

Proof. It suffices to compute the quantity Q(n)(s)Q
(−n)
n (s) = IN using the equations (2.8)

and (2.9) above, which gives pn(s) +p∗n(s) = 0 for the (block) entry (1, 2) and qn(s) +q∗n(s) = 0

for the (block) entry (2, 1). Using this, Q(−n)(s)Q
(n)
n (s) = IN holds immediately. �

We are now ready to state the main result of this Section, giving a Lax system associated
to our matrix-valued orthogonal polynomials. In the following we denote by αn(s) and βn(s)
the recursion coefficients associated to our family of matrix-valued orthogonal polynomials, such
that, for every n ≥ 1,

xP̂n(s;x) = P̂n+1(s;x) +αn(s)P̂n(s;x) + βn(s)P̂n−1(s;x), (2.11)

and we recall that we have the identity

βn(s) = γ−1n (s)γn−1(s). (2.12)

Moreover, we define

σ3 :=

(
IN 0
0 −IN

)
.

Theorem 2.5. Let Y (n)(s; z) be the solution of the Riemann–Hilbert problem (2.2)–(2.4) and

R(s; z) :=

(
e−

1
2
(z+ s

z
)z

α
2 T (s; z) 0

0 e
1
2
(z+ s

z
)z−

α
2 T−∗(s; z)

)
. (2.13)

Then the function

Ψ(n)(s; z) := Y (n)(s; z)R(s; z) (2.14)

satisfies the following equations

∂

∂z
Ψ(n)(s; z) =

(
−1

2
σ3 +

A
(n)
−1 (s)

z
+
A

(n)
−2 (s)

z2

)
Ψ(n)(s; z),
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∂

∂s
Ψ(n)(s; z) = −

A
(n)
−2 (s)

sz
Ψ(n)(s; z),

Ψ(n+1)(s; z) = U (n)(s; z)Ψ(n)(s; z), (2.15)

where the matrices A
(n)
−1 (s),A

(n)
−2 (s) and U (n)(s; z) are explicitly given, in terms of the matrix-

valued orthogonal polynomials, by

A
(n)
−1 (s) =

(
(n+ α/2)IN +B − 1

2πi
γ−1n (s)

2πiγn−1(s) −(n+ α/2)IN −B∗

)
,

A
(n)
−2 (s) =

 s

2
(IN − 2pn(s)qn(s)) −spn(s)

−sqn(s)(IN − pn(s)qn(s)) −s
2

(IN − 2qn(s)pn(s))

 ,

U (n)(s; z) =

(
zIN −αn(s)

1

2πi
γ−1n (s)

−2πiγn(s) 0

)
. (2.16)

Proof. The third equation in (2.15) as well as the expression of U (n)(s; z) does not depend on
the particular weight we choose and their derivation can be found in [15, Theorem 2.16]. For
the first equation in (2.15), observe that Ψ(n)(s; z) satisfies a Riemann–Hilbert problem with
jumps independent on z and s. More precisely, its jumps are localised on the positive real axis
(because of the original jumps of Y (n)(s; z)) and, for general α > 0, on the negative real axis,
because of the determination of zα. Hence, the expression (∂zΨ

(n)(s; z))Ψ(−n)(s; z) is analytic
on CP1 \ {0,∞}, and studying its behaviour at the singular points we can conclude that

(∂zΨ
(n)(s; z))Ψ(−n)(s; z) = −1

2
σ3 +

A
(n)
−1 (s)

z
+
A

(n)
−2 (s)

z2
, (2.17)

for some matrices A
(n)
−1 (s),A

(n)
−2 (s) to be determined. For A

(n)
−1 (s), we develop the left hand side

of (2.17) at infinity. Because of the particular shape of R(s; z), we conclude that

A
(n)
−1 (s) =

(
(n+ α/2)IN +B 0

0 −(n+ α/2)IN −B∗
)

+
1

2

[
σ3,Y

(n)
−1 (s)

]
,

where [·, ·] denotes the standard commutator operator. This last equation together with the

Proposition 2.2 gives the desired form of A
(n)
−1 (s). For A

(n)
−2 (s), we expand the equation (2.17)

around zero and we obtain that

A
(n)
−2 (s) =

s

2
Q(n)(s)σ3Q

(−n)(s),

and this equation, together with the Corollary 2.4, gives the precise form of A
(n)
−2 (s). The second

equation in (2.15) is deduced similarly, but it is simpler. Indeed, the expression

(∂sΨ
(n)(s; z))Ψ(−n)(s; z)

has a singularity only at zero, and expanding around this point one finds

(∂sΨ
(n)(s; z))Ψ(−n)(s; z) = − 1

2z
Q(n)(s)σ3Q

(−n)(s) = −
A

(n)
−2 (s)

sz
. �
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3 The Lax equations and some monodromy identities

Let us denote

A(n)(s; z) := −1

2
σ3 +

A
(n)
−1 (s)

z
+
A

(n)
−2 (s)

z2
, B(n)(s; z) := −

A
(n)
−2 (s)

sz
. (3.1)

The compatibility conditions between the equations in (2.15) give rise to three matrix equations
of the form

∂

∂s
A(n)(s; z)− ∂

∂z
B(n)(s; z) +

[
A(n)(s; z),B(n)(s; z)

]
= 0, (3.2)

∂

∂z
U (n)(s; z) + U (n)(s; z)A(n)(s; z)−A(n+1)U (n)(s; z) = 0, (3.3)

∂

∂s
U (n)(s; z) + U (n)(s; z)B(n)(s; z)−B(n+1)(s; z)U (n)(s; z) = 0. (3.4)

The equation (3.2) describes the isomonodromic deformation of the first equation in (2.15) with
respect to the parameter s and will give rise to equations of Painlevé type; analogously the equa-
tion (3.3) describes the isomonodromic deformation of the first equation in (2.15) with respect
to the discrete parameter n, and hence it corresponds to equations of discrete Painlevé type.
Finally, the equation (3.4) describes the compatibility between the two deformations (discrete
and continuous), and it will give equations of Toda type. In the following three propositions we
will write down explicitly all these equations. It is more convenient, for what follows, to use,
instead of the variables pn(s) and qn(s), the variables an(s) and bn(s) defined by

an(s) := 2πispn(s)γn(s), bn(s) := spn(s)qn(s), (3.5)

as well as the quantities

Bn = Bn(s) := γn(s)Bγ−1n (s), B̂n = B̂n(s) := P̂n(s; 0)BP̂−1n (s; 0). (3.6)

Observe that the coefficient A
(n)
−2 (s) in (2.16) can be written (with the new notation) in the

following way:

A
(n)
−2 (s) =

 s

2
IN − bn(s) − 1

2πi
an(s)γ−1n (s)

−2πiγn(s)a−1n (s)bn(s)(sIN − bn(s)) −s
2
IN + b∗n(s)

 (3.7)

Remark 3.1. Observe that, using (2.7) and [15, Lemma 2.19], the coefficients an(s) and bn(s)
can be written in the following way

an(s) = s

(∫ ∞
0

P̂n(s; y)W (s; y)P̂ ∗n (s; y)

y
dy

)
γn(s), (3.8)

bn(s) = s

(∫ ∞
0

P̂n(s; y)W (s; y)P̂ ∗n−1(s; y)

y
dy

)
γn−1(s). (3.9)

These definitions are the matrix-valued versions of the coefficients an and bn that appear in [9,
Lemma 2].

In the following, in order to make the equations more readable, we suppress the (implicit)
dependence on s.
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Proposition 3.2. The compatibility condition (3.2) is equivalent to the following list of equa-
tions:

sγ̇n = γnan, (3.10)

sγ̇n−1 = −γna−1n bn(sIN − bn), (3.11)

sȧn = (2n+ α+ 1)an + a2n +Ban + anB
∗
n − sIN + bn + γ−1n b∗nγn, (3.12)

sḃn = bn + [B, bn]− a−1n bn(sIN − bn)− anβn. (3.13)

Proof. The proof of this proposition, as the following one, is just by straightforward compu-

tations. More precisely, we have, using the new definition of A
(n)
−2 (s) in (3.7), that the coeffi-

cient z−1 of the entry (1, 2) of (3.2) gives (3.10); the coefficient z−1 of the entry (2, 1) of (3.2)
gives (3.11); the coefficient z−2 of the entry (1, 2) of (3.2) gives (3.12) and the coefficient z−2

of the entry (1, 1) of (3.2) gives (3.13). The other entries give linear combinations of the ones
already used. �

Proposition 3.3. The compatibility condition (3.3) is equivalent to the following list of equa-
tions:

αn = (2n+ α+ 1)IN + an +B +B∗n, (3.14)

sIN −αnan = bn+1 + γ−1n b∗nγn, (3.15)

b2n+1 − sbn+1 = an+1βn+1an, (3.16)

βn+1 − βn = αn + bn+1 − bn + [B,αn], (3.17)

an+1βn+1 − βnan−1 = αnbn − bn+1αn. (3.18)

Proof. (3.14) is given by the term in z−1 in the entry (1, 2) of (3.3); (3.15) is given by the term
in z−2 in the entry (1, 2) of (3.3); (3.16) is given by the term in z−2 in the entry (2, 2) of (3.3);
(3.17) is given by the term in z−1 in the entry (1, 1) of (3.3) and (3.18) is given by the term
in z−2 in the entry (1, 1) of (3.3). All the other entries give either linear combinations of the
relations above or trivial relations. �

The compatibility condition (3.4) gives no new equations, except for the time derivative
of αn(s), reading

sα̇n = bn − bn+1,

(this is given by the coefficient z0 in the (1, 1) entry of (3.4)). Using (3.17), (2.12) and (3.10)
we get the couple of first-order differential equations

sα̇n = αn − βn+1 + βn + [B,αn],

sβ̇n = βnan−1 − anβn,

which, using (3.14), gives a couple of differential equations satisfied by the coefficients αn and βn
of the three-term recurrence relation (2.11). These equations, in the scalar setting, are also
known as Toda equations.

Another interesting relation is combining (3.14), (3.17) and performing a telescopic sum to
get

βn = n((n+ α)IN +B) + bn +

n−1∑
k=0

ak +B∗k + [B,ak +B∗k]. (3.19)
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In the scalar case, there is one more important identity that can be deduced by the (scalar
analogues of the) equations (3.14)–(3.18); it is the formal monodromy identity stated in [9,
Lemma 3]. Nevertheless the proof, in the matrix case, cannot be repeated in the same way and
we have to use (as suggested by the name given to the identity) some relations between the
expansion of Ψ(n)(s; z) at infinity and at zero.

Proposition 3.4.

anβn = s
(
nIN +B + a−1n bn − B̂n

)
− bn((2n+ α)IN +B)

− bna−1n bn − anB∗na−1n bn. (3.20)

Proof. We recall that, in the Section above, the explicit expression ofA
(n)
−1 (s) had been obtained

computing the coefficient z−1 in the expansion of
(
∂zΨ

(n)(s; z)
)
Ψ(−n)(s; z) around infinity, and

using (2.6). Of course, one can also compute the expansion around zero of the same expression.
The coefficient z−1, in this case, will give the identity

Q(n)(s)

α2 IN +B 0

0 −α
2
IN −B∗

+
s

2

[
Y

(n)
1 (s),σ3

]Q(−n)
n (s) = A

(n)
−1 (s). (3.21)

Bringing the conjugation by Q(n)(s) on the right hand side of (3.21), the (1, 1) entry of the
resulting equation will give exactly the equation (3.20). �

As a consequence of (3.20), and using (3.16), we have the identity

anβn + βnan−1 = s(nIN +B − B̂n)− bn((2n+ α)IN +B)

− anB∗na−1n bn − bna−1n bn + a−1n b
2
n,

which can be viewed as a matrix-valued version of formula (2.12) of [9].

Remark 3.5. Symmetrically, one can also compute A
(n)
−2 (s) using the expansion of Ψ(n)(s; z)

around infinity. In this case, the following equation is obtained:

s

2
IN +

1

2

[
σ3,Y

(n)
−2
]

+

[
Y

(n)
−1 ,

(
(n+ α/2)IN +B 0

0 −(n+ α/2)IN −B∗
)]

+
1

2

[
Y

(n)
−1 ,σ3

]
Y

(n)
−1 − Y

(n)
−1 = A

(n)
−2 . (3.22)

The entry (1, 1) of the relation above gives the equation

βn − bn = an,n−1 + [B,an,n−1],

which is equivalent to (3.17), since by definition αn(s) = an+1,n(s)− an,n−1(s).

Remark 3.6. The diagonal entries of (3.21) and (3.22) give, respectively, the off–diagonal block

elements of Y
(n)
1 (s) and Y

(n)
−2 (s). One can continue on this direction and:

a) compute the terms in zk, k ≥ 0 of the expansion of
(
∂sΨ

(n)(s; z)
)
Ψ(−n)(s; z) around zero,

b) compute the terms in z−k, k ≥ 3 of the same expression around zero.

In this way, all elements Y±k in the expansions (2.3) and (2.4) can be recursively computed just

in function of the entries of Q(n)(s) and Y
(n)
−1 (s).
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4 The non-commutative Toda and Painlevé systems

In the scalar case, Chen and Its managed to give a closed system of two first-order difference
and differential equations for the two variables an, bn. This system is immediately seen to be
equivalent to the Painlevé III equation for the variable an (see [9, Lemma 5 and Theorem 1]).
Here we prove that, in the matrix case, it is possible to give a system (of the first-order) of
difference and differential equations for the four variables an, bn, Bn, B̂n, where the presence
of the last two variables is a clear consequence of the presence of the non-commutative constant
matrixB. Additionally, one can further reduce the system to a system of second-order difference
and differential equations for the two variables an, bn. We need first the following lemma.

Lemma 4.1. For any n ≥ 0, the following equation holds:

γ−1n (s)b∗n(s)γn(s) = a−1n (s)bn(s)an(s). (4.1)

Moreover, the derivative of P̂n(s; 0) can be expressed as

s
˙̂
P n(s; 0)P̂−1n (s; 0) = nIN +B − B̂n(s) + a−1n (s)bn(s). (4.2)

Proof. For the first (4.1), using (3.5) and the fact that pn and qn are skew-Hermitian, we have
that

anγ
−1
n b∗nγn = 2πispnsq

∗
np
∗
nγn = (spnqn)(2πispnγn) = bnan.

For the second (4.2) we first observe that, expanding
(
∂sΨ

(n)(s; z)
)
Ψ(−n)(s; z) around zero, the

constant term in z should give zero. This gives the equation

Q̇(n)(s) =
1

2
Q(n)(s)

[
Y

(n)
1 (s),σ3

]
.

On the other hand (3.21) can be rewritten as

s

2
Q(n)(s)

[
Y

(n)
1 (s),σ3

]
= A

(n)
−1 (s)Q(n)(s)−Q(n)(s)

α2 IN +B 0

0 −α
2
IN −B∗

 ,

so that we get

sQ̇(n)(s) = A
(n)
−1 (s)Q(n)(s)−Q(n)(s)

α2 IN +B 0

0 −α
2
IN −B∗

 .

The equation (4.2) is just the (1, 1) entry of this last identity. �

Now let us give the two main results of this paper, namely a couple of non-linear non-com-
mutative second-order difference and differential equations for the coefficients an(s) and bn(s).
We start first with the discrete version. In the formulas below, again, we suppress the implicit
dependence on s.

Proposition 4.2. The variables an, bn, Bn, B̂n defined in (3.5) and (3.6) satisfy the (closed)
system of first-order difference equations

an−1bn + bn−1an−1 = san−1 − (2n+ α− 1)a2n−1 − a3n−1 − an−1(B +B∗n−1)an−1,

b2n − sbn =
(
s
(
nIN +B − B̂n + a−1n bn

)
− bn

(
2n+ α+B + a−1n bn

)
− anB∗na−1n bn

)
an−1,

anB
∗
na
−1
n bn(s− bn) = bn(s− bn)a−1n−1B

∗
n−1an−1,

B̂n(s− bn) = (s− bn)a−1n−1B̂n−1an−1. (4.3)
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Proof. For the first one, plug (3.14) into (3.15), multiply on the left by an and use (4.1). The
second is a consequence of plugging (3.20) into (3.16). For the other two equations we start
observing that

Bn = γnBγ
−1
n = γnγ

−1
n−1Bn−1γn−1γ

−1
n = β−∗n Bn−1β

∗
n,

which gives

β∗nBn = Bn−1β
∗
n. (4.4)

Analogously, using the definition of B̂n and

P̂n(s; 0)P̂−1n−1(s; 0) = b−1n (s)an(s)βn(s),

we obtain

B̂nb
−1
n anβn = b−1n anβnB̂n−1. (4.5)

Then the last two equations in (4.3) are obtained from (4.4) and (4.5) where βn had been written
in function of an, an−1 and bn using (3.16). �

The system above can be reduced to a system of higher order just for the two variab-
les an(s), bn(s). It is practical, for the following, to introduce the following two quantities:

Cn := sa−1n − an − anBa−1n − anbn+1a
−2
n − bna−1n ,

Dn := (sIN − bn)
(
B + bna

−1
n−1
)

+
(
IN + an + anBan−1 + anbn+1a

−2
n

)
bn.

Theorem 4.3. The variables an, bn satisfy the (closed) difference system

Cnbn(sIn − bn)− bn(sIN − bn)a−2n−1Cn−1a
2
n−1 = 2bn(sIN − bn),

Dn(sIN − bn)− (sIN − bn)a−1n−1Dn−1an−1 = s(bn − sIN ). (4.6)

Proof. We start with the equation for Cn. Using the first relation in (4.3) we obtain

anB
∗
nan = san − (2n+ α+ 1)a2n − a3n − anBan − anbn+1 − bnan,

and we plug anB
∗
nan into the third equation of (4.3). For the second equation in (4.6) we use

the fact that

sB̂n = nsIN + (sIN − bn)B −
(
b2n − sbn

)
a−1n−1 +

(
IN + an + anBa

n−1
n + anbn+1a

−2
n

)
bn,

and we plug this relation into the last one of (4.3). �

From the previous equations we can compute all the coefficients an, bn, Bn, B̂n, αn and βn
in terms only on a0(s), B and γ0. Indeed, initially we have b0 = 0, B0 = γ0Bγ

−1
0 and B̂0 = B.

From (3.14) we can compute αn in terms of an, B and Bn and from (3.19) (or (3.17)) we can
compute βn in terms of bn,B and ak, Bk, k = 0, . . . , n− 1. Therefore it is enough to compute
an, bn, Bn, B̂n in terms only on a0(s), B and γ0. For that we iterate the following 4 steps:

1. From the first equation in (4.3) we can compute b1 in terms of a0, B and γ0.

2. From the fourth equation in (4.3) we can compute B̂1 in terms of b1, a0 and B.

3. From (4.4) we can compute B1 in terms of β1, B and γ0 (observe here that β1 is computed
from (3.19) in terms of b1, a0 and B).

4. From (3.16) we can compute a1 in terms of β1, a0, b1 and B.
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Actually γ0 can be avoided if we normalize the weight matrix W such that γ0 = IN . Since B
is a fixed matrix, in order to compute a0(s) we use (3.8) for n = 0, i.e.,

a0(s) = s

(∫ ∞
0

W (s; y)

y
dy

)(∫ ∞
0
W (s; y)dy

)−1
.

Since W (s;x) = xαe−x−s/xT (x)T ∗(x), where T (x) is typically a matrix polynomial, we have
that a0(s) can be computed using the very well known formula∫ ∞

0
xα+k−1e−x−s/xdx = 2

(√
s
)α+k

Kα+k

(
2
√
s
)
, k ≥ 1,

where Kν(z) is the MacDonald function of the second type.
Let us now study the continuous version, i.e., a couple of non-linear non-commutative second-

order differential equations for the coefficients an(s) and bn(s).

Proposition 4.4. The variables an, bn, Bn, B̂n defined in (3.5) and (3.6) satisfy the (closed)
system of first-order differential equations

sȧn = −sIN + bn +
(
(2n+ α+ 1)IN +B + an + a−1n bn

)
an + anB

∗
n,

sḃn = bn
(
(2n+ α+ 1)IN +B + a−1n bn

)
− s
(
2a−1n bn + nIN +B − B̂n

)
+ a−1n b

2
n + [B, bn] + anB

∗
na
−1
n bn,

sḂn = [a∗n,Bn],

s
˙̂
Bn =

[
a−1n bn +B, B̂n

]
. (4.7)

Proof. The first equation is just a rewriting of the equation (3.12) using (4.1), while the second
equation is obtained plugging (3.20) into (3.13). For the third equation, we observe that, from
the definition (3.6), we have that

Ḃn =
[
γ̇nγ

−1
n ,Bn

]
,

and then one has simply to use (3.10) and γnan = a∗nγn. For the last equation, the derivation
is similar, but this time one has to use the equation (4.2) instead of (3.10). �

Let us obtain now a closed system of second-order differential equations for the (matrix)
variables an and bn. First, from the first two equations of (4.7), we can write Bn and B̂n in
function of the variables an, bn and their derivatives. Indeed, the first equation gives

B∗n = a−1n
(
sȧn + sIN − bn −

(
(2n+ α+ 1)IN +B + an + a−1n bn

)
an
)
. (4.8)

If we substitute (4.8) into the second equation of (4.7), and after some computations, we get

B̂n = ḃn + nIN +B + a−1n bn − ȧna−1n bn +
anbn
s

. (4.9)

Plugging these two relations into the last two equations of (4.7) gives the following Theorem.

Theorem 4.5. The variables an, bn defined in (3.5) satisfy the (closed) system of second-order
differential equations

än = ȧna
−1
n ȧn + ȧna

−1
n −

1

s2
([
Ban,an

]
+
[
a−1n bn,a

2
n

])
+

1

s

(
ḃn − ȧn + a−1n ḃnan

+ ȧnan −
(
ȧna

−2
n + a−1n ȧn

)
bnan +Bȧn − ȧna−1n Ban +

[
a−1n bn, ȧn

]
− IN

)
(4.10)



Toda and Painlevé Systems Associated with Semiclassical MVOPs of Laguerre Type 13

and

b̈n =
(
ȧna

−1
n + a−1n ȧn

)
a−1n bn + ȧna

−1
n ḃn − a−1n ḃn +

1

s2
an(bn + [B, bn])

− 1

s

(
anḃn + [ḃn,B] + ȧna

−1
n

[
B, bn

]
− a−1n (ḃnbn + bnḃn)

+
(
ȧna

−2
n + a−1n ȧna

−1
n

)
b2n + ȧna

−1
n bn + a−1n bn

)
. (4.11)

Proof. The first equation (4.10) follows after some long but straightforward computations plug-
ging (4.8) into the third equation of (4.7). For the second equation (4.11), we plug (4.9) into
the fourth equation of (4.7) and use again (4.10). �

The initial conditions for the couple of second-order differential equations (4.10) and (4.11)
are given by an(0) = bn(0) = 0 and, differentiating (3.8) and (3.9) with respect to s, we get

ȧn(0) =

(∫ ∞
0

P̂n(y)W (y)P̂ ∗n (y)

y
dy

)(∫ ∞
0
P̂n(y)W (y)P̂ ∗n (y)dy

)−1
, (4.12)

ḃn(0) =

(∫ ∞
0

P̂n(y)W (y)P̂ ∗n−1(y)

y
dy

)(∫ ∞
0
P̂n−1(y)W (y)P̂ ∗n−1(y)dy

)−1
. (4.13)

Observe here that the monic matrix-valued orthogonal polynomials P̂n(x) and the weight ma-
trix W (x) are evaluated at s = 0. Since in this case W (x) = xαe−xT (x)T ∗(x), where T (x)
is typically a matrix polynomial, and P̂n(x) can be expressed typically in terms of Laguerre
polynomials (see for instance [11]), it will be possible to compute (4.12) and (4.13) from the
formula∫ ∞

0
L̂(a1)
n (x)L̂(a2)

m (x)xσ−1e−xdx

= (−1)n+mΓ(σ)(a1 + 1)n(a2 + 1)m

n∑
i=0

m∑
j=0

(σ)i+j(−n)i(−m)j
(a1 + 1)i(a2 + 1)ji!j!

,

for <(σ) > 0, where here L̂
(α)
n (x) denotes the monic Laguerre polynomial and (a)k is the

Pochhammer symbol. A more general formula of this type can be found in [12], where the
right-hand part can be written in terms of Appell hypergeometric series.

Remark 4.6. If we assume that all the coefficients are scalar functions (denoted without bold-
faced fonts), then we have that B = B∗n = B̂n = 0. From the first two equations of (4.7) we can
get bn, ḃn and b̈n in terms of an and ȧn (just like in the scalar case, see formulas (3.10) and (3.11)
of [9]). Once we substitute all these values in the second-order differential equation (4.10) we
get the well-known version of the Painlevé III equation

än =
(ȧn)2

an
− ȧn

s
+ (2n+ α+ 1)

a2n
s2

+
a3n
s2

+
α

s
− 1

an
.

Additionally, if we make again all the substitutions and using this previous Painlevé III equation,
it is easy to see that the second-order differential equation (4.11) also holds.

5 Additional relations for special situations

The differential relations obtained from the transformation (2.14) of the Riemann–Hilbert prob-
lem are not unique in the sense that we could have always introduced an unitary matrix-valued
function S(z) inside the factorization of the weight matrix W (s; z) of the form

W (s; z) := zαe−z−s/zT (z)S(z)S∗(z)T ∗(z).
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Although the weight matrix is the same and the solution of the Riemann–Hilbert problem is
unique, if we perform the transformation (2.13) with TS instead of T then we should expect
a new Lax pair with additional information. This was already pointed out in [15, Section 3],
where the authors applied this approach to simplify considerably the differential relations for
some Hermite-type matrix-valued examples. The situation in the scalar case is pointless and it
is not possible to get new relations from this approach (see [15, Proposition 3.9]). Nevertheless
in order to produce new interesting relations, we have to take an specific choice of the matrix B.

Let us call χ(z) := (∂zS(z))S∗(z) the log-derivative of S . Then the log-derivative of TS is
given by

(
∂z(T (z)S(z))

)
S∗(z)T−1(z) =

B

z
+ zBχ(z)z−B.

Denoting H(z) := zBχ(z)z−B, if we manage to find a matrix-valued unitary function S such
that zH(z) is a matrix polynomial, then it will be possible to compute explicitly the new
coefficient A(n)(s; z) in (3.1), and we can get new compatibility conditions. In this case we have

H(z) = χ(z) + adB(χ(z)) log z + ad2
B(χ(z))

log2 z

2
+ · · · =

∞∑
k=0

adkB(χ(z))
logk z

k!
,

where adX(Y ) is the commutator
[
X,Y

]
. Here we define recursively adn+1

X (Y )=adX(adnX(Y ))
for n ≥ 1 with ad0

X(Y ) = Y . One possible choice was given in [10, Section 6.2]. Consider B
and B0 satisfying [B,B0] = B0 and that B2 + αB −B0 is Hermitian. Then B and B0 have
a special structure. In this case, it was proven in [10] that B = ZJZ−1 and B0 = ZLZ−1,
where L and J are the nilpotent and diagonal matrices given by

L =
N−1∑
k=1

νkEk,k+1, νk ∈ C \ {0}, J =
N∑
k=1

(N − k)Ek,k,

and Z is the transformation matrix given by

Z = (zij)i,j=1,...N , zij =


0, if i > j;

1, if i = j;
j−i∏
l=1

νi+l−1
ci+l − ci

, if i < j,

where ci, i = 1, . . . , N, are the diagonal entries of J2 + αJ . Here Eij is a matrix with 1 at
entry (i, j) and 0 elsewhere. Observe now that B is not any matrix and it only depends on
N − 1 free parameters. For instance, for N = 2 we have only one free parameter and

B =

(
1 − ν1

α+ 1
0 0

)
, B0 =

(
0 ν1
0 0

)
.

The weight matrix W (s;x) is given in this case by

W (s;x) = xαe−x−s/x

x
2 +

ν2(x− 1)2

(α+ 1)2
−ν(x− 1)

α+ 1

−ν(x− 1)

α+ 1
1

 , x ∈ [0,∞), α, s > 0.
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Let S(z) = zi(B
2+αB−B0). Observe that, since B2+αB−B0 is Hermitian we have that S(z)

is a unitary matrix-valued function. Therefore, the matrix-valued function χ(z) is then given by

χ(z) = i

(
B2 + αB −B0

z

)
.

A straightforward computation using that [B,B0] = B0 gives

H(z) = zBχ(z)z−B = i

(
B2 + αB

z
−B0

)
.

Therefore, the first equation in the Lax triple (2.15) can be written as

∂

∂z
Ψ(n)(s; z) =

(
A(n)(s; z) + A(n)

H (s; z)
)
Ψ(n)(s; z),

where A(n)(s; z) is defined in (3.1) and

A(n)
H (s; z) = H

(n)
0 +

H
(n)
−1 (s)

z
,

where

H
(n)
0 = −i

(
B0 0
0 B∗0

)
and

H
(n)
−1 (s) = i

B2 + αB + [B0,an,n−1(s)]
1

2πi
γ−1n (B∗0 −Ln(s))

−2πi(B∗0 −Ln−1(s))γn−1
(
B2 + αB + [B0,an,n−1(s)]

)∗
 .

Here we are using the notation

Ln(s) = γn(s)B0γ
−1
n (s).

From the first compatibility condition (3.2) we get a new relation

∂sA(n)
H (s; z) +

[
A(n)

H (s; z),B(n)(s; z)
]

= 0,

while form the second compatibility condition (3.3) we get

U (n)(s; z)A(n)
H (s; z) = A(n+1)

H (s; z)U (n)(s; z).

The first one gives two new relations

anβn(B0 −L∗n−1) + (B0 −L∗n)a−1n bn(sIN − bn) =
[
B2 + αB +

[
B0,an,n−1

]
, bn
]
,

and

(sIN − bn)(B0 −L∗n)− (B0 −L∗n)a−1n bnan =
(
B2 + αB + [B0,an,n−1]

)
an

− an
(
B2
n + αBn +

[
Ln,γnan,n−1γ

−1
n

])∗
.

The second one gives another two new relations

(B0 −L∗n+1)βn+1 − βn(B0 −L∗n−1) =
[
B2 + αB + [B0,an,n−1],αn

]
+ [αn,B0αn],
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and

B2 + αB + [B0,an,n−1]−
(
B2
n + αBn +

[
Ln,γnan,n−1γ

−1
n

])∗
= B0αn −αnL∗n.

Also from Proposition 3.4 we can get two new relations

anβn(B0 −L∗n−1)− (sIN − bn)(B0 −L∗n)a−1n bn + s
(
B̂2
n + αB̂n

)
= (sIN − bn)

(
B2 + αB + [B0,an,n−1]

)
+ an

(
B2
n + αBn +

[
Ln,γnan,n−1γ

−1
n

])∗
a−1n bn,

and

a−1n bn
(
B2 + αB + [B0,an,n−1]

)
−
(
B2
n + αBn +

[
Ln,γnan,n−1γ

−1
n

])∗
a−1n bn

+ βn(B0 −L∗n−1) + a−1n bn(B0 −L∗n)a−1n bn = 0.

Combining these last two ones we get the reduction

B̂2
n + αB̂n = B2 + αB + [B0,an,n−1] + (B0 −L∗n)a−1n bn.
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[15] Grünbaum F.A., de la Iglesia M.D., Mart́ınez-Finkelshtein A., Properties of matrix orthogonal polynomials
via their Riemann–Hilbert characterization, SIGMA 7 (2011), 098, 31 pages, arXiv:1106.1307.

[16] Johansson K., Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. of Math. 153
(2001), 259–296, math.CO/9906120.

[17] Miranian L., Matrix-valued orthogonal polynomials on the real line: some extensions of the classical theory,
J. Phys. A: Math. Gen. 38 (2005), 5731–5749.

[18] Moser J., Finitely many mass points on the line under the influence of an exponential potential – an integrable
system, in Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash.,
1974), Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975, 467–497.

[19] Retakh V., Rubtsov V., Noncommutative Toda chains, Hankel quasideterminants and the Painlevé II equa-
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