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Abstract. For two continuous and isotropic positive definite kernels on the same compact
two-point homogeneous space, we determine necessary and sufficient conditions in order
that their product be strictly positive definite. We also provide a similar characterization
for kernels on the space-time setting G× Sd, where G is a locally compact group and Sd is
the unit sphere in Rd+1, keeping isotropy of the kernels with respect to the Sd component.
Among other things, these results provide new procedures for the construction of valid
models for interpolation and approximation on compact two-point homogeneous spaces.
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1 Introduction

Positive definite functions and kernels on manifolds have special importance for probability
theory, approximation theory, spatial statistics and stochastic processes. In applications, the case
in which the manifold is a 2-dimensional sphere is the most common one, once the sphere plays
the surface of the Earth in many mathematical models. Originally, positive definite functions
were studied within the scope of harmonic analysis, distance geometry and the theory of integral
equations by Bochner, Schoenberg and Young, among others. The most relevant contributions
which are related to this paper are Schoenberg’s characterization of positive definite functions
on spheres given in [25] and Gangolli’s extension to all the compact two-point homogeneous
spaces described in [11]. Some other references will be quoted at the opportune time.

Let Md denote a d-dimensional compact two-point homogeneous space. As pointed by
Wang [27], Md belongs to one of the following classes: the unit circle S1, higher dimensional
unit spheres Sd, d = 2, 3 . . ., the real projective spaces Pd(R), d = 2, 3, . . ., the complex pro-
jective spaces Pd(C), d = 4, 6, . . ., the quaternionic projective spaces Pd(H), d = 8, 12, . . ., and
the Cayley projective plane Pd(Cay), d = 16. These manifolds are metric spaces when endowed
with their usual Riemannian (geodesic) distance. Additional properties of compact two-point
homogeneous spaces can be found in the textbooks [18, 28]. If x and y are two elements of Md,
we will write |xy| to indicate the distance between them. In order to make the treatment uni-
form, the distance will be normalized so that |xy| is at most 2π, no matter what x, y and Md
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are. That being said, the positive definite kernels on Md to be considered here are of the form

K(x, y) = f(cos (|xy|/2)), x, y ∈Md, (1.1)

in which f is a continuous function with domain [−1, 1]. It is not uncommon to call f the
isotropic part of the kernel K. Indeed, the manifolds Md possess a group of motions Gd which
takes (x, y) ∈ Md ×Md to (z, w) ∈ Md ×Md when |xy| = |zw|. In particular, a kernel as above
is isotropic in the sense that

K(x, y) = K(Ax,Ay), x, y ∈Md, A ∈ Gd.

The positive definiteness of K demands that for any positive integer n and any distinct points
x1, x2, . . . , xn on Md, the n × n matrix with entries K(xi, xj) is nonnegative definite. That
corresponds to

n∑
i,j=1

cicjK(xi, xj) ≥ 0, (1.2)

for any real numbers c1, c2, . . . , cn.
According to [11, 25], a kernel K as in (1.1) is positive definite if, and only if, its isotropic

part f has a Fourier–Jacobi series representation in the form

f(t) =
∞∑
k=0

ak(f)P
(α,β)
k (t), t ∈ [−1, 1], (1.3)

in which all the coefficients ak(f) are nonnegative, P
(α,β)
k is the usual Jacobi polynomial of

degree k associated with the pair (α, β) [26], and the series is convergent at t = 1. The first
upper exponent α depends only on the dimension d of Md in the sense that α := (d − 2)/2,
whereas β can take the values (d−2)/2, −1/2, 0, 1, 3, depending on the respective category Md

belongs to, among those stressed by Wang. The coefficients ak(f) depend upon α and β but
that will not be emphasized in our notation. Obviously, the series representation mentioned
above does not depend upon the particular normalization adopted for the Jacobi polynomials.

The strict positive definiteness of a positive definite kernel as above deserves attention when
interpolation procedures need to be solved. It demands strict inequalities in (1.2) when the
scalars ci are nonzero. In statistical language, the strict positive definiteness of a covariance
function (positive definite kernel) provides invertible kriging coefficient matrices and, therefore,
the existence of a unique solution for the associated kriging system. The characterization of
strictly positive definite kernels and the construction of strictly positive definite kernels featuring
special needs is of practical relevance not only in statistics but also in approximation theory.

The characterization for strict positive definiteness within Gangolli’s class was achieved in
recent years. It begins with the observation that strict positive definiteness depends upon the
set {k : ak(f) > 0} attached to the isotropic part of the positive definite kernel and not on the
actual values of ak(f) themselves. Precisely, the following result holds (see [2, 6, 23]).

Theorem 1.1. Let f possess a Fourier–Jacobi series representation as in (1.3). It is the
isotropic part of a strictly positive definite kernel on Md if, and only if, the respective conditions
given below hold:

(i) Md = S1: the set {k : a|k|(f) > 0} intersects every full arithmetic progression in Z, that
is, all the sets nZ + j = {nl + j : l ∈ Z}, where n, j ∈ N and n ≥ 2.

(ii) Md = Sd, d ≥ 2: the set {k : ak(f) > 0} contains infinitely many even and infinitely many
odd integers.
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(iii) Md 6= Sd, d ≥ 1: the set {k : ak(f) > 0} contains infinitely many integers, that is, f is not
a polynomial.

The classes of positive definite kernels introduced so far are closed under linear combinations
with nonnegative coefficients and finite products. The first assertion follows from the defini-
tion of positive definiteness while the other one follows from the Schur product theorem [19,
p. 455]. Regarding strict positive definiteness with respect to linear combinations, if f and g
are functions possessing a Fourier–Jacobi series representation as in (1.3), for the same Md

and a and b are nonnegative real numbers, then the function af + bg is the isotropic part of
a strictly positive definite kernel on Md if, and only if, the sets {k : aa|k|(f) + ba|k|(g) > 0} and
{k : aak(f) + bak(g) > 0} satisfy the corresponding conditions in Theorem 1.1, that is, if, and
only if, the sets {k : aa|k|(f) > 0}∪{l : ba|l|(g) > 0} and {k : aak(f) > 0}∪{l : bal(g) > 0} satisfy
the respective conditions in Theorem 1.1.

Having said that, the focus in the first half of this paper will be the analysis of strict positive
definiteness of product covariance models on these same spaces. For a fixed space Md and two
continuous functions f, g : [−1, 1] → R which are isotropic parts of two positive definite kernels
on Md, we will find necessary and sufficient conditions on them in order that the product fg
be the isotropic part of a strictly positive definite kernel on Md. The problem can be seen as
a particular formulation of what was called DC-strict positive definiteness in a product space
in [3, 14].

Oppenheim’s inequality [19, p. 480] is all that is needed in order to see that if one of the
functions is nonzero and the other is the isotropic part of a strictly positive definite kernel
on Md, then fg is the isotropic part of a strictly positive definite kernel on Md. However, the
product of two non strictly positive definite kernels on Md may be strictly positive definite, as
the example Md = Sd, d ≥ 2, and the coefficients

a0(f) = a1(f) = 1, ak(f) = 0, k 6= 0, 1,

and

a2k+1(g) = 3−2k−1, a2k(g) = 0, k = 0, 1, . . . ,

show. Indeed, it is a direct consequence of the theorems to be proved in Section 2 that
{k : ak(fg) > 0} contains infinitely many even and infinitely many odd integers. In particu-
lar, the question to be analized in this paper is, indeed, nontrivial. As a bypass, in the second
half of the paper, we will also consider the very same problem adapted to other manifolds:
a group cross a high-dimensional sphere, keeping isotropy of the kernel with respect to the
spherical component and the unit sphere in Cq.

The other sections in the paper are organized as follows. In Section 2, we will solve the
problem proposed above in the case of a compact two-point homogeneous space Md. In Section 3,
we extend the results from Section 2 for intersection classes of positive definite kernels taking
into account original characterizations for the classes in [22, 25]. In Section 4, we extrapolate
the problem to space-time kernels, that is, complex kernels on G × Sd, in which G is a locally
compact group, adopting the context for positive definiteness presented in [4, 17]. In particular,
isotropy for the Sd component of the kernel will be kept in the analysis. Finally, in Section 5,
we consider the very same problem now adapted to complex kernels on the unit sphere in Cq.

2 The main results for homogeneous spaces

We begin recalling a general linearization formula for Jacobi polynomials [1, p. 41]. For a fi-
xed Md and two functions with Fourier–Jacobi series representation as in (1.3), it implies a lin-
earization in the series expansion of the product of the functions.
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Lemma 2.1. If α ≥ β > −1 and

(α+ β + 1)(α+ β + 4)2(α+ β + 6) ≥ (α− β)2
[
(α+ β + 1)2 − 7(α+ β + 1)− 24

]
,

then

P
(α,β)
k (t)P

(α,β)
l (t) =

k+l∑
µ=|k−l|

bα,βk,l (µ)P (α,β)
µ (t), t ∈ [−1, 1],

in which all the coefficients bα,βk,l (µ) are nonnegative. The coefficient bα,βk,l (k + l) is, in fact,
positive.

Proof. The recurrence relation for the product was set up by Hylleraas in [20] while the non-
negativity of the coefficients was obtained by Gasper in [12, 13]. The last statement in the
lemma is implicit in the proof of Theorem 1 in [12]. �

It is an easy matter to see that the nonnegativity of the coefficients is granted in the cases
in which α ≥ β > −1 and α + β ≥ −1. In particular, it is also granted in the cases in which
α = (d − 2)/2 and β = −1/2, 0, 1, 3 covered by Wang’s classification. Therefore, for all the
compact two-point homogeneous spaces, the class of functions possessing a representation as
in (1.3) is a semigroup under pointwise multiplication.

The Jacobi polynomial P
(−1/2,−1/2)
k is a positive multiple of the Chebyshev polynomial Tk of

the first kind. Normalizing the Chebyshev polynomials by Tk(1) = 1, k = 0, 1, . . ., we have that

Tk(t) = cos(k arccos t), t ∈ [−1, 1], k = 0, 1, . . . ,

and the linearization formula described in Lemma 2.1 reduces itself to the cosine addition formula

Tk(t)Tl(t) =
1

2
[Tk+l(t) + T|k−l|(t)], t ∈ [−1, 1], k, l ∈ Z+.

Now, if f and g are the isotropic parts of positive definite kernels on S1 with Fourier–Jacobi

series as in (1.3), we can replace P
(−1/2,−1/2)
k with Tk and write

f(t)g(t) =

∞∑
k,l=0

ak(f)al(g)Tk(t)Tl(t)

=
∞∑

k,l=0

ak(f)al(g)

{
1

2
cos[(k + l) arccos t] +

1

2
cos[|k − l| arccos t]

}
, t ∈ [−1, 1].

Since the series above is absolute convergent at t = 1, we can rearrange it in order to obtain

f(t)g(t) =
1

2

∞∑
µ=0

( ∑
k+l=µ

ak(f)al(g)

)
Tµ(t)

+
1

2

∞∑
ν=0

( ∑
|k−l|=ν

ak(f)al(g)

)
Tν(t), t ∈ [−1, 1].

That is,

f(t)g(t) =

∞∑
m=0

am(fg)Tm(t), t ∈ [−1, 1],
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in which

a0(fg) = a0(f)a0(g) +
1

2

∞∑
µ=1

aµ(f)aµ(g)

and

am(fg) =
1

2

m∑
ν=0

aν(f)am−ν(g) +
1

2

∞∑
µ=0

aµ(f)aµ+m(g) + aµ+m(f)aµ(g), m ≥ 1.

It is very easy to see that, for a fixed integer m, a|m|(fg) > 0 if, and only if, m belongs to the
set {±k ± l : ak(f)al(g) > 0}. In view of Theorem 1.1(i), we have proved the following result.

Theorem 2.2. Let f and g be the isotropic parts of positive definite kernels on S1 and consider
their Fourier–Jacobi series representations according to (1.3). Then, fg is the isotropic part of
a strictly positive definite kernel on S1 if, and only if, the set

{±k ± l : ak(f)al(g) > 0}

intersects every full arithmetic progression in Z.

Next, we will extend Theorem 2.2 to all the other compact two-point homogeneous spaces
appearing in Wang’s classification. We find convenient to prove and use the following technical
result, a direct consequence of Lemma 2.1.

Lemma 2.3. Let α and β be real numbers with α ≥ β > −1 and α + β ≥ −1. Define
h : [−1, 1]→ R by the formula

h(t) =
∞∑

k,l=0

bk,lP
(α,β)
k (t)P

(α,β)
l (t), t ∈ [−1, 1],

where all the coefficients bk,l are nonnegative and
∞∑

k,l=0

bk,lP
(α,β)
k (1)P

(α,β)
l (1) <∞. The following

assertions are equivalent:

(i) the function h is a polynomial;

(ii) the set {k + l : bk,l > 0} is finite.

Proof. The function h is obviously well defined due to the inequality
∣∣P (α,β)
k (t)

∣∣ ≤ P
(α,β)
k (1),

t ∈ [−1, 1]. By Lemma 2.1, we can put h into the form

h(t) =

∞∑
k,l=0

bk,l

k+l∑
µ=0

bα,βk,l (µ)P (α,β)
µ (t) =

∞∑
µ=0

[ ∑
k+l≥µ

bk,lb
α,β
k,l (µ)

]
P (α,β)
µ (t), t ∈ [−1, 1],

where we are setting bα,βk,l (µ) = 0 for µ ≤ |k − l| − 1. If h is a polynomial of degree n, then

0 =
∑
k+l≥µ

bk,lb
α,β
k,l (µ) ≥

∑
k+l=µ

bk,lb
α,β
k,l (µ) ≥ 0, µ > n.

In particular, bk,l = 0 when k + l > n. This shows that (i) implies (ii). The other implication
is obvious. �

We are about ready for an extension of Theorem 2.2 to those compact two-point homogeneous
spaces which are not spheres.
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Theorem 2.4. Let f and g be isotropic parts of positive definite kernels on Md and consider
their Fourier–Jacobi series representations according to (1.3). Assume Md is not a sphere. The
function fg is the isotropic part of a strictly positive definite kernel on Md if, and only if, the
set {k + l : ak(f)al(g) > 0} is infinite.

Proof. The starting point of the proof is the formula

f(t)g(t) =
∞∑

k,l=0

ak(f)al(g)P
((d−2)/2,β)
k (t)P

((d−2)/2,β)
l (t), t ∈ [−1, 1],

with β depending upon the manifold Md. An application of Theorem 1.1(iii) reveals that fg
is the isotropic part of a positive definite kernel on Md which is not strictly positive definite if,
and only if, fg is a polynomial. However, by Lemma 2.3, this is the case if, and only if, the set
{k + l : ak(f)al(g) > 0} is finite. �

The previous theorem allows the following reformulation.

Theorem 2.5. Let f and g be nonzero isotropic parts of positive definite kernels on Md. As-
sume Md is not a sphere. The following assertions are equivalent:

(i) fg is the isotropic part of a strictly positive definite kernel on Md;

(ii) either f or g is the isotropic part of a strictly positive definite kernel on Md;

(iii) either f or g is not a polynomial.

We close the section handling the case in which Md is a high-dimensional sphere.

Theorem 2.6. (d ≥ 2). Let f and g be the isotropic parts of positive definite kernels on Sd

and consider their Fourier–Jacobi series representations according to (1.3). The product fg is
the isotropic part of a strictly positive definite kernel on Sd if, and only if, the set

{k + l : ak(f)al(g) > 0}

contains infinitely many even and infinitely many odd integers.

Proof. In the case in which α = β, the Jacobi polynomials P
(α,β)
k are positive multiples of the

Gegenbauer polynomials Cαk :

P
(α−1/2,α−1/2)
k (t) =

(α+ 1/2)k
(2α)k

Cαk (t), t ∈ [−1, 1], k = 0, 1, . . . .

So, we can think of the expansions (1.3) of f and g in terms of the Gegenbauer polyno-

mials C
(d−1)/2
k . In particular, we may write

f(t)g(t) =

∞∑
k,l=0

ak(f)al(g)C
(d−1)/2
k (t)C

(d−1)/2
l (t), t ∈ [−1, 1].

By Theorem 1.1(ii), the function fg is the isotropic part of a positive definite kernel on Sd which
is not strictly positive definite if, and only if, either {k : a2k(fg) > 0} or {k : a2k+1(fg) > 0} is

finite. Since C
(d−1)/2
k (−t) = (−1)kC

(d−1)/2
k (t), t ∈ [−1, 1], we have that

f(t)g(t)− f(−t)g(−t) = 2
∞∑
k=0

a2k+1(fg)C
(d−1)/2
2k+1 (t), t ∈ [−1, 1],
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and

f(t)g(t) + f(−t)g(−t) = 2

∞∑
k=0

a2k(fg)C
(d−1)/2
2k (t), t ∈ [−1, 1].

Hence, the previous assertion corresponds to either one of the functions above being a polyno-
mial. However, since we have the alternative representations

f(t)g(t)− f(−t)g(−t) = 2
∑

k+l∈2Z++1

ak(f)al(g)C
(d−1)/2
k (t)C

(d−1)/2
l (t), t ∈ [−1, 1],

and

f(t)g(t) + f(−t)g(−t) = 2
∑

k+l∈2Z+

ak(f)al(g)C
(d−1)/2
k (t)C

(d−1)/2
l (t), t ∈ [−1, 1],

we conclude from Lemma 2.3, that fg is the isotropic part of a positive definite kernel on Sd

which is not strictly positive definite if, and only if, either {k+ l ∈ 2Z+ + 1: ak(f)al(g) > 0} or
{k + l ∈ 2Z+ : ak(f)al(g) > 0} is finite. That is, the set

{k + l : ak(f)al(g) > 0}

contains either finitely many even or finitely many odd integers. �

3 Extensions to intersection classes

The setting here is still aligned with that adopted in the previous section. We will assume the
isotropic part of the kernels have either one of the forms

f(t) =
∞∑
k=0

ak(f)tk, t ∈ [−1, 1], (3.1)

or

f(t) =
∞∑
k=0

ak(f)

(
1 + t

2

)k
, t ∈ [−1, 1], (3.2)

where the coefficients ak(f) are all nonnegative and the series is convergent at t = 1.
According to Schoenberg, a continuous function f : [−1, 1] → R admits the representa-

tion (3.1) if, and only if, it is the isotropic part of a positive definite kernel on Sd, for d = 1, 2, . . ..
On the other hand, a theorem proved in [15] shows that a continuous function f has the repre-
sentation (3.2) if, and only if, each one of the following three equivalent assertions hold:

– f is the isotropic part of a positive definite kernel on P d(R), for d = 2, 3, . . .;

– f is the isotropic part of a positive definite kernel on P d(C), for d = 4, 8, . . .;

– f is the isotropic part of a positive definite kernel on P d(H), for d = 8, 12, . . ..

For coherence, we will say that f is the isotropic part of a positive definite kernel on S∞ in
the first case and on P∞ in the second case. In the first case, the notation makes perfect sense
if we interpret S∞ as the unit sphere in the usual real space `2 endowed with its usual distance
defined by

|xy| := 2 arccosx · y, x, y ∈ S∞,
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where · denotes the standard inner product of `2. Indeed, as explained in [5, 10, 25], if f is
continuous in [−1, 1], the kernel K(x, y) = f(cos(|xy|/2)), x, y ∈ S∞, is positive definite if, and
only if, f admits the representation (3.1).

Regarding strict positive definiteness for kernels generated by functions in the two classes
above, the result detached below holds. The proof of the first assertion can be found in [22]
while the proof of the other one can be obtained similarly.

Theorem 3.1. Let f be the isotropic part of a positive definite kernel K on S∞ (respective-
ly, P∞). The kernel K is strictly positive definite if, and only if, the set {k : ak(f) > 0} defined
from (3.1) (respectively, (3.2)) contains infinitely many even and infinitely many odd integers
(respectively, infinitely many integers).

The reader will easily verify that Lemma 2.3 still holds true when we replace P
(α,β)
k (t) with

either tk or 2−k(1 + t)k. Indeed, the proofs are a lot easier in these cases due to the simpler
structure of the linearization formulas

tktl = tk+l, t ∈ [−1, 1, ], k, l ∈ Z+,

and (
1 + t

2

)k (1 + t

2

)l
=

(
1 + t

2

)k+l
, t ∈ [−1, 1], k, l ∈ Z+.

Equally simple adaptations in the proofs of Theorems 2.4 and 2.6 justify the following two
extensions of the main results proved in Section 2.

Theorem 3.2. Let f and g be the isotropic parts of positive definite kernels on S∞ and consider
their series representations according (3.1). The product fg is the isotropic part of a strictly
positive definite kernel on S∞ if, and only if, the set

{k + l : ak(f)al(g) > 0}

contains infinitely many even and infinitely many odd integers.

Theorem 3.3. Let f and g be nonzero isotropic parts of positive definite kernels on P∞. The
following assertions are equivalent:

(i) fg is the isotropic part of a strictly positive definite kernel on P∞;

(ii) either f or g is the isotropic part of a strictly positive definite kernel on the space;

(iii) either f or g is not a polynomial.

4 The case of a locally compact group cross Sd

In this section, we expand a little bit the setting considered in the previous sections by analyzing
the very same question in a case that includes space-time positive definite kernels. The setting
here is the one in [4, 17], a brief description of which is as follows.

If G is a locally compact group with operation ∗ and neutral element e, we intend to consider
positive definite kernels K : G× Sd → C that have the form

((u, x), (v, y)) ∈
(
G× Sd

)2 → K((u, x), (v, y)) = f
(
u−1 ∗ v, cos(|xy|/2)

)
in which f is a complex continuous function with domain G× [−1, 1]. In this setting, we need to
use the definition of positive definiteness in its full strength, that is, the left hand side of (1.2)
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needs to be of the form
n∑

i,j=1
cicjK(yi, yj), with complex ci and the yi in G × Sd. A similar

remark holds for strict positive definiteness. In analogy with the previous sections, we will call
the function f : G× [−1, 1]→ C, the isotropic part of the kernel. According to [4], the positive
definiteness of K corresponds to the following series representation for f

f(u, t) =
∞∑
k=0

adk(f ;u)C
(d−1)/2
k (t), (u, t) ∈ G× [−1, 1],

in which {adk(f ; ·)} is a sequence of continuous functions on G defining positive definite kernels

(u, v) ∈ G2 → adk
(
f ;u−1 ∗ v

)
and

∑
k

adk(f ; e)C
(d−1)/2
k (1) < ∞. The functions adk(f ; ·) appearing

above have a closed integral form given by

adk(f ;u) = c(k, d)

∫ 1

−1
f(u, s)C

(d−1)/2
k (s)

(
1− s2

)(d−2)/2
ds, u ∈ G,

in which c(k, d) is an appropriate normalization constant depending upon k and d.
The following result concerning the strict positive definiteness of a kernel fitting the descrip-

tion presented in the previous paragraph is a consequence of a quite general result proved in [17].
It boils down to strict positive definiteness on Sd of a large class of positive definite functions
indexed over G.

Theorem 4.1 (d ≥ 2). Let f be the isotropic part of a positive definite kernel on G× Sd. The
following assertions are equivalent:

(i) the kernel ((u, x), (v, y)) ∈
(
G×Sd

)2 → f
(
u−1 ∗ v, cos(|xy|/2)

)
is strictly positive definite;

(ii) if p is a positive integer at most the cardinality of G, u1, u2, . . . , up are distinct points in G
and c is a nonzero vector in Cp, then the function

t ∈ [−1, 1]→
p∑

µ,ν=1

cµcνf
(
u−1µ ∗ vν , t

)
,

is the isotropic part of a strictly positive definite kernel on Sd.

The main result in this section is as follows.

Theorem 4.2 (d ≥ 2). Let f and g be isotropic parts of positive definite kernels on G × Sd.
The following assertions are equivalent:

(i) the product fg is the isotropic part of a strictly positive definite kernel on G× Sd;
(ii) the set{

k + l : ct
[
adk
(
f ;u−1µ ∗ uν

)
adl
(
g;u−1µ ∗ uν

)]p
µ,ν=1

c > 0
}

contains infinitely many even and infinitely many odd integers, whenever p ≥ 1, u1, u2,
. . . , up are distinct points in G and c is a nonzero vector in Cp.

Proof. By Theorem 4.1, the function fg is the isotropic part of a strictly positive definite
kernel on G×Sd if, and only if, for every p ≥ 1, distinct points u1, u2, . . . , up in G and a nonzero
vector c in Cp, the function h : [−1, 1]→ C defined by

h(t) =

p∑
µ,ν=1

cµcνf
(
u−1µ ∗ vν , t

)
g
(
u−1µ ∗ vν , t

)
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is the isotropic part of a strictly positive definite kernel on Sd. Introducing series representations,
we can re-write the expression above as

h(t) =

∞∑
k,l=0

 p∑
µ,ν=1

cµcνa
d
k

(
f, u−1µ ∗ vν

)
adl
(
g, u−1µ ∗ vν

)C(d−1)/2
k (t)C

(d−1)/2
l (t), t ∈ [−1, 1].

In other words,

h(t) =
∞∑

k,l=0

{
ct
[
adk
(
f ;u−1µ ∗ uν

)
adl
(
g;u−1µ ∗ uν

)]p
µ,ν=1

c
}
C

(d−1)/2
k (t)C

(d−1)/2
l (t), t ∈ [−1, 1],

in which c is the vector with entries c1, c2, . . . , cp. We now can repeat the arguments used in
Section 3 in order to see that h is the isotropic part of a strictly positive definite kernel on Sd

if, and only if,{
k + l : ct

[
adk
(
f ;u−1µ ∗ uν

)
adl
(
g;u−1µ ∗ uν

)]p
µ,ν=1

c > 0
}

contains infinitely many even and infinitely many odd integers. �

The previous theorem can be put in a more general form, following the setting adopted in [17].
Details will be not included here.

The strict positive definiteness of product covariance functions on Rd alone was considered
in [7, 8, 9], where the reader can also find explanations regarding the practicability and the
computational advantages and simplifications implied by the use of such separable covariance
functions in the geostatistical literature. However, a self-contained characterization for the strict
positive definiteness of a product of positive definite kernels on Rd is still elusive.

We close the section presenting an explicit construction in the case in which G is the usual
group (R,+).

Example 4.3. Let f and g be the isotropic parts of strictly positive definite kernels on S∞.
If λ and θ are real numbers, then the functions F and G given by

F (u, t) = f(t cosλu) =
∞∑
k=0

[
ak(f) cosk λu

]
tk, (t, u) ∈ [−1, 1]× R,

and

G(u, t) = g(t cos θu) =

∞∑
k=0

[
al(g) cosl θu

]
tl, (t, u) ∈ [−1, 1]× R,

are isotropic parts of positive definite kernels on R × S∞ and these kernels are not strictly
positive definite. However, if λ and θ are nonzero and λ/θ is not a rational number, then FG
is the isotropic part of a strictly positive definite kernel on R × S∞. Indeed, if p ≥ 1, u1, u2,
. . . , up are distinct points in R and c is a nonzero vector in Cp, then

lim
min(k,l)→∞

cos(λ(xµ − xν))k cos(θ(xµ − xν))l = δµν .

In particular, the set{
k + l : ct

[
ak(f) cos(λ(xµ − xν))kal(g) cos(θ(xµ − xν))l

]p
µ,ν=1

c > 0
}

contains infinitely many even and infinitely many odd integers, as required by Theorem 4.2(ii).
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5 The complex spherical case

In this section, we revisit Section 2 and the complex counterpart of the spherical case.
We write Ω2q to denote the unit sphere in Cq and · to denote the usual inner product of C.

The positive definite kernels to be considered here are of the form

K(x, y) = f(x · y), x, y ∈ Ω2q,

in which f is a complex continuous function on D := {z ∈ C : |z| ≤ 1} if q ≥ 2 and on Ω2 if
q = 1. Once again, we observe that the scalars in the definition of positive definiteness according
to (1.2) needs to be complex ones. A positive definite kernel on Ω2q is invariant with respect to
unitary transformations of Cq, the reason why we will call f the isotropic part of K.

According to [24], in the case q ≥ 2, a kernel K as above is positive definite if, and only if,
its isotropic part f is representable in the form

f(z) =
∞∑

m,n=0

am,n(f)Rq−2m,n(z), z ∈ D, (5.1)

in which all the coefficients am,n are nonnegative, Rq−2m,n is the disk (or Zernike) polynomial of
bi-degree (m,n) associated with the integer q − 2 and the series is convergent at z = 1. The
disk polynomials are discussed in [29]. In the case q = 1, the representation for f becomes

f(z) =
∑
m∈Z

am(f)zm, z ∈ Ω2,

in which all the coefficients am(f) are nonnegative and the series is convergent at z = 1. The
strict positive definiteness of the kernel in each case is equivalent to {m − n : am,n(f) > 0}
(respectively, {m : am(f) > 0}) intersecting every full arithmetic progression of Z. Details on
that can be found in [16, 23].

If f and g are the isotropic parts of two positive definite kernels on Ω2, a procedure very close
to that used at the beginning in Section 3 leads to the following criterion: fg is the isotropic
part of a strictly positive definite kernel on Ω2 if, and only if, {m+n : am(f)an(g) > 0} intersects
every full arithmetic progression of Z. The details will be not included.

In order to handle the case q ≥ 2, it is relevant to recall a linearization formula for disk
polynomials proved by Koornwinder [21], a generalization of the one described in Lemma 2.1:
for nonnegative integers m1, m2, n1, n2, it reads

Rq−2m1,n1
(z)Rq−2m2,n2

(z) =
∑
m,n

aq;m,nm1,n1;m2,n2
Rq−2m,n(z), z ∈ D, (5.2)

in which all the coefficients aq;m,nm1,n1;m2,n2 are nonnegative. The sum takes into account just the
pairs (m,n) satisfying

m1 +m2 + n = n1 + n2 +m, |m1 + n1 −m2 − n2| ≤ m+ n ≤ m1 + n1 +m2 + n2.

Its structure is not as good as the other ones we have used so far in this paper, once the
disk polynomials are double-indexed functions. However, a counterpart of Lemma 2.3 can be
enunciated and proved as follows.

Lemma 5.1. Let f be a function as in (5.1). For each k ∈ Z, define

fk(z) =
∑

m−n=k
am,n(f)Rq−2m,n(z), z ∈ D.

The following assertions are equivalent:
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(i) the function f is the isotropic part of a strictly positive definite kernel on Ω2q;

(ii) the set {k : fk 6≡ 0} intersects every full arithmetic progression in Z.

Proof. Since the series expansion for f is convergent at z = 1, and
∣∣Rq−2m,n(z)

∣∣ ≤ Rq−2m,n(1), we
can write the equality

f(z) =
∑
k∈Z

fk(z), z ∈ D.

Obviously, each fk is continuous in D and, in addition, it is the isotropic part of a positive
definite kernel on Ω2q. Since

{m− n : am,n(f) > 0} = {k : fk 6≡ 0},

the assertion in the statement of the lemma follows. �

We can now state and prove the main result in this section.

Theorem 5.2 (q ≥ 2). Let f and g be the isotropic parts of two positive definite kernels on Ω2q

and consider their series representation according to (5.1). Then, fg is the isotropic part of
a strictly positive definite kernel on Ω2q if, and only if, the set

{(m− n) + (m′ − n′) : am,n(f)am′,n′(g) > 0}

intersects every full arithmetic progression in Z.

Proof. The first step in the proof is to write

f(z)g(z) =
∑
k,l∈Z

fk(z)gl(z) =
∑
µ∈Z

∑
k+l=µ

fk(z)gl(z), z ∈ D.

The second equality above is supported by the inequality∑
k,l∈Z

|fk(z)gl(z)| ≤
∑
k,l∈Z

fk(1)gl(1) = f(1)g(1).

Since the indices in (5.2) satisfy

m− n = (m1 − n1) + (m2 − n2),

for each pair ((m1, n1), (m2, n2)), we can write

fk(z)gl(z) =
∑

m−n=k+l
bk,lm,nR

q−2
m,n(z), z ∈ D,

where all the coefficients bk,lm,n are nonnegative. Consequently,∑
k+l=µ

fk(z)gl(z) =
∑

m−n=µ
bm,nR

q−2
m,n(z), z ∈ D,

and, in particular,

(fg)µ(z) =
∑
k+l=µ

fk(z)gl(z), z ∈ D.
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Thus, by Lemma 5.1, it remains to show that

{µ : (fg)µ 6≡ 0} = {m− n+m′ − n′ : am,n(f)am′,n′(g) > 0}.

If (fg)µ is not the zero function for some µ, then there exists a pair (k, l) with k + l = µ so
that neither fk nor gl is the zero function. Hence, there are pairs (m,n) with m − n = k and
(m′, n′) with m′ − n′ = l so that am,n(f) > 0 and am′,n′(g) > 0. In other words, µ ∈ {m− n+
m′ − n′ : am,n(f)am′,n′(g) > 0}. Conversely, if µ ∈ {m − n + m′ − n′ : am,n(f)am′,n′(g) > 0},
then µ = m−n+m′−n′ for pairs (m,n) and (m′, n′) for which am,n(f)am′,n′(g) > 0. Defining,
k = m − n and l = m′ − n′, it follows that both fk and gl are not identically 0. In particular,
fk(1) > 0 and gl(1) > 0, whence (fg)µ(1) = (fg)m−n+m′−n′(1) > 0. Thus, (fg)µ is not
identically zero. �
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