Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 006, 20 pages      arXiv:1901.10122      https://doi.org/10.3842/SIGMA.2019.006
Contribution to the Special Issue on Orthogonal Polynomials, Special Functions and Applications (OPSFA14)

Open Problems for Painlevé Equations

Peter A. Clarkson
School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent, CT2 7FS, UK

Received January 18, 2019; Published online January 29, 2019

Abstract
In this paper some open problems for Painlevé equations are discussed. In particular the following open problems are described: (i) the Painlevé equivalence problem; (ii) notation for solutions of the Painlevé equations; (iii) numerical solution of Painlevé equations; and (iv) the classification of properties of Painlevé equations.

Key words: Painlevé equations; open problems.

pdf (481 kb)   tex (40 kb)

References

  1. Ablowitz M.J., Clarkson P.A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, Vol. 149, Cambridge University Press, Cambridge, 1991.
  2. Ablowitz M.J., Ramani A., Segur H., Nonlinear evolution equations and ordinary differential equations of Painlevé type, Lett. Nuovo Cimento 23 (1978), 333-338.
  3. Ablowitz M.J., Ramani A., Segur H., A connection between nonlinear evolution equations and ordinary differential equations of $P$-type. I, J. Math. Phys. 21 (1980), 715-721.
  4. Ablowitz M.J., Segur H., Exact linearization of a Painlevé transcendent, Phys. Rev. Lett. 38 (1977), 1103-1106.
  5. Abramov A.A., Yukhno L.F., Numerical solution of the Cauchy problem for Painlevé III, Differ. Equ. 48 (2012), 909-918.
  6. Abramov A.A., Yukhno L.F., Numerical solution of the Cauchy problem for the Painlevé I and II equations, Comput. Math. Math. Phys. 52 (2012), 321-329.
  7. Abramov A.A., Yukhno L.F., Numerical solution of the Painlevé IV equation, Comput. Math. Math. Phys. 52 (2012), 1565-1573.
  8. Abramov A.A., Yukhno L.F., A method for the numerical solution of the Painlevé equations, Comput. Math. Math. Phys. 53 (2013), 540-563.
  9. Abramov A.A., Yukhno L.F., Numerical solution of the Painlevé V equation, Comput. Math. Math. Phys. 53 (2013), 44-56.
  10. Abramov A.A., Yukhno L.F., Numerical solution of the Painlevé VI equation, Comput. Math. Math. Phys. 53 (2013), 180-193.
  11. Abramov A.A., Yukhno L.F., A method for calculating the Painlevé transcendents, Appl. Numer. Math. 93 (2015), 262-269.
  12. Babich M.V., Bordag L.A., Projective differential geometrical structure of the Painlevé equations, J. Differential Equations 157 (1999), 452-485.
  13. Bagderina Yu.Yu., Equivalence of the ordinary differential equations $y''=R(x,y)y^{\prime 2}+2Q(x,y)y'+P(x,y)$, Differ. Equ. 43 (2007), 595-604.
  14. Bagderina Yu.Yu., Equivalence of third-order ordinary differential equations to Chazy equations I-XIII, Stud. Appl. Math. 120 (2008), 293-332.
  15. Bagderina Yu.Yu., Invariants of a family of scalar second-order ordinary differential equations, J. Phys. A: Math. Theor. 46 (2013), 295201, 36 pages.
  16. Bagderina Yu.Yu., Equivalence of second-order ODEs to equations of first Painlevé equation type, Ufa Math. J. 7 (2015), 19-30.
  17. Bagderina Yu.Yu., Equivalence of second-order ordinary differential equations to Painlevé equations, Theoret. and Math. Phys. 182 (2015), 211-230.
  18. Bagderina Yu.Yu., Invariants of a family of scalar second-order ordinary differential equations for Lie symmetries and first integrals, J. Phys. A: Math. Theor. 49 (2016), 155202, 32 pages.
  19. Bagderina Yu.Yu., Tarkhanov N.N., Solution of the equivalence problem for the third Painlevé equation, J. Math. Phys. 56 (2015), 013507, 15 pages.
  20. Barashenkov I.V., Pelinovsky D.E., Exact vortex solutions of the complex sine-Gordon theory on the plane, Phys. Lett. B 436 (1998), 117-124.
  21. Bassom A.P., Clarkson P.A., Law C.K., McLeod J.B., Application of uniform asymptotics to the second Painlevé transcendent, Arch. Rational Mech. Anal. 143 (1998), 241-271, arXiv:solv-int/9609005.
  22. Berth M., Czichowski G., Using invariants to solve the equivalence problem for ordinary differential equations, Appl. Algebra Engrg. Comm. Comput. 11 (2001), 359-376.
  23. Bertola M., On the location of poles for the Ablowitz-Segur family of solutions to the second Painlevé equation, Nonlinearity 25 (2012), 1179-1185, arXiv:1203.2988.
  24. Bertola M., Bothner T., Zeros of large degree Vorob'ev-Yablonski polynomials via a Hankel determinant identity, Int. Math. Res. Not. 2015 (2015), 9330-9399, arXiv:1401.1408.
  25. Bogatskiy A., Claeys T., Its A., Hankel determinant and orthogonal polynomials for a Gaussian weight with a discontinuity at the edge, Comm. Math. Phys. 347 (2016), 127-162, arXiv:1507.01710.
  26. Bornemann F., On the numerical evaluation of distributions in random matrix theory: a review, Markov Process. Related Fields 16 (2010), 803-866, arXiv:0904.1581.
  27. Bornemann F., On the numerical evaluation of Fredholm determinants, Math. Comp. 79 (2010), 871-915, arXiv:0804.2543.
  28. Bothner T., Transition asymptotics for the Painlevé II transcendent, Duke Math. J. 166 (2017), 205-324, arXiv:1502.03402.
  29. Bothner T., Its A., The nonlinear steepest descent approach to the singular asymptotics of the second Painlevé transcendent, Phys. D 241 (2012), 2204-2225.
  30. Boutroux P., Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre, Ann. Sci. École Norm. Sup. (3) 30 (1913), 265-375.
  31. Boutroux P., Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre (suite), Ann. Sci. École Norm. Sup. (3) 31 (1914), 99-159.
  32. Buckingham R.J., Miller P.D., Large-degree asymptotics of rational Painlevé-II functions: noncritical behaviour, Nonlinearity 27 (2014), 2489-2578, arXiv:1310.2276.
  33. Buckingham R.J., Miller P.D., Large-degree asymptotics of rational Painlevé-II functions: critical behaviour, Nonlinearity 28 (2015), 1539-1596, arXiv:1406.0826.
  34. Bureau F.J., Differential equations with fixed critical points, Ann. Mat. Pura Appl. (4) 64 (1964), 229-364.
  35. Bureau F.J., Équations différentielles du second ordre en $Y$ et du second degré en $\ddot Y$ dont l'intégrale générale est à points critiques fixes, Ann. Mat. Pura Appl. (4) 91 (1972), 163-281.
  36. Bureau F.J., Garcet A., Goffar J., Transformées algébriques des équations du second ordre dont l'intégrale générale est à points critiques fixes, Ann. Mat. Pura Appl. (4) 92 (1972), 177-191.
  37. Casini H., Fosco C.D., Huerta M., Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech. Theory Exp. 2005 (2005), P07007, 16 pages, arXiv:cond-mat/0505563.
  38. Casini H., Huerta M., Entanglement and alpha entropies for a massive scalar field in two dimensions, J. Stat. Mech. Theory Exp. 2005 (2005), P12012, 17 pages, arXiv:cond-mat/0511014.
  39. Casini H., Huerta M., Analytic results on the geometric entropy for free fields, J. Stat. Mech. Theory Exp. 2008 (2008), P01012, 9 pages, arXiv:0707.1300.
  40. Chalkley R., New contributions to the related work of Paul Appell, Lazarus Fuchs, Georg Hamel, and Paul Painlevé on nonlinear differential equations whose solutions are free of movable branch points, J. Differential Equations 68 (1987), 72-117.
  41. Chazy J., Sur les équations différentielles dont l'intégrale générale est uniforme et admet des singularités essentielles mobiles, C. R. Acad. Sci. Paris 149 (1909), 563-565.
  42. Chazy J., Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes, Acta Math. 34 (1911), 317-385.
  43. Claeys T., Kuijlaars A.B.J., Vanlessen M., Multi-critical unitary random matrix ensembles and the general Painlevé II equation, Ann. of Math. 168 (2008), 601-641, arXiv:math-ph/0508062.
  44. Clarkson P.A., Painlevé equations - nonlinear special functions, in Orthogonal Polynomials and Special Functions, Editors F. Marcellàn, W. Van Assche, Lecture Notes in Math., Vol. 1883, Springer, Berlin, 2006, 331-411.
  45. Clarkson P.A., On Airy solutions of the second Painlevé equation, Stud. Appl. Math. 137 (2016), 93-109, arXiv:1510.08326.
  46. Clarkson P.A., Kruskal M.D., New similarity reductions of the Boussinesq equation, J. Math. Phys. 30 (1989), 2201-2213.
  47. Clarkson P.A., Mansfield E.L., The second Painlevé equation, its hierarchy and associated special polynomials, Nonlinearity 16 (2003), R1-R26.
  48. Clarkson P.A., McLeod J.B., A connection formula for the second Painlevé transcendent, Arch. Rational Mech. Anal. 103 (1988), 97-138.
  49. Clerc M.G., Dávila J.D., Kowalczyk M., Smyrnelis P., Vidal-Henriquez E., Theory of light-matter interaction in nematic liquid crystals and the second Painlevé equation, Calc. Var. Partial Differential Equations 56 (2017), Art. 93, 22 pages, arXiv:1610.03044.
  50. Conte R. (Editor), The Painlevé property. One century later, CRM Series in Mathematical Physics, Springer-Verlag, New York, 1999.
  51. Conte R., Musette M., The Painlevé handbook, Springer, Dordrecht, 2008.
  52. Cosgrove C.M., All binomial-type Painlevé equations of the second order and degree three or higher, Stud. Appl. Math. 90 (1993), 119-187.
  53. Cosgrove C.M., Painlevé classification problems featuring essential singularities, Stud. Appl. Math. 98 (1997), 355-433.
  54. Cosgrove C.M., Chazy classes IX-XI of third-order differential equations, Stud. Appl. Math. 104 (2000), 171-228.
  55. Cosgrove C.M., Higher-order Painlevé equations in the polynomial class. I. Bureau symbol ${\rm P2}$, Stud. Appl. Math. 104 (2000), 1-65.
  56. Cosgrove C.M., Higher-order Painlevé equations in the polynomial class. II. Bureau symbol $P1$, Stud. Appl. Math. 116 (2006), 321-413.
  57. Cosgrove C.M., Chazy's second-degree Painlevé equations, J. Phys. A: Math. Gen. 39 (2006), 11955-11971.
  58. Cosgrove C.M., Scoufis G., Painlevé classification of a class of differential equations of the second order and second degree, Stud. Appl. Math. 88 (1993), 25-87.
  59. Dai D., Hu W., Connection formulas for the Ablowitz-Segur solutions of the inhomogeneous Painlevé II equation, Nonlinearity 30 (2017), 2982-3009, arXiv:1611.05285.
  60. Dai D., Hu W., On the quasi-Ablowitz-Segur and quasi-Hastings-McLeod solutions of the inhomogeneous Painlevé II equation, Random Matrices Theory Appl. 7 (2018), 1840004, 13 pages, arXiv:1708.09357.
  61. Deaño A., Large $z$ asymptotics for special function solutions of Painlevé II in the complex plane, SIGMA 14 (2018), 107, 19 pages, arXiv:1804.00563.
  62. Deift P., Some open problems in random matrix theory and the theory of integrable systems, in Integrable Systems and Random Matrices, Editors J. Baik, T. Kriecherbauer, L.C. Li, K.D.T.R. McLaughlin, C. Tomei, Contemp. Math., Vol. 458, Amer. Math. Soc., Providence, RI, 2008, 419-430, arXiv:0712.0849.
  63. Deift P.A., Zhou X., Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math. 48 (1995), 277-337.
  64. Dodd R.K., Bullough R.K., Polynomial conserved densities for the sine-Gordon equations, Proc. Roy. Soc. London Ser. A 352 (1977), 481-503.
  65. Fasondini M., Fornberg B., Weideman J.A.C., Methods for the computation of the multivalued Painlevé transcendents on their Riemann surfaces, J. Comput. Phys. 344 (2017), 36-50.
  66. Fasondini M., Fornberg B., Weideman J.A.C., A computational exploration of the McCoy-Tracy-Wu solutions of the third Painlevé equation, Phys. D 363 (2018), 18-43.
  67. Fokas A.S., Ablowitz M.J., On a unified approach to transformations and elementary solutions of Painlevé equations, J. Math. Phys. 23 (1982), 2033-2042.
  68. Fokas A.S., Its A.R., Kapaev A.A., Novokshenov V.Yu., Painlevé transcendents. The Riemann-Hilbert approach, Mathematical Surveys and Monographs, Vol. 128, Amer. Math. Soc., Providence, RI, 2006.
  69. Fornberg B., Weideman J.A.C., A numerical methodology for the Painlevé equations, J. Comput. Phys. 230 (2011), 5957-5973.
  70. Fornberg B., Weideman J.A.C., A computational exploration of the second Painlevé equation, Found. Comput. Math. 14 (2014), 985-1016.
  71. Fornberg B., Weideman J.A.C., A computational overview of the solution space of the imaginary Painlevé II equation, Phys. D 309 (2015), 108-118.
  72. Forrester P.J., Witte N.S., Painlevé II in random matrix theory and related fields, Constr. Approx. 41 (2015), 589-613, arXiv:1210.3381.
  73. Gambier B., Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes, Acta Math. 33 (1910), 1-55.
  74. Gariel J., Marcilhacy G., Santos N.O., Parametrization of solutions of the Lewis metric by a Painlevé transcendent III, J. Math. Phys. 47 (2006), 062502, 5 pages, arXiv:gr-qc/0012004.
  75. Garnier R., Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes, Ann. Sci. École Norm. Sup. (3) 29 (1912), 1-126.
  76. Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002.
  77. Hastings S.P., McLeod J.B., A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Rational Mech. Anal. 73 (1980), 31-51.
  78. Hietarinta J., Dryuma V., Is my ODE a Painlevé equation in disguise?, J. Nonlinear Math. Phys. 9 (2002), suppl. 1, 67-74, arXiv:nlin.SI/0105016.
  79. Hisakado M., Unitary matrix models and Painlevé III, Modern Phys. Lett. A 11 (1996), 3001-3010, arXiv:hep-th/9609214.
  80. Huang M., Xu S.-X., Zhang L., Location of poles for the Hastings-McLeod solution to the second Painlevé equation, Constr. Approx. 43 (2016), 463-494, arXiv:1410.3338.
  81. Ince E.L., Ordinary differential equations, Dover Publications, New York, 1944.
  82. Its A.R., Kapaev A.A., Quasi-linear Stokes phenomenon for the second Painlevé transcendent, Nonlinearity 16 (2003), 363-386, arXiv:nlin.SI/0108010.
  83. Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, Vol. E16, Friedr. Vieweg & Sohn, Braunschweig, 1991.
  84. Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
  85. Joshi N., Kruskal M.D., The Painlevé connection problem: an asymptotic approach. I, Stud. Appl. Math. 86 (1992), 315-376.
  86. Joshi N., Mazzocco M., Existence and uniqueness of tri-tronquée solutions of the second Painlevé hierarchy, Nonlinearity 16 (2003), 427-439, arXiv:math.CA/0212117.
  87. Kajiwara K., Noumi M., Yamada Y., Geometric aspects of Painlevé equations, J. Phys. A: Math. Theor. 50 (2017), 073001, 164 pages, arXiv:1509.08186.
  88. Kamran N., Lamb K.G., Shadwick W.F., The local equivalence problem for $d^2y/dx^2=F(x,y,dy/dx)$ and the Painlevé transcendents, J. Differential Geom. 22 (1985), 139-150.
  89. Kapaev A., Global asymptotics of the second Painlevé transcendent, Phys. Lett. A 167 (1992), 356-362.
  90. Kartak V.V., Equivalence classes of the second order ODEs with the constant Cartan invariant, J. Nonlinear Math. Phys. 18 (2011), 613-640, arXiv:1106.6124.
  91. Kartak V.V., Solution of the equivalence problem for the Painlevé IV equation, Theoret. and Math. Phys. 173 (2012), 1541-1564.
  92. Kartak V.V., Point classification of second order ODEs and its application to Painlevé equations, J. Nonlinear Math. Phys. 20 (2013), suppl. 1, 110-129, arXiv:1204.0174.
  93. Kartak V.V., ''Painlevé 34'' equation: equivalence test, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 2993-3000, arXiv:1302.2419.
  94. Kitaev A.V., Vartanian A.H., Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I, Inverse Problems 20 (2004), 1165-1206, arXiv:math.CA/0312075.
  95. Kitaev A.V., Vartanian A.H., Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation: II, Inverse Problems 26 (2010), 105010, 58 pages, arXiv:1005.2677.
  96. Klein C., Stoilov N., Numerical approach to Painlevé transcendents on unbounded domains, SIGMA 14 (2018), 068, 10 pages, arXiv:1807.04442.
  97. Kossovskiy I., Zaitsev D., Normal form for second order differential equations, J. Dyn. Control Syst. 24 (2018), 541-562, arXiv:1611.08532.
  98. Kruskal M.D., Clarkson P.A., The Painlevé-Kowalevski and poly-Painlevé tests for integrability, Stud. Appl. Math. 86 (1992), 87-165.
  99. Kruskal M.D., Joshi N., Halburd R., Analytic and asymptotic methods for nonlinear singularity analysis: a review and extensions of tests for the Painlevé property, in Integrability of Nonlinear Systems (Pondicherry, 1996), Editors Y. Kosmann-Schwarzbach, B. Grammaticos, K.M. Tamizhman, Lecture Notes in Phys., Vol. 495, Springer, Berlin, 1997, 171-205, arXiv:solv-int/9710023.
  100. Levi D., Sekera D., Winternitz P., Lie point symmetries and ODEs passing the Painlevé test, J. Nonlinear Math. Phys. 25 (2018), 604-617, arXiv:1712.09811.
  101. Lund F., Example of a relativistic, completely integrable, Hamiltonian system, Phys. Rev. Lett. 38 (1977), 1175-1178.
  102. Lund F., Regge T., Unified approach to strings and vortices with soliton solutions, Phys. Rev. D 14 (1976), 1524-1535.
  103. Mikhailov A.V., Integrability of a two-dimensional generalization of the Toda chain, JETP Lett. 30 (1979), 414-418.
  104. Mikhailov A.V., The reduction problem and the inverse scattering method, Phys. D 3 (1981), 73-117.
  105. Miller P.D., On the increasing tritronquée solutions of the Painlevé-II equation, SIGMA 14 (2018), 125, 38 pages, arXiv:1804.03173.
  106. Milson R., Valiquette F., Point equivalence of second-order ODEs: maximal invariant classification order, J. Symbolic Comput. 67 (2015), 16-41, arXiv:1208.1014.
  107. Muğan U., Jrad F., Non-polynomial third order equations which pass the Painlevé test, Z. Naturforsch. A 59 (2004), 163-180.
  108. Nijhoff F.W., Papageorgiou V.G., Similarity reductions of integrable lattices and discrete analogues of the Painlevé ${\rm II}$ equation, Phys. Lett. A 153 (1991), 337-344.
  109. Noumi M., Painlevé equations through symmetry, Translations of Mathematical Monographs, Vol. 223, Amer. Math. Soc., Providence, RI, 2004.
  110. Novokshenov V.Yu., Padé approximations for Painlevé I and II transcendents, Theoret. and Math. Phys. 159 (2009), 853-862.
  111. Novokshenov V.Yu., Tronquée solutions of the Painlevé II equation, Theoret. and Math. Phys. 172 (2012), 1136-1146.
  112. Novokshenov V.Yu., Distributions of poles to Painlevé transcendents via Padé approximations, Constr. Approx. 39 (2014), 85-99.
  113. Ohyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé equations of special type $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$, J. Math. Sci. Univ. Tokyo 13 (2006), 145-204.
  114. Ohyama Y., Okumura S., A coalescent diagram of the Painlevé equations from the viewpoint of isomonodromic deformations, J. Phys. A: Math. Gen. 39 (2006), 12129-12151, arXiv:math.CA/0601614.
  115. Okamoto K., Polynomial Hamiltonians associated with Painlevé equations. I, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 264-268.
  116. Okamoto K., Polynomial Hamiltonians associated with Painlevé equations. II. Differential equations satisfied by polynomial Hamiltonians, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 367-371.
  117. Okamoto K., Studies on the Painlevé equations. III. Second and fourth Painlevé equations, $P_{{\rm II}}$ and $P_{{\rm IV}}$, Math. Ann. 275 (1986), 221-255.
  118. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, Cambridge University Press, Cambridge, 2010, Release 1.0.21 of 2018-12-15 available at http://dlmf.nist.gov.
  119. Olver S., Numerical solution of Riemann-Hilbert problems: Painlevé II, Found. Comput. Math. 11 (2011), 153-179.
  120. Olver S., A general framework for solving Riemann-Hilbert problems numerically, Numer. Math. 122 (2012), 305-340.
  121. Olver S., Trogdon T., Nonlinear steepest descent and numerical solution of Riemann-Hilbert problems, Comm. Pure Appl. Math. 67 (2014), 1353-1389, arXiv:1205.5604.
  122. Olver S., Trogdon T., Numerical solution of Riemann-Hilbert problems: random matrix theory and orthogonal polynomials, Constr. Approx. 39 (2014), 101-149, arXiv:1210.2199.
  123. Painlevé P., Sur les équations différentielles du second ordre à points critiques fixés, C. R. Acad. Sci. Paris 127 (1898), 945-948.
  124. Periwal V., Shevitz D., Unitary-matrix models as exactly solvable string theories, Phys. Rev. Lett. 64 (1990), 1326-1329.
  125. Pohlmeyer K., Integrable Hamiltonian systems and interactions through quadratic constraints, Comm. Math. Phys. 46 (1976), 207-221.
  126. Reeger J.A., Fornberg B., Painlevé IV with both parameters zero: a numerical study, Stud. Appl. Math. 130 (2013), 108-133.
  127. Reeger J.A., Fornberg B., Painlevé IV: a numerical study of the fundamental domain and beyond, Phys. D 280/281 (2014), 1-13.
  128. Sakai H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), 165-229.
  129. Sakka A., Muğan U., Second-order second degree Painlevé equations related with Painlevé I, II, III equations, J. Phys. A: Math. Gen. 30 (1997), 5159-5177.
  130. Sakka A., Muğan U., Second-order second-degree Painlevé equations related to Painlevé IV, V, VI equations, J. Phys. A: Math. Gen. 31 (1998), 2471-2490.
  131. Segur H., Ablowitz M.J., Asymptotic solutions of nonlinear evolution equations and a Painlevé transcendent, Phys. D 3 (1981), 165-184.
  132. Tracy C.A., Widom H., Random unitary matrices, permutations and Painlevé, Comm. Math. Phys. 207 (1999), 665-685, arXiv:math.CO/9811154.
  133. Trogdon T., Olver S., Riemann-Hilbert problems, their numerical solution, and the computation of nonlinear special functions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016.
  134. Troy W.C., The role of Painleve II in predicting new liquid crystal self-assembly mechanisms, Arch. Ration. Mech. Anal. 227 (2018), 367-385.
  135. Tzitzéica G., Sur une nouvelle classe de surfaces, C. R. Acad. Sci. Paris 144 (1907), 1257-1259.
  136. Tzitzéica G., Sur une nouvelle classe de surfaces, Rend. Circolo Mat. Palermo 25 (1908), 180-187.
  137. Tzitzéica G., Sur une nouvelle classe de surfaces, C. R. Acad. Sci. Paris 150 (1910), 955-956.
  138. Umemura H., Painlevé equations and classical functions, Sugaku Expositions 11 (1998), 77-100.
  139. Valiquette F., Solving local equivalence problems with the equivariant moving frame method, SIGMA 9 (2013), 029, 43 pages, arXiv:1304.1616.
  140. Van Assche W., Orthogonal polynomials and Painlevé equations, Australian Mathematical Society Lecture Series, Vol. 27, Cambridge University Press, Cambridge, 2018.
  141. Vorob'ev A.P., On the rational solutions of the second Painlevé equation, Differ. Equ. 1 (1965), 79-81.
  142. Wechslberger G., Bornemann F., Automatic deformation of Riemann-Hilbert problems with applications to the Painlevé II transcendents, Constr. Approx. 39 (2014), 151-171, arXiv:1206.2446.
  143. Yablonskii A.I., On rational solutions of the second Painlevé equation, Vesti AN BSSR, Ser. Fiz.-Tech. Nauk (1959), no. 3, 30-35.
  144. Yamada Y., Padé method to Painlevé equations, Funkcial. Ekvac. 52 (2009), 83-92.
  145. Yumaguzhin V.A., Differential invariants of second order ODEs. I, Acta Appl. Math. 109 (2010), 283-313, arXiv:0804.0674.
  146. Zhiber A.V., Shabat A.B., Klein-Gordon equations with a nontrivial group, Soviet Phys. Dokl. 24 (1979), 607-609.

Previous article  Next article   Contents of Volume 15 (2019)