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Abstract. We generalize a theorem of Ogg on supersingular j-invariants to supersingular
elliptic curves with level. Ogg observed that the level one case yields a characterization of the
primes dividing the order of the monster. We show that the corresponding analyses for higher
levels give analogous characterizations of the primes dividing the orders of other sporadic
simple groups (e.g., baby monster, Fischer’s largest group). This situates Ogg’s theorem
in a broader setting. More generally, we characterize, in terms of supersingular elliptic
curves with level, the primes arising as orders of Fricke elements in centralizer subgroups
of the monster. We also present a connection between supersingular elliptic curves and
umbral moonshine. Finally, we present a procedure for explicitly computing invariants of
supersingular elliptic curves with level structure.
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1 Introduction and results

Moonshine refers to unexpected connections between disparate areas of mathematics (e.g., mod-
ular objects, sporadic groups) and physics (e.g., 2-dimensional conformal field theories). This
paper deals with a theorem of Ogg and his subsequent observation, which may be regarded as
the earliest occurrence of moonshine. In this paper we show that these constitute the first case
of a broader phenomenon.

In his 1975 inaugural lecture at the Collège de France, Tits mentioned that the (then conjec-
tural) monster group M, if it exists, is a simple sporadic group of order

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71.

Ogg, who was in the audience, recognized that the primes in this factorization are precisely the
ones he had recently obtained geometrically from his work on supersingular j-invariants [24]. In
his work he showed that the following statements O1 and O2 are equivalent.

(O1) All the supersingular j-invariants in characteristic p are in the prime field Fp.
(O2) The genus of the modular curve X+

0 (p) is zero.

Here X+
0 (p) is the quotient of X0(p) by its Fricke involution wp. (See Section 2.1 for definitions.)

We refer to this equivalence in this paper as Ogg’s theorem. Ogg’s observation is that the primes
satisfying either O1 or O2 are the ones dividing the order of the monster.1

This paper is a contribution to the Special Issue on Moonshine and String Theory. The full collection is
available at https://www.emis.de/journals/SIGMA/moonshine.html

1For a short note on Ogg’s observation, see [12].
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A few years later, in 1979, Conway and Norton – encouraged by observations of McKay
and Thompson [31] – published their monstrous moonshine conjecture [10]. They postulated
the existence of an infinite-dimensional representation of the monster, with a Z-grading, whose
graded dimension function is the modular j-invariant. Moreover, they gave precise predictions for
the other graded trace functions. Similar to the j-function, the other graded trace functions were
expected to be principal moduli for genus zero quotients of the upper half-plane. A candidate for
such a representation of the monster, called the moonshine module, was constructed by Frenkel,
Lepowsky and Meurman in 1984 [16]. Borcherds showed in 1992 that the graded trace functions
of the moonshine module are indeed the principal moduli predicted by Conway and Norton,
thereby proving the monstrous moonshine conjecture [1].

Ogg’s observation is partly explained by monstrous moonshine. For each prime divisor p of
the order of the monster, there is an element of the monster whose graded trace function is the
principal modulus for X+

0 (p). The genus of X+
0 (p) is then forced to be zero. In other words, the

primes dividing the order of the monster are necessarily included in Ogg’s list of primes, i.e, the
set of primes satisfying either of the equivalent statements O1 and O2. This however does not
explain why Ogg’s list does not contain more primes. In this paper we show that both Ogg’s
theorem and Ogg’s observation generalize naturally. In so doing we provide further evidence
that Ogg’s observation is more than just a coincidence.

It is useful, for purposes of generalization, to state Ogg’s theorem in terms of modular curves.
The modular curve X0(1), whose non-cuspidal points parametrize isomorphism classes of ellip-
tic curves, has good reduction modulo any prime p (cf. Section 2.1). The supersingular points
of X0(1) modulo p correspond to supersingular elliptic curves in characteristic p, and a supersin-
gular point is defined over the prime field Fp if and only if the j-invariant of the corresponding
elliptic curve is in Fp. Thus, we can restate Ogg’s theorem as follows: the supersingular points
of X0(1) modulo p are all defined over Fp if and only if the genus of X+

0 (p) is zero.
The main idea of this paper is to consider elliptic curves with level structure by repla-

cing X0(1) by more general modular curves X. We give a characterization for the primes p
that have the rationality property for X, by which we mean that all the supersingular points
of X modulo p are defined over Fp. This analysis yields several consequences. First, as men-
tioned earlier, we find that Ogg’s theorem generalizes naturally (Theorem 1.1). Second, we
discover that Ogg’s observation also generalizes naturally (Theorem 1.3). Third, we find that
the primes that have the rationality property detect the existence of mock modular forms with
nonzero shadows in umbral moonshine (Theorem 1.5). (See Sections 2.2 and 2.3 for definitions.)

In this paper, we consider the quotient of X0(N) by Atkin–Lehner involutions we, wf , . . .
which we denote by X0(N)+e, f, . . .. The non-cuspidal points of these modular curves represent
isomorphism classes of elliptic curves with level structure. By a theorem of Igusa, these modular
curves have good reductions modulo primes p not dividing N . Let X = X0(N)+e, f, . . .. Denote
by: Qp(X) the number of supersingular points of X modulo p – or equivalently the number of
isomorphism classes of supersingular elliptic curves with level structure in characteristic p – that
are not defined over Fp; genus(X) the genus of X; and Xp the modular curve X0(Np)+p, e, f, . . .
obtained by taking the quotient of X0(Np) by Atkin–Lehner involutions wp, we, wf , . . . where
{p, e, f, . . .} is understood to be the set {e, f, . . . , p, pe, pf, . . .}. Our first theorem gives a char-
acterization for the primes that have the rationality property for these modular curves.

Theorem 1.1 (Theorem 3.1). Let N be a positive integer, let e, f, . . . be exact divisors of N ,
and let X = X0(N)+e, f, . . .. If p is a prime not dividing N , then

1

2
Qp(X) = genus(Xp)− genus(X).

Consequently, p has the rationality property for X if and only if the modular curves X and Xp

have the same genus.
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Table 1. Primes that have the rationality property for low levels.

X primes p that have the rationality property for X

X+
0 (2) 3, 5, 7, 11, 13, 17, 19, 23, 31, 47

X0(2) 3, 5, 7, 11, 23

X+
0 (3) 2, 5, 7, 11, 13, 17, 23, 29

X0(3) 2, 5, 11

Theorem 1.1 naturally generalizes Ogg’s theorem. Indeed, by letting X = X0(1), so that
genus(X) = 0 and Xp = X+

0 (p), this theorem says that p has the rationality property for X0(1)
if and only if the genus of X+

0 (p) is zero, which is precisely Ogg’s theorem.
We now discuss a generalization of Ogg’s observation. For this, we consider modular curves X

of the form X0(N)+e, f, . . . with genus equal to zero. All such modular curves except three (i.e.,
X0(25), X0(49)+49, X0(50)+50) arise in monstrous moonshine. By Theorem 1.1, identifying
the primes that have the rationality property for X reduces to determining the complete list
of primes p such that Xp has genus zero. We obtain the complete list of primes that have the
rationality property for all such X, and we collect this information in a table in Appendix A.
Note from this table that there are no primes that have the rationality property for the three
non-monstrous modular curves.

In Table 1, we list the primes that have the rationality property for some modular curves.
Notice that the primes on the first row – the primes that have the rationality property forX+

0 (2) –
are exactly the odd primes dividing the order of the baby monster sporadic group. Similarly,
the primes in the third row are the primes, not equal to 3, that divide the order of the largest
Fischer group, another sporadic group. Thus, the primes that have the rationality property
for modular curves of higher level characterize the primes dividing the orders of other sporadic
groups; these are natural generalizations of Ogg’s observation.

Remark 1.2. These generalizations of Ogg’s observation to the baby monster group and the
largest Fischer group have been found, recently and independently, by Nakaya using analytic
methods (e.g., class number estimates) [23]. He conjectured generalizations of Ogg’s observation
to the Harada–Norton and Held sporadic groups. Theorem 1.1 (cf. entries for X0(5)+ and
X0(7)+ in Appendix A) confirms this conjecture.

In fact, we generalize Ogg’s observation to all monstrous modular curves – i.e. modular
curves arising in monstrous moonshine – of the form X0(N)+e, f, . . . as follows. Under the
correspondence given by monstrous moonshine, if X 6= X0(27)+27, then there is a unique
conjugacy class of the monster whose graded trace function is the principal modulus for X,
and we denote this conjugacy class by C(X). If X = X0(27)+27, then there are exactly two
conjugacy classes of the monster whose graded trace functions are both equal to the principal
modulus for X. We let C(X0(27)+27) be the smaller of these conjugacy classes; this class is
labelled 27A in the ATLAS [9]. Finally, by a Fricke element of the monster of prime order p, we
mean an element of the monster whose graded trace function is the principal modulus for X+

0 (p).
A Fricke element of order p is the same as any representative of the conjugacy class labelled pA
in the ATLAS.

Theorem 1.3 (Theorem 3.3). Let X be a monstrous modular curve X of the form X0(N)+e,
f, . . .. If p is a prime that does not divide N , then p has the rationality property for X if and
only if the centralizer of g ∈ C(X) in the monster contains a Fricke element of order p.

Ogg’s observation is again recovered from Theorem 1.3 by setting X = X0(1), and thus we
find that Ogg’s observation, just like Ogg’s theorem, is the first case of a general phenomenon.
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Theorem 1.3 suggests that Ogg’s observation is not a statement about the primes dividing the
order of the monster per se, but a statement about the Fricke elements of the monster. This
hints that a better understanding of the Fricke elements is necessary for a full understanding of
Ogg’s observation.

Remark 1.4. For the monstrous modular curves of the form X = X0(n|h)+e, f, . . . one can
analogously define Xp to be the modular curve X0(np|h)+p, e, f, . . . where as before {p, e, f, . . .}
is the set {e, f, . . . , p, pe, pf, . . .}. In view of the characterization given by Theorem 1.1, we may
say that a prime p has the rationality property for a monstrous modular curve X if X and Xp

have the same genus. With this generalized definition, Theorem 1.3 holds for any monstrous
modular curve X.

Theorem 1.3 gives a connection between supersingular elliptic curves with level structure
and monstrous moonshine. We point out another connection, an unexpected one, between
supersingular elliptic curves and umbral moonshine. (See Section 2.3 for definitions.) Each
of the 23 cases of moonshine in umbral moonshine has an associated genus zero modular curve
called its lambency. In this paper, we refer to these 23 modular curves as umbral modular curves.
For each umbral modular curve X, there is an umbral group GX that serves as an analogue of
the monster group, i.e., there exists a graded representation of GX such that the graded trace
function HX

g of g ∈ GX is a distinguished vector-valued mock modular form of weight 1/2.

There is also a naturally defined quotient of GX denoted ḠX , and we denote by ng the order of
the image of g ∈ GX in ḠX . This integer ng is the level of HX

g .

Theorem 1.5 (Theorem 3.4). Let X be an umbral modular curve, and let p be a prime not
dividing the level of X. Then the prime p has the rationality property for X if and only if there
exists an element g ∈ GX such that ng = p and the shadow of HX

g is nonzero.

A mock modular form is a classical modular form if and only if its shadow is zero. Therefore,
Theorem 1.5 says that the primes that have the rationality property for the umbral modular
curves are exactly the primes that occur as levels of strictly mock modular graded trace functions.

Theorem 1.5 gives a connection between supersingular elliptic curves and umbral moonshine,
while Theorem 1.3 provides another connection between supersingular elliptic curves and mon-
strous moonshine. We may then regard supersingular elliptic curves as a link between monstrous
and umbral moonshine.

Lastly, we consider the modular curves of the form X0(N) of genus zero, and present another
way of checking whether a prime has the rationality property for X0(N). This alternative
method explicitly computes supersingular polynomials for X0(N), which we will define shortly.
The point is that a prime p has the rationality property for X0(N) if and only if the pth
supersingular polynomial for X0(N) splits completely into linear factors over Fp. Note that
these supersingular polynomials have already appeared in the literature, for example, in relation
to the Kaneko–Zagier differential equations for low level Fricke groups [28], and in connection to
Atkin orthogonal polynomials [27, 32]. However, the methods for computing these supersingular
polynomials have been written down only for low levels. We give here a way for calculating these
polynomials for all X0(N) of genus zero.

Let p be a prime not dividing N , and let TN be the principal modulus for X0(N) given
in Appendix B. Let SS(N) be the set of supersingular points of X0(N) modulo p. The pth
supersingular polynomial for X0(N) is the polynomial

ss(N)
p (x) :=

∏
E∈SS(N)

(x− TN (E)).

That the rationality property can be determined by looking at the splitting property of this
polynomial follows from the definition, because a point x in X0(N) modulo p is defined over Fp
if and only if TN (x) ∈ Fp.
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Table 2. Supersingular polynomials for X0(2).

p ss
(2)
p (x)

5 (x+ 1)

7 (x+ 1) · (x+ 6)

11 (x+ 3) · (x+ 5) · (x+ 9)

13 (x+ 1) ·
(
x2 + 8x+ 1

)
17 (x+ 1) · (x+ 16) ·

(
x2 + 13x+ 16

)
19 (x+ 1) · (x+ 7) · (x+ 11) ·

(
x2 + 9x+ 11

)
23 (x+ 3) · (x+ 5) · (x+ 15) · (x+ 16) · (x+ 17) · (x+ 18)

29 (x+ 16) · (x+ 23) · (x+ 24) ·
(
x2 + 24x+ 16

)
·
(
x2 + 25x+ 23

)
In Section 4.1, we describe how a certain polynomial f

(N)
p ∈ Q[x] arises from a modular

form f of weight p− 1 and level 1. If f is chosen to be the weight p− 1 Eisenstein series (among
others), then this polynomial turns out to encode almost all the TN -values of supersingular
points on X0(N) modulo p. The few supersingular points not covered by this polynomial is

encoded in another polynomial g
(N)
p which we give in Appendix D. (See also Section 4.2.)

Theorem 1.6. Let p ≥ 5 be a prime, and let f be any of Ep−1, Gp−1, or Hp−1 as defined in
Section 4. Then

ss(N)
p ≡ ±f (N)

p g(N)
p (mod p).

It is straightforward to write an algorithm in a computer algebra system (e.g., Sage [26],
PARI/GP [30]) that takes a modular form f of weight p − 1 and level one as an input and

produces the polynomial f
(N)
p as an output. Therefore, Theorem 1.6 provides a simple way of

explicitly computing supersingular polynomials for X0(N). The first few supersingular poly-
nomials for X0(2) are given in Table 2. Note that these polynomials split completely into
linear factors over Fp for p = 5, 7, 11, 23. Therefore these primes have the rationality property
for X0(2), a fact that agrees with the information in Table 1. Moreover, the number of quadratic

factors in ss
(2)
p coincides with the genus of X0(2)p = X0(2p)+p (cf. Table 3 in Section 3.1) which

is consistent with Theorem 1.1.
The rest of the paper is organized as follows. The necessary background on modular curves,

mock modular forms and moonshine is given in Section 2. Theorems 1.1, 1.3 and 1.5 are proven
in Section 3. Finally, the proof of Theorem 1.6 is given in Section 4.

2 Moduli spaces, mock modular forms, moonshine

2.1 Moduli spaces

In this subsection, we define the modular curves X0(N) and the Atkin–Lehner involutions on
them. We also describe the Deligne–Rapoport model for X0(pN) modulo a prime p not divi-
ding N , closely following Ogg’s description in [25].

For every positive integer N , the congruence subgroup Γ0(N) acts on the complex upper half-
plane H by linear fractional transformations. The orbit space Y0(N) := Γ0(N)\H is naturally
a Riemann surface, and it admits a moduli interpretation: the points of Y0(N) parametrize
isomorphism classes of cyclic isogenies, of degree N , of complex elliptic curves. This Riemann
surface can be compactified by adjoining the orbits of Γ0(N) on Q ∪ {∞}, called the cusps
of Γ0(N), and we denote this compactification by X0(N).
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Let a, b, c, d ∈ Z and let e be an exact divisor of N , by which we mean that e|N and
(e,N/e) = 1. If the matrix we := ( ae b

cN de ) has determinant e, then 1√
e
we lies in the normalizer

of Γ0(N) in SL2(R). This element of the normalizer induces an involution on X0(N), called an
Atkin–Lehner involution of X0(N), which is also denoted by we. (The Atkin–Lehner involu-
tion wN of X0(N) is also known as the Fricke involution.) In order to describe the action of we
using the moduli interpretation of X0(N), separate an N -isogeny into sub-isogenies of degrees e
and N/e. The involution we acts as the transpose on the e-part of the isogeny and leaves the
N/e-part fixed.

By a theorem of Igusa, for any prime p not dividing N , the modular curve X0(N) has good
reduction modulo p. On the other hand, the reduction of X0(pN) modulo p is a singular curve
obtained from glueing two copies of X0(N) modulo p at the supersingular points. More precisely,
the non-cuspidal points of X0(pN) modulo p parametrize pN -isogenies of elliptic cuves over Fp.
We separate a pN -isogeny into its N -part and its p-part. There are as many N -isogenies in
characteristic 0 as in characteristic p, but there are only two p-isogenies in characteristic p,
namely the Frobenius and its transpose. The first copy of X0(N) modulo p parametrizes those
isogenies whose p-part is the Frobenius; the second copy, those whose p-part is the transpose of
the Frobenius. Their intersection consists of isogenies whose p-part may be thought of as either
the Frobenius or its transpose – the supersingular points.

2.2 Mock modular forms

In this subsection, we recall the definition of a mock modular form and its shadow. These
objects, which have their origins in the last letter of Ramanujan to Hardy, are now found in
several areas of contemporary mathematics including moonshine. We refer to [2] for more details
about mock modular forms and their applications.

Let Γ be a discrete subgroup of SL2(R) and let k be a half-integer. We say that a holomorphic
function f on H is a mock modular form of weight k for Γ if it has at most exponential growth
as τ approaches any cusp of Γ, and if there exists a modular form S(f) of weight 2−k on Γ such
that the sum f + S(f)∗ transforms like a holomorphic modular form of weight k on Γ. Here,
the function S(f)∗ is a solution to the differential equation:

(4πy)k
∂S(f)∗(τ)

∂τ
= −2πiS(f)(τ), τ = x+ iy.

The modular form S(f) is called the shadow of f , is uniquely determined by f , and is equal to
zero if and only if f is a usual modular form.

2.3 Umbral moonshine

Over the last 40 years, several cases of moonshine have been observed and proven. Most notable
for the amount of research that their discovery inspired are the original monstrous moonshine,
discussed in Section 1, and the more recent Mathieu moonshine. The latter is now known to
belong to a family of moonshine collectively called umbral moonshine, which is the topic of this
subsection.

In 2010 Eguchi, Ooguri and Tachikawa observed a numerical coincidence reminiscent of the
McKay–Thompson observation [14]. The decomposition of the elliptic genus of a K3 surface
into irreducible characters of the N = 4 superconformal algebra gives rise to a q-series

H(τ) = 2q−1/8
(
−1 + 45q + 231q2 + 770q3 + 2277q4 + · · ·

)
.

It was noted that H(τ) is a mock modular form and its first few coefficients are dimensions of
irreducible representations of the largest Mathieu group M24. Mathieu moonshine, formulated
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in a series of papers [3, 13, 18, 19] and proven by Gannon [20], is the statement that there exists
an infinite-dimensional graded representation of M24 with the following property: the graded
trace functions are certain distinguished mock modular forms of weight 1/2. These graded
trace functions are Rademacher sums which are natural weight 1/2 analogues of the principal
modulus property [4]. Mathieu moonshine thus expanded the class of automorphic objects
considered in moonshine to include mock modular forms and other weights. In a series of papers
Cheng, Duncan and Harvey identified Mathieu moonshine as one of a family of correspondences
between finite groups and mock modular forms [6, 7, 8]. They referred to this conjectured family
of correspondences as umbral2 moonshine.

Briefly, umbral moonshine is a collection of 23 cases of moonshine relating groups arising
from lattices to (vector-valued) mock modular forms. The lattices in umbral moonshine are the
Niemeier lattices, which are the even unimodular self-dual lattices with roots (i.e. lattice vectors
of length 2), and they are determined by their Niemeier root systems. (For more information
about root systems and their Dynkin diagrams, see [21].) These root systems have rank 24 and
their simple components are root systems of ADE type of the same Coxeter number. A Niemeier
root system is said to be of A-type if it has a simple component of type A, it is said to be of
D-type if it has a simple component of type D but no type A component, and it is said to be of
E-type if it only has type E components.

Given a Niemeier root system, there is a group of genus zero naturally attached to it called
its lambency. The lambencies are defined as follows: The Coxeter number of a Niemeier lattice
is the common Coxeter number of its simple components. The Coxeter numbers of the A-
type Niemeier lattices are the same integers N for which the genus of Γ0(N) is zero, and the
lambency of such a Niemeier lattice of Coxeter number N is defined to be Γ0(N). Similarly, the
Coxeter numbers of the D-type Niemeier lattices are the same integers 2N for which the genus
of Γ0(2N)+N is zero, and the lambency of such a Niemeier lattice of Coxeter number 2N is
defined to be Γ0(2N)+N . As discussed in [7], the genus zero groups naturally attached to the
Niemeier root systems E4

6 and E3
8 of E-type are Γ0(12)+4 and Γ0(30)+6, 10, 15 respectively, and

these corresponding groups are defined to be their lambencies.
LetX be a Niemeier root system and let LX be the associated Niemeier lattice. The reflections

through the roots of LX generate a normal subgroup of the full automorphism group of LX known
as the Weyl group of X. The umbral group GX , which plays the same role as the monster in
monstrous moonshine, is defined to be the quotient of the group of automorphisms of LX by
the Weyl group of X. Umbral moonshine associates to each element g ∈ GX a distinguished
(vector-valued) mock modular form HX

g . Duncan, Griffin and Ono showed the existence of an

infinite-dimensional graded representation of GX with graded trace functions equal to HX
g [11].

There is also a naturally defined quotient of GX denoted ḠX , and we denote by ng the order of
the image of g ∈ GX in ḠX . This integer ng is the level of HX

g .

3 Supersingular elliptic curves and moonshine

3.1 Higher level Ogg’s theorem

In this subsection we prove Theorem 1.1, a generalization of Ogg’s theorem, and use this to obtain
the primes that have the rationality property for the curves X0(N)+e, f, . . . of genus zero.

Let X = X0(N)+e, f, . . . and let p be a prime not dividing N . Recall from Section 1 the
following notations: Qp(X) is the number of supersingular points of X modulo p that are not
defined over Fp; genus(X) is the genus of X; and Xp is the modular curve X0(Np)+p, e, f, . . .
obtained by taking the quotient of X0(Np) by Atkin–Lehner involutions wp, we, wf , . . . where
{p, e, f, . . .} is understood to be the set {e, f, . . . , p, pe, pf, . . .}.

2The word umbral was chosen to highlight the existence of shadows in this moonshine.
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Table 3. Genus of Xp.

p 3 5 7 11 13 17 19 23 29 31 37 41 43 47

gen
((
X+

0 (2)
)p)

0 0 0 0 0 0 0 0 1 0 1 1 1 0

gen
((
X0(2)

)p)
0 0 0 0 1 1 1 0 2 1 4 3 4 1

Theorem 3.1. Let N be a positive integer, let e, f, . . . be exact divisors of N , and let X =
X0(N)+e, f, . . .. If p is a prime not dividing N , then

1

2
Qp(X) = genus(Xp)− genus(X).

Consequently, p has the rationality property for X if and only if the modular curves X and Xp

have the same genus.

Proof. The proof follows that of Ogg [25]. The ingredient that we need for his proof to go
through is a model for the (singular) curve X0(Np)+e, f, . . . modulo p. We recall the model for
this curve here which is explained in [17, Section 5]. If e, f, . . . are exact divisors of N , so that
each of them is coprime with p, and if

X := X0(N)+e, f, . . . mod p, X(p) := X0(Np)+e, f, . . . mod p,

then X(p) consists of two copies of X that intersect at the supersingular points of X modulo p.

From here, the proof of Ogg goes through: If X1 and X2 are the components of X(p), then wp
defines an isomorphism of X1 onto X2 that acts as the Frobenius on X1∩X2 – the supersingular
points of X. Therefore the model of X(p)/(wp) = Xp modulo p is given by one copy of X which
intersects itself at each point corresponding to a pair of conjugate supersingular points of X, i.e.,
the supersingular points ofX not defined over Fp. From this model ofXp, we obtain genus(Xp) =
genus(X)+ 1

2Qp(X), which is the first part of Theorem 1.1. The second part of the theorem read-
ily follows since by definition p has the rationality property for X if and only if Qp(X) = 0. �

We apply Theorem 1.1 to the case when the genus of X = X0(N)+e, f, . . . is zero. Con-
sidering such cases leads to a generalization of Ogg’s observation which is the subject of the
next subsection. According to Theorem 1.1, given such an X the prime p has the rationality
property for X if and only if the genus of Xp is zero. For example, Table 3 gives the genus
of Xp for X of level 2 and for the first few primes. From this we see that the primes 3, 5, 7,
11, 13, 17, 19, 23, 31, 47 have the rationality property for X+

0 (2) and the primes 3, 5, 7, 11, 23
have the rationality property for X0(2). Moreover we know from [15] that this list is complete
since 94 is the largest level of the form 2p for which there exists a genus zero quotient of X0(2p)
by Atkin–Lehner involutions. Similarly, we enumerate all the primes p for which Xp has genus
zero for all X = X0(N)+e, f, . . . of genus zero, and we compile the results in Appendix A.

Remark 3.2. We identified the primes that have the rationality property for modular curves
X0(N)+e, f, . . . of genus zero. We mention here that Ogg already obtained the primes that
have the rationality property for modular curves X0(N) regardless of the genus [25]. He did
not however consider their quotients by Atkin–Lehner involutions. His result is as follows: 2 is
the only prime that has the rationality property for X0(11) and X0(17); also, if N 6= 11, 17 and
if the genus of X0(N) is positive, then there are no primes that have the rationality property
for X0(N). We point out here that there is a typo in his list for X0(4); the prime 5 should not
be in the list.



Supersingular Elliptic Curves and Moonshine 9

Table 4.

3 5 7 11 13 17 19

2A 6A 6D 10A 10C 14A 22A 26A 34A 38A

2B 6B 6C 6E 6F 10B 10D 10E 14B 14C 22B 26B

23 29 31 41 47 59 71

2A 46CD 62AB 94AB

2B 46AB

3.2 Higher level Ogg’s observation

Suppose that X = X0(N)+e, f, . . . is a monstrous modular curve (cf. Section 1). In this subsec-
tion we provide a characterization, which generalizes Ogg’s observation, of the primes that have
the rationality property for X.

Recall that in Section 1, we defined C(X) to be the unique conjugacy class of the monster
associated via monstrous moonshine to X if X 6= X0(27)+27, and we defined C(X0(27)+27) to
be the conjugacy class of the monster labelled 27A in the ATLAS [9]. We also defined a Fricke
element of prime order p to be an element of the monster whose graded trace function is the
principal modulus for X+

0 (p).

Theorem 3.3. Let X be a monstrous modular curve X of the form X0(N)+e, f, . . .. If p is
a prime that does not divide N , then p has the rationality property for X if and only if the
centralizer of g ∈ C(X) in the monster contains a Fricke element of order p.

Proof. Given a conjugacy class C of a finite group G, denote by Cn the conjugacy class of G
containing the nth powers of elements of C. Suppose C1 and C2 are conjugacy classes of orders n1
and n2 such that (n1, n2) = 1. Then the classes C1 and C2 have representatives that commute
if and only if there exists a conjugacy class C of order n1n2 such that Cn2 = C1 and Cn1 = C2.

Now, the centralizer of g ∈ C(X) in the monster contains a Fricke element of order p if
and only if the conjugacy classes C(X) and pA have representatives that commute. From the
previous paragraph, this occurs if and only if there exists a conjugacy class of order pN whose
Nth power is pA and whose pth power is C(X). One can manually check from the power maps
of the conjugacy classes of the monster, using GAP [29] for instance, that this latter condition
occurs if and only if p has the rationality property for X. �

We illustrate by way of an example how this proof works. We consider the case when N = 2.
This implies that X = X+

0 (2) or X0(2), and the conjugacy class C(X) is 2A or 2B respectively.
In Table 4, we label the columns by the primes p dividing the order of the monster – these are
the primes that can occur as prime orders of Fricke elements – and we label the rows by C(X).
The entries in row C(X) and column p are the conjugacy classes of the monster of order 2p
whose pth power is C(X). For each cell, we can check which of those conjugacy classes have
2nd power equal to pA, and write these in boldface. Then from the proof, there is a conjugacy
class in row C(X) and column p in boldface if and only if the centralizer of g ∈ C(X) contains
a Fricke element of order p.

From this table, we find that the odd primes arising as order of Fricke elements in the
centralizer of g ∈ C(X+

0 (2)) in the monster are 3, 5, 7, 11, 13, 17, 19, 23, 31, 47. These are the
same primes that have the rationality property for X+

0 (2). Similarly, the Fricke elements of odd
prime orders in the centralizer of g ∈ C(X0(2)) in the monster have orders 3, 5, 7, 11, 23, and
these coincide with the primes that have the rationality property for X0(2).
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3.3 Observation related to umbral moonshine

In this subsection, we consider the modular curves that occur (as lambencies) in the theory of
umbral moonshine. Given such an umbral modular curve X, we present another characterization
of the primes that have the rationality property for X. This will be in terms of the modularity
properties of certain graded trace functions.

Recall from Section 2.3 that associated to each of the 23 cases of umbral moonshine are:
a modular curve X of genus zero called its lambency; an umbral group GX ; and a set of graded
trace functions HX

g for each g ∈ GX . The functions HX
g are vector-valued mock modular forms

of weight 1/2 and level ng, and a formula for the shadow of HX
g may be given in terms of

naturally defined characters of GX called twisted Euler characters (cf. Section 5.1 of [7]). The
formulas show that the shadow of HX

g is zero if and only if the value of all the twisted Euler
characters at g is 0.

Consider the case of umbral moonshine of lambency X0(2) (i.e., Mathieu moonshine). This
has umbral group equal to the largest Mathieu group M24. The following table gives the conju-
gacy classes [g] of M24 with ng an odd prime, and the values of the twisted Euler character χAg
at these conjugacy classes.

[g] 3A 3B 5A 7AB 11A 23AB

ng 3 3 5 7 11 23

χAg 6 0 4 3 2 1

From this table, we see that there exists an element g of GX , where ng is an odd prime, for
which the shadow HX

g is nonzero if and only if p = 3, 5, 7, 11, 23. These primes are precisely
the ones that have the rationality property for X0(2). In this example, one could argue that
these primes are also simply the primes appearing as ng, but as the next example shows, in
some cases there are primes that appear as ng but not as the level of a mock modular form with
non-vanishing shadow.

Consider the umbral moonshine case of lambency X = X0(5). The following table gives the
conjugacy classes [g] of GX whose order ng is a prime p 6= 5, and the values of the twisted Euler
characters χAg and χAg at these conjugacy classes.

[g] 2B 2C 3A 6A

ng 2 2 3 3

χAg 2 2 0 0

χAg -2 2 0 0

In this case of umbral moonshine, the graded trace function HX
g for any order 3 element g

of GX has shadow equal to zero, i.e., HX
g is a classical modular form. There is an element g,

of prime order p 6= 5, of GX for which the shadow of HX
g is nonzero if and only if p = 2. The

prime 2 happens to be the only prime that has the rationality property for X0(5).
In fact, this pattern persists and we have the following theorem.

Theorem 3.4. Let X be an umbral modular curve, and let p be a prime not dividing the level
of X. Then the prime p has the rationality property for X if and only if there exists an element
g ∈ GX such that ng = p and the shadow of HX

g is nonzero.

Proof. From the tables of values of the twisted Euler characters in [7], one can enumerate the
primes p not dividing N with the following properties: (1) there is a g ∈ GX with ng = p; and
(2) there is a twisted Euler character that does not vanish at g, or equivalently, the shadow
of HX

g is nonzero. By inspection, the primes that satisfy these properties are the same primes
that have the rationality property for X. �
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Remark 3.5. We considered only the primes that do not divide the level in the formulation
of our notion of rationality. It would be interesting to extend this notion so as to include all
primes. Can this be done in such a way that Theorems 1.3 and 1.5 also generalize?

Remark 3.6. As explained in a recent work of Cheng and Duncan, naturally attached to any
lambency X – i.e., a genus zero quotient of X0(N) by a set of Atkin–Lehner involutions that
does not include the Fricke involution – is an “optimal mock Jacobi form” φX of level 1 with
integer coefficients [5]. These optimal mock Jacobi forms allow the recovery of the graded trace
functions in umbral moonshine; if X is an umbral lambency, then the components of HX

e are
the coefficients in the theta decomposition of φX , and the components of the other graded trace
functions HX

g may be obtained, via certain multiplicative relations (cf. Tables 8 and 9 of [7]),

from φX
′

where X ′ is of lower lambency. There are extra lambencies in [5] that do not occur in
umbral moonshine. A natural guess is that there is a generalization of umbral moonshine that
incorporates these more general lambencies, and Theorem 1.5 could serve as a consistency check
for this generalization.

4 Generalized supersingular polynomials

In this section we prove Theorem 1.6 mentioned in the introduction. For an even positive
integer k, we denote by: Ek the normalized Eisenstein series of weight k; Gk the coefficient of Xk

in
(
1−3E4(τ)X4+2E6(τ)X6

)−1/2
; andHk the coefficient ofXk in

(
1−3E4(τ)X4+2E6(τ)X6

)k/2
.

4.1 The polynomial f
(N)
p

Suppose that the genus of X0(N) is zero, and let TN be the principal modulus for X0(N).
There is a normalized modular form ∆N ∈M12(Γ0(N)), whose formula is given in Appendix B,
that vanishes only at the infinite cusp of Γ0(N) and nowhere else. Since ∆ is a modular form
of weight 12 and level 1 that vanishes only at the infinite cusp and nowhere else, the modular
form ∆N may be considered as higher level analogues of ∆, and hence the choice for its notation.

Let p be prime. Note that we can uniquely write p− 1 in the form

p− 1 = 12m+ 4δ + 6ε, where m ≥ Z≥0, δ, ε ∈ {0, 1}.

Using the classical valence formula, if f ∈ Mp−1(Γ0(1)), then f/
(
Eδ4E

ε
6

)
∈ M12m(Γ0(1)). We

get a modular function on Γ0(N) by dividing f/
(
Eδ4E

ε
6

)
by ∆m

N . Moreover, since ∆N vanishes
only at ∞, the poles of f/

(
Eδ4E

ε
6∆

m
N

)
are supported at ∞. Thus there exists a polynomial

f
(N)
p ∈ C[x] such that

f

Eδ4E
ε
6∆

m
N

= f (N)
p (TN ).

Note that if f has integral Fourier coefficients, which is true for the modular forms Ep−1, Gp−1,

Hp−1, then f
(N)
p has rational coefficients.

4.2 The polynomial g
(N)
p

Later in proving Theorem 1.6, we will be using the following result – which is the N = 1 case
of Theorem 1.6 – due to Deuring, Hasse, Deligne, Kaneko and Zagier [22].

Proposition 4.1. Let p ≥ 5 be a prime and let f be any of Ep−1, Gp−1 or Hp−1. Let f
(1)
p be

the polynomial defined in Section 4.1. Then

ss(1)p (x) ≡ ±f (1)p (x)xδ(x− 1728)ε (mod p).
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We denote by g
(N)
p the higher level analogues of the factor xδ and (x − 1728)ε found in this

proposition which we obtain as follows. In this proposition, the factor x corresponds to the
(isomorphism class of the) elliptic curve y2 = x3 +1 with j-invariant equal to 0. The exponent δ
is equal to 1 when p ≡ 2 (mod 3). The proposition says that these are precisely the primes p
for which the elliptic curve y2 = x3 + 1 is supersingular in characteristic p. Similarly, the factor
x−1728 corresponds to the (class of) curve y2 = x3+x with j-invariant 1728, and the proposition
says that this elliptic curve is supersingular when ε = 1 or when p ≡ 3 (mod 4).

These distinguished isomorphism classes of elliptic curves with j-invariants 0 and 1728 – or
equivalently points on the moduli space X0(1) with j-values 0 or 1728 – break up into several
isomorphism classes when we consider them as elliptic curves with level structure N , or as
points on the moduli space X0(N). The TN -values of these points constitute the roots of the
polynomial analogue of xδ(x− 1728)ε that we seek.

To obtain the TN -values given a j-value, we need a modular relation between j and TN ,
by which we mean a relation j(τ) = rN (TN (τ)) for some rational function rN ∈ Q(x). In
Appendix E, we present the complete list of modular relations for j and TN for the N ’s such
that X0(N) has genus zero. One can verify these identities by checking that the Fourier coeffi-
cients for the left and the right hand side coincide up to the Sturm bound.

To find the TN -values of the points with j-invariants 0 and 1728, we need only to solve
the equations 0 = rN (TN ) and 1728 = rN (TN ). For example, for N = 2, we have r2(T ) =
(T + 256)3/T 2 and so:

r2(T ) = 0 ⇒ T + 256 = 0, r2(T ) = 1728 ⇒ (T − 512)(T + 64) = 0.

Therefore the level 2 analogue of xδ(x− 1728)ε is the polynomial (x+ 256)δ(x− 512)ε(x+ 64)ε.

One can do the same for the other levels to obtain all the polynomials g
(N)
p .

4.3 Proof of Theorem 1.6

Note that the supersingular points of X0(N) modulo p are the points lying above the supersin-
gular points of X0(1) modulo p. Therefore, Proposition 4.1 tells us that the roots of the equation

f
(1)
p (j)jδ(j − 1728)ε = 0 are the j-values of the supersingular points of X0(N) modulo p. From

the definition of f
(N)
p , we have the relation

f (N)
p (TN )∆m

N = f (1)p (j)∆m. (4.1)

Therefore f
(1)
p (j) = 0 if and only if f

(N)
p (TN ) = 0. Also by definition of g

(N)
p , the equation

jδ(j − 1728)ε = 0 if and only if g
(N)
p (TN ) = 0. Therefore, the roots of g

(N)
p (TN )f

(N)
p (TN ) = 0

are the TN -values of the supersingular points of X0(N) modulo p. Finally, the coefficient of

g
(N)
p (TN )f

(N)
p (TN ) is ±1 because: g

(N)
p is monic; and by (1) the leading term of f

(N)
p is the same

as the leading term of f
(1)
p , which is ±1 by Proposition 4.1. �

A Primes that have the rationality property

In the following table, we use the notation N+e, f, . . . for the modular curve X0(N)+e, f, . . ..
Moreover, we use the notation N+ when all the exact divisors of N are included, and the
notation N− when no exact divisors are included. The following table lists the primes that
have the rationality property for genus zero modular curves of the form N+e, f, . . .. There are
no primes that have the rationality property for the genus zero modular curves of the form
N+e, f, . . . not listed in this table.
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X
primes that have

the rat. prop. for X

2+ 3, 5, 7, 11, 13, 17, 19, 23, 31, 47

2− 3, 5, 7, 11, 23

3+ 2, 5, 7, 11, 13, 17, 23, 29

3− 2, 5, 11

4+ 3, 5, 7, 11, 23

4− 3, 7

5+ 2, 3, 7, 11, 19

5− 2

6+ 5, 7, 11, 13

6+6 5, 11

6+3 5

7+ 2, 3, 5, 17

7− 3

8+ 3, 7

9+ 2, 5

9− 2

10+ 3, 7, 11

10+5 3

11+ 2, 3, 5

12+ 5

X
primes that have

the rat. prop. for X

13+ 2, 3

14+ 3, 5

14+14 3

15+ 2, 7

15+15 2

17+ 2, 3, 7

19+ 2, 5

20+ 3

21+ 2, 5

22+ 3, 5

23+ 2, 3

25+ 2

26+ 3

27+ 2

29+ 3

31+ 2

33+ 2

35+ 2, 3

47+ 2

55+ 2

B Principal moduli for X0(N)

Let η(τ) be the Dedekind eta function. In this table, we employ the following notation for an
eta-product: nd11 · · ·n

dl
l := η(n1τ)d1 · · · η(nlτ)dl . The following table shows the principal moduli

for the modular curves X0(N).

N TN

2 124/224

3 112/312

4 18/48

5 16/56

6 2834/1468

7 14/74

8 1442/2284

N TN

9 13/93

10 2452/12104

12 3341/11123

13 12/132

16 1281/21162

18 2291/11182

25 1/25

C Higher level analogues of ∆

We again use the following notation for an eta-product: nd11 · · ·n
dl
l := η(n1τ)d1 · · · η(nlτ)dl . The

following table lists the modular (non-cuspidal) forms ∆(N) ∈ M12(Γ0(N)) that vanish only at
the cusp ∞ of Γ0(N) and nowhere else.

N ∆(N)

2 248/124

3 336/112

4 448/224

5 530/16

6 112672/224336

7 728/14

8 848/424

N ∆(N)

9 936/312

10 161060/212530

12 2121272/424636

13 1326/12

16 1648/824

18 3121872/624936

25 2530/56
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D The polynomials g
(N)
p

In the following table, we list the polynomials g
(N)
p whose roots are the TN -invariants of the characteristic p supersingular elliptic curves with

level N structure, such that the j-invariant is 0 or 1728.

N g
(N)
p where p− 1 = 12m+ 4δ + 6ε

2 (x+ 256)δ(x− 512)ε(x+ 64)ε

3 (x+ 27)δ(x+ 243)δ(x2 − 486x− 19683)ε

4 (x2 + 256x+ 4096)δ(x+ 32)ε(x2 − 512x− 8192)ε

5 (x2 + 250x+ 3125)δ(x2 − 500x− 15625)ε(x2 + 22x+ 125)ε

6 (x+ 3)δ(x3 + 225x2 − 405x+ 243)δ(x2 + 18x− 27)ε(x4 − 540x3 + 270x2 − 972x+ 729)ε

7 (x2 + 13x+ 49)δ(x2 + 245x+ 2401)δ(x4 − 490x3 − 21609x2 − 235298x− 823543)ε

8 (x4 + 256x3 + 5120x2 + 32768x+ 65536)δ(x2 + 32x+ 128)ε(x4 − 512x3 − 10240x2 − 65536x− 131072)ε

9 (x+ 9)δ(x3 + 243x2 + 2187x+ 6561)δ(x6 − 486x5 − 24057x4 − 367416x3 − 2657205x2 − 9565938x− 14348907)ε

10

(x6 + 230x5 + 275x4 − 1500x3 + 4375x2 − 6250x+ 3125)δ(x2 + 2x+ 5)ε(x2 + 20x− 25)ε

(x4 − 540x3 + 1350x2 − 1500x+ 625)ε(x2 − 2x+ 5)ε

12

(x2 + 4x− 8)δ(x6 + 228x5 − 408x4 − 128x3 − 192x2 + 768x− 512)δ

(x4 + 20x3 − 48x2 + 32x− 32)ε(x8 − 536x7 − 272x6 + 3328x5 + 6400x4 − 20480x3 + 4096x2 + 16384x− 8192)ε

13

(x2 + 5x+ 13)δ(x4 + 247x3 + 3380x2 + 15379x+ 28561)δ

(x6 − 494x5 − 20618x4 − 237276x3 − 1313806x2 − 3712930x− 4826809)ε(x2 + 6x+ 13)ε

16

(x8 + 256x7 + 5632x6 + 53248x5 + 282624x4 + 917504x3 + 1835008x2 + 2097152x+ 1048576)δ(x4 + 32x3 + 192x2 + 512x+ 512)ε

(x8 − 512x7 − 11264x6 − 106496x5 − 565248x4 − 1835008x3 − 3670016x2 − 4194304x− 2097152)ε

18

(x3 + 3x2 − 9x+ 9)δ(x9 + 225x8 − 1080x7 + 3348x6 − 8262x5 + 16038x4 − 23328x3 + 26244x2 − 19683x+ 6561)δ

(x6 + 18x5 − 81x4 + 216x3 − 405x2 + 486x− 243)ε

(x12 − 540x11 + 1890x10 − 4212x9 + 13527x8 − 48600x7 + 129276x6 − 262440x5

+413343x4 − 498636x3 + 433026x2 − 236196x+ 59049)ε

25

(x10 + 250x9 + 4375x8 + 35000x7 + 178125x6 + 631250x5 + 1640625x4 + 3125000x3 + 4296875x2 + 3906250x+ 1953125)δ

(x4 + 10x3 + 45x2 + 100x+ 125)ε(x2 + 2x+ 5)ε

(x10 − 500x9 − 18125x8 − 163750x7 − 871875x6 − 3137500x5 − 8203125x4 − 15625000x3 − 21484375x2 − 19531250x− 9765625)ε
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E Modular relations

The following table gives j as rational functions of TN .

N modular relations between j and T = TN

2 j =
(T + 256)3

T 2

3 j =
(T + 27)(T + 243)3

T 3

4 j =
(T 2 + 256T + 4096)3

(T + 16)T 4

5 j =
(T 2 + 250T + 3125)3

T 5

6 j =
(T + 3)3(T 3 + 225T 2 − 405T + 243)3

(T − 1)2(T − 9)6T 3

7 j =
(T 2 + 13T + 49)(T 2 + 245T + 2401)3

T 7

8 j =
(T 4 + 256T 3 + 5120T 2 + 32768T + 65536)3

(T + 4)(T + 8)2T 8

9 j =
(T + 9)3(T 3 + 243T 2 + 2187T + 6561)3

(T 2 + 9T + 27)T 9

10 j =
(T 6 + 230T 5 + 275T 4 − 1500T 3 + 4375T 2 − 6250T + 3125)3

(T − 1)2(T − 5)10T 5

12 j =
(T 2 + 4T − 8)3(T 6 + 228T 5 − 408T 4 − 128T 3 − 192T 2 + 768T − 512)3

(T − 2)(T − 1)3(T + 2)3(T − 4)12T 4

13
(T 2 + 5T + 13)(T 4 + 247T 3 + 3380T 2 + 15379T + 28561)3

T 13

16 j =
(T 8 + 256T 7 + 5632T 6 + 53248T 5 + 282624T 4 + 917504T 3 + 1835008T 2 + 2097152T + 1048576)3

(T + 2)(T + 4)4(T 2 + 4T + 8)T 16

18 j =
(T 3 + 3T 2 − 9T + 9)3(T 9 + 225T 8 − 1080T 7 + 3348T 6 − 8262T 5 + 16038T 4 − 23328T 3 + 26244T 2 − 19683T + 6561)3

(T − 1)2T 9(T − 3)18(T 2 − 3T + 3)(T 2 + 3)2

25 j =
(T 10 + 250T 9 + 4375T 8 + 35000T 7 + 178125T 6 + 631250T 5 + 1640625T 4 + 3125000T 3 + 4296875T 2 + 3906250T + 1953125)3

(T 4 + 5T 3 + 15T 2 + 25T + 25)T 25
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