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1 Introduction

Witten constructed in [14] a family of (2 + 1)-dimensional topological quantum field theories
(TQFTs) using path integrals and the Chern—Simons action which gives a three-dimensional
interpretation of the Jones polynomial. Each of these TQFTs induces a projective finite-
dimensional representation of the mapping class group Mod(X,) of a genus g closed oriented
surface ¥,. Reshetikhin and Turaev made a rigorous construction of these TQFTs [11] using rep-
resentations of quantum groups. In this paper we will follow the skein theoretical construction
of [2, 8] to define these representations.

The Witten—Reshetikhin—Turaev projective representations lift to linear representations of
a central extension Mod(X,) of Mod(3,)

Prg: Mod(Sg) = GL(V(3,)).

Here p > 6 is an even integer indexing the representations, called the level, and V,(%,) is
a finite-dimensional complex vector space. These representations are equipped with an invariant
Hermitian non-degenerate form (, ), 4.

The goal of this paper is to decompose some of these representations into irreducible factors.
There are only few results in that direction. In [2], the authors construct an explicit proper
invariant submodule of V,,(¥,), when 4 divides p. Roberts proved in [12] that p, 4 is irreducible
if £ is an odd prime. An immediate extension of his proof shows that the representations pig 4

are irreducible. In [1], Andersen and Fjelstad proved that for p = 24, 36,60, the 1\7I\o/d(Eg)—
module V,,(X,) contains at least three invariant submodules. The author gave in [7] an explicit
decomposition into irreducible factors of the modules V,,(X), arising in genus one, for arbitrary
level p > 3. Note that one can extend the definition of the Witten—Reshetikhin—Turaev repre-
sentations to mapping class groups of punctured surfaces, which are indexed by some coloring
of the punctures in addition to the level. Koberda and Santharoubane showed in [6] that any
representation of a punctured surface with at least one puncture colored by 1 is irreducible.
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Given 71, r9 two distinct odd primes, there exists an unique even integer x = x(ry,72) €
{1,...,71m2 — 2} such that x verifies either

=2 (mod ), =0 (mod 71),
or
r=0 (mod r3), r=-2 (mod r2).

The main result of this paper is the following:

Theorem 1.1.

1. The modules Vig(X4) are simple for g > 2.

2. If r is an odd prime, then Vi, (32) is the sum of two simple submodules.

3. If r is an odd prime, then Vy,.2(X3) is simple.

4. If r1, r9 are two distinct odd primes such that either ri,ro > 37 or the element x defined

above satisfies 3x > 2riro — 4. Then Vo, (X2) is simple.

The main obstruction to extend the above theorem to higher genus is that we need to control
which 6j-symbols vanish. In the last section we will state a conjecture concerning the vanishing
6j-symbols. We will then prove that this conjecture implies a generalization of Theorem 1.1
in higher genus. The author verified numerically the conjecture for small levels from which we
deduce the:

Theorem 1.2.
1. Each module V12(X3), Vao(X3), Vag(X3), Via(X3), Vs2(X3) is the direct sum of two simple
submodules.

2. For any g > 3, the modules V30(X,), Ves(X4) are simple.
The proof of Theorem 1.2 relies on a numerical computation of the 6j-symbols up to level 66.

Remark 1.3. In [2| some representations pp, are also defined when p is odd. They verify
P2p.g = Ppg @ ph - In particular if an odd level r is such that V5,(%) is simple, then V,.(¥) is
also simple. So our theorems extend to SO(3) cases as well.

2 Skein construction of the Witten—Reshetikhin—Turaev
representations

Following [2], we will briefly define the Witten—Reshetikhin—Turaev representations and fix some
notations.

2.1 The spaces V,(%,)

Given an even integer p > 6, we denote by A € C an arbitrary primitive 2p-th root of unity.
Given a compact oriented 3-manifold M, a framed link with n components L C M is an isotopy
class of an embedding of the disjoint union of n copies of S! x [0, 1] into M. Using the Kauffman-
bracket skein relation of Fig. 1, we associate to any framed link L C S® an invariant (L), € C.

Let ¢ > 1 and denote by 3, a compact oriented surface of genus g and by Mod(X,) the
mapping class group of ¥, namely the group of isotopy classes of orientation preserving home-
omorphisms of ¥,. Let C,4 represents the set of isotopy classes of framed links (including the
empty link) in an oriented genus g handlebody H,. We fix a genus g Heegaard splitting of the
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Figure 1. The Kauffman-bracket skein relations defining the framed links invariant.

sphere, i.e., two homeomorphisms S: dH, = 0H, and HyJg. OH,—TH, H, = S3. For instance,

define the handlebody H, = (D2 x S 1)#9 as a connected sums of g copies of D? x S'. Consider
two oriented curves L, M C G(D2 x S 1) intersecting once positively. Denote by L;, M; C 0H,,
i =1,...,g the images of L and M respectively in the i-th connected component of H,;. One
can choose the homeomorphism S: 0H, — H, such that the image of the curve L; is M; for any
i € {1,...,9}. The mapping class of S is uniquely determined by this condition and we have
a homeomorphism H,Jq Hy = S3. We denote by ¢1, pa: Hy — S3 the embeddings in the first
and second factors.

Choose Ly, Ly € C;. The above gluing defines a link o1 (L1) | 2(L2) C S3. The Hopf pairing
is the Hermitian form

() ')gp3 ClCg] x C[Cy] — C

defined by
(L, Lat) gy = (o1 (L) ea(La))

Next we define the spaces V,,(3,) as the quotients:

Vo(Zy) = 0 fier ()

It is proved in [2] that the vector spaces V,(X,) are finite dimensional. Let us provide an
explicit basis as follows. Given g > 2, choose a trivalent banded graph I' C H, such that H,
retracts on I' by deformation. By banded graph we mean a thickening of the graph by an oriented
surface. If g = 1, I represents the band S! x [—%, %] C St x D? = Hy. We denote by E(T) the
set of edges of I'. Set I, := {0, ceey %}, which will be called the set of colors at level p.

A triple of colors ¢, 7, k € I, is said p-admissible if:

1) li—jl<k<i+j,
2) i+j+kisevenand i+ j+k <p—4.

A map o: E(I') — I, is a p-admissible coloring of T" if for every three edges e, ez, e3 € E(I)
adjacent to a vertex, the triple (o(e1),0(e2),o(es)) is p-admissible.
In [5, 13], the authors defined some idempotents { fo, -y fooa } of the Temperley—Lieb algebra
2

with coefficient in Q(A) called the Jones—Wenzl idempotents. To every p-admissible coloring o
of ', we associate a vector u, € V() as follows. Replace each edge e € E(I") by the Jones—
Wenzl idempotent fo(). If (e1, ez, es) are three edges adjacent to a vertex of I', we connect the
adjacent idempotents using the link T}, (¢,) 5(ey),0(e;) drawn in Fig. 2.

Theorem 4.11 of [2] asserts that the vectors u,, where o belongs to the set of p-admissible
colorings of I', form a basis of V,,(3,).

The basis u, depends on the choice of the embedded banded trivalent graph. One can trans-
form any trivalent graph into any other one by a sequence of Whitehead moves and twists. We
say that two banded trivalent graphs I'; and I's embedded in a handlebody differ by a White-
head move if there exists a ball B? intersecting each I'; transversally in four edges such that
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Figure 2. The link T; ; ;, used to connect three idempotents f;, f; and fi. The number above each three
arcs denotes the number of parallel copies of the arc used to define the framed link.

Figure 3. The two graphs I'; on the left and I'y on the right differ by a local Whitehead move.

the two banded graphs coincide outside the ball and such that their intersection with B? is as
drawn in Fig. 3.
Fix a p-admissible coloring of the graph outside B? with the four edges intersecting B> colored

b c
by a, b, c and d. Denote by b >l< ¢ and % the vectors associated to the coloring of I';
a d a d
and Ty respectively with the edge inside B3 colored by i and j respectively.

Lemma 2.1 (fusion-rule [10]). The vector b >i< € belongs to the sub-space spanned by the
a d

b c
vectors X and decomposes as follows
a d

bhice =3d

J

where the sum runs through p-admissible colorings.

In this formula, the coefficient { Z Z } only depends on the colors a, b, ¢, d, 7 and j

d
and is called recoupling coefficient or 6j-symbol. We refer to [10] for a proof and an explicit
computation of these coefficients. It follows from the formulas in [10] that if one of the colors a,
b, ¢, d, ¢ or j is null, then the recoupling coefficient is nonzero.

2.2 The Witten—Reshetikhin—Turaev representations

We fix an orientation preserving homeomorphism «a: 3y, — 0H,.
Let ¢ € Mod(X,) be a mapping class associated to a homeomorphism of ¥, which extends

to a homeomorphism ¢: H, — H, through o, that is such that ¢ = ao $|3Hg oa~'. Then (}5/ acts
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on C, and preserves the kernel of the Hopf pairing so acts on V,(X,) by passing to the quotient.
Denote by pp4(¢) € GL(V,(X4)) the resulting operator. For instance, the Dehn twist along any
curve v C 3, whose image a(7) is contractible in Hy, extends through o.

Let ¢ € Mod(X,) be the mapping class of a homeomorphism which extends to H, through
a o S. This extension also defines, by quotient, an operator on Vj,(X,). We denote by p,(¢)
the dual of this operator for the Hopf pairing.

The elements of Mod(X,) which extend to Hj either through a or through o o S, generate
the whole group Mod(%,). It is a non trivial fact that the associated operators p, 4(¢) generate
a projective representation:

Pp.g: Mod(3g) — PGL(V}(Xg)).

We consider a central extension M(Eg) of Mod(X,) that lifts the above projective repre-
sentations to linear ones (see [4, 9]):

Ppg: Mod(Zg) = GL(Vp(Zy)).

These are the so-called Witten—Reshetikhin—Turaev representations.

The vector space V,(X,) admits a non-degenerate Hermitian form, denoted (, -), 4 and called
the invariant form, which is invariant under the action of 1\7[\(;1(29). Moreover, for any trivalent
banded graph, the basis associated to its p-admissible coloring is orthogonal for this form.
The invariant form (-,-),  is related to the Hopf pairing (-,-),4 by the formula (vi,v2)p, =
(v1, pp,g(S)v2)p,g for any vy, ve € V().

For each edge e € E(I') consider a disc D, properly embedded in H, that intersects I
transversely once in a point of the edge e. Note that the boundary curves v, := 0D, C 0H, = 3,
form a pants decomposition of ¥ . Here and henceforth T, € Mod(X,) denotes the Dehn twist
along e.

From a classical property of the Jones—Wenzl idempotents, the authors of [2] proved that

ﬁp,g(Te) “Uo = Ho(e)Uo

where p; := (—1)?A0+2) for every i € I,.
We fix the lift of T, in Mod(3,), still denoted T, so that pp 4(T¢) - us = Mo (e)Uo-
We also fix the lift S € M(EQ) so that the matrix of pj, 4(5) is the matrix of the Hopf
2p
pairing (-, -)gg multiplied by the scalar n := %(A/{)g (A2-47%) % (=1)™A=™* € C* where

m=1
(p+1)
6_P P2

satisfies k6 = A~ . The scalar 1 represents the sphere invariant in TQFT. We refer to [2]
for a detailed discussion on 7. -

Note that S and the T¢,e € E(I') generate Mod(2,) for any trivalent banded graph. There-
fore, the above formulas determine uniquely the linear representation py, 4.

Another description is derived as follows. Recall that C, represents the set of isotopy classes
of framed links in H, and denote by K, the set of isotopy classes of framed links in ¥, x [0, 1].
The vector space C[Ky] has a natural algebra structure whose product is given by gluing two
copies of ¥y x [0,1]. Moreover the homeomorphism « defines a structure of C[y] left-module
on C[Cy] by gluing ¥, x [0, 1] to H,. By passing to the quotient, we obtain a surjective map

Add,: CIK,] — End(V,(5,)).

If K is a framed knot in an oriented 3 manifold and n > 0, we note K" the framed link
made of n parallel copies of K. Recall that the framing is defined as a thickening of the link in
an orientable surface. Pushing the link along the direction normal to the thickening defines the
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notion of parallelism. If P(X) = 3. a;X* € C[X] is a polynomial and K € C, (resp K € K,)
is a framed knot, we define K(P) := Y, a;K" in C[Cy] (resp in C[K,]) and we call K(P) the
framed knot K colored by P.

Consider v C ¥, a non-contractible oriented simple closed curve. Define v+ C X, x [0,1] the
framed knot defined by v C 3, x {%} endowed with the framing given by a normal vector field

making one turn in the counter-clockwise direction when circling once along ~y following the orien-
p—4

2 .

tation. Define w(X) = > (—1)"[i+1]S;(X) € C[X], where S;(X) represents the i-th Chebyshev
i=0

polynomial of second kind defined by Sp(X) = 1, 51(X) = X and Sij12(X) = X Si+1(X) —Si(X)

and [n] := % Then an important property of the Witten—Reshetikhin—Turaev represen-

tations is that the operator p, 4(T), associated to the lift of the Dehn twist along ~, is equal

to the operator Add,(y"(w)) associated to the coloring by w of v*. Since lifts of Dehn twists

generate Mod(3,), this property gives an alternative definition of py, 4.

3 Cyclicity of the vacuum vector

The vector vy € V,,(X,), which is the image of the empty link in H, will be called the vacuum
vector in genus g. Denote by A, , the subalgebra of End(V,(3,)) generated by the operators
Pp,g(@) for ¢ € 1\7I:)/d(29). The key ingredient to prove Theorem 1.1 is to show that the vacuum
vector is cyclic, i.e., that Ay, - vo = V(Eg).

3.1 Decomposition in genus one of the Weil representations

In [7, Corollary 1.2], the author gave an explicit decomposition of the genus one representations
into irreducible factors which will be summarized next. We will derive from this decomposition
the following:

Lemma 3.1. If p = 2r? or p = 4r with v an odd prime, or p = 2riry with r1, ro distinct odd
primes, then vy € V,(£1) is cyclic.

The genus 1 Weil representations at level p, are projective representations m,: SLa(Z) —
PGL(U,) where U, is a p-dimensional complex vector space with a canonical basis {e;, i € Z/pZ}.
They are defined on the generators T := (§1) and S := (9 ') by the projective classes of the
operators:

1

m(S) = —(4

U e )= (475)

1,JEL/pL’

Here the level is an integer p > 2 not necessarily even. When p is even, A is a primitive 2p-th
root of unity. When p is odd, A represents a primitive p-th root of unity. The decomposition
into irreducible factors of the genus one Weil representations is the following:

Theorem 3.2 ([7, Theorem 1.1]).

1. If a and b are coprime, then Uy = U, ® U,.

2. If r is prime and n > 1, then there exists some module Wnt2 such that Utz = Upn &
Wrn+2 .

3. If r is an odd prime, then U,z = 1 ® W,2 where 1 is the one-dimensional trivial represen-
tation.

4. Each one of the modules Uy and Wyn 1is the direct sum of two submodules Uy = U, @ U;,
Won X W & W
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5. Every module of the form By ® --- ® By, where B; is either U;", U, Us, Uj, Uy, Wg’;
or W for r prime and where the B; have pairwise coprime levels, is simple.

Given n > 0 and N > 1 two non-negative integers, denote by [n]y the class of n in Z/NZ.
The isomorphism Uy — U, ® U in Theorem 3.2(1) sends the vector ep,) , to ef,), @ €[, The
submodules U;E C U, arising in Theorem 3.2(3) are spanned by the vectors eii =e; te_;.

The decomposition in simple submodules of V,,(¥1) then follows from the above theorem and
from the fact that if p = 27 > 6, the map W: U, — V,(¥1) defined by ¥(e; ) = ujtr—1 is an
isomorphism of SLy(Z)-projective modules. This was proved in [3] (see also [7, Theorem 5.1]).

-~

Proof of Lemma 3.1. If p = 272 with » an odd prime, Theorem 3.2(5) implies that o2 =
Vo,2(21) is simple, hence vy is cyclic. Assume next that p = 2r;ry with 71, ro two distinct odd
primes. Theorem 3.2 provides an isomorphism of SLo(Z) projective modules

0: Uy, = (U2@U;0U )& (a0 UY @U,).

Observe that both modules Uy ® U, ® U,; and Us ® Urt ® U,, are simple. To prove that
vo € Varry (1) is cyclic, we need to show that v := 6 o (¥)~!(vg) has non trivial projection in
both submodules. First we have W~1(vy) = e_;—e; (recall that indices are considered modulo p).
Then we compute:

v=e1Re_1Qe_1—eR®e Qe = (%60®€I1®6i_1)+(%60®€i—1®6:1).

The above decomposition shows that projections onto both submodules are non trivial, so vg is
cyclic.
The case p = 4r is similar. We start with the decomposition

0: U, = (U U)o (U @U).

Note that the modules on the right-hand side are simple. We keep the notation v := 6o (¥)~!(vg)
and, setting n = 2r — 1, we compute

V= €, (029 €ln], — €[—n]s & €[—n], = €1 Xe_1—e_1Xe

= %(61 —e1)®(e1+e1)— %(61 +e_1)®(e1 —e_1).

So the projections of vy on the simple submodules of U, are nonzero. This concludes the
proof. |

3.2 From genus one to higher genus

The fact that the vacuum vector is cyclic in genus one will give us information on the cyclic space
of the vacuum vector in higher genus. We now describe the lemma that states this relation.

Choose I'y C S3 a banded trivalent graph whose underlying graph has genus g > 2 embedded
in the three-sphere. Consider I'yy C I'y a sub-banded graph whose underlying graph has genus
g’ < g. Let H, be a tubular neighborhood of 'y and Hgl/, Hg2, two tubular neighborhoods of Ty
such that Hgl, C H, C Hg,. Denote by i: Hgl, — H, and ip: Hy — Hg% the embeddings.
The embedding ¢; induces a linear map ij: C[Cy] — C|[Cy] sending a framed link L C Hgl, to
i1(L) C Hy. The morphism ¢} sends the kernel of the Hopf pairing in genus ¢’ to a sub-space of
the kernel of the Hopf pairing in genus g. Hence it induces a linear map ji: V,(Ey) — V,(2y).
Similarly, the embedding is induces a linear map jo: V,(X4) = V,,(Xy). Since izoiy is a retraction
by deformation, the composition j; o j; is the identity map of V, ().

A framed link L C H, is called aligned if there exist some oriented simple closed curves
Yy« C By such that " - 75 -+ -4;F - @ = L, where we used the algebra structure of C[KCy]



8 J. Korinman

and the left-module structure of C[C4] defined at the end of the previous section. Recall that the
image of a Dehn twist p,(T) is equal to the operator Add,(y"(w)). It follows that the cyclic
space of the vacuum vector is spanned by the vectors [L(w)] obtained from an aligned framed
link by coloring each of its connected components by w. By construction, the map ¢] sends
aligned links to aligned links.
Fix ¢’ a p-admissible coloring of I'y». Consider the p-admissible coloring ¢ of I'y defined by
o(e) = {a’(e), if e is an edge of I'yy C 'y,
0, otherwise.

Lemma 3.3. If uy € %(Zg/) is 1n the cyclic space of the vacuum vector in genus g', then
uy € V() also belongs to the cyclic space of the vacuum vector in genus g.

Proof of Lemma 3.3. By hypothesis, there exists a linear combination of aligned framed links
L € C[Cy] such that [L(w)] = uyr € Vp(Ey). We now show that [i}(L)(w)] = us € V,(Xy).
Since 7] sends aligned framed links to aligned framed links, the claim will follow. Denote by
T, € C[Cy] the element obtained by replacing each edge e of I'y by the Jones-Wenzl idempo-
tent fy/(.) and connecting the resulting elements as described in Section 2.1. By definition, we
have u, = [T,/] and u, = [j1(T,+)]. To prove that the vectors i (L)(w) and j1(7,) represent
the same class in the quotient V},(3,), we need to prove that their Hopf pairing with any framed
link are equal. Let K C S3\ H ¢ be a framed link. We compute

(W), K) = (L), j2EE, = (T, Gk, = (L), K,
where we passed from the first line to the second line by using the fact that [L(w)] = uy =
[T,1] € Vp(2g). This proves that u, = [i](£)(w)] and concludes the proof. [

3.3 Cyclicity in genus 2
The goal of this subsection is to prove the following:

Proposition 3.4. Suppose that either p = 2r% or p = 4r with r an odd prime, or p = 2riro
with 1, ro two distinct odd primes. Then the vacuum vector vy € Vj,(X2) is cyclic.

Let I' C H, a trivalent graph, as in Section 2. Two p-admissible colorings o1, o2 of I' are
equivalent if 15, (o) = [y (e), for every edges e € E(I).

We denote by C,(I') the set of equivalence classes of p-admissible colorings of I'.  Given
[0] € C,(T"), we associate the subspace

Wis) := Span{ug:, o’ € [0]} C V,(Ey).
Lemma 3.5. If X C V(%) is an invariant M(;d(Eg)—submodule, then X = @y1ec. ) XMW
=P

Proof. The matrices p, 4(T¢), for e € E(I"), generate a commutative subalgebra 7 of A, ,. To
every character x: 7 — C*, we associate a subspace V},(34, x) formed by the vectors v € V(%)
such that p, 4(Te)v = X (ppg(Te))v. The set C,(T') is in natural bijection with the characters x
such that Vj,(X,, x) # 0 and the spaces W/, correspond to the associated subspaces Vj,(2g, X)-
Since the orthogonal projector on X commutes with the elements of the algebra T, it preserves
the subspaces W,. |

The strategy to prove Proposition 3.4 is to apply Lemma 3.5 to the subspace X := (A, 2-vp)*
which is the orthogonal for the invariant form (:,-),, of the cyclic space generated by the
vacuum vector. Since the invariant form and the Hopf pairing are related by the formula
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(v1,02)p,g = (1, Pp,g(S) - v2)p g, the space X is also the orthogonal of the cyclic space Ap2 - vo
for the Hopf pairing.

Let ~v1,72,v3 C Hs be the framed knots of Fig. 4. If a, b, ¢ are non-negative integers, define
Wabe € Vp(X2) to be the class of the framed link made of a parallel copies of v;, b parallel copies

of 72 and ¢ parallel copies of ;.
3
S &S

Figure 4. The three framed knots defining the vectors wg .. The framing is defined by thickening the
knots in a surface parallel to the boundary.

Lemma 3.6. If p = 4r, with r an odd prime, or if p = 2rire, with r1, r9 two distinct odd
primes, then wqp . € Apo - vo for any a,b,c € {0,1}.

Proof. Lemmas 3.1 and 3.3 imply that w10, wo,1,0 and wy 1 belong to the cyclic space of
the vacuum vector. It remains to show that w11 also belongs to this space. Recall that the
2 2

2 20
have the following system

2 2 2 2 2 2
2 2 2 2 2 2
pp2(Te) - 2 2 — I'OQLQ = M2$2QLQ + M4$4©i<>,

where T, is (a lift of) the Dehn twist around the middle edge of the graph Q—Q Both

vectors on the left-hand side belong to the cyclic space of vy by Lemmas 3.1 and 3.3.
Since the coefficients 9 and x4 are nonzero and pg # 14, the matrix ( 5%, 4ys, ) 1S invertible.

coefficient zj := } is nonzero when (2,2, k) is p-admissible. Using Lemma 2.1, we

2 2 2 2
We deduce from the above linear system that both vectors 2 and belong
the cyclic space of the vacuum vector. Since the vector wi 1,1 belongs to the space spanned by
2 2
the vectors QLQ for k = 0,2,4, it belongs the cyclic space of vyg. |

Recall the notation p; = (—1)?A"*2) and the equivalence relation i ~ j if u; = p; used to
define the spaces W,). The following lemma describes this equivalence relation.

Lemma 3.7. Leti,j € I,. Then:

1. When p = 2r® with r an odd prime, then w; = pj if and only if i = j = —1 (mod r)
and i, j have the same parity.

2. When p = 4r with v an odd prime, then p; = p; if and only if either i = j or (i = pd J
and 1 is even).

3. When p = 2riro with r1, ro distinct odd primes, then u; = p; if and only if either i = j
or j is the only element satisfying either

=y (mod 271), =y (mod 2r3),
or
i=—j—2 (mod r3) =—j—2 (mod r1).

i
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4. When p =18, all p; are pairwise distinct.

Proof. The case p = 18 is proved by a straightforward computation. For the other cases, first
note that:

pi = pj & APCTIPEDEH) — 1 o p(i 4 ) + (i = j)(i+5+2) =0 (mod 2p).  (3.1)

When restricted modulo 4, equation (3.1) implies that i and j have same parity.

When p = 4r, equation (3.1) implies (i — j)(i +j+2) =0 (mod ). Since i # j and 4, j have
same parity, then i = 2r — 2 — j. When restricted modulo 8, equation (3.1) implies that i = j
(mod 4) or i = j =0 (mod 2). The relations ¢ = 2r — 2 — j and i = j (mod 4) forbid ¢ and j to
be odd. Hence 7 and j are even and ¢ = 2r — 2 — j.

When p = 2rire, equation (3.1) implies (i — j)(i + j +2) = 0 (mod r172). Since i # j and
i, j have same parity, we must have either i = j (mod r;) and i = —j — 2 (mod 72) or i = j
(mod r9) and i = —j — 2 (mod rq).

Finally, when p = 272, equation (3.1) implies (i —j)(i +j +2) =0 (mod r2). Since i # j and
i, j have same parity, r divides both i — j and i 4+ j + 2 and thus i = j = —1 (mod r). |

Lemma 3.8. If p = 2r2, with r an odd prime, and o is a p-admissible coloring of T' = <D

such that o(e) # —1 (mod r), for alle € E(T), then us € Ap2-v9. Moreover, if 0 < a,b,c < %3,
then wqp. € Ap2 - vg.

Proof. When o satisfies the hypothesis of the lemma, Lemma 3.7 implies that the subspace Wiy
is one dimensional. Lemma 3.5 implies that this subspace is included either in A, 5 - vo, or in its
orthogonal. Moreover the Hopf pairing (u,, vo)ﬁ{2 is nonzero since it is equal to a p-admissible
3j-symbol. Hence we have proved the first statement of the lemma. In particular, we have the
inclusion:

The proof of the second statement follows from the fact that the vector w, . belongs to the
subspace S whenever we have a + c<r—2,b+c<r—2anda+b<r—2. [ |

Proof of Proposition 3.4. First assume that p £ 18. Consider the graph I' = <D, a class

[0] € C,(T'), and choose a vector

v € W ﬂ (Apa - v0)™, v = Z Qs
]

TE[o

From Lemma 3.5, we must show that v = 0 to conclude. To this purpose, we will find
dim (W[J]) linearly independent equations satisfied by the coefficients o .

Denote by F' ¢ NE(I) the set of functions f such that:

e f(e) €{0,1}, for all e € E(I"), if p = 4r or p = 2r;72,
o f(e) €{0,..., 52}, for all e € E(I), if p = 2r2
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Write E(I') = {e1,e2,e3} and, given f € F, we define the vector wy := ws(e,) f(es),f(es)- L€M=
mas 3.6 and 3.8 imply that wy € Ap2 - vg for all f € F. By definition of v, we have that
(wy, v)g2 =0 for all f € F'. This implies that

Z H )\%2 o (u.r,vo),ﬁ2 =0, forall feF,
T€lo] \e€E()

where \; = —(Az(”l) + A*Z(”l)). Since the complex numbers (UT,UO)g{Q are p-admissible 3j
symbols, they are nonzero. So it is enough to show that the matrix
- f(e)
M= I Mg
ecE(T) T€E|o]
fer

has independent lines. . -
We now define an invertible square matrix M such that M is obtained from M by removing
some lines. Given 7 € I,,, we define the set

w(i) :={j € I, so that p; = p;}.

Denote by #w(7) its cardinal and define the Vandermonde matrix

N[l = (})  jewts
0<n<#w(t)—1

Since A\; # A; when i # j, the matrix N|[i] is invertible. The matrix M = Nlei1] ® Nlea] ® Nes|
is invertible and M is obtained from M by removing the lines corresponding to non p-admissible
colorings of I'. This ends the proof when p # 18.

The proof of the lemma when p = 18 is similar to Roberts’ proof in [12] which only relies on
the fact that the coefficients u; are pairwise distinct. We briefly reproduce it. Let K C H; the
framed knot {0} x S' € D? x S! = H;y with trivial framing, so that [K] = u; € V,(31). The
Hopf pairing of K*(w) with u; is (u;)". Since the p; are pairwise distinct, the Vandermonde

: ; H
MAatrix (([Kz(w)]’uj)l&l)i,j
that the vectors [K*(w)] for i € {0,...,8} form a basis of Vi3(X1). In particular, u; is a linear
combination of vectors [K'(w)]. Now choose L C H, an aligned link. Replacing each connected
component of L by the above linear combination of parallel copies colored by w, we see that
the class [L] € Vig(¥,) is equal to the class of a linear combination of aligned links colored
by w, thus belongs to A;g 4 - vg. Since the vectors [L] € Vig(X,), with L aligned, span the whole
space Vig(2y), this concludes the proof. [ |

is invertible. Since the Hopf pairing is non degenerate, it follows

4 Decomposition into irreducible factors

In this section, we will prove Theorem 1.1. Denote by (A, ¢)" the commutant of the algebra A, 4,
i.e., the subspace of End(V,(%,)) of operators commuting with all operators p,,(¢) for ¢ €
Mod(%,).

The dimension of (A, 4) is equal to the number of simple submodules of V,(3,). Thus we
have to show that dim((Ap2)’) is one if p = 2r? and p = 2ryry and two when p = 4r. We will
also prove that dim((Ais4)") = 1.

Consider the linear map f: (A, 4)" < V,(E,) defined by f(0) = 60 - vg. Since vy is cyclic by
Proposition 3.4, the map f is injective. Moreover, if ¢ € 1\7131(29) is the lift of the mapping class



12 J. Korinman

of a homeomorphism of ¥, that extends to H, through a: ¥, — 0H,, then p, 4(¢) - vo = vo.

Denote by hfo/d(H g) C 1\71\0/(1(29) the subgroup generated by these elements ¢. By definition, we
have

f((Apg)) C {v € V,(E,) such that pp4(¢) - v =0, forall § € 1\71:)/(1(Hg)}.

In particular, for any trivalent banded graph T', we have the inclusion f((Ay4)") C Wiy (T)
where [0] is the class of the coloring sending every edge of T" to 0.

Proof of Theorem 1.1 when p = 2r? and p = 18. When p = 272, with r an odd prime or
p = 18, then Wjy is one-dimensional, generated by vo. Hence we have the equalities (A1gg) =
{1} and (Ajy,25)" = {1}. Then the Schur lemma proves our claim. [ |

4.1 The case when p = 4r

Assume that p = 4r with r an odd prime and write k := 2r — 2. By Lemma 3.7, a color i € I,
satisfies 1; = 1 if and only if either ¢ = 0 or i = k. Consider a framed link L C £, x {3} C
24 x [0, 1], thickened inside ¥4 x {3}, and color LP by w. In [2, Section 7], it is shown that the
operators Add,(LP(w)) and Add,(L(Sk)) are equal and only depend on the homology class of L
in Hi(X4,Z/27). Hence we have an injective morphism of algebras

it ClH (S, Z/27)] < Apg.

The action of a mapping class in homology induces a surjective group morphism p: 1\?0/(1(29) —
Sp(2¢9,7/27). By definition of the Witten—Reshetikhin—Turaev representations, we have the
following Egorov identity:

Pp.g(9) TLi(w)ppg(¢) = i(p(¢) -w),  forall ¢ € Mod(Ey), w € C[H(Zy,Z/2Z)]. (4.1)

Consider a genus g banded trivalent graph I' obtained by connecting ¢ trivial framed knots
by a trivalent banded tree. Such a graph is called a Lollipop graph, the g edges corresponding
to the trivial framed links are called loop edges and the edges of the tree are called trunk edges.
Since (k,k, k) is not p-admissible, the space Wg)(T') is spanned by the vectors u, associated to
colorings o such that o(e) = 0 if e is a trunk edge and o(e) € {0, k} if e is a loop edge. This basis
is in natural bijection with the elements of Hy(Hy,7Z/27), thus we have a natural isomorphism
¢: C[H1(Hy, Z/2Z)] = Wi (T'). Moreover, the isomorphism ¢ is equivariant for the actions of
C[H1(Xg4,Z/27)]. Precisely, the following diagram commutes

ClH1(5,,2/22)) x C|Hy(H,,Z/2Z)] —— C|Hy(H,, Z/2Z)]

%li X ¢ gid)

i (C[H1(Xy, Z/2Z)]) x Wig(T') ————— Wy (I).

We denote by P the orthogonal projector of V,(X,) on the subspace of vectors fixed all
operators in i(C[H1(Xg4,Z/2Z)]). Clearly P belongs to (A ,)

Consider a symplectic basis (2;,¥;)i=1,..4 of H1(X4,Z/2Z), that is classes of curves, still
denoted z;, ¥;, such that the algebraic intersection of x; with y; is equal to the Kronecker
symbol §; ; and such that the intersections of z; and y; with z; and y; are null when i # j.
We also suppose that the homeomorphism a: ¥, = 0H,, used to define the spaces V,(¥£,) in
Section 2.2, sends the curves x; to contractible curves in H,. Define

O, = %(—1 +x;+y + xzyl) S C[Hl(Zg, Z/2Z)].
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The ©,’s pairwise commute, satisfy @? = 1 and i(0©;) - vo is the vector u, associated to the
coloring o sending the ¢-th loop edge to k£ and other edges to 0. In particular, writing W, :=
C[@l, ceey @g] C C[Hl(Eg,Z/2Z)], we have Z(Wg) “ Vo = W[O] (F)

Denote by I C C[H1(Xy,7Z/27)] the ideal generated by the elements (x; — 1) for 1 <i < g.

Lemma 4.1. Consider the action of Sp(2g,Z/27Z) on i(C[H1(X4,Z/2Z)]). Then:

1. The subspace of vectors fixed by Sp(2g,7Z/27) is Span(1, P).
2. For every w € Wy and ¢ € Sp(2g,7Z/27), we have ¢ - w —w € I.

Proof. The first point follows from the well-known fact that the action of Sp(2¢,Z/2Z) on
H,(X4,7/2Z) has two orbits: the singleton containing the neutral element and the set containing
the other elements. To prove the second point, denote by X;, Y;, Z; ; for 1 <14, j < g the classes
in Hy(Xy,7Z/27) of the Dehn twists of Fig. 5 generating Sp(2g,Z/2Z). We suppose that X;
and Y; represent the classes of Dehn twists along curves whose homology classes are x; and y;
respectively oriented such that X; - y; = z;y; and Y; - x; = x;y;. First note that the elements ©;
are invariant under the action of the X; and Y;. We are reduced to show that for any w € W,,
we have Z; ; -w —w € I. We make the proof for the generator Z 2, the other cases are similar.

Figure 5. The oriented curves defining some Dehn twists whose homology classes generate Sp(6,7Z/27Z).
First note that Z1 5 - ©; = ©; when i ¢ {1,2}. Then we compute:

Z12-01 =01 = 2y1 (1 + 21) (w122 — 1) € 1,
Z1’2 . @2 — @2 = %yz(l + :L'Q)(I‘l.rg — 1) el. [ |

The case p = 4r of Theorem 1.1 follows from the

Proposition 4.2. If p = 4r, with v an odd prime, is such that vo € V,(3,) is cyclic, then
Vp(3g) is the direct sum of two simple submodules.

Proof. Consider the linear map h: W, — Wy (') defined by h(w) = i(w) - vo. The map h is
surjective and its kernel is the ideal /. Lemma 4.1(2) and equation (4.1) imply that

Ppg(9) 0i(w) - vy =i(w)oppg(d)-vo,  forall ¢eMod(S,), weW,.

Let 6 € (Apg)'. Since 0 - vy lies in Wi (T') and h is surjective, there exists an element w € W,
such that i(w) - vg = 0 - vo. Moreover, if ¢ € Mod(3,), then

0o Pp,g(¢) "V = Pp,g(¢) of-vy= Pp,g(¢) oi(w) -vp = i(w) o pp,g(¢) - V0.

The cyclicity of v implies that 6 = i(w) € i(W,), hence we have the inclusion (A, ,)" C i(W,) C
i (C[H1(X2y,Z/22Z))).

Moreover, Lemma 4.1(1) implies that (A, 4)" Ni(C[H1(Xy,Z/2Z)]) = Span(1, P). Hence we
have the equality (A 4)" = Span(1, P) which proves the claim. [
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4.2 The case when p = 2r 71,

Assume that p = 2ryry with 71, ro distinct odd primes. In this case, there exists an unique

integer x € {1,...,r172 — 2} such that pu, = 1. Then x is even and verifies either
r=-2 (mod 71), x=0 (mod 71),
or
r=0 (mod r7), r= -2 (mod r7).

We begin by stating a technical lemma whose proof will be the subject of the next subsection:

Lemma 4.3. If (z,x,x) is p-admissible and r1,r9 > 37, then we have the following inequality
x x 2 rx x 4 ” r x 4 r x 2
z z 0 r T T z z 0 r x x|

Consider the two banded graphs I'; = and Ty = O—Q Denote by by,by €

x 0 0 x
V,(22) the two vectors by := QLO and by 1= QiQ

Lemma 4.4. Suppose p = 2riry, with r1, ro distinct odd primes, such that either (x,x,x) is
not p-admissible, or r1,1m9 > 37, then

Wio)(T'1) () Wioj(T2) C Span(vo, by, ba).

Proof. The subspaces W (I') are spanned by the vectors associated to colorings of the edges
of T by the elements 0 and x. If (x, z, ) is not p-admissible, then these colorings of I'y correspond
to the elements vy, b1, b and the proof is immediate. Suppose (z, z, x) is p-admissible. We need

toshowthatifv:ax@x +ﬁx@x € Wiy (I'2), then a = 3 = 0.

Lemma 2.1 implies that

where v’ is a linear combination of vectors of the form % for i # 2,4. Since v € Wy (T'2),

x x x x
the two coefficients in front of QLQ and QiQ vanish. Hence we get

x x 2 x x 2
z x 0 r T T o) _ 0
r v 4 xr x 4 B) \0)°
z = 0 r T T
Lemma 4.3 concludes the proof. |

Lemma 4.5. There ezists an element a € Az, 1 such that

a - uy = Uy, a - Uy = Ug.
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Proof. It is enough to show that there exists an operator ¢ € (A r,1)" such that
YUy = Uy and P Up = Ug.

The cyclicity of ug, provided by Lemma 3.1, implies the existence of a € Ay, ,, 1 such that
a - ug = ug. If such a 1 exists, then

a- Uy =a0- -uy=1Yoa-uy=up.

The operator 1 is defined as follows. Given i € {0,...,r172 — 2}, only one of the following
two cases occurs:

1. Either there exists j € {0,...,r172 — 2} so that

j=i (mod 2ry),
j=—i—2 (mod 72),

and we set 1 (u;) = uj.

2. Or there exists j € {0,...,rire — 2} so that

j=1i (mod 2r3),
j=—-i—2 (mod 71),

and we set ¥ (u;) 1= —u;.

A straightforward computation shows that ¢ commutes with p,1(7") and py,1(S) and either ¢
or — sends ug to uy. |

We define two operators a ® 1,1 ® a € Ao as follows. Consider T'y,T) C S3 the two
entangled genus 2 banded graphs of Fig. 6. Denote by I'y C T's and I'} C T, the genus one
subgraphs of the left picture of Fig. 6. Fix Hs, H) some tubular neighborhood of I'y and TY
respectively which do not intersect and H; C Hs, H { - Hé some tubular neighborhoods of I'y
and T} respectively. Identify the closure of S3\ (H; U H}) with X; x [0,1] and V,,(%;) with the
space of linear combinations of framed links in H; quotiented by the kernel of the Hopf pairing
induced by the Heegaard splitting S% = H; U (93 \ H;). From Lemma 4.5, there exists some
a € Ap1 such that a-u; = up and a - ug = u,. Let £ be a linear combination of aligned links in
S3\ (H1 U Hj) =3 x[0,1] such that Addy ;1 (£(w)) = a. Composing eventually by an isotopy,
we can suppose that the framed parallel links of £ are in S3\ (Hy U H)) = 35 x [0,1]. We
denote by a ® 1 := Add, 2 (L(w)) € Ap2 the resulting operator. Note that this definition is
not canonical since it depends on the choice of a and on how the middle edges of I'y and I%
are entangled with the framed links of £. Nevertheless, by definition this operator satisfies
(a®1)-vp =by and (a ® 1)% - vg = vg. Similarly, by considering the genus one subgraphs of I'y
and I' of the right picture of Fig. 6, we define an operator 1®a € Ay, 2 such that (1 ®a)-vg = by
and (1 ® a)? - vg = vg. We further suppose that the aligned framed links defining these two

operators are not entangled so the two operators a® 1 and 1 ®a commute. We eventually define
x x

a®a:=(a®1)o (1l ®a) which satisfies (a ® a) - vg :QLO and (a ® a)? - vy = vo.

Proof of Theorem 1.1 when p = 2r;r;. Recall we defined a linear map f: (Ap2) < Vp(Z2)
by f(0) = 0 -vo and that the image f((Ap2)") C Wjg(T'2) is invariant under the orientation-
preserving homeomorphisms of the handlebody Hs. Using Lemma 4.4 and the fact that the
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I, I

éfi

N

Figure 6. The genus 2 graphs I'; and I';, and the genus one subgraphs I'y and T} used to define a ® 1
on the left and 1 ® a on the right.

Iy

vectors in the image of f must be invariant under a homeomorphism permuting the two handles
of Hy, we have the inclusion

f((Ap2)") C Span(vo, by + b2).

We need to show that f((Apz2)) = C-wvy. By contradiction, suppose that there exists
0 € (Ap2) such that 6 -vg =b; +by =(a®1+1®a)-vy. Then we have

x x
92-1)0:(a®]l+]l®a)2-voz2vo+2©L©.

Thus 6% - vy does not belong to Span(vg, b1 + b2). This contradicts the fact that 6% € (A4,2). W

4.3 Proof of Lemma 4.3

In this subsection we consider p = 21119, with 71,9 > 37 two distinct odd primes. We suppose

that there exists = € {1,...,r1ro — 2} so that (z,z,z) is p-admissible and
=0 (mod 2ry),
=-2 (mod r9).

We also choose some primitive 7-th and ro-th roots of unity A; and As, such that A% = A; A,.
In particular, we have A%* = Ay 2,
The goal of this subsection is to show that

] (R IR (A E) [ (RS

A straightforward computation, using the formula of the recoupling coefficients [10], gives

2

e S Gl Bl ) G 2l e

4o — 1]+ 3] [gr[ngl] e —1] Bx—i—% [a:—|—3]>

_ (_1)3—1—1 [3][5]![] [%w + 1]'([32;]

ooy BB [Ba+ 1]0(]E])3 e 122
D=1 [2][x+3]!<[x£2]!;[i+[3]][g+1] ([_1} [ ] [*“}

P(A1, As),

— A-2)7A1049 '
where P is defined by

P(z,y) = g20y16 _ 1T 1T _ 16,18 4 19,13 418,14 4 3017 15 | 915,17 _ 19,11
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— 5l Ty13 _ 4 15y15 4 4p14y16 _ 9413)17 _ 18,10 4 917,11 4 6,16, 12
4ooptByld _ plagld 018,15 4 1L 1T | 9,15, 11 4 o 14,12 4 (18,18 12, 14
o016 L 1Ty T 4 g 16,8 p1500 41410 4 4012012 4 15,7 4 18,9
412910 gLl | 410,12 g8 14 (T 15 9, 15,5 g4y 6 418, T
422128 — 8rlly® 610410 _ 69yt 5 Ty18 4 2185 4 6allyT 4 621048

+ 82%° — 228y10 4 4x Ty 4 628y12 4 225y13 4 £13y3 1 a1yt — 421040

— %7+ 4x8yB — 2Ty® — 2Byl — 4x8y8 4 4268 4 50 _ 45410 _ 43,1
— 21002 4 6Byt — 2Ty® — aBy8  225yT 2% — 25TyB 4 2Byt — 24545

— 6364y6 — 23:33/7 + x2y8 + 2x7y — 49L'6y2 + 43:53/3 + 5:c3y5 =+ xy7 —22%y
— 3233 4 dayt — 2P 4+t + 2By — o

Note that P does not depend neither on r;, 73 nor on z. We have to show that P(A;, Aa) # 0.
By contradiction, suppose that P(A;, A2) = 0 and define H(X) := P(X", X"™) € Z[X]. Since P
has integral coefficients the formula P(A;, A2) = 0 holds for any roots of unity A; and As of
order 71 and 7y respectively. In particular, we have H(A?) = 0 and H(X) is divisible by the
product ¢, (X)e¢p,(X) of the two cyclotomic polynomials of order 71 and rp. Thus its degree
satisfies deg(H) > (r; — 1)(r2 — 1). Using the above formula for P we deduce that

20ry + 1671, if 2r9 > rq,

r1—1)(ry — 1) < deg(H) =
(r )(r2 — 1) < deg(H) {16r2+18r1, if 2ry <1y,

(r1 — 21)(ro — 17) < 356, if 2r9 > 71,
(r1 —17)(rqg — 19) < 352, if 2ry < 7ry.

Since r1,r9 > 37 are prime, then rq,79 > 41. We conclude by noticing that none of the two
equations of the above system does have solutions satisfying rq,ro > 41.

5 Partial generalizations in higher genus

The main obstruction to extend the above techniques in genus g > 3 lies in the proof of Propo-
sition 3.4. To prove the cyclicity of the vacuum vector, we found linear independent equations
satisfied by any vector of Wi, [ (4Apg - U())L and deduced that this space must be trivial. The
non-triviality of these equations followed from the fact that the Hopf pairing (u,, vo)ﬁl2 is a 37-
symbol, thus does not vanish. In higher genus, for a suitable choice of trivalent graph, this Hopf
pairing is a product of 6j-symbols, which might a priori vanish. Indeed, suppose p = 2(k + 2)
with k£ > 2 an even integer, and consider the two following families of 6j-symbols:

Type I Type 11
k

2

YO

where a+b+c¢=2 (mod4) | wherea+ <* =1 (mod 2)

Proposition 5.1. The 6j5-symbols of type I and type II, defined above, vanish.

We postpone the technical proof of Proposition 5.1 to Appendix A. We conjecture that the
6j-symbols of type I and II are the only vanishing 6j-symbols:
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Conjecture 5.2. If4 divides p, then the only vanishing 65-symbols at level p are the two families
type I and type II from above. If 4 does not divide p, there is no vanishing 6j-symbol at level p.

Numerical computations permitted us to verify the validity of the conjecture up to level 66.
Motivated by this conjecture, we will show the following:

Proposition 5.3.

1. Let p = 2ryry with r1, ro distinct odd primes such that either ri,r9 > 37 or the element x
defined in the introduction satisfies 3x > 2riro — 2. Suppose that p verifies Conjecture 5.2.
Then V,(2g) is simple for arbitrary g > 3.

2. Let p = 4r with v an odd prime and suppose that p verifies Conjecture 5.2. Then V,(X3)
is the direct sum of two simple modules.

Theorem 1.2 is a consequence of this proposition and the computer assisted verification of
Conjecture 5.2 up to level 66. To prove Proposition 5.3, we first show that the arguments of
section 4 generalize:

Lemma 5.4. Suppose that p,g > 3 are such that vy € V,(£,) is cyclic, then:

1. If p = 2ryry with r1, o distinct odd primes such that either ri,r9 > 37 or 3x > 2riro — 4,
then V,(£4) is simple.

2. If p = 4r with r an odd prime, then Vi.(Xy) is the sum of two simple modules.

Proof. The case p = 4r follows from Proposition 4.2. Suppose that p = 2rire is such that
vo € Vp(3y) is cyclic and recall that there exists an unique color z # 0 such that p, = 1.
Step 1: Suppose that (z,z,x) is p-admissible and 1,79 > 37. Let 'y, I's be two trivalent
graphs which only differ by a single Whitehead move inside a ball B3, as drawn in Fig. 3. Then
Wio)(T'1) N Wigj(I'2) C Span (uFl such that o(a)o(b)o(c)o(d) = 0).

o

Indeed, let o1, o2 be two p-admissible colorings of I'1, with colors 0 or z, such that o1 (e) = o2(e),
for all e € E(I'1) \ {i} and with o;(a) = 0;(b) = 0(c) = 0;(d) = z and o1(z) = 0, 02(i) = .
Suppose that there exists (a,3) € C? such that the vector v := aug, + Bug, € Wi(I'2).
Then, as in the proof of Lemma 4.4, using fusion-rules, we show that («, 3) satisfies a system of
two linear equations which are linearly independent by Lemma 4.3. Hence we have v = 0.
Step 2: If i € {1,..., g}, we denote by b; € V,,(3,) the vector representing a single framed
knot colored by x around the ¢-th hole. We have:

[ Wioy(I) = Span(uo, bi, 1 < i < g),
T

where the intersection is over the set of embedded banded trivalent graphs of genus g.
Indeed, let I' represents the graph of Fig. 7 and o a p-admissible coloring such that:

1) o(e) € {0,2}, for all e € E(T),
2) there exists ¢ < j with o(a;) = o(b;) = 0(a;) = o(b;) = x.

We can suppose that for every i < k < j, we have o(ag)o(bg) = 0.

Step 1 with a = a;, b = a;, ¢ = b; and d = b; implies that the projection of u, on () Wy (T')
vanishes. We conclude by noticing that if o is a p-admissible coloring of I, with colors in {0, z},
that does not satisfy the condition 2, then either u, = b; for some i € {1,..., g} or else u, = vy.

Step 3: We conclude the proof as in the case ¢ = 2. Using Step 2 and the fact that the
vectors of the image of f must be invariant under permutation of the handles, we have the
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a as as ag
b1 ba b3 by

Figure 7. A trivalent banded graph of genus g.

inclusion: f((Apg)’) C Span(vg,bi + -+ + by). We must show that f((Apg)) = C-vy. By
contradiction, suppose that there exists 6 € (A, 4)" such that

-vo=b1+ - +b=0R1® --®1+1®a1®---01+---+1®---®1&®a)- v,
where a @ 1 ® ... ® 1 is defined using Lemma 4.5 as in the g = 2 case. We have

92-1)0:(a®]l®---®]1+-~—|—]1®-~®]1®a)2-vg
=g +200RaeR1®--- 1) v+ +2(1l®---¥1Raa) - vy.

Hence 62 - v does not belong to () Wg(T'). This contradicts the fact that 6% € (A,,)". [ |
We now extend Proposition 3.4 to higher genus. A genus g > 2 trivalent banded graph I',
is called a fly-eyes-graph if it is obtained from I'y = by a sequence of g — 2 operations

which consist in choosing an arbitrary vertex and inserting a triangle as drawn in the left part
of Fig. 8. The right part of Fig. 8 provides an example of a genus 8 fly-eyes-graph. For instance,
the Lollipop graphs defined in Section 4.1 are not fly-eyes-graphs. There is only one genus 3
fly-eyes-graph which is the tetrahedron graph. It follows from standard fusion-rules that if o
is a p-admissible coloring of a fly-eyes-graph, then the Hopf pairing (u,, ’U())gg is a product of
6j-symbols multiplied by some non-vanishing constant.

YSY G

Figure 8. On the left, the operation transforming a fly-eyes-graph of genus ¢ into a one of genus g + 1.

On the right, an example of a genus 8 fly-eyes-graph.

Fix g > 3 and embed a fly-eyes-graph I'; in S3. Denote by H, the embedded handlebody
H, := $3\N(T'y) where N (T'y) denotes a tubular neighborhood of T'y. For each edge e € E(I,),
fix a curve v, C Hy which bounds a disc intersecting I'y only once along e. We construct a map

w: NET9) Vp(Zg)

as follows. To f: E(I'y) — N we associate the class in V,(X,) of the framed link consisting
of f(e) parallel copies of 7., thickened along ¥, for each edge e € E(I'y).

Lemma 5.5. If p = 4r, with v an odd prime, or p = 2ryro, with r1, r9 distinct odd primes, then
wy € Apg - vo for all f € {0,1}ET9),

Proof. We will show the stronger result that if o is a p-admissible coloring such that there exists
an edge e satisfying o(e) = 1, then u, € Ay 4 - vg. The conclusion of the lemma will follow. Fix
an edge e € E(I'y) and denote by ;X (7.); the surface obtained by cutting ¥, along 7. and gluing
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back two discs with one framed puncture colored by i. By the colored splitting [2, Theorem 1.4],
we have a canonical isomorphism

Vp(Eg) = &iVp(iX(7e)i)-

Denote by Mod(2,—1,2) the mapping class group of a genus g — 1 surface with two bound-
ary components and by p;7g: 1\71521(29_172) — GL(V,(i2(7e)i)) the Witten—Reshetikhin-Turaev
representation associated to ;3(7.); (see [2] for definitions). There is a natural embedding
1\7[&1(29_1,2) — M:)Jd(Eg) such that the following diagram commutes for every color i:

Mod(S,-12) 2% QLI (E(r)1))

I ﬂ

Mod (%) —24— GL(V,(3,)).

It follows from the main theorem of [6] that for ¢ = 1, the representation ,011,79 is irreducible.
Lemmas 3.1 and 3.3 imply that there exists a p-admissible coloring o with o(e) = 1 and
Uy € Ap g - vo. The irreducibility of p}),g implies that the cyclic space of u, contains the whole
subspace V,(12(7e)1). This subspace is spanned by the vectors u, such that o(e) = 1. This
concludes the proof. [ |

Suppose that p = 4r and consider the genus 3 tetrahedron graph I'. A p-admissible coloring o
of T is said of type I or II if the corresponding 6j-symbol (u,) is of type I or II respectively.
Denote by Z,3 C V,(33) the subspace generated by the vectors u, associated to p-admissible
colorings of the tetrahedron graph which are neither of type I nor of type II.

Lemma 5.6.

1. If g > 3, p = 2riry with r1, ro distinct odd primes, and if p verifies Conjecture 5.2, then
vy € Vp(Eg) s cyclic.

2. If p=4r, with r an odd prime, verifies Conjecture 5.2, then Zp3 C Ap3 - vo.

Proof. The proof is similar to the genus 2 case. Choose a vector

v € Wy m(Ap,g = Z Qrly.
]

TE[o

If p = 4r, we further suppose that v € Z,3. We must find dim (W[U]) independent equations
verified by the coefficients a;. Denote by F' € NI the set of functions f such that f(e) € {0,1}
for all e € E(I'). Lemma 5.5 implies that wy € A, 4 - vo for all f € F. By definition of v, we

have that (wy, v)fg =0 for all f € F. Thus we have

Sl T M) erlur )i, =0, foran feF.
T€[o] \e€E(T)

Since the complex numbers (u.r,vo)gg are nonzero, it is enough to show that the matrix
M = ( II )\f 8) refo] Das independent lines to conclude the proof. Recall that we defined
ecE(T) feF
Vandermonde matrices Ne] in the proof of Proposition 3.4. Denote by ey, ..., e3s_3 the edges
of I. The matrix M is obtained from the invertible matrix N{e;|®- - -®N[e34—3] by removing the
lines corresponding to non p-admissible colorings of I'; so has independent lines. This concludes
the proof. |
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To complete the proof of Proposition 5.3, it remains to show that if p = 4r, with r an odd
prime, verifies Conjecture 5.2 and o is a coloring of the tetrahedron graph of type I or 11, then u,
belongs to the cyclic subspace generated by vy € V,(X3). We cut the proof in three technical
lemmas.

Lemma 5.7. Suppose p = 4r with r > 7 an odd prime. Let o be a coloration of the tetrahedron
graph which is

1) either of type I and such that either we have (a # §) or (b # %),
2) or of type I and such that either we have (a # b and a #k —b) or c = & (mod 4),
then uys belongs to the cyclic space generated by vy.

Proof. The proof is similar in both cases and relies on the following remark: embed a colored
tetrahedron graph in Hs, choose two opposite edges of the graph and perform two Whitehead
moves on these edges. We get this way another embedding of the tetrahedron graph inside Hs.
While choosing the edges colored by b and its opposite colored by % in a type I coloration of
the tetrahedron graph, we have

k
2
k
b )
= : : al’] ’
a c 1,7
J
where

Q5 = < > < >Ci7j with Ci,j 75 0.
b k b a

2

[NIES

b 5
Ifi= % then a;; = 0. If i # g then the vector belongs to Z, 3, since either
J
a # % or b # g Hence this vector belongs to the cyclic space generated by vy by Lemma 5.6.

This concludes the proof in the first case. The second case is proved similarly. |

Lemma 5.8. Suppose p = 4r with r > 7 an odd prime. Let o be a coloration of the tetrahedron

graph of type I, such that a = b= % Then u, belongs to the cyclic space generated by vg.

Proof. Lemma 2.1 implies that

- (-0 D)

where v’ is a vector orthogonal to the first one.

IR

|

(IR
+
@\

By
-
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Proposition 3.4 implies that the vacuum vector is cyclic in genus 2 and Lemma 3.3 implies

that the vector % Q/() % belongs to the cyclic space generated by the vacuum vector
a

in genus 3.
When a = %, then W,,; is one dimensional, so according to Lemma 3.5, either v belongs

2
the cyclic space generated by vg or it belongs to its orthogonal. Since its scalar product with
0.

the vector % Q/O % is a non null 3j-symbol, the vector v, is in the cyclic space of vy.

a
When a # g, then W[Ua] is two dimensional generated by v, and vi_,. If v = a1v, + @2VE_4
belongs to the orthogonal of the cyclic space generated by vy, then v is orthogonal to both vectors

b Q/() E oand Q/() k. This implies that v = 0 so W, is included in
a k—a

the cyclic space of the vacuum vector. |

Lemma 5.9. Suppose p = 4r with r > 7 an odd prime. Let o be a coloration of the tetrahedron
graph of type I1, such that we have (either a = b or a = k—0b) and (¢ = %—1—2 (mod 4)). Then u,
belongs to the cyclic space generated by vg.

Proof. Lemma 2.1 implies that

BN

Il
—
w
s
S
<L No|F
——
IS
IS

Let T € 1\//[5/(1(29) represents the lift of the Dehn twist around the edge colored by i in the
above graph. We have

k
2
a a
IOP,3(T)' :Z{ k—a a
a a (

Applying the preceding Whitehead move in the opposite direction, we see that p,3(T) - us
J

S kS
—
T
—_
~.
N
=
+
K
=)
IS

belongs to the space generated by the vectors of the form . Whenever j # %, these
a a

generating vectors belong to Z, 3 and thus to the cyclic space generated by the vacuum vector.

Denote by /3 the scalar product (uq, pp3(T)us).
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If 8 =0, then p, 3(T) - u, belongs to the cyclic space generated by vy, so does u, since p, 3(7T")

is invertible.

If B # 0, then the operator A := -1 + { “ “

k—a a

N[ Z 0|7

} pp3(T) € Aps is invertible

since pp 3(T) has finite order. Since A - u, belongs to the cyclic space generated by the vacuum

vector, so does .

A Appendix: Vanishing 6j-symbols

Assume that p = 2(k + 2) with & > 2 an even integer. The goal of this appendix is to prove

Proposition 5.1.

Lemma A.1. Let a, b be two integers such that (a,k — a,b) is p-admissible. Define

a

(e
(D)

b+k

Then we have F(a,b) = (—1) 2 .

F(a,b) :=

Proof. A straightforward computation using the formulas of [10] gives F'(a,b) =

f(a) = (=1)%la+1]![k — at and g(b) = (=1)F" [452]! [£52 +1]1. Note that

fa+1) _ fat2 _

2
f(a) [k — d] g(b) [55°]

We conclude using the fact that F(%, 2) =—1.

Lemma A.2. If (a,b,c) is a p-admissible triple, then we have

a k—a

HOPREIGS)

(k —a)(k — b) . -1

(D) (D))

f(a)
g(b)?

where

Proof. We use the fact that adding a trivial framed knot colored by k does not change the
class of a vector. We work in the space associated to the sphere with three punctures colored

by a, b and ¢ and compute

a k

a b b
O
= =(k—a)(k—0)
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(LOPL) (e

= (k—a)(k—0b) .
<]<;—ac> <ac>
c
We conclude the proof by identifying both vectors. |

Proof of Proposition 5.1. We use the fact that the Kauffman bracket of a link in S* does
not change if we add a trivial framed knot colored by k. First, for a 6j-symbol of type I, we use
Lemmas 2.1 and A.1 to compute

k
2

(e

S
[y

[Py

Thus < > =0.
a c

For a 6j-symbol of type I, a similar computation using Lemmas A.1 and A.2 gives

[STE

= F(a,c)-
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(IR

NS

Thus =0. [ |
b b
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