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Abstract. We classify rank 2 cluster varieties (those for which the span of the rows of the
exchange matrix is 2-dimensional) according to the deformation type of a generic fiber U
of their X -spaces, as defined by Fock and Goncharov [Ann. Sci. Éc. Norm. Supér. (4) 42
(2009), 865–930]. Our approach is based on the work of Gross, Hacking, and Keel for cluster
varieties and log Calabi–Yau surfaces. Call U positive if dim[Γ(U,OU )] = dim(U) (which
equals 2 in these rank 2 cases). This is the condition for the Gross–Hacking–Keel con-
struction [Publ. Math. Inst. Hautes Études Sci. 122 (2015), 65–168] to produce an additive
basis of theta functions on Γ(U,OU ). We find that U is positive and either finite-type or
non-acyclic (in the usual cluster sense) if and only if the inverse monodromy of the tropi-
calization U trop of U is one of Kodaira’s monodromies. In these cases we prove uniqueness
results about the log Calabi–Yau surfaces whose tropicalization is U trop. We also describe
the action of the cluster modular group on U trop in the positive cases.
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1 Introduction

In [5], Fock and Goncharov define a class of schemes, called cluster varieties, whose rings of
global regular functions are upper cluster algebras. In [8], Gross, Hacking, and Keel describe
how to view cluster varieties as certain blowups of toric varieties. We review this description, as
well as Gross–Hacking–Keel’s construction [9] of the tropicalization of a log Calabi–Yau surface.
We then use these ideas to give a classification of rank1 2 cluster varieties (those for which
the symplectic leaves of the X -space are 2 dimensional) and to describe their cluster modular
groups. This can also be viewed as a classification of log Calabi–Yau surfaces.

By a log Calabi–Yau surface or a Looijenga interior, we mean a surface U which can be
realized as Y \D, where Y is a smooth, projective, rational surface over an algebraically closed
field k of characteristic 0, and the boundary D is a choice of snc anti-canonical divisor in Y .
Furthermore, D = D1 + · · ·+Dn is either a cycle of smooth irreducible rational curves Di with
normal crossings, or if n = 1, D is an irreducible curve with one node. By a compactification
of U , we mean such a pair (Y,D) ([10] calls these compactifications with “maximal boundary”).
We call (Y,D) a Looijenga pair, as in [9]. Toric varieties are the most basic examples, and
every U can be obtained by performing certain blowups on a toric surface, cf. Lemma 2.10.

1.1 Outline of the paper

Cluster varieties: Section 2 reviews [5]’s definition of cluster varieties and summarizes [8]’s
description of cluster varieties as certain blowups of toric varieties (up to codimension 2). In

1Cluster algebraists often take rank 2 to mean that the exchange matrix is 2 × 2. However, we use rank to
mean the dimension of the space spanned by the rows or columns of the exchange matrix.
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particular, we review Section 5 of [8], which shows that log Calabi–Yau surfaces are roughly the
same as fibers of rank 2 cluster X -varieties. Our classification of cluster varieties will be up to
deformation of these associated log Calabi–Yau surfaces. In Sections 2.6 and 2.7, we review [5]’s
definitions of the cluster modular group Γ and the cluster complex C. Proposition 2.21 gives
a simpler definition of Γ by showing that the triviality of cluster transformations can be checked
on X trop rather than needing to examine the full A and X -spaces.

The tropicalization of U : In Section 3, we review [9]’s construction of the tropicaliza-
tion U trop of a log Calabi–Yau surface. U trop is homeomorphic to R2, but it has a natural
integral linear structure that captures the intersection data of the boundary divisors. The
integer points U trop(Z) ⊂ U trop generalize the cocharacter lattice N for toric varieties, and U trop

itself generalizes NR := N ⊗ R.
The integral linear structure is singular at a point 0 ∈ U trop, and in Section 3.5 we examine

the monodromy around this point. In Section 3.6, we discuss properties of lines in U trop. For
example, the monodromy in U trop may make it possible for lines to wrap around the origin and
self-intersect. Section 3.7 introduces some automorphisms of U trop that we will see in Section 5
are induced by the action of Γ. In Section 3.8, we review some lemmas from [19] which will be
useful for the classification in Section 4.

Section 3.9 shows that, although U trop does not in general determine the deformation type
of U , it does at least determine the charge of U , which is the number of “non-toric blowups”
necessary to realize a compactification of U as a blowup of a toric variety.

Classification: As in [9, 10], log Calabi–Yau surfaces can be classified based on the intersec-
tion matrix (Di ·Dj)ij as negative definite, strictly negative semi-definite, or positive (meaning
not negative semi-definite). Some equivalent characterizations of these cases appear in [9, Lem-
ma 6.9], with additional characterizations scattered throughout the various versions of [9, 10].
We review many of these characterizations in Theorems 4.1, 4.2, and 4.3.

We then turn to the main result of this paper, namely, a refinement of the characterization
of positive log Calabi–Yau surfaces. These refined classifications are given in Theorem 4.4 (the
positive non-acyclic cases), Theorem 4.5 (the acyclic cases), and Theorem 4.7 (the finite-type
cases), with Proposition 4.9 separating out the cases which are acyclic but not finite-type. The
refined classification is based on several different properties of these varieties, including (but not
limited to):

• The properties of the quiver associated to the cluster variety – e.g., Dynkin (finite-type),
acyclic, or non-acyclic.

• The space of global regular functions on U – e.g., all constant, or including some, all, or
no cluster X -monomials.

• The geometry of U trop, including the monodromy and properties of lines.

• The intersection form Q on the lattice D⊥ ⊂ A1(Y,Z) of curve classes which do not
intersect any component of D.

• The intersection of the Langlands dual cluster complex (a subset of X trop) with U trop –
e.g., some, all, or none of U trop.

For example, we find that U corresponds to an acyclic cluster variety if and only if some
straight lines in U trop do not wrap all the way around the origin. The cases where no lines
wrap correspond to finite-type cluster varieties. We show that the inverse monodromies of U trop

in these finite-type cases are Kodaira’s monodromy matrices In, II, III, and IV , from his
classification of singular fibers in elliptic surfaces in [17] (cf. Table 4.2 for a summary of these
cases). Similarly, the non-acyclic positive cases correspond to Kodaira’s matrices I∗n, II∗, III∗,
and IV ∗ – furthermore, the intersection form Q on D⊥ here is of type Dn+4 (n ≥ 0) or En,
n = 8, 7, or 6, respectively (cf. Table 4.1). The deformation types for the Kodaira-monodromy
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cases are uniquely determined by U trop, and we describe how to construct each of these cases
explicitly.

Cluster modular groups: [5] defines a certain group Γ of automorphisms of cluster va-
rieties, called the cluster modular group. In Section 5 we explicitly describe the action of Γ
on U trop in all the positive cases (cf. Table 5.1). This action is interesting because, in addition
to capturing most of the relevant data about Γ, it preserves the scattering diagram which [9]
and [12] use to construct canonical theta functions on the mirror. Symmetries of the scattering
diagram induced by mutations were previously observed in [13, Theorem 7], although they did
not put this in the language of cluster varieties or describe the full groups of automorphisms
induced in this way.

We end by applying several of the previous results to prove Theorem 5.8, which says that if
the monodromy of U trop is any of Kodaira’s monodromies, then U trop uniquely determines U
up to a strong version of deformation equivalence that marks U by its relationship with U trop.

2 Cluster varieties as blowups of toric varieties

In [5], Fock and Goncharov construct spaces called cluster varieties by gluing together algebraic
tori via certain birational transformations called mutations. [8] interprets these mutations from
the viewpoint of birational geometry, and thereby relates the log Calabi–Yau surfaces of [9] to
cluster varieties. This section will summarize some of the main ideas from [8]. We do not assume
rank 2 in this section unless otherwise stated.

2.1 Defining cluster varieties

The following construction is due to Fock and Goncharov [5].

Definition 2.1. A seed is a collection of data

S = (N, I,E := {ei}i∈I , F, 〈·, ·〉, {di}i∈I),

where N is a finitely generated free Abelian group, I is a finite index set, E is a basis for N
indexed by I, F is a subset of I, 〈·, ·〉 is a skew-symmetric Q-valued bilinear form, and the di’s
are positive rational numbers called multipliers. We call ei a frozen vector if i ∈ F . The rank of
a seed or of a cluster variety will mean the rank of 〈·, ·〉.

We define another bilinear form on N by

(ei, ej) := εij := dj〈ei, ej〉,

and we require that εij ∈ Z for all i, j ∈ I. Let M = N∗. Define2

p∗1 : N →M, v 7→ (v, ·), p∗2 : N →M, v 7→ (·, v).

Let Ki := ker(p∗i ), Ni := im(p∗i ) ⊆ M , ei := p∗1(ei), and vi := p∗2(ei). For each i ∈ I, define
a “modified multiplier” d′i by saying that vi is d′i times a primitive vector in M .

Remark 2.2. Given only the matrix (ei, ej) and the set F , we can recover the rest of the data,
up to a rescaling of 〈·, ·〉 and a corresponding rescaling of the di’s. This rescaling does not affect
the constructions below, and it is common take the scaling out of the picture by assuming that
the di’s are relatively prime integers (although we do not make this assumption). Also, notice
that 〈·, ·〉 and {d′i} together determine {di}, so when describing a seed we may at times give {d′i}
instead of {di}.

2Beware that our subscripts for p∗1 and p∗2 do not mean the same thing as for [8]’s p∗1 and p∗2.
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Observations 2.3.

• K1 is also equal to ker(v 7→ 〈v, ·〉), so 〈·, ·〉 induces non-degenerate skew-symmetric form
on N1. This also means that we could have equivalently defined the rank to be that of (·, ·).
• Define another skew-symmetric bilinear form on N by [ei, ej ] := didj〈ei, ej〉. Then K2 =

ker (v 7→ [·, v]), so [ei, ej ] induces a non-degenerated skew-symmetric form on N2. We can

extend this to N2
sat

(the saturation in M of N2), and after possibly rescaling [·, ·] (and
adjusting the di’s accordingly) we can identify this with the standard skew-symmetric

form on N2
sat

with the induced orientation. We will denote this form and the induced
symplectic form on N2,R by (· ∧ ·). Here and in the future, R in the subscript means the
lattice tensored with R.

• We note that the seed obtained from S by replacing 〈·, ·〉 with [·, ·] and di with d−1
i produces

the Langlands dual seed S∨ described in [5]. Switching to S∨ has the effect of replacing (·, ·)
with its negative transpose, thus switching the roles of (and negating) p∗1 and p∗2.

• Since (·, ei) = −di〈ei, ·〉, we see that im(p∗2) and im(v 7→ 〈v, ·〉) span the same subspace
of MR. Since the kernel of v 7→ 〈v, ·〉 is K1 by the first observation above, we see that there
is a canonical isomorphism N2,R ∼= N1,R. One checks that this is a symplectomorphism
with respect to the symplectic forms induced by [·, ·] and 〈·, ·〉.

Given a seed S as above and a choice of non-frozen vector ej ∈ E, we can use a mutation to
define a new seed µj(S) := (N, I,E′ = {e′i}i∈I , F, 〈·, ·〉, {di}), where the (e′i)’s are defined by

e′i = µj(ei) :=


ei + εijej if εij > 0,

−ei if i = j,

ei otherwise.

(2.1)

Mutation with respect to frozen vectors is not allowed. Note that although the bases change,
the form 〈·, ·〉 does not, so K1 and N

sat
1 are invariant under mutation. The same is true for K2

and N2
sat

, as can similarly be seen using the Langlands dual seed and [·, ·] – one can check that
the procedure for obtaining S∨ from S commutes with mutation.

Given a lattice L and some v ∈ L∗, we will denote by zv the corresponding monomial on
TL := L⊗ k∗ = Speck[L∗] (more precisely, max-Spec of k[L∗]). Corresponding to a seed S, we
can define a so-called seed X -torus XS := TM = Spec k[N ], and a seed A-torus AS := TN =
Speck[M ]. We define cluster monomials Xi := zei ∈ k[N ] and Ai := ze

∗
i ∈ k[M ], where {e∗i }i∈I

is the dual basis to E.

Remark 2.4. In place of M , other authors may use the superlattice (M)◦ ⊂ M ⊗ Q spanned
over Z by vectors fi := d−1

i e∗i . One then takes Ai :=
(
zfi
)
∈ k[M◦]. This seems to significantly

complicate the exposition and the formulas that follow with little or no benefit for us, and so
we do not follow this convention.

For any j ∈ I, we have a birational morphism µXj : XS → Xµj(S), called a cluster X -mutation,
defined by(

µXj
)∗
X ′i = Xi

(
1 +X

sign(−εij)
j

)−εij for i 6= j,
(
µXj
)∗
X ′j = X−1

j .

Similarly, we can define a cluster A-mutation µAj : AS → Aµj(S),

Aj
(
µAj
)∗
A′j =

∏
i : εji>0

A
εji
i +

∏
i : εji<0

A
−εji
i ,

(
µAj
)∗
A′i = Ai for i 6= j.
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Now, the cluster X -variety X is defined by using compositions of X -mutations to glue XS′
to XS for every seed S′ which is related to S by some sequence of mutations. Similarly for the
cluster A-variety A, with A-tori and A-mutations. The cluster algebra is the subalgebra of k[M ]
generated by the cluster variables Ai of every seed that we can get to by some sequence of
mutations. In this context, the well-known Laurent phenomenon simply says that all the cluster
variables are regular functions on A. The ring of all global regular functions on A is called the
upper cluster algebra.

On the other hand, the Xi’s do not always extend to global functions on X . When a monomial
on a seed torus (i.e., a monomial in the Xi’s for a fixed seed) does extend to a global function
on X , we call it a global monomial, as in [8].

2.1.1 Quivers and seeds

We now describe a standard way to represent the data of a seed with the data of a (decorated)
quiver. Each seed vector ei corresponds to a vertex Vi of the quiver. The number of arrows
from Vi to Vj is equal to 〈ei, ej〉, with a negative sign meaning that the arrows actually go from Vj
to Vi. Each vertex Vi is decorated with the number di. Furthermore, the vertices corresponding
to frozen vectors are boxed. Observe that all the data of the seed can be recovered from the
quiver.

Now, a seed is called acyclic if the corresponding quiver contains no directed paths that do
not pass through any frozen (boxed) vertices. A cluster variety is called acyclic if any of the
corresponding seeds are acyclic. It is easy to see that a seed S is acyclic if and only if there is
some closed half-space in N2 which contains vi for every i ∈ I \ F .

2.2 The geometric interpretation

As in [8], for a lattice L with dual L∗ and with u ∈ L, ψ ∈ L∗, and ψ(u) = 0, define

µu,ψ,L : TL 99K TL,

µ∗u,ψ,L
(
zϕ
)

= zϕ
(
1 + zψ

)−ϕ(u)
for ϕ ∈ L∗.

One can check that the mutations above satisfy(
µXj
)∗

= µ∗(·,ej),ej ,M
: zv 7→ zv

(
1 + zej

)−(v,ej)
,(

µAj
)∗

= µ∗ej ,(ej ,·),N : zγ 7→ zγ
(
1 + z(ej ,·)

)−γ(ej)
.

Definition 2.5. A seed S is called coprime if vi is not a positive rational multiple of vj for any
distinct i, j ∈ I \F . S is called totally coprime if every seed mutation equivalent to S is coprime.

The following key lemma, compiled from Section 3 of [8], is what leads to the nice geometric
interpretations of mutations and cluster varieties.

Lemma 2.6 ([8]). Suppose that u is primitive in a lattice L. Let Σ be a fan in L with rays
corresponding to u and −u, and let TV(Σ) be the corresponding toric variety. Denote

F :=
{

1 + zψ = 0
}
⊂ TV(Σ),

and define

H+ := F ∩Du.

Then the result of blowing up H+, followed by blowing down the proper transform of F , is a new
toric variety TV(Σ′). Let µu,ψ,L : TV(Σ) 99K TV(Σ′) be the associated birational map. Then
the mutation µu,ψ,L : TL → TL is the restriction of µu,ψ,L to the big torus orbits.
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F̃
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Figure 2.1. A mutation involves blowing up a hypertorus H+ in Du (left arrow) and then contracting

the proper transform F̃ of the fibers F which hit H+ (right arrow), down to a hypertorus H− in D−u.

Ẽ denotes the exceptional divisor, with E being its image after the contraction of F̃ . The locus p = Ẽ∩ F̃
has codimension 2 and does not appear in the cluster variety.

In general, since µku,ψ,L = µku,ψ,L (the k-th power with respect to composition), it follows
that µku,ψ,L can be described by repeating this blowup-blowdown procedure k times.

Furthermore, µXj preserves the centers
{

1+zei = 0
}
∩Dvi of the blowups corresponding to µXi

for each i 6= j. If S is totally coprime, then µAj preserves the centers
{

1 + zei = 0
}
∩Dei for the

blowups corresponding to µAi for each i 6= j.

In the setup of the lemma above, recall that the projection L → L/Z〈u〉 induces on TV (Σ)
a P1-fibration πu : TV(Σ)→ Du with Du and D−u as sections. We find it helpful to think of F
as π−1

u (H+), or alternatively, as the fibers of πu which intersect H+, cf. Fig. 2.1.
We now take a closer look at the case of X -mutations. Let F := {Xj = −1}. Then Lemma 2.6

tells us that
(
µXj
)∗

corresponds to blowing up H+ := F ∩ Dvj , followed by blowing down the
proper transform of F , and repeating for a total of d′j times (with F being replaced after each
blowup-blowdown with the newest exceptional divisor). The new seed torus is only different
from the old one in that it is missing the blown-down fibers of the initial P1-fibration, but
has gained the exceptional divisor from the final blowup (except for the lower-dimensional set of
points where this exceptional divisor intersects a blown-down fiber, represented by p in Fig. 2.1).

Since the centers of the blowups corresponding to the other mutations have not changed, this
shows that the cluster X -variety can be constructed, up to codimension 2, as follows: For any
seed S, take a fan in M with rays generated by ±vi for each i, and consider the corresponding
toric variety. For each i ∈ I \ F , blow up the hypertorus {Xi = −1} ∩D(·,ei) d

′
i times, and then

remove the first (d′i − 1) exceptional divisors. Then up to codimension 2, the cluster X variety
is the complement of the proper transform of the toric boundary. We denote this complement
by X ?. We use A? to denote the analogously constructed version of A.

Remark 2.7. In this construction of X , the centers for the hypertori we blow up may intersect if
(·, ei) = (·, ej) for some i 6= j, so some care must be taken regarding the ordering of the blowups.
When we write X ?, we implicitly assume that we have fixed some ordering of the blowups, and
similarly for A?. Fortunately, this issue only matters in codimension at least 2 (cf. [8] for more
details). However, when we consider fibers of X under the map λ introduced below, it is possible
that some special fibers will have discrepancies in codimension 1. As we will see below, A is
a torsor over what is perhaps the “most special” fiber of X . The failure of mutations to preserve
the centers of blowups for non-coprime A, along with the resulting fact that A and A? may
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differ in codimension 1, may be viewed as consequences of such codimension 1 issues in this
special fiber.

Remark 2.8. We have seen that codimension 2 issues arise as a result of missing points like p
in Fig. 2.1, and also as a result of reordering the blowups. There are also missing contractible
complete subvarieties – the (d′j − 1) exceptional divisors we remove when applying

(
µXj
)∗

. We
view these issues as being unimportant since they do not affect Γ(X ,OX). When we want to
stress that we are only interested in X or its fibers up to these issues, we will say “up to irrelevant
loci.”

2.3 The cluster exact sequence

Observe that for each seed S, there is a not necessarily exact3 sequence

0→ K2 → N
p∗2→M → K∗1 → 0.

Here, M → K∗1 is the map dual to the inclusion K1 ↪→ N . Tensoring with k∗ yields an exact
sequence, and one can check (cf. Lemma 2.10 of [5]) that this sequence commutes with mutation.
Thus, one obtains the exact sequence

1→ TK2 → A
p2→ X λ→ TK∗1 → 1.

Let U := p2(A) = Xe := λ−1(e) ⊂ X . The sequence 1 → TK2 → A → U → 1, along with
the partially compactified version in [20, Section 2], should be viewed as a generalization of the
construction of toric varieties as quotients, with U being the generalization of the toric variety.
In this paper, we are particularly interested in the fibers of λ, but cf. Remark 2.18 for more on
how these relate to A.

2.4 Looijenga interiors

Section 5 of [8] shows that Looijenga interiors (i.e., log Calabi–Yau surfaces), as defined in
Section 1, are exactly the surfaces (up to irrelevant loci, cf. Remark 2.8) which arise as fibers
of λ|X ? for rank 2 cluster varieties. We explain this now.

Definitions 2.9. For a Looijenga pair (Y,D) as in Section 1, we define a toric blowup to be
a Looijenga pair (Ỹ , D̃) together with a birational map Ỹ → Y which is a blowup at a nodal
point of the boundary D, such that D̃ is the preimage of D. Note that taking a toric blowup
does not change the interior U = Y \D = Ỹ \ D̃. We also use the term toric blowup to refer to
finite sequences of such blowups.

By a non-toric blowup
(
Ỹ , D̃

)
→ (Y,D), we will always mean a blowup Ỹ → Y at a non-nodal

point of the boundary D such that D̃ is the proper transform of D. Let
(
Y ,D

)
be a Looijenga

pair where Y is a toric variety and D is the toric boundary. We say that a birational map
Y → Y is a toric model of (Y,D) (or of U) if it is a finite sequence of non-toric blowups.

We say two Looijenga interiors U1 and U2 are deformation equivalent, or of the same defor-
mation type, if they admit deformation equivalent compactifications with the same boundary,
i.e., if there is a family (Y,D) → S with S connected, with D → S the trivial family with
fibers D, and with compactificaitons of U1 and U2 appearing as fibers.

Lemma 2.10 ([9, Proposition 1.19]). Every Looijenga pair has a toric blowup which admits
a toric model.

3im(M) might not be saturated in K∗1 , resulting in torsion elements in the quotient.
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According to [10], all deformations of U come from sliding the non-toric blowup points along
the divisors Di ⊂ D without ever moving them to the nodes of D. We call U positive if
some deformation of U is affine. This is equivalent to saying that D supports an effective
D-ample divisor, meaning a divisor whose intersection with each component of D is positive.
We will always take the term D-ample to imply effective. See Section 4.2 for other equivalent
characterizations of U being positive.

To see that Looijenga interiors are the same as fibers of λ|X ? for rank 2 cluster varieties, up
to irrelevant loci, we will need the following lemma from [8].

Lemma 2.11 ([8, Lemma 5.1]). Let H+ be the intersection of the zero set of 1 + zei with Dvi.
Let t ∈ TK∗1 . Then H+ ∩ λ−1(t) consists of |ei| points, where |ei| is the index of ei := p∗1(ei)

in N1 (i.e., ei is |ei| times a primitive vector in N1).4

Now, in light of Lemmas 2.10 and 2.11 and the description of X ? in Section 2.2, it is clear
that for 〈·, ·〉 rank 2, every fiber of λ|X ? is a Looijenga interior, up to irrelevant loci. For the
converse, we use the following:

Construction 2.12. Following Construction 5.3 of [8], let U be a Looijenga interior. Choose
a compactification (Y,D) admitting a toric model π : (Y,D) →

(
Y ,D

)
. Let NY be the cocha-

racter lattice of Y . Let (· ∧ ·) : N2
Y
→ Z denote the standard wedge form.

Suppose that π consists of d′i non-toric blowups at a point qi ∈ Dui , i = 1, . . . , s, where Dui

is the divisor corresponding to the ray R≥0ui ⊂ NY ,R, ui ∈ NY primitive. We can assume that

the qi’s are distinct. We extend this to a set E := {u1, . . . , us, us+1, . . . , um} of not necessarily
distinct primitive vectors generating NY , and we choose positive integers d′s+1, . . . , d

′
m.

Now, let S be the seed with N freely generated by a set E = {e1, . . . , em}, I = {1, . . . ,m},
F := {s + 1, . . . ,m}, {d′i} as above, and 〈ei, ej〉 := ui ∧ uj . Note that we can identify N2

sat

with NY via the identification vi = d′iui. Similarly, we can identify N1
∼= N/K1 with NY via the

identification 〈ei, ·〉 = ui. Thus, each ei is primitive in N1.
Using S to construct X , the interpretation of X -mutations from Section 2.2, together with

Lemma 2.11, reveals that U is deformation equivalent to the general fibers of λ, up to irrelevant
loci. A bit more work shows that U is in fact isomorphic to some fiber of X ?, hence isomorphic
to the corresponding fiber of X up to irrelevant loci.

This construction shows that:

Theorem 2.13. Every Looijenga interior can be identified with a fiber of some X ? associated
to a rank 2 cluster X -variety. Conversely, up to irrelevant loci, the fibers of X ? for rank 2
cluster X -varieties are Looijenga interiors, and general fibers of X are Looijenga interiors up to
codimension 2.

For the last statement, we use that X \ X ? has codimension 2 and consists of collections of
complete interior curves supported in fibers of λ. Hence, general fibers of X and X ? are equal.

Example 2.14. Consider the case where Y is a cubic surface, obtained by blowing up 2 points
on each boundary divisor of

(
Y ∼= P2, D = D1 +D2 +D3

)
. We can take

E = {(1, 0), (1, 0), (0, 1), (0, 1), (−1,−1), (−1,−1)},

with each di = d′i = 1 and F empty. Then the fibers of the resulting X -variety X1 correspond
to the different possible choices of blowup points on the Di’s. The fiber U is very special,
having four (−2)-curves. If we instead take E = {(1, 0), (0, 1), (−1,−1)} with 〈·, ·〉 given by

4If k is not algebraically closed, Lemma 2.11 might not be true, but it at least holds for ei primitive in N1.
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1 −1 0

)
, and each di = d′i = 2, then the fibers of the resulting X -variety X2 include only

the surfaces constructed by blowing up the same point twice on each Di and then removing the
three resulting (−2)-curves. U is the fiber where the blowup points are colinear and so there is
one remaining (−2)-curve.

The deformation type of the fibers of X ? has only changed by the removal of certain (−2)-
curves, i.e., by some irrelevant loci. Note that X ?2 = X2, and that X2 can be identified (after
filling in the removed (−2)-curves) with a subfamily of X ?1 whose fibers do not agree with those
of X1 in codimension 1.

These examples are well-known: the former corresponds to the Teichmüller space of the four-
punctured sphere, while the latter corresponds to the Teichmüller space of the once-punctured
torus (cf. [5, Section 2.7]).

Recall the definition of a coprime seed from Definition 2.5. Note that a seed being coprime
means that for each i ∈ I \ F , d′i is the total number of non-toric blowups taken on the divisor
corresponding to vi. We now define a notion which in a sense means being as far from coprime
as possible (although the two are not mutually exclusive).

Definition 2.15. We say a seed S is maximally factored if each d′i = 1. Two seeds S1 and S2

(along with the associated cluster varieties) will be called fiberwise-equivalent if the general fibers
of the corresponding X -varieties X1 and X2 are of the same deformation type, up to irrelevant
loci.

Example 2.16. The first seed for the cubic surface in Example 2.14 is maximally factored,
while the second seed is totally coprime. The two seeds are clearly fiberwise-equivalent since
they both correspond to the cubic surface.

Example 2.14 above demonstrates that we can often change the number of vectors in a seed
without changing the fiberwise-equivalence class of the fibers. For example, consider a seed
{N = Z〈E〉, I, E = {e1, . . . , em}, F, 〈·, ·〉, {di}} with each di = d′i such that each ei is primitive5

in N1. Given a collection of partitions di = di,1+· · ·+di,bi , di,j ∈ Z≥0, we can define a new seed S′

as follows: Let E′ : {ei,j}, i = 1, . . . ,m, j = 1, . . . , bi, and N ′ := Z〈E′〉. Define 〈ei1,j1 , ei2,j2〉′ :=
〈ei1 , ei2〉. We say the pair (i, j) ∈ F ′ if i ∈ F . Finally, di,j is as in the partitions. The corre-
sponding space X ′ is fiberwise-equivalent to the original X . By this method, we can show that:

Proposition 2.17. Every seed is fiberwise-equivalent to a coprime seed and to a maximally
factored seed. Furthermore, by a sequence of mutation equivalences and fiberwise-equivalences,
every seed can be related to a totally coprime seed.

Proof. For the latter statement, if S is not totally coprime, we mutate to a seed S′ which is not
coprime, then apply the first statement to take a fiberwise-equivalent seed S′′ which is coprime.
We repeat this if S′′ is not totally coprime. Since S′′ has lower dimension than S, this process
terminates. �

Remark 2.18. According to [8, Section 4] and [20], Γ(A?,OA?) is the Cox ring for X ?e , roughly,⊕
L∈Pic(X ?

e ) Γ(X ?e ,L). Similarly over other points of T ∗K1
besides the identity e (in fact, over

generic points we can drop the superscript ? ). Here, the “irrelevant loci” actually are relevant
since they affect the Picard group. Replacing a maximally factored seed S with some fiberwise-
equivalent seed S′ corresponds to restricting to some sublattice of Pic(X ?e ), hence, some cor-
responding subring of Γ(A?,OA?). Alternatively, these A-spaces for S and S′ are related by
a procedure introduced in [4], now called “folding” in the cluster literature.

5Every rank 2 seed is fiberwise-equivalent to one with this primitivity condition because they all have Looijenga
pairs as the fibers of their corresponding X ?. However, this condition can easily be avoided.
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2.4.1 The canonical intersection form

For S a maximally factored rank 2 seed and (Y,D) a corresponding Looijenga pair, [8] describes
a natural way to identify K2 := ker(p∗2) with D⊥ := {C ∈ A1(Y,Z) |C ·Di = 0∀ i}, thus inducing
a canonical symmetric bilinear form Q on K2. This identification of K2 with D⊥ is as follows:
an element v :=

∑
aiei of K2 corresponds to a relation

∑
aivi = 0 in N

sat
2 , which we recall from

Construction 2.12 can be identified with NY , where Y → Y is a toric model corresponding to S.
Standard toric geometry says that this determines a unique curve class Cv in π∗[A1(Ȳ )] such
that Cv ·Di =

∑
aj for each i, where the sum is over all j such that Dvj = Di. So we can define

an isomorphism ι : K2
∼= D⊥ by

v 7→ Cv −
∑
i

aiEi,

where Ei is the exceptional divisor corresponding to mutating with respect to ei.
Finally, for u1, u2 ∈ K2, define Q(u1, u2) = ι(u1) · ι(u2). We will see in Section 4 that D⊥

together with this intersection pairing tells us quite a bit about the deformation type of U . In
particular, [8] tells us that U is positive if and only if Q is negative definite.

Recall that varying the fiber of X corresponds to changing the choices of non-toric blowup
points on D. For some choices of blowup points, certain classes C in D⊥ may be represented
by effective curves. Let D⊥Eff ⊆ D⊥ be the sublattice generated by the curve classes which are
represented by an effective curve on some fiber.

Example 2.19. For the seed from Example 2.14, K2 is generated by {e2−e1, e4−e3, e6−e5, e1+
e3 + e5}. The corresponding curves in D⊥ are {E1 −E2, E3 −E4, E5 −E6, L−E1 −E3 −E5},
where Ei is the exceptional divisor of the blowup corresponding to ei, and L is a generic line in
Y ∼= P2. Using Ei · Ej = −δij , L · L = 1, and L · Ei = 0 for each i, one easily checks that this
lattice has type D4. On the special fiber U , these four curve classes are effective, so D⊥Eff = D⊥.

2.5 Tropicalizations of cluster varieties

[5] describes tropicalizations Atrop and X trop of the spaces A and X , respectively. Given a seed S,
Atrop can be canonically identified as an integral piecewise-linear manifold with NR,S , and the
integral points Atrop(Z) of the tropicalization are identified with NS . For a different seed µj(S),
the identification is related by the tropicalization of µAj . This turns out to be the integral

piecewise-linear function µ∨j : NR → NR: that is, the Langlands dual seed mutation, with the
overline indicating that ej is mapped by the same piecewise-linear function as the other vectors,
rather than being negated. Similarly for X trop and X trop(Z) using MR,S , MS , and the dual seed
mutations. We will use the subscript S to indicate that we are equipping the tropical space with
the vector space structure corresponding to the seed S.

Our interest in this paper is primarily with the fibers U of λ. U trop can be canonically
identified6 with N2⊗R = p∗2(Atrop) ⊂ X trop. Here, U trop(Z) is identified with N sat

2 , as evidenced
in Construction 2.12. We will spend Section 3 analyzing U trop in the rank 2 cases. [9] has shown
that in these cases, U trop has a canonical integral linear structure which is closely related to the
geometry of the compactifications (Y,D).

2.6 The cluster modular group

A seed isomorphism h : S → S′ is an isomorphism of the underlying lattices which takes (frozen)
seed vectors to (frozen) seed vectors (thus inducing a bijection h : I → I ′ taking F to F ′),

6Another perspective which might be worth exploring in the future would be to identify the tropicalizations
of different fibers of λ with different fibers of λ∗, with only the fiber over e corresponding to what we call U trop

here.
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such that di = dh(i) and 〈ei, ej〉 = 〈h(ei), h(ej)〉′. This induces isomorphisms h : X → X ′ and
h : A → A′ given by h∗X ′h(i) = Xi and h∗A′h(i) = Ai, respectively, as well as an isomorphism

from U := p2(A) ⊂ X to U ′ := p2(A′) ⊂ X ′. By a cluster isomorphism, we mean these
induced isomorphisms of the X and A spaces. A seed transformation is a composition of seed
mutations and seed isomorphisms, and a cluster transformation is a composition of cluster
mutations and cluster isomorphisms (i.e., the corresponding maps on A and X ). By a seed auto-
transformation, we mean a seed transformation from a seed to itself, and similarly for a cluster
auto-transformation. A trivial seed auto-transformation is a seed transformation which acts7

trivially on X trop. Similarly, a trivial cluster auto-transformation is a cluster transformation
which acts trivially on A and X .

Definition 2.20 ([5]). The cluster modular group Γ is the group of cluster auto-transformations
of a base seed S modulo trivial cluster auto-transformations.

We also define an extended cluster modular group Γ̂ by allowing seed isomorphisms to reverse
the sign of the skew-symmetric form on N . For example, for a toric variety with cocharacter
lattice N , Γ can be thought of as the subgroup of SL(N) which preserves the fan (consisting of
rays corresponding to frozen vectors), whereas Γ̂ can be thought of as the subgroup of GL(N)
preserving the fan. We will analyze the action of Γ on U trop in Section 5, and we will briefly
point out a couple interesting symmetries coming from Γ̂ \ Γ (Remark 5.6).

2.7 The cluster complex

A seed S with seed vectors e1, . . . , en determines a cone CS ⊂ X trop
S = (XS∨)trop := MR,S

given by ei ≥ 0 for all i ∈ I \ F . The collection of all such cones in
(
X∨
)trop

for every seed
mutation equivalent to S forms a simplicial fan called the cluster complex, denoted by C, cf. [12,
Theorem 0.8]. The generators of the rays of this fan are called g-vectors. The cones of C form
a particularly nice piece of the scattering diagram which [12] uses for constructing canonical
theta functions on the mirror A∨ to X .

Note that the action of Γ on X∨ induces an action on
(
X∨
)trop

(Z), and this induces an
action on the cluster complex. Here, because it is tricky to make sense of what it means for an
action on

(
X∨
)trop

to be linear, we view the cluster complex as a collection of tuples of g-vectors
rather than a collection of linear spaces they span. As we mentioned at the start of Section 2.5,
[8] shows that the tropicalization of mutation indeed agrees with the formula for Langlands
dual seed mutation, so the action of h ∈ Γ on X trop(Z) is given by the corresponding seed auto-
transformation. In particular, if h is trivial, then any cluster auto-transformation representing it
corresponds to a trivial seed auto-transformation. The following proposition shows the converse:

Proposition 2.21. Γ acts faithfully on
(
X∨
)trop

(Z), and may be equivalently defined as the
group of seed auto-transformations of a base seed S modulo trivial seed auto-transformations.

Proof. If h ∈ Γ acts trivially on
(
X∨
)trop

(Z), then it acts trivially on C. By [12, Theorem 0.8],
this means that h acts trivially on the set of equivalence classes of seeds, and thus corresponds
to a trivial cluster transformation. For the second statement, note that seed transformations
and cluster transformations are in bijection by definition, so the only nontrivial part of this
statement is that trivial seed auto-transformations correspond bijectively to trivial cluster auto-
transformations. We saw one direction of this immediately before the proposition, and the first
statement of the proposition is the reverse direction. �

7Here, we do not view mutations as acting on U trop. Rather, each mutation-equivalent seed S gives a piecewise-
linear identification of U trop with a lattice U trop

S , and a seed auto-transformation S → S′ induces a map
U trop

S → U trop
S′ , hence a piecewise-linear automorphism of U trop (in fact, this is a linear automorphism, cf.

Lemma 5.1).
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We note that a similar argument shows that Γ̂ can also be understood in terms of its action
on
(
X∨
)trop

. One sees that Γ̂ is the same as the group of cluster auto-transformations considered
in [1] (cf. their Lemma 2.3).

In Section 5 we will describe the action of the cluster modular group on U trop. In many
(conjecturally all) cases, every integral linear automorphism of U trop is induced by an element
of the cluster modular group.

3 U trop as an integral linear manifold

Recall that U denotes a log Calabi–Yau surface. This section examines U trop with its canonical
integral linear structure defined in [9].

3.1 Some generalities on integral linear structures

A manifold B is said to be (oriented) integral linear if it admits charts to Rn which have
transition maps in SLn(Z). We allow B to have a set O of singular points of codimension at
least 2, meaning that these integral linear charts only cover B′ := B \O. B′ has a canonical set
of integral points which come from using the charts to pull back Zn ⊂ Rn. Our space of interest,
B = U trop, will be homeomorphic to R2 and will typically have a singular point at 0 (which we
say is also an integral point).

B′ admits a flat affine connection, defined using the charts to pull back the standard flat
connection on Rn. Furthermore, pulling back along these charts give a local system Λ of integral
tangent vectors on B′. We will be interested in the monodromy of Λ around O.

3.1.1 Integral linear functions

By a linear map ϕ : B1 → B2 of integral linear manifolds, we mean a continuous map such that
for each pair of integral linear charts ψi : Ui → Rn, Ui ⊂ B′i with ϕ(U1) ⊂ U2, we have that
ψ2 ◦ ϕ ◦ ψ−1

1 is linear in the usual sense. ϕ is integral linear if it also takes integral points to
integral points. By an integral linear function, we will mean an integral linear map to R with
its tautological integral linear structure.

We note that to specify an integral linear structure on an integral piecewise linear manifold
(i.e., a manifold where transition functions are integral piecewise linear), it suffices to identify
which piecewise linear functions are actually linear. These functions can then be used to con-
struct charts. It therefore also suffices (in dimension 2) to specify which piecewise-straight lines
are straight, since (piecewise-)straight lines form the fibers of (piecewise-)linear functions.

3.2 Constructing U trop

Notation 3.1. Given a toric model (Y,D) → (Y ,D), let N be the cocharacter lattice corre-
sponding to (Y ,D) (contrary to Section 2’s notation), and let Σ ⊂ NR be the corresponding
fan. Σ has cyclically ordered rays ρi, i = 1, . . . , n, with primitive generators vi, corresponding to
boundary divisors Di ⊂ D and Di ⊂ D. Assume NR is oriented so that ρi+1 is counterclockwise
of ρi. Let σu,v denote the closed cone bounded by two vectors u, v, with u being the clockwise-
most boundary ray. In particular, if u and v lie on the same ray, we define σu,v to be just that ray.
We may use variations of this notation, such as σi,i+1 := σvi,vi+1 and vρ for the primitive genera-
tor of some arbitrary ray ρ with rational slope, but these variations should be clear from context.

We now use (Y,D) to define an integral linear manifold U trop. As an integral piecewise-linear
manifold, U trop is the same as NR, with 0 being a singular point and U trop(Z) := N being
the integral points. Note that an integral Σ-piecewise linear (i.e., bending only on rays of Σ)
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function ϕ on U trop can be identified with a Weil divisor of Y via Wϕ := a1D1 + · · · + anDn,
where ai = ϕ(vi) ∈ Z. We define the integer linear structure of U trop by saying that a function ϕ
on the interior of σi−1,i ∪ σi,i+1

8 is linear if it is Σ-piecewise linear and Wϕ ·Di = 0. This last
condition is (for n ≥ 2) equivalent to

ai−1 +D2
i ai + ai+1 = 0.

Equivalently (as in [9]), if ϕ : σi−1,i ∪ σi,i+1 → R2 is a chart, then

ϕ(vi−1) +D2
i ϕ(vi) + ϕ(vi+1) = 0. (3.1)

Note that the linear structure is determined by (Y,D) and does not depend on the choice of
toric model. In fact, while the construction generalized to higher-dimensions, a special feature
of the two-dimensional situation is that toric blowups and blowdowns do not affect the integral
linear structure, so as the notation suggests, U trop and U trop(Z) depend only on the interior U .

Example 3.2. If (Y,D) is toric, then U trop is just NR with its usual integral linear structure.
This follows from the standard fact from toric geometry that

∑
i(C · Di)vi = 0 for any curve

class C. Taking non-toric blowups changes the intersection numbers, resulting in a singularity
at the origin.

Remark 3.3. Recall from standard toric geometry that any primitive vector v ∈ N corresponds
to a prime divisor Dv supported on the boundary of some toric blowup of

(
Y ,D

)
, and a general

vector kv with k ∈ Z≥0 and v primitive corresponds to the divisor kDv. Two divisors on
different toric blowups are identified if there is some common toric blowup on which their
proper transforms are the same (equivalently, if they correspond to the same valuation on the
function field). Since taking proper transforms under the toric model gives a bijection between
boundary components of (Y,D) and boundary components of

(
Y ,D

)
(and similarly for the

boundary components of toric blowups), we see that points of U trop(Z) correspond to multiples
of divisors on compactifications of U .

3.3 Another construction of U trop

We now give another construction of the canonical integral linear structure, this time more
closely related to the cluster picture. Given a seed S, consider the non-frozen seed vectors
{ei}i∈I\F . Recall that vi := p∗2(ei) ∈ U trop := p∗2(Atrop) ⊂ X trop (cf. Section 2.5). The integral

linear structure on U trop agrees with that of the vector space U trop
S (with the lattice N2,S as the

integral points) on the complement of the rays ρi := R≥0vi, i ∈ I \ F . By repeatedly mutating,
this determines the integral linear structure everywhere.

For yet another perspective, consider a line L in U trop
S which crosses a ray ρi as above. Viewed

as a piecewise-straight line in U trop with its canonical integral linear structure, L will bend away
from the origin when it crosses ρi. Lines L which are straight in U trop will bend towards the
origin in U trop

S as follows: if u is a tangent vector to L on one side of ρi which points towards ρi,
then on the other side, u − |u ∧ vi|vi will be a tangent vector pointing away from ρi. Another
way to state this perspective is that the “broken lines” (as in [9] and [12]) in U trop which are
actually straight with respect to the canonical integral linear structure are exactly those which
bend towards the origin as much as possible.

8We assume here that there are more than 3 rays in Σ, so that σi−1,i∪σi,i+1 is not all of NR. This assumption
can always be achieved by taking toric blowups of (Y,D). Alternatively, it is easy to avoid this assumption, but
the notation and exposition becomes more complicated. We will therefore continue to implicitly assume that
there are enough rays for whatever we are trying to do.
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Figure 3.1. (a): Cubic surface developing map. We let ρji denote δjρD1
,ρD2

(ρDi
). (b): M0,5 developing

map, with ρji labelled for j = 0, 1.

3.4 The developing map

We now describe a tool from [9] that is useful for doing explicit computations on U trop. Consider
the universal cover ξ : Ũ trop

0 → U trop
0 := U trop \ {0}. Note that Ũ trop

0 has a canonical integral

linear structure pulled back from U trop
0 . The integral points are Ũ trop

0 (Z) := ξ−1
[
U trop

0 (Z)
]
.

Furthermore, a ray ρ ∈ U trop
0 pulls back to a family of rays ρj , j ∈ Z = π1

(
U trop

0

)
, projecting

to ρ (we arbitrarily choose a ray in Ũ trop
0 to be ρ0 and then assign the other indices so that they

increase as we go counterclockwise).
Suppose that v ∈ ρ0 and v′ ∈ ρ′0 are primitive vectors in Ũ trop

0 spanning the integral points

of σv,v′ . Then there is a unique linear map δρ,ρ′ : Ũ
trop
0 → R2 \{0} such that δρ,ρ′(v) = (1, 0) and

δρ,ρ′(v
′) = (0, 1). We call this the developing map with respect to ρ and ρ′. We will often leave

off the subscripts if they are not relevant, or we will write δρ if only the image ρ of the first ray is

relevant. δ is an integral linear immersion, and δ
(
Ũ trop

0 (Z)
)
⊆ Z2 \ {(0, 0)}. A superscript j ∈ Z

on δ will indicate that we are considering the jth sheet of δ (e.g., δj(ρ) := δ(ρj) for ρ ∈ U trop
0 ).

Example 3.4. Consider the cubic surface (as in Example 2.14) constructed by taking two non-
toric blowups on each of the three boundary divisors D1, D2, and D3 of P2. The intersection

matrix H := (Di ·Dj) is H =
(−1 1 1

1 −1 1
1 1 −1

)
and equation (3.1) (or the construction from charts)

implies that δ0
ρD1

,ρD2
(v3) = (−1, 1), and δj(v) = (−1)jδ0(v). See Fig. 3.1(a).

Example 3.5. Consider
(
M0,5, D = D1 + · · ·+D5

)
constructed from the toric surface

(
P2, D =

D1 + D2 + D4

)
by making toric blowups at D1 ∩ D4 and D2 ∩ D4, as well as one non-toric

blowup on each of D1 and D2. We then have five boundary components, each with self-intersec-
tion −1. A developing map takes the rays of the fan to (1, 0), (0, 1), (−1, 1), (−1, 0), and (0,−1),
respectively, and then restarts with (1,−1) and (1, 0). See Fig. 3.1(b).

3.5 Monodromy about the origin

We now consider what happens when we parallel transport a tangent vector v in TpU
trop coun-

terclockwise around the origin. We use the embedding of a cone in the tangent spaces of its
points (which are all identified via parallel transport in the cone), and we use the notation
δi := δiρD1

,ρD2
.

Example 3.6. Suppose Y → Y consists of a single non-toric blowup on, say, D1. Then δ0(v1) =
δ1(v1) = (1, 0). However, δ0(v2) = (0, 1) while δ1(v2) = (1, 1). We can view parallel transporting
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counterclockwise around the origin as parallel transporting up one sheet on the developing
map, and then the monodromy tells us how to write the transported vector in terms of δ1(v1)
and δ1(v2). Thus, the monodromy is

µ =

(
1 1
0 1

)−1

=

(
1 −1
0 1

)
.

More generally, recall that if v = (a, b) in the basis {(1, 0), (0, 1)}, then in a basis {u1, u2},
v is given by ( u1 u2 )−1 ( ab ). Thus, the monodromy is in general given by

µ =
(
δ1(v1) δ1(v2)

)−1

with respect to the basis and developing map
{
δ0(v1) = (1, 0), δ0(v2) = (0, 1)

}
. Thus, for any

x ∈ U trop
0 and k ∈ Z, we have µ−k

(
δ0(x)

)
= δk(x), and so we may view µ−k as the deck trans-

formation corresponding to k ∈ Z = π1

(
U trop

0

)
(positive k corresponding to counterclockwise

paths), i.e., µ−k acts on Ũ trop
0 by raising points up k sheets. In particular, the monodromy

determines U trop as an integral linear manifold: U trop is the quotient of Ũ trop
0 by the action

of µ−1.

The matrices µ and µ−1 can always be factored into a product of unipotent matrices as
follows: choose a toric model in which ki non-toric blowups are taken on the divisor Dvi , for
v1, . . . , vs ∈ N cyclically ordered clockwise. Then we have the factorization

µ−1 = µ−ksvs · · ·µ
−k1
v1

, (3.2)

where µ−kivi is given in an oriented unimodular basis (vi, v
′
i) by the matrix

(
1 ki
0 1

)
. More generally,

in a basis where vi = (a, b), the corresponding contribution to µ−1 is

µ−ki(a,b) :=

(
1− kiab kia

2

−kib2 1 + kiab

)
. (3.3)

Now µ can of course be expressed as µk1
v1
· · ·µksvs . Alternatively (following from the fact that

AµvA
−1 = µAv), the monodromy matrix is given by the product µ = (µ′vs)

ks · · · (µ′v1
)k1 of

matrices of the form

(µ′vi)
ki := µki(ai,bi)

=

(
1 + kiaibi −kia2

i

kib
2
i 1− kiaibi

)
, (3.4)

where (a1, b1) := v1, and for i > 1, (ai, bi) := (µ′vi−1
)ki−1 · · · (µ′v1

)k1vi. This can be interpreted
by saying that before we can apply the monodromy contribution corresponding to vi, we have
to let the modifications we have made so far act on vi.

Remark 3.7. We note that we can view these factorizations of µ as corresponding to factoriza-
tions of the singular point into several focus-focus singularities (i.e., singularities with unipotent
monodromy) which are contained on their counterclockwise-ordered invariant rays. Each toric
model of U determines such a factorization, but in general, different factorizations may cor-
respond to toric models of non-deformation-equivalent log Calabi–Yau surfaces. Theorem 5.8
shows that this does not happen when µ−1 is one of Kodaira’s monodromies.

Example 3.8. In Example 3.4, we have δ1(v1) = (−1, 0) and δ1(v2) = (0,−1), so we thus see
that the monodromy for the cubic surface is − Id.
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Example 3.9. Similarly, for Example 3.5 we have δ1(v1) = (1,−1) and δ1(v2) = (1, 0), so the
monodromy is

µ =

(
1 1
−1 0

)−1

=

(
0 −1
1 1

)
with respect to the basis

{
δ0(v1) = (1, 0), δ0(v2) = (0, 1)

}
.

We have that U trop is uniquely determined (as an integral linear manifold, up to isomorphism)
by its monodromy, and that a factorization of the monodromy into unipotent elements with
cyclically ordered eigenrays as above corresponds to a toric model for a Looijenga pair (up to
deformation), and hence to a seed as in Section 2.4. By “eigenray,” we mean an eigenline with
a chosen direction.

3.5.1 Mutations and monodromy

We now describe the monodromy of U trop directly in terms of seed data. Use µi,S to indicate
that we are mutating a seed S with respect to a vector ei. We consider the induced map on N2,
identified with NY as in Section 2.4, which we denote by µi,S . This is not hard to describe –
it is given by equation (2.1), with each ei replaced by vi := p∗2(ei), and (·, ·) replaced by the
induced non-degenerate bilinear form (· ∧ ·) on NY . Assume that the vi’s are positively ordered
with respect to the orientation induced by this form.

Now we observe that, in the notation of equation (3.3), µ2
i,S = µ

−d′i
vi . Thus, the inverse

monodromy µ−1 of U trop is µ−1 =
∏
µ2
i,S , where the product is taken over all i, with the vi’s

being ordered counterclockwise as we move from right to left in the product. Note that the vi’s
in this formula are not affected by the previous mutations!

Alternatively, by equation (3.4), we have µ = µ−2
n,Sn ◦ µ−2

n−1,Sn−1 ◦ · · · ◦ µ−2
1,S1 , where S1 := S,

and Sk := µ−2
k−1,Sn−1

(
Sk−1

)
. That is, we apply the inverse mutation twice with respect to one

vector, then twice with respect to the next vector in the new seed, and so on.
This straightforward way to compute the monodromy is potentially useful because in Section 4

we classify cluster varieties in terms of their monodromies (among other things).

3.6 Lines in U trop

For us, a line L in U trop will simply mean the image of a linear map L : R → U trop
0 (we abuse

notation by letting L denote the map and its image). A line together with such a choice of linear
map will be called a parametrized line.

The signed lattice distance of a parametrized line L from the origin is given by the skew-form
L(t)∧L′(t), where we use the canonical identification of the vector from 0 to L(t) with a vector
in TL(t). Note that the lattice distance does not depend on t. We will write L>0 to denote
that a line L has positive lattice distance from the origin (i.e., goes counterclockwise about the
origin), or L<0 to denote that it has negative lattice distance from the origin.

We will say that a parametrized line L goes to infinity parallel to q if, for any open cone σ 3 q,
there is some tσ ∈ R such that t > tσ implies L(t) ∈ σ, L′(t) = q under parallel transport in σ.
Similarly for coming from infinity parallel to q, with t > tσ replaced by t < tσ and L′(t) = q
replaced with −L′(t) = q.

We let L(∞) and L(−∞) denote the directions in which L goes to and comes from infinity.
We use the subscript q to indicate that a line L goes to infinity parallel to q. For example,
L>0
q denotes a line which goes to infinity parallel to q with the origin on its left.

We say that an unparametrized line goes to infinity parallel to q if it admits a parametrization
which does. In general, a line need not go to infinity at all. In fact, one characterization of U
being positive is that every line both goes to and comes from infinity, cf. Section 4.2.
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We note that the monodromy about the origin in U trop allows lines to wrap around the origin
and self-intersect. We say that a line L wraps if it intersects every ray, except possibly one, at
least once. It wraps k times if it hits each ray at least k times, except possibly for one ray which
it may hit only (k − 1) times.

Example 3.10. If (Y,D) is the cubic surface introduced in Example 3.4, then for any ray
ρ ⊂ U trop, U trop \ ρ is isomorphic as an integral linear manifold to an open half-plane. Both
ends of any line will go to infinity in the same direction. If we now make a non-toric blowup on
some Dρq , then in the new integral linear manifold, any line will self-intersect unless both ends
will go to infinity parallel to q.

3.7 Some integral linear automorphisms of U trop

Assume that U is positive, so lines go to infinity on both ends. Given a point q in U trop, define

ν+(q) := L>0
q (−∞), ν−(q) := L<0

q (−∞).

Intuitively, both operations correspond to “negating” a vector in the integral linear manifold,
but using different choices of charts. These clearly lift to maps ν̃+ and ν̃− : Ũ trop

0 → Ũ trop
0 , which

may be viewed as rotation 180◦ clockwise or counterclockwise, respectively.

Lemma 3.11. ν+ and ν− are integral linear and inverse to each other.

Proof. This follows from ν̃± being integral linear and inverse to each other, which is clear since
clockwise/counterclockwise 180◦-rotations of R2 are integral linear and inverse to each other. �

We will see in Proposition 5.7 that ν± are induced by Γ.

3.8 Useful facts from [19]

The following is a restatement of a Lemmas 3.7 and Corollary 3.8 from [19]:

Lemma 3.12. Let L ⊂ U trop be a line which does not wrap. Let u and v be the directions
in which L goes to infinity. Let σL ⊂ U trop be the closed cone which is bounded by u and v
and which does not contain any points of L. Then some compactification of U admits a toric
model whose non-toric blowups are all along divisors corresponding to rays in σL. Furthermore,
after choosing a suitable compactification of U , there is only one such toric model with blowups
centered on divisors corresponding to rays in σL \ ρu (alternatively, σL \ ρv).

Suppose U is positive, and let (Y,D) be a compactification of U with D supporting an
effective D-ample divisor (cf. Section 2.4). Let NE(Y ) denote the cone of effective curve classes
of Y . [9] constructs a flat family V → Speck[NE(Y )] mirror to U which admits a canonical
k[NE(Y )]-module basis of theta functions {ϑq}q∈Utrop(Z). [10] then shows that U can be realized
as a fiber of V, thus giving theta functions on U . Recall from Section 2.1 that a global monomial
is regular function on X whose restriction to some seed X -torus is a monomial. We also call the
restriction to a fiber U ⊂ X of such a function a global monomial. Section 3.6 of [19] observes
the following (phrased differently):

Lemma 3.13. Take σL as in Lemma 3.12. For any q ∈ σL, ϑq is a global monomial.

Assume U is positive, and let V denote a generic fiber of the mirror V. Given a line L ⊂ V trop,
let Z(L) denote the connected component of V trop \ L which contains the origin. For q ∈
U trop(Z), v ∈ V trop(Z), we can define ϑtrop

q (v) := valDv(ϑq), where Dv is the boundary divisor
corresponding to v in some compactification of V . [19] extends ϑtrop

q to all of V trop and describes
its fibers explicitly. In particular Corollary 4.11 of [19] implies:
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Lemma 3.14. For each d < 0 and q ∈ U trop(Z), the set
{
d < ϑtrop

q < 0
}
⊂ V trop is equal

to Z(L) for some line L. Thus, if every line wraps, then every ϑtrop
q is non-positive everywhere,

and in fact, f trop is non-positive everywhere for every regular function on V .

Proof. The last statement uses that every regular function is a linear combination of theta
functions, and valuations of linear combinations of theta functions are given by taking the
minima of the valuations of each term (Remark 4.4 and the preceding paragraph of [19] explain
why no cancellations occur). �

3.9 The tropicalization determines the charge

One natural question to ask is to what extent U trop determines U . We will see in the next
section that in many cases, U is uniquely determined up to deformation by U trop. This is not
always the case though: for example, there are two degree 8 Del Pezzo’s with an irreducible
choice of anti-canonical divisor which have the same U trop but are not deformation equivalent.
This subsection shows that U trop does at least determine the number of non-toric blowups.

Definition 3.15. The charge9 of a Looijenga pair (Y,D) is the number of non-toric blowups in
a toric model for some toric blowup of (Y,D).

Lemma 3.16. A Looijenga pair (Y,D = D1 + · · · + Dn) with n > 1 and intersection matrix
H := (Di ·Dj) has charge

c(Y,D) = 12− 3n− Tr(H). (3.5)

Proof. First note that, for n > 1, toric blowups increase n by 1, decrease Tr(H) by 3, and keep
the charge constant, so equation (3.5) is unaffected by toric blowups and blowdowns. Similarly,
non-toric blowups decrease Tr(H) by 1 and increase the charge by 1, so the validity of the
equation is also unaffected by non-toric blowups. Since every Looijenga pair is related to a copy
of the toric pair

(
P2, D

)
by some sequence of toric blowups, toric blowdowns, and non-toric

blowups, it now suffices to just check this case. We have c
(
P2, D

)
= 0, n = 3 and Tr(H) = 3, so

the equation holds. �

A similar formula appears in [10]: c(Y,D) = 12−
(
n+K2

Y

)
.

Proposition 3.17. Suppose that (Y,D) and (Y ′, D′) are two Looijenga pairs with the same
tropicalization U trop. Then c(Y,D) = c(Y ′, D′).

Proof. Let ΣY and ΣY ′ be the corresponding fans in U trop. There exists some nonsingular
common refinement Σ which is the fan for a toric blowup of both (Y,D) and (Y ′, D′). The
intersection matrices for these two toric blowups are the same, since each can be determined
from Σ, so the claim follows from Lemma 3.16. �

4 Classification

Here we give several equivalent classifications for the possible deformation classes of Looijenga
pairs. These classifications are based on the intersection matrix H of D, the intersection form Q
on D⊥ ∼= K2 (or the restriction of Q to D⊥Eff ⊂ D⊥, cf. Section 2.4.1), the monodromy µ
of U trop, the properties of lines in U trop, the global functions on U , the properties of the quiver
for a corresponding cluster structure, and various other properties. This may be viewed as

9More generally, the charge of a log Calabi–Yau variety (Y,D = D1 + · · · + Dn) is given by c(Y,D) :=
dim(Y ) + rank(Pic(Y ))− n.
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a classification of rank-2 cluster varieties up to the notion of fiberwise-equivalence given in
Definition 2.15. The classification is not totally new – for example, the cases that we refer to as
“no lines wrap” or “some lines wrap” are simply the finite-type or acyclic cases, respectively, in
the cluster language. However, we do offer new characterizations of these cases.

Throughout this section, D will be called minimal if it has no (−1)-components. We begin
with classifying the negative (semi-)definite cases. Most of the statements for these cases appear
in [9] (some only in arXiv v1) or in [10], or else follow easily, as we will show.

4.1 The negative semi-definite cases

Theorem 4.1 (the negative definite cases). The following are equivalent:

1. The intersection matrix H = (Di ·Dj) is negative definite.

2. Any developing map δ as in Section 3.4 embeds the universal cover Ũ trop
0 of U trop

0 into
a strictly convex cone in R2.

3. The monodromy satisfies Tr(µ) > 2.

4. All lines in U trop wrap infinitely many times around the origin, meaning that they hit each
ray infinitely many times. However, none of the lines are circles.

5. The quadratic form Q on D⊥ is not negative semi-definite.

6. U and its deformations admit no non-constant global regular functions.

7. D can be blown down to get a surface Y with a cusp singularity. If D is minimal, D2
i ≤ −2

for all i, and D2
i ≤ −3 for some i.

Proof. The equivalence of (1) and the cusp singularity statement from (7) is taken as the defini-
tion of a cusp singularity in [9], while the statement for D minimal appears in [9, Example 1.10]
and is easily checked. The equivalence of (1) and (2) is [9, Lemma 1.5, arXiv v1].

(7)⇒(6) is in [10] and can be seen from Hartog’s Lemma since Y is compact and Y \ U
is an isolated singularity. For (6)⇒(1), suppose D is not negative definite. If D is negative
semi-definite, then by Theorem 4.2(7) below, some deformation of (Y,D) admits an elliptic
fibration over P1 with D as a fiber, the restriction of this fibration to the deformed U gives
a non-constant global regular function. On the other hand, if D is not negative semi-definite,
then Spec Γ(U,OU ) is two-dimensional by Theorem 4.3(6) below (i.e., by [9, Lemma 6.9]), and
so U has many non-constant global sections.

To see that (2)⇒(3), recall that for µ ∈ SL2(R), |Tr(µ)| ≤ 2 if and only if µ is a rota-
tion or shear map, and either of these would contradict the claim that the image of δ lies in
a strictly convex cone (recall that µ−1 acts by deck transformations, cf. Example 3.6). Similarly,
if Tr(µ) < −2, then the eigenvalues are negative, and this also contradicts the strict convexity.
So Tr(µ) > 2 is the only remaining possibility. Conversely, Tr(µ) > 2 implies that µ acts by
hyperbolic rotation, and the geometric interpretation of this makes it clear that the image of δ
must be contained in a strictly convex cone, giving (3)⇒(2).

Note that (4) is equivalent to the statement that every line in R2 which does not pass through
the origin and which intersects interior of the image of δ must hit the boundary of the image of δ
(circles would be parallel to both boundary rays, impossible unless the image of δ is a half-space).
The equivalence of (2) and (4) is clear from this.

The equivalence of (1) and (5) is in [10]. For the direction (1)⇒(5), note that if both H
and Q were negative semi-definite, then all of Pic(Y ) would be negative semi-definite. But we
can assume by possibly making some additional toric blowups that Y is a blowup of a projec-
tive toric variety, and then the pullback of an ample class will have positive self-intersection,
a contradiction. The converse (5)⇒(1) is an easy consequence of the Hodge index theorem. �
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We now consider the cases where H is negative semi-definite, but not negative definite. Once
again, the following statements mostly appear in [9] and [10], or else follow easily.

Theorem 4.2 (the strictly negative semi-definite cases). The following are equivalent:

1. The intersection matrix H is negative semi-definite but not negative definite.

2. Any developing map δ for U trop
0 identifies the universal cover of U trop

0 with a half-plane
in R2.

3. The monodromy µ is SL2(Z)-conjugate to a matrix of the form ( 1 a
0 1 ), with a > 0.

4. Some lines in U trop are circles (all others wrap infinitely many times around the origin).

5. If D is minimal, then D ∈ D⊥, or equivalently, either D2
i = −2 for all i, or D is irreducible

with D2 = 0.

6. The quadratic form Q on D⊥ is negative semi-definite but not negative definite.

7. For D minimal, (Y,D) is deformation equivalent to a Looijenga pair (Y ′, D′) which admits
an elliptic fibration having D′ as a fiber.

Proof. The equivalence (1)⇔(2) is part of [9, Lemma 1.5, arXiv v1]. The equivalence (2)⇔(3)
is straightforward using the characterization of matrices with trace ±2 as shear matrices.

For (2)⇔(4), note that circles correspond to lines in the half-space δ
(
U trop

0

)
which are parallel

to the boundary of this half-space. Any other line in R2 which intersects the interior of δ
(
U trop

0

)
must also hit the boundary of δ

(
U trop

0

)
, and as in the proof of Theorem 4.1, these lines wrap

infinitely many times around the origin.

The equivalence (1)⇔(5) is easily checked and was stated in [9, Section 0.5.2, arXiv v1]. Note
that if D is minimal, reducible, and has intersecting components Di−1, Di with Di of self-inter-
section greater than (−2) (hence ≥ 0 by minimality of D) and D2

i−1 ≤ 0, then
[(
−D2

i−1 +1
)
Di+

Di−1

]2 ≥ 2−D2
i−1 > 0.

The equivalence (1)⇔(6) is also due to [10]. Let us first check (1)⇒(6). By the statement
(5)⇒(1) in Theorem 4.1, we know that (1) here implies Q is negative semi-definite. Then by (5),
if D is minimal, we have D · Di = 0 for each i, hence D ∈ D⊥ and Q(D) = 0, thus showing
that Q is not definite. If D is not minimal, let p : (Y,D) → (Y ′, D′) be a sequence of toric
blowdowns to a case with minimal boundary. Then p∗(D′) is in D⊥ and satisfies Q(D′) = 0.

For (6)⇒(1), suppose H were not negative semi-definite. Then some divisor C supported
on D has positive self-intersection, and by the Hodge index theorem, C⊥ (which contains D⊥) is
negative definite. So if (6) holds, then H must be negative semi-definite. But by the statement
(1)⇒(5) of Theorem 4.1, (6) implies that H is not negative definite, giving (6)⇒(1)

Finally, (7) implies that D · Di = 0 for each i, hence D must have the form of (5). The
converse was stated in [9, Section 0.5.2, arXiv v1], and it can be seen as follows: Let E be
any (−1)-curve hitting a component Di ⊂ D (e.g., an exceptional divisor from a toric model).
Let D be the push-forward of D after blowing down E, and similarly for components of D.

Then D
2

= D ·Di = 1, while D ·Dj = 0 for j 6= i. By Riemann–Roch, the linear system |D|
has dimension at least 1. Let C be any curve in |D| other than D itself. From the intersection
numbers, we see that C must be disjoint from D except for a single point of intersection p in
the interior of Di. Blowing up p results in a new Looijenga pair (Y ′, D′), with D′ the proper
transform of D, such that the proper transform of C is linearly equivalent to and disjoint from D′.
Thus, |D′| must contain a pencil giving an elliptic fibration of Y ′. �

As stated above, if D is minimal then it is either irreducible or consists of n > 1 (−2)-curves.
The largest possible n here is 9. This follows from Lemma 3.16, which says that the charge is
c(Y,D) = 12− 3n−Tr(H) = 12−n. The charge is by definition non-negative, giving us n ≤ 12.
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Furthermore, the classifications below then imply that some lines do not wrap if c(Y,D) ≤ 2, so
then n ≤ 9. A case with n = 9 can be explicitly constructed.

4.2 The positive cases

Several characterizations of the positive cases appear in [9, Lemma 6.9]. We state some of these
and others now.

Theorem 4.3 (the positive cases). The following are equivalent:

1. The intersection matrix H is not negative semi-definite.

2. The developing map for U trop
0 is not injective.

3. Lines in U trop wrap at most finitely many times, so both ends of each line go to infinity.

4. The quadratic form Q on D⊥ is negative definite.

5. U is deformation equivalent to an affine surface.

6. U is a minimal resolution of Spec(Γ(U,OU )), which is an affine surface with at worst Du
Val singularities.

7. D supports a D-ample divisor.

Proof. The equivalences involving (1), (2), (3), and (4) follow from negating the corresponding
statements in Theorems 4.1 and 4.2. The equivalence of (1), (6), and (7) is [9, Lemma 6.9(1.1–
1.3)]. For (6)⇒(5), we just need to know that we can deform U to have no (−2)-curves, as
these are the exceptional divisors of the minimal resolution in (6). This follows from [11,
Proposition 4.1]. Conversely, if a deformation of U is affine, then Spec(Γ(U,OU )) must be
two-dimensional, and so we cannot be in a negative semi-definite case by Theorems 4.1(6)
and 4.2(7). �

If any of these conditions hold, we say that U is positive. We have several sub-cases:

Theorem 4.4 (all lines wrap/positive non-acyclic cases). The following are equivalent:

1. Lines in U trop all wrap, but only finitely many times.

2. Every sheet of the developing map is convex, but the developing map is not injective.

3. Non-zero global regular functions on U are not generically 0 along any boundary divisor
of any compactification (Y,D) of U (i.e., the corresponding valuations are non-positive).
On the other hand, there are enough global regular functions that dim Spec Γ(U,OU ) = 2.

4. The inverse monodromy matrix µ−1 is conjugate to a Kodaira matrix10 of type I∗k , II∗,
III∗, or IV ∗.

5. If D is minimal, then either D = D1 + D2 with D2
1 = 0 and −1 6= D2

2 ≤ 0 (up to
re-labelling), or D is irreducible with 1 ≤ D2 ≤ 4.

6. U can be constructed from
(
P2, D

)
, with D = D1 + D2 + D3 a triangle of lines, by blow-

ing up di times on Di for each i, with (d1, d2, d3) as in the final column of Table 4.1.

Equivalently, U comes from a seed with E = (e1, e2, e3), F = ∅, 〈·, ·〉 =
(

0 1 −1
−1 0 1
1 −1 0

)
, and

multipliers (d1, d2, d3) as in the final column of Table 4.1.

7. D⊥Eff = D⊥, and the quadratic form Q is of type Dn (n ≥ 4) or En (n = 6, 7, or 8).

10In [17], Kodaira listed the matrices which can appear as monodromies about singular fibers of elliptic fibrations
of surfaces. See Tables 4.1 and 4.2 for a list of these matrices.
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Proof. (1)⇔(2) is clear from the definitions. (1)⇔(3) follows immediately from Lemma 3.14
(the ring of global regular functions being two-dimensional is equivalent to positivity).

For (1)⇒(5), using the construction of U trop from charts in (3.1), we can easily see that having
any D2

i > 0 with D not irreducible would allow a line to not wrap. On the other hand, having
every D2

i ≤ −2 would mean we are in a negative semi-definite case. So if D is minimal and
not irreducible, then D2

i must be 0 for some i. D having more than one additional component
would allow a non-convex sheet of the developing map, so the claim follows, except for when D
is irreducible. If D is irreducible and D2 > 4, then the proper transform of D after taking a toric
blowup would have positive self-intersection, which we have already ruled out, and D2 < 1 would
mean we are in a negative semi-definite case.

For (5)⇒(2), observe that in the D2
1 = D2

2 = 0 case, every sheet of any developing map is
convex (but not strictly convex). The other cases come from non-toric blowups and toric blow-
downs of this, so the sheets of their developing maps will of course still be convex (non-toric
blowups make these sheets “more convex”).

(5)⇒(4) is a straightforward check, as is (4)⇒(2). We now have the equivalence of (1)
through (5).

(6)⇒(7) is also straightforward. For U generic, D⊥ is generated by classes of the form
Ei,j1−Ei,j2 (where Ei,j denotes the exceptional divisor from a non-toric blowup on Di), together
with a class of the form L−E1,j1 −E2,j2 −E3,j3 , where L is the class of a generic line in P2. If
we choose all the blowup points on each Di to be infinitely near, and choose the blowup points
on different Di’s to be colinear, then D⊥ is generated by effective divisors with the correct
intersections.

For (7)⇒(1), Q of type Dn or En implies that Q is negative definite, and so Theorem 4.3(4)
tells us that we are not in an H negative semi-definite case. We also cannot be in a some-
lines-wrap or no-lines-wrap case because, as we see below, Q|D⊥Eff

in these cases is a direct sum

of Ani ’s.

It now suffices to show that (5)⇒(6) (since (4)⇔(5), this means we are showing that U trop

really does determine the deformation type of U in these cases). For the I∗0 case, we have
µ−1 = − Id. Such a U trop contains a reflexive polytope11 with 3 integral points on the boundary,
and this implies that U must be an affine cubic surface (cf. Example 5.21 in [19]), which we
know can be obtained as in Example 3.4.

Now for the I∗k cases, we can choose a compactification (Y,D) of U with D2
1 = D2

2 = −1 and
D2

3 = −1 − k. The divisor C := D1 + D2 has C · D1 = C · D2 = C2 = 0, and C · D3 = 2.
By Riemann–Roch, dim |C| ≥ 1. If C is the only singular element of some pencil P1 ⊂ |C|,
then (for U generic in its deformation class) Y \ C is a P1-bundle over A1, hence has Euler
characteristic 2. So then Y has Euler characteristic 5. However, we know from Section 3.9
that U trop determines the charge c of (Y,D), which in this situation is 6 + k. One checks that
the Euler characteristic of a Looijenga pair with n boundary components and charge c is n+ c,
which in this case is 9 + k > 5. So |C| must contain other singular curves. These must contain
irreducible rational components E1, E2 with Ei ·D3 = 1 and E2

i = −1. Blowing down either of
these is a non-toric blowdown and reduces us to the I∗k−1 case, so the claim follows by induction.

For the IV ∗ case, we have a compactification of U with D = D1 + D2 + D3, D2
1 = −1,

D2
2 = D2

3 = −2. Note that D · D1 = 1, while D · D2 = D · D3 = 0, so dim |D| ≥ 1. Thus,

there is some point on D1 which we can blow up to get a new pair
(
Ỹ , D̃

)
, with exceptional

divisor E, such that Ỹ admits an elliptic fibration with D̃ being a fiber and E being a section.
Such a surface can be obtained by blowing up 9 base-points for a pencil of cubics in P2, with E
being the exceptional divisor of the final blowup (cf. [16]). D̃ then is the proper transform of

11By a reflexive polytope in U trop, we mean an integral polytope in the sense of [19, Definition 2.10] which is
strongly convex in the sense of [19, Definition 5.4] whose only interior integral point is 0.
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one of the cubics D in the pencil, so there must have been 3 base-points on each component Di

of D. Thus, after blowing E down, we see that Y must contain disjoint (−1)-curves hitting each
component of D. Blowing down a (−1)-curve hitting, say, D2, reduces to the I∗1 case we have
already dealt with.

A similar argument works for the III∗ case using a compactification of U with D = D1 +D2,
D2

1 = −1, D2
2 = −2, and blowing up a point in D1 to get a surface with an elliptic fibration.

The II∗ case is also similar, using D irreducible with self-intersection 1 and blowing up some
point in D to get a surface with an elliptic fibration. �

Table 4.1 summarizes the different cases from the Theorem 4.4 above.

Kodaira matrix Cartan form Q Monodromy µ (d1, d2, d3)

I∗k (k ≥ 0) Dk+4

(
−1 k
0 −1

)
(2, 2, 2 + k)

IV ∗ E6

(
0 1
−1 −1

)
(2, 3, 3)

III∗ E7

(
0 1
−1 0

)
(2, 3, 4)

II∗ E8

(
1 1
−1 0

)
(2, 3, 5)

Table 4.1. Cases where all lines wrap.

Theorem 4.5 (not all lines wrap/acyclic cases). The following are equivalent:

1. U trop contains a line which does not wrap.

2. Some compactification of U admits a toric model Y → Y for which all the non-toric
blowups are on divisors corresponding to rays in one half of NY . I.e., there is some seed S
for which all of the non-frozen vectors’ images in p∗2(N) lie in one half of the plane.

3. Cluster varieties corresponding to U are acyclic.

4. The intersection of the Langlands dual cluster complex C ⊂ X trop with U trop is nonempty.

5. There exists a global monomial on U .

6. The quadratic form Q on D⊥ is negative definite, and Q|D⊥Eff
is a direct sum of Ani’s. In

fact, it is Ad′1−1 ⊕ · · · ⊕Ad′m−1, where the (d′i)’s are the modified multipliers for a coprime
seed corresponding to U (equivalently, d′i is the number of non-toric blowups on Di in
a toric model for a compactification U).

Proof. (1)⇔(2) is Lemma 3.12. (2)⇔(3) was observed in Section 2.1.1.

For (2)⇔(4), note that for some seed vector ei for a seed S, the set {ei ≥ 0} ∩ U trop is the
same as the set (vi ∧ ·) ≥ 0, where ∧ is the symplectic form on U trop induced by [·, ·]. The
intersection of these positive half-spaces for all non-frozen ei’s is clearly nonempty if and only
if S is as in (2).

(1)⇒(5) follows from Lemma 3.13. For (5)⇒(1), note that for a global monomial ϑq, the
tropicalization ϑtrop

q is positive somewhere, and so Lemma 3.14 implies that the fibers ϑtrop
q =

d < 0 are lines which do not wrap.

(6)⇒(1) because if every line does wrap (possibly infinitely many times), then we have seen
that either Q is not negative-definite or Q|D⊥Eff

is of type Dn or En.

For (2)⇒(6), first note that Q is negative definite on D⊥ by positivity of U . Now, let (Y,D)→(
Y ,D

)
be the toric model corresponding to a seed with all non-toric blowups corresponding to
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rays in one half of the plane NY . For any curve C in Y ,
∑(

C ·Di

)
vi = 0 where vi is the primitive

vector in NY corresponding to Di. If C is the image of an irreducible effective curve C ∈ D⊥,
then C · Di ≥ 0 for all i, and C · Di can only be positive if there is a non-toric blowup point
somewhere in C ∩Di. Thus, each C ·Di must actually be 0, so C must have been supported on
an exceptional divisor. Thus, D⊥Eff is generated by classes obtained by taking the d′i blowups to
be infinitely near, and then taking the d′i − 1 exceptional divisors which do not intersect D. �

Let CU denote the union of all cones σL for lines L which do not wrap, where σL is defined
as in Lemma 3.12. We note that the argument for (2)⇔(4) above can be modified to prove the
following:

Proposition 4.6. CU is the intersection of the Langlands dual cluster complex C with U trop ⊂
X trop.

This justifies [19] calling CU the cluster complex.

Theorem 4.7 (no lines wrap/finite-type cases). The following are equivalent:

1. No lines in U trop wrap.

2. No sheet of the developing map is convex.

3. The Laurent phenomenon holds for the X -space, meaning that each Xi is a global mono-
mial. Furthermore, the global monomials form an additive basis for the global function
on U .

4. The inverse monodromy matrix µ−1 is a Kodaira matrix of type Ik, II, III, or IV .

5. Cluster structures for U are of finite type, meaning that they have only a finite number of
distinct seeds.

6. For some equivalent maximally factored seed, the corresponding quiver (after removing
frozen vectors) is of type Ak1 (k ∈ Z≥0), A2, A3, or D4.

7. The Langlands dual cluster complex C ⊆ X trop contains all of U trop, and in fact is all
of X trop.

Proof. (1)⇔(2) is obvious. (1)⇔(3) follows from Lemma 3.13.

To see that (1) implies (5), we need Lemma 3.12, which says that for any line Ld<0
q which does

not wrap, there are only finitely many (−1)-curves hitting boundary divisors corresponding to
rays in the cone σL bounded by Ld<0

q (±∞). Since no lines wrap, we can cover U trop by finitely
many cones of the form σL, and so there are only finitely many (−1)-curves in Y hitting the
boundary. Since seeds correspond to certain finite subsets of this collection of (−1)-curves, the
claim follows.

(5)⇔(6) follows from a well-known result of [6], which says that a cluster algebra is of finite
type if and only if the matrix (−|εij | + 2δij)i,j∈I\F is a finite type Cartan matrix. One easily
checks that the only quivers of this type which produce rank 2 cluster varieties are those listed
in the statement of theorem, along with types B2, B3, C3, and G2, which are equivalent to
types A3, D4, D4, and D4 again, respectively, in the sense of Definition 2.15.

One can easily check (6)⇒(4) by explicit computations: the Ak1, A2, A3, and D4 quivers
correspond to the Ik, II, III, and IV matrices, respectively. (4)⇒(1) is now automatic.

For (5)⇔(7), recall that seeds are in bijection with cones of the cluster complex. For any
boundary wall W of any cone in C, both sides of W will always be in C, so if there are only
finitely many cones, then C must fill up all of X trop. Conversely, if there are infinitely many
cones, then they must “bunch up” near some ray ρ which is not in C. �
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Table 4.2 lists the cases where no lines wrap, along with their basic properties. We once
again use the notation (d1, d2, d3) to indicate that such a Looijenga pair can be obtained by
starting with the toric variety

(
P2, D = D1 + D2 + D3

)
, and then blowing up d1, d2, and d3

points on D1, D2, and D3, respectively.

Quiver Kodaira matrix Cartan form Q Monodromy µ (d1, d2, d3)

Ak1 (k ≥ 0) Ik Ak−1

(
1 −k
0 1

)
(k, 0, 0)

A2 II A0

(
0 −1
1 1

)
(1, 1, 0)

A3 III A1

(
0 −1
1 0

)
(2, 1, 0)

D4 IV A2

(
−1 −1
1 0

)
(3, 1, 0)

Table 4.2. Cases where no lines wrap.

Remark 4.8. Without frozen vectors, the Ik cases, k ≥ 0, are actually of rank 0. Thus,
although we tend to ignore frozen vectors, they are necessary for constructing these examples.
They are also necessary for many other examples – this was reflected in Construction 2.12 when
we required that the vectors u1, . . . , um generate NY .

Proposition 4.9 (some lines wrap and some do not). The following are equivalent:

1. Some lines in U trop wrap, while others do not.

2. Some (but not all) sheets of the developing map are convex.

3. Cluster varieties corresponding to U are acyclic but not of finite type.

4. The monodromy satisfies Tr(µ) ≤ −2, and if there is equality, then µ is conjugate to(−1 a
0 −1

)
for some a < 0.

Proof. (1)⇔(2) is easy, and (1)⇔(3) follows immediately from Theorems 4.5 and 4.7. We see
the equivalence of (1) with (4) because Theorems 4.1, 4.2, 4.4, and 4.7 have shown that all other
possibilities for µ are equivalent to other cases. �

5 Cluster modular groups

Recall the cluster modular group Γ from Section 2.6. We seek to explicitly describe the action
of Γ on U trop in every positive rank 2 case. However, keeping track of frozen variables will
overly complicate matters and will obscure certain meaningful symmetries. We therefore define
a new group Γ′ for which we drop the requirement that frozen vectors are permuted by Γ (we
allow frozen vectors to be mapped anywhere). This may introduce more automorphisms than
one wishes to consider (i.e., automorphisms which only affect the frozen parts), so we mod out
the subgroup which acts trivially on both U trop and on the set of non-frozen vectors. Γ can
be recovered by taking the subgroup of Γ′ which is the stabilizer of the set of frozen vectors
(roughly meaning that the corresponding cluster transformations extend over certain partial
compactifications).

5.1 The action on U trop

The action of Γ′ on rank 2 X induces an action on the tropicalization U trop of the Looijenga pairs
corresponding to fibers of X (although generic fibers may be permuted by Γ′, their embedding
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in X induces a canonical identification of their tropicalizations). Since U trop as integral linear
manifold depends only on the deformation type of U (which is preserved by Γ′), we see that
any h ∈ Γ′ must respect the integral linear structure of U trop. Also, recall that elements of Γ′

(unlike those of Γ̂) must preserve the form 〈·, ·〉, hence preserve the orientation of U trop. Thus:

Lemma 5.1. The action of Γ′ on U trop is oriented integral linear.

Let Aut
(
U trop

)
be the group of all orientation preserving integral linear automoprhisms

of U trop. Consider the action r : Γ′ → Aut
(
U trop

)
. What we plan to describe is the image

G := r(Γ′) ⊆ Aut
(
U trop

)
.

As explained in the following conjecture, we expect that G contains most of the interesting
information about Γ′.

Conjecture 5.2. Elements of the kernel of r can be represented by seed transformations whose
only seed isomorphisms are ones such that if ei 7→ ej, then vi = vj. In particular, if S is
totally coprime (which by Proposition 2.17 is always achievable through a sequence of fiberwise-
equivalences and mutation equivalences), then Γ′ = G.

Conjecture 5.3. G = Aut
(
U trop

)
for all rank 2 cases.

Recall ν± ∈ Aut
(
U trop

)
from Section 3.7. We will see that at least these elements are always

in G. Furthermore, from our descriptions of G below, one can explicitly check Conjecture 5.3
holds for the all-lines-wrap and no-lines-wrap cases – i.e., for the cases where µ−1 is one of
Kodaira’s monodromies.

We now note that when considering U trop with its canonical integral linear structure, mutating
with respect to a seed vector ei for some seed S does not change the positions of any of the vj ’s
in U trop except for vi. This is because the centers of the blowups corresponding to the ej ’s, j 6= i,
are preserved by mutation, and the divisor containing the center is the one corresponding to vj .
Thus, we only have to worry about what happens to vi. This vector is negated with respect to
the vector space structure U trop

S . We now interpret what this means in different cases.
As in Section 3.5.1, we use the notation µi,S to indicate that we are mutating a seed S with

respect to a vector ei. We let Si1,...,ik denote the seed obtained from S by mutating with respect
to the seed vectors with indices i1, then i2, and so on up through ik.

The next two subsections will describe G explicitly in all positive rank 2 cases, in particular
proving that G in these cases is as in Table 5.1.

5.2 When at least some lines do not wrap

We first describe G in the cases where at least some lines do not wrap. In the toric case we
of course have G = Γ′ = SL2(Z). Note that in these toric cases, ν± = − Id ∈ SL2(Z). To
understand G in the other cases with at least some lines not wrapping, we begin by finding
elements of Γ′ in these cases which map to ν± ∈ Aut

(
U trop

)
.

5.2.1 ν± with at least some lines not wrapping:

We saw in Lemma 3.12 that if a line L does not wrap, then (ignoring frozen vectors) there is
a unique seed S for which each vi is contained in σL \ ρ, where σL is the cone bounded by L
and ρ is either boundary ray of this cone. Assume the vi’s are arranged in counterclockwise
order v1, . . . , vs.

Note that any line in U trop which does not intersect any ρvi is also a straight line in U trop
S . In

particular, this holds for lines of the form L>0
v1

and L<0
vs . Thus, µXe1 has the effect of applying ν+

to v1, while µXes has the effect of applying ν− to vs.
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Classification G

I0 (toric) SL2(Z)

Ik (k > 0 odd) Z
Ik (k > 0 even) Z⊕ Z/2Z
II Z/5Z
III Z/3Z
IV Z/4Z
some lines wrap. Z
I∗0 PSL2(Z)

I∗k (k > 0) Z
II∗ {Id}
III∗ {Id}
IV ∗ Z/2Z

Table 5.1. The isomorphism class of the image G of Γ′ → Aut
(
U trop

)
for the positive rank 2 cases. If

there are no frozen vectors, then Γ = Γ′.

Now note that v2, . . . , vs, v
′
1 := ν+(v1) are all contained in σL>0

v1
\ ρv1 , so we can repeat

the process, mutating v2, then v3, and so on. Alternatively, we could have done the reverse,
mutating vs first, then vs−1, and so on. Since ν± are integral linear automorphisms of U trop by
Lemma 3.11, we see that

m− := ν− ◦ µs,S1,2,...,s−1 ◦ · · · ◦ µ1,S (5.1)

is an element of Γ′, with inverse m+ := ν+ ◦ µ1,Ss,s−1,...,2 ◦ · · · ◦ µs,S . We note that applying r
gives

r(m±) = ν± ∈ G

whenever at least some lines do not wrap.

Remark 5.4. Suppose S′ is another seed, mutation-equivalent to S and isomorphic to S, thus
inducing a seed auto-transformation g of S. Then r(g)(σL \ ρ) must be a cone σL′ \ ρ′ ⊂ U trop

(determined by a line L′ in U trop
S′ ) which contains the directions v′i associated to S′. Conversely,

S′ is determined by σL′ \ ρ′. Each such L′ can be obtained by rotating the original line L, and
if we rotate the boundary of σL′ past some vk, then the acyclic quiver whose associated vi’s
are contained in σL′ \ ρ′ will change via the mutation µk. Thus, the seed auto-transformations,
modulo those which fix the non-frozen seed vectors (as appear in the Ik cases), are all generated
by subsequences of the mutations defining m− and m+.

5.2.2 The Ik cases (k ≥ 1)

For these cases, there are non-trivial cluster auto-transformations which fix the non-frozen seed
vectors. If we identify U trop

S with R2, with v1 being identified with (1, 0), then these cluster
auto-transformations fixing v1 are just the stabilizer of (1, 0) in SL2(Z), i.e., the infinite cyclic
group generated by

a :=

(
1 1
0 1

)
= µ−1/k.

The corresponding seed auto-transformation is the one acting by a on the lattice U trop
S and

fixing all the other seed data. The elements a and ν+ together are sufficient to generate G.
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Viewing ν+ as rotation 180◦ clockwise around the origin in Ũ trop
0 , we see that ν2

+ = µ−1 = ak.
We also check that ν−1

+ ◦a◦ν+ = a (it suffices to evaluate on (0,−1) since we know a acts trivially
on v1 = (1, 0)), so a and ν+ commute. With these relations, we can describe G explicitly. If k
is odd, then G ∼= Z with generator ν− ◦ a(k+1)/2. If k is even, then G ∼= Z ⊕ Z/2Z, with the
Z-summand generated by a and the Z/2Z-summand generated by ν− ◦ ak/2.

5.2.3 The II, III, and IV cases

For the II case (i.e., the A2-quiver), a single mutation already produces a seed isomorphic to the
initial seed, yielding an element g ∈ Γ′ whose square is either m+ or m−, depending on which
mutation was performed. This element g generates Γ′ and satisfies g5 = Id, so Γ′ ∼= Z/5Z in this
case (the five elements corresponding to the five chambers of the cluster complex). Of course,
m+ and m− also turn out to generate Γ′, but a priori it was not obvious that their powers would
give the element g.

For the III and IV cases, we do not have fractional powers of m± in G since no subsequence
of the mutations in (5.1) yields an isomorphic seed. To see this in the III case, recall from
Table 4.2 that this corresponds to an A3 quiver, which for some choice of edge-orientations and
some choice of basis corresponds to having v1 = v3 = (1, 0) and v2 = (0, 1). We see that one
must mutate all three of these to get back to a configuration with 2 vi’s in one direction and
the third counter-clockwise of this. Similarly for the IV case with the D4 quiver, this time
with 3 vi’s in the (1, 0) direction and still one in the (0, 1) direction. Now using Remark 5.4,
we see that G in the III and IV cases is generated by ν+ (or ν−), which one explicitly checks
(cf. Example 5.5 below) has order 3 or 4, respectively, yielding G ∼= Z/3Z for the III case and
G ∼= Z/4Z in the IV case.

Example 5.5. By Table 4.2, we can view (Y,D) in the type III case as being obtained by
starting with the toric variety

(
P2, D = D1 +D2 +D3

)
(the divisors Di being distinct lines), and

then blowing up two points on D1 and one point on D2. We compute the developing map by
taking ρ0

1 and ρ0
2 to be the rays generated by (1, 0) and (0, 1) respectively, and then repeatedly

applying (3.1). Fig. 5.1(a) depicts the first sheet of the developing map, plus the start of the
second sheet, the five rays there being generated by (1, 0), (0, 1), (−1, 0), (1,−1), and (2,−1).
Fig. 5.1(b) continues with the rest of the second sheet and the start of the third, the three new
rays being generated by (−1, 1), (−1, 0), and (0,−1). We see that the cone bounded by the
rays ρ2

1 and ρ2
2 (i.e., the first cone in the third sheet) is a 3π-radian counterclockwise rotation

of the original cone bound by ρ0
1 and ρ0

2. Thus, (ν−)3 agrees with the deck transformation µ−2

raising points up two sheets, and so ν− has order 3 as an automorphism of U trop.

//
ρ0

1

OO ρ0
2

oo
ρ0

3

��ρ1
1

''ρ1
2

oo
ρ2

1

��ρ2
2

__ ρ1
3

��ρ1
1

''ρ1
2

(a) (b)

Figure 5.1. Developing map for type III.

They type IV case is handled similarly, and there one finds that (ν−)4 = µ−3, indicating
that ν− has order 4 in this case.

We note that powers of the cluster transformations for the II, III, and IV cases give the
trivial cluster transformations described in [5, Proposition 1.8], for their cases h = 3, 4, and 6,
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respectively. The I2 case with no frozen vectors (i.e., A1 × A1) corresponds to [5]’s h = 2 case
(note that this case is not rank 2, cf. Remark 4.8).

5.2.4 Some lines wrap, but some do not

We saw when defining m− in (5.1) that µk,S1,2,...,k−1
◦ · · · ◦ µ1,S produces a seed isomorphic to S

when k = s (the number of non-frozen seed vectors). However, as with the A2 case above, it
often happens in the some-lines-wrap cases that the above composition of mutations produces
a seed isomorphic to S for some smaller k (e.g., k = 1 in the A2 case). Choosing the minimal

such k yields an element of Γ′ which we denote m
s/k
− , and then G is the infinite cyclic group Z

generated by r
(
m
s/k
−
)

=: ν
s/k
− . Here, we use Remark 5.4 to ensure that this gives all of G.

5.3 When all lines wrap

5.3.1 The I∗0 case

Here, U trop = R2/{± Id}, so Aut
(
U trop

)
= SL2(Z)/± Id = PSL2(Z). We will now show that G

includes this whole automorphism group.

Take a coprime seed as in the second part of Example 2.14. That is, take the seed S with

no frozen vectors and with 〈·, ·〉 given by
(

0 1 −1
−1 0 1
1 −1 0

)
, and each di = d′i = 2. We can identify

v1, v2, and v3 with (2, 0), (0, 2), and (−2,−2) in NY , respectively. Mutating with respect to v3,
we have v′1 = µ3,S(v1) = v1, v′2 = µ3,S(v2) = (−4,−2), and v′3 = µ3,S(v3) = (2, 2). Note that
there is a vector space isomorphism α taking the ordered triplet (v′1, v

′
3, v
′
2) to the ordered triplet

(v1, v2, v3). Thus, α ◦ µ3,S gives an element of Γ which induces an automorphism τ ∈ G.

Note that τ takes the ordered triplet (v1, v2, v3) to the ordered triplet (v1, v1+v2, v2) (addition
done in σv1,v2 as defined in Notation 3.1). Thus, in the basis used in the previous paragraph, τ is
given by the matrix τ = ( 1 1

0 1 ). On the other hand, we have another cluster auto-transformation
given by the seed automorphism taking e1 7→ e2, e2 7→ e3, and e3 7→ e1. The matrix for this
latter transformation is

(
0 −1
1 1

)
= στ , where σ :=

(
0 −1
1 0

)
. It is standard that these matrices τ

and σ generate the modular group PSL2(Z). Hence, G = Aut
(
U trop

)
= PSL2(Z).

Note that since we had no frozen vectors, we have Γ = Γ′. Furthermore, ker(r) = 0 for this S,
so we also have Γ′ = G. Hence, Γ = PSL2(Z), agreeing with [5]’s computation of this Γ in their
Lemma 2.32.

5.3.2 The I∗k cases (k ≥ 1)

For the I∗k cases, take S as in Section 5.3.1 above, but with d′1 = 2 + k, d′2 = d′3 = 2. Then
we obtain an element g of G exactly as in the I∗0 case, applying µ3,S followed by a vector space
isomorphism. However, unlike before, we cannot cycle the roles of the three seed vectors, because
now v1 is special. So the only elements of Γ′ come from repeatedly applying g or its inverse (the
inverse corresponds to using µ2,S in place of µ3,S above). Thus, we find that Γ′ = Z. The action
on U trop is given as follows: Identify U trop \ ρv1 with the upper half plane so that v2 and v3 are
identified with (0, 1) and (−1, 1), respectively. Then a ∈ Z corresponds to the automorphism
ga : (x, y) 7→ (x+ ay, y). In particular, we have that ±k ∈ Z corresponds to ν±.

5.3.3 The IV ∗, III∗, and II∗ cases

For the IV ∗, III∗, and II∗ cases, we take d′2 = 3, d′3 = 2, and d′1 = 3, 4, or 5, respectively. In
the IV ∗ case, when we apply µ3,S , we can then compose with the seed isomorphism v′3 7→ v3,
v′1 7→ v2, and v′2 7→ v1. We claim that this is the only nontrivial element of G in this case,
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yielding G ∼= Z/2Z. One can check that this non-trivial element is in fact ν+ = ν−. In the III∗

and II∗ cases, we claim that we do not even have this element, i.e., G is trivial.
To check that there are not additional elements of G in these cases, it suffices to check that

there are no other elements Aut
(
U trop

)
. Recall that elliptic matrices (those whose trace has

absolute value less than 2) are conjugate to rotation matrices, and so they can only commute with
other elliptic matrices or ± Id. Up to conjugation, all the elliptic matrices appear in the II, III,
or IV rows of Table 4.2 or the II∗, III∗ or IV ∗ rows in Table 4.1. By inspecting these, one sees
that the centralizer CSL2(Z)(µ) in the IV ∗ and II∗ cases is the order 6 cyclic group generated
by
(

1 1
−1 0

)
, while in the III∗ case µ =

(
0 −1
1 0

)
generates its own (order 4) centralizer. Viewing

the elements of these centralizers as counterclockwise rotation (for some oriented basis) by some
angle in [0, 2π), we see that Aut

(
U trop

)
is given by the elements of the centralizer of µ−1 which

correspond to smaller rotations than µ−1. This yields the matrix
(

0 −1
1 1

)
as the sole non-trivial

element of Aut
(
U trop

)
in the IV ∗ case, and shows that Aut

(
U trop

)
= Id in the III∗ and II∗

cases, as claimed.

Remark 5.6. We note that there is an orientation reversing automorphism in each of these
three cases which, after mutating with respect to v3 takes v′i 7→ vi for each i. Thus, one can

obtain extra, potentially interesting symmetries of the scattering diagram by considering Γ̂ as
in Section 2.6 in place of Γ.

In the I∗0 , III∗, and II∗ cases, one can check that ν± are trivial since both ends of any
line point in the same direction, cf. [19, Fig. 4.2(c,d)] for the III∗ and II∗ cases. Thus, in
conjunction with what we have seen in the other cases, we have found that:

Proposition 5.7. ν± are induced by the cluster modular group Γ′ (which we do not require to
preserve frozen vectors) in all the positive cases.

5.4 Strong deformation equivalence

We see from Theorems 4.4 and 4.7 (and the supporting Tables 4.1 and 4.2) that if µ−1 is any of
Kodaira’s monodromies, then U trop uniquely determines U up to isomorphism and deformation.
In fact, we have something slightly stronger. We say that U and U ′ corresponding to the
same U trop are strongly deformation equivalent if we can deform one to the other while preserving
the identifications of their divisorial valuations with U trop(Z) (cf. Remark 3.3). In other words, U
and U ′ being strongly deformation equivalent means that if we decorate the surfaces using their
relationship with U trop, we can find a deformation of U which is isomorphic to a deformation
of U ′ via an isomorphism which acts trivially on U trop.

Theorem 5.8. Suppose the monodromy of U trop is one of Kodaira’s monodromies. Then U trop

determines U up to strong deformation equivalence. In other words, for any log Calabi–Yau
surface U corresponding to U trop, any factorization of the singularity of U trop into focus-focus
singularities as in Remark 3.7 is induced by a toric model of U .

Proof. As noted at the start of this subsection, we already saw in Tables 4.1 and 4.2 that U trop

in these cases determines U up to deformation and isomorphism. So if U and U ′ are two
log Calabi–Yau surfaces with tropicalization U trop, then some deformation of U is isomorphic to
some deformation of U ′. It only remains to check that this isomorphism ι can be chosen in a way
which acts trivially on U trop. But we have seen in Sections 5.2 and 5.3 that Conjecture 5.3 holds
in all cases corresponding to Kodaira’s monodromies. So if ι induces a non-trivial automorphism
of U trop, this element must be induced by some g ∈ Γ′. Thus, applying g−1 to the X -space X ′ of
which U ′ is a symplectic leaf yields an isomorphism g−1 ◦ ι from U to a fiber of X ′, and this fiber
is a deformation of U ′ since they live in the same X -space. Since g−1 ◦ ι induces the identity
on U trop, this proves the claim. �
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Remark 5.9. We suggest that the appearance of Kodaira’s matrices may have some geometric
significance. The symplectic heuristic behind [9]’s mirror construction (see their Section 0.6.1)
assumes that U admits a special Lagrangian torus fibration over U trop, or at least over a deforma-
tion of U trop in which the singularity is factored into several singular points. Indeed, [21] shows
that there is at least a Lagrangian fibration when the singularity is factored. In the Ik cases
there are explicit formulas for special Lagrangian fibrations – see [7], or see [3] which begins
with a nice brief presentation of this. Further examples of cluster varieties are known to come
from moduli of Higgs bundles, in which case the Hitchin fibration is a special Lagrangian fibra-
tion. We further hope that U admits a hyperkähler structure, and that for some rotation of
the complex structure, the SYZ fibration will become an elliptic fibration (this is standard in
the Hitchin system cases). The inverse monodromy being a Kodaira matrix then suggests the
possibility of compactifying this elliptic fibration with a fiber at infinity. This elliptic fibration
picture also leads us to suspect that [2]’s results on uniqueness of factorizations of singular fibers
of elliptic fibrations is related to our Theorem 5.8.

Theorem 5.8 shows whenever the monodromy of U trop is one of Kodaira’s monodromies,
there is an essentially12 canonical consistent scattering diagram in U trop – namely, the canoni-
cal scattering diagram which [9] associates to a Looijenga pair whose tropicalization is U trop.
Furthermore, I conjecture that the canonical scattering diagrams coming from Looijenga pairs
are the only consistent ones in any U trop which consist only of outgoing rays.

For other (log) Calabi–Yau manifolds of possibly higher dimension, more complicated sin-
gularities may again appear. However, if the monodromies are factored into Kodaira’s mono-
dromies, the above discussion suggests that the appropriate consistent scattering diagrams near
these singular loci should be canonically determined by the affine structure. I speculate that
this may allow one to relax the need for the simplicity assumption in [15] and the A1-singularity
assumption in [18].
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