Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 15 (2019), 044, 35 pages      arXiv:1811.01855      https://doi.org/10.3842/SIGMA.2019.044

A Variational Perspective on Continuum Limits of ABS and Lattice GD Equations

Mats Vermeeren
Institut für Mathematik, MA 7-1, Technische Universität Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany

Received November 20, 2018, in final form May 16, 2019; Published online June 03, 2019

Abstract
A pluri-Lagrangian structure is an attribute of integrability for lattice equations and for hierarchies of differential equations. It combines the notion of multi-dimensional consistency (in the discrete case) or commutativity of the flows (in the continuous case) with a variational principle. Recently we developed a continuum limit procedure for pluri-Lagrangian systems, which we now apply to most of the ABS list and some members of the lattice Gelfand-Dickey hierarchy. We obtain pluri-Lagrangian structures for many hierarchies of integrable PDEs for which such structures where previously unknown. This includes the Krichever-Novikov hierarchy, the double hierarchy of sine-Gordon and modified KdV equations, and a first example of a continuous multi-component pluri-Lagrangian system.

Key words: continuum limits; pluri-Lagrangian systems; Lagrangian multiforms; multidimensional consistency.

pdf (548 kb)   tex (77 kb)  

References

  1. Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, Vol. 55, U.S. Government Printing Office, Washington, D.C., 1964.
  2. Adler V.E., Bobenko A.I., Suris Yu.B., Classification of integrable equations on quad-graphs. The consistency approach, Comm. Math. Phys. 233 (2003), 513-543, arXiv:nlin.SI/0202024.
  3. Adler V.E., Suris Yu.B., ${\rm Q}_4$: integrable master equation related to an elliptic curve, Int. Math. Res. Not. 2004 (2004), 2523-2553.
  4. Bobenko A.I., Suris Yu.B., On the Lagrangian structure of integrable quad-equations, Lett. Math. Phys. 92 (2010), 17-31, arXiv:0912.2464.
  5. Boll R., Petrera M., Suris Yu.B., What is integrability of discrete variational systems?, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2014), 20130550, 15 pages, arXiv:1307.0523.
  6. Dickey L.A., Soliton equations and Hamiltonian systems, 2nd ed., Advanced Series in Mathematical Physics, Vol. 26, World Sci. Publ. Co., Inc., River Edge, NJ, 2003.
  7. Fu W., Nijhoff F.W., On reductions of the discrete Kadomtsev-Petviashvili-type equations, J. Phys. A: Math. Theor. 50 (2017), 505203, 21 pages, arXiv:1705.04819.
  8. Fu W., Nijhoff F.W., Linear integral equations, infinite matrices, and soliton hierarchies, J. Math. Phys. 59 (2018), 071101, 28 pages, arXiv:1703.08137.
  9. Hietarinta J., Joshi N., Nijhoff F.W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016.
  10. Hietarinta J., Zhang D.-J., Soliton solutions for ABS lattice equations. II. Casoratians and bilinearization, J. Phys. A: Math. Theor. 42 (2009), 404006, 30 pages, arXiv:0903.1717.
  11. Hirota R., Nonlinear partial difference equations. III. Discrete sine-Gordon equation, J. Phys. Soc. Japan 43 (1977), 2079-2086.
  12. Krichever I.M., Novikov S.P., Holomorphic bundles over algebraic curves and non-linear equations, Russian Math. Surveys 35 (1980), no. 6, 53-79.
  13. Lobb S., Nijhoff F., Lagrangian multiforms and multidimensional consistency, J. Phys. A: Math. Theor. 42 (2009), 454013, 18 pages, arXiv:0903.4086.
  14. Lobb S.B., Nijhoff F.W., Lagrangian multiform structure for the lattice Gel'fand-Dikii hierarchy, J. Phys. A: Math. Theor. 43 (2010), 072003, 11 pages, arXiv:0911.1234.
  15. Miura R.M., Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9 (1968), 1202-1204.
  16. Miwa T., On Hirota's difference equations, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), 9-12.
  17. Nijhoff F.W., Lax pair for the Adler (lattice Krichever-Novikov) system, Phys. Lett. A 297 (2002), 49-58, arXiv:nlin.SI/0110027.
  18. Nijhoff F., Atkinson J., Hietarinta J., Soliton solutions for ABS lattice equations. I. Cauchy matrix approach, J. Phys. A: Math. Theor. 42 (2009), 404005, 34 pages, arXiv:0902.4873.
  19. Nijhoff F., Capel H., The discrete Korteweg-de Vries equation, Acta Appl. Math. 39 (1995), 133-158.
  20. Nijhoff F.W., Papageorgiou V.G., Capel H.W., Quispel G.R.W., The lattice Gel'fand-Dikiǐ hierarchy, Inverse Problems 8 (1992), 597-621.
  21. Quispel G.R.W., Nijhoff F.W., Capel H.W., van der Linden J., Linear integral equations and nonlinear difference-difference equations, Phys. A 125 (1984), 344-380.
  22. SageMath, the Sage Mathematics Software System (Version 7.5.1), 2017, http: www.sagemath.org.
  23. Suris Yu.B., Vermeeren M., On the Lagrangian structure of integrable hierarchies, in Advances in Discrete Differential Geometry, Springer, Berlin, 2016, 347-378, arXiv:1510.03724.
  24. Tongas A., Nijhoff F., The Boussinesq integrable system: compatible lattice and continuum structures, Glasg. Math. J. 47 (2005), 205-219, arXiv:nlin.SI/0402053.
  25. Vermeeren M., Continuum limits of pluri-Lagrangian systems, J. Integrable Syst. 4 (2019), xyy020, 34 pages, arXiv:1706.06830.
  26. Walker A.J., Similarity reductions and integrable lattice equations, Ph.D. Thesis, University of Leeds, 2001, available at http: etheses.whiterose.ac.uk/7190/.
  27. Wiersma G.L., Capel H.W., Lattice equations, hierarchies and Hamiltonian structures, Phys. A 142 (1987), 199-244.
  28. Yoo-Kong S., Lobb S., Nijhoff F., Discrete-time Calogero-Moser system and Lagrangian 1-form structure, J. Phys. A: Math. Theor. 44 (2011), 365203, 39 pages, arXiv:1102.0663.
  29. Zagier D., The dilogarithm function, in Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin, 2007, 3-65.
  30. Zhang D., Zhang D.-J., Rational solutions to the ABS list: transformation approach, SIGMA 13 (2017), 078, 24 pages, arXiv:1702.01266.
  31. Zhao S.-L., Zhang D.-J., Rational solutions to ${\rm Q}3_{\delta}$ in the Adler-Bobenko-Suris list and degenerations, J. Nonlinear Math. Phys. 26 (2019), 107-132, arXiv:1703.05669.

Previous article  Next article  Contents of Volume 15 (2019)