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Abstract. Bicomplexes of vector spaces frequently appear throughout algebra and geo-
metry. In Section 2 we explain how to think about the arrows in the spectral sequence of
a bicomplex via its indecomposable summands. Polycomplexes seem to be much more rare.
In Section 3 of this paper we rethink a well-known faithful categorical braid group action
via an action on the stable category of tricomplexes.
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1 Introduction

“The impact of spectral sequences on algebraic topology
was tremendous: Many major problems of topology, both
solved and unsolved, became exercises for students . . . ”
A. Fomenko and D. Fuchs [6, Preface]

Representation theory, which has been established for over a century, deals with linear actions
of groups and algebras. Much more recent is the discovery of interesting categorical actions
of groups, primarily discrete groups. In these examples discrete groups act by symmetries
of categories, which in many cases are triangulated, and the action preserves the triangular
structure. One of the first nontrivial examples appeared in [16], see also [10, 22]. There the n-
strand braid group Brn acts on the homotopy category of complexes of modules over a particular
finite-dimensional algebra An−1. The action is by exact functors and on the Grothendieck group
the action descends either to the Burau representation of the braid group (if one keep tracks
of an additional grading on modules, in addition to the homological grading) or to the reduced
permutation action of the symmetric group. Neither of these linear actions is faithful, but its
categorical lifting was shown to be faithful in [16].

The algebra An−1 (the zigzag algebra) is the quotient of the path algebra of the quiver with
n− 1 vertices and edges connecting adjacent vertices in both directions (assuming n > 3, with
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Generators of An−1 corresponding to arrows in the quiver are denoted (i|i± 1). The defining
relations

(i|i+ 1|i+ 2) = 0, (i|i− 1|i− 2) = 0, (i|i− 1|i) = (i|i+ 1|i)

(for i’s for which both sides of a relation make sense) are quadratic, An−1 is finite dimensional,
with a basis consisting of idempotents (i), edges (i, i± 1) and length two paths (i|i± 1|i). For
1 < i < n indecomposable projective An−1 module Pi = An−1(i) is four-dimensional, with the
basis {(i), (i− 1|i), (i+ 1|i), (i|i− 1|i)} and can be visualized as a diamond.

(i|i− 1|i)

(i− 1|i)

(i|i−1)
88

(i+ 1|i).

(i|i+1)
ff

(i)

(i+1|i)

88

(i−1|i)

ff

The defining relations in An−1 can be interpreted as the defining relations in the category of
bicomplexes. Namely, let

∂1 =

n−2∑

i=1

(i|i+ 1), ∂2 =

n−1∑

i=2

(i|i− 1).

Then the defining relations in An−1 can be rewritten as

∂2
1 = 0, ∂2

2 = 0, ∂1∂2 = ∂2∂1.

These are exactly the relations on the two differentials in a bicomplex. A bicomplex is built out
of vector spaces placed in the vertices of an integral lattice Z2, with the differentials going along
the two coordinates, with the unit step each.

One can introduce a grading on An−1 by making, for instance, left-pointing arrows (edges)
in the quiver to have degree one and right-pointing edges degree zero. The unit element of An−1

decomposes as the sum of n− 1 idempotents, one for each vertex of the graph, 1 = (1) + (2) +
· · ·+ (n− 1), inducing the decomposition of an An−1-module into a sum of vector spaces

M =

n−1⊕

i=1

(i)M,

and the additional grading on M leads to the bigrading, with the left and right directed edges
changing the bigrading by (1, 0) and (0, 1), respectively.

In this way, graded An−1-modules may be identified with bicomplexes with nonzero terms
restricted to a suitable area of the lattice Z2. Changing the indexing of quiver vertices from
{1, 2, . . . , n − 1} to Z by passing to the quiver that is infinite in both directions (see figure in
equation (2.2)) results in a non-unital algebra A∞ with a system of idempotents {(i)}i∈Z such
that graded A∞-modules naturally correspond to bicomplexes.
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The braid group Brn acts on the homotopy category of (either graded or ungraded) An−1-
modules by tensoring with a suitable complex of An−1-bimodules. This works as well in the
limit of A∞-modules, with the braid group Br∞ with strands (and generators σi) enumerated
by integers.

Passing from modules over an algebra B to complexes of modules means working with suit-
ably graded modules over the algebra B[d]/

(
d2
)
. In our case, graded An−1 or A∞ modules can

be identified with bicomplexes (more precisely, there is an equivalence of corresponding abelian
categories). Consequently, complexes of An−1 and A∞-modules may be identified with tricom-
plexes, with the homological grading in An−1[d]/

(
d2
)

corresponding to the additional, third,
grading in tricomplexes.

Passing from complexes to the homotopy category of complexes (of modules over an alge-
bra B) means modding out by null-homotopic morphisms. If one restricts to complexes of
projective B-modules, which is a common and important subcategory of the category of com-
plexes, this means killing morphisms which factor through a direct sum of objects of the form

0−→B Id−→ B−→0

in various homological degrees. Specializing B to A∞, the above complex decomposes as a direct
sum of terms of the form

0−→A∞(i)
Id−→ A∞(i)−→0 (1.1)

for various i ∈ Z (cf. the next diagram below). By keeping track of the additional grading, one
can further shift these copies of A∞(i) and parametrize them by a pair of integers (i, j). To-
gether with the homological grading k, one gets a 3-parameter family of possible indecomposable
summands that each represent the zero complex in the homotopy category.

If this setup is converted into the language of bicomplexes and tricomplexes, the moduleA∞(i)
corresponds to a free rank one bicomplex in the bigrading associated to the idempotent (i) and
another independent grading j, see Definition 2.8. The complex (1.1) corresponds to a free rank
one tricomplex, with its generator placed in tridegree (i, 0, 0). We refer the reader to (3.15)
and (3.16) for the precise matching of trigradings and shifts:

(i|i− 1|i) Id // (i|i− 1|i)

(i+ 1|i) Id //

∂1

__

(i+ 1|i)
∂1

__

(i− 1|i)

∂2

OO

Id // (i− 1|i)

∂2

OO

(i)
Id //

∂2

OO

∂1

__

(i)

∂2

OO

∂1

__

Here in the diagram, the (basis elements of the) first copy of A∞(i) in (1.1) is exhibited as the
left-most square in the cube, while the second copy of A∞ is displayed as the right-most square.
These two squares are connected by the homological differential labelled with Id maps.

In the homotopy category of projective graded A∞-modules, a morphism is zero if it factors
through the object which is a direct sum of complexes (1.1) over various i, j, and k, where i
labels the idempotent, j is the additional grading parameter in A∞, and k is the homological
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grading. Converting this to tricomplexes, one unites the three integer grading parameters i, j, k
of different origins into a single trigrading on tricomplexes. The complex (1.1) becomes a free
tricomplex of rank one that can sit in any position relative to the trigrading. Killing morphisms
that factor through sums of such free rank one tricomplexes is equivalent to the condition that
one is working in the stable category of tricomplexes, that is in the category of tricomplexes
modulo the ideal of morphisms that factor through a free tricomplex.

Tricomplexes can be described as trigraded modules over the algebra Λ3 with generators
∂1, ∂2, ∂3 and relations

∂2
i = 0, i = 1, 2, 3, ∂i∂j = ∂j∂i, i 6= j.

This 8-dimensional algebra is Frobenius, and it is even a Hopf algebra in the category of super-
vector spaces. Consequently, its stable category of trigraded modules is triangulated (and
monoidal, due to the Hopf algebra structure).

The braid group action on the homotopy category of An−1 and A∞-modules transfers to
the stable category of tricomplexes. Note that the homotopy category of A∞-modules and the
stable category of tricomplexes are not equivalent, but rather admit equivalent subcategories
with matching actions of the braid group. On the A∞ side, it is the homotopy category of
complexes of projective modules, and on the tricomplex side, the stable subcategory generated by
tricomplexes that restrict to free bicomplexes relative to the subalgebra generated by differentials
∂1, ∂2. The braid group action respects these subcategories and the equivalence between them.

The braid group acts by exact functors on this triangulated category of tricomplexes. The
actions does not respect the monoidal structure, though, and choosing the action requires singling
out one differential out of three. Choosing different differentials gives three commuting braid
group actions.

For now, we view this example as a curiosity. One natural question is whether our example
fits into the more general framework of Hopfological algebra [14, 21], where stable categories of
modules over Hopf algebras, such as Λ3, are used as base categories for new constructions of
categorifications (see, e.g., [15]) or, perhaps, some other algebro-geometric structures. Another
open problem is whether homotopy categories of complexes over other algebras of importance
in categorification, such as arc algebras [12], can be rethought through some generalization of
the stable category of tricomplexes.

Tricomplexes seem to appear exceedingly rarely in mathematics. Currently, they have made
appearances in the BRST theory [23], in the deformation theory of Hopf algebras [28], and in
the algebraic K-theory [2]. A modified notion of a tricomplex, called quasi-tricomplex, occurs
in the theory of variation [20].

Beyond tricomplexes, polycomplexes can be related to (C∗)n-equivariant coherent sheaves
on CPn−1 via a version of Beilinson–Gelfand–Gelfand–Koszul duality.

The braid group action on the stable category of tricomplexes is constructed in Section 3 of
this paper. In Section 2 we explain a way to think about arrows in the spectral sequence of
a bicomplex of vector spaces via indecomposable modules over the rings An−1 and A∞. This
relation was independently discovered by Stelzig [25].

2 Spectral sequences via indecomposable bicomplexes

“The subject of spectral sequences is elementary, but the
notion of the spectral sequence of a double complex in-
volves so many objects and indices that it seems at first
repulsive.” D. Eisenbud [5, Appendix 3.13]

The standard textbook approach to spectral sequences makes them seem sophisticated and
mysterious gadgets [1, 7, 18, 26, 27] and [5, Appendix 3.13]. Timothy Chow, in the introduction
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to his article on spectral sequences [3], quotes the opinions of experts who, essentially, say that
the definition is so complicated that you just have to get used to it.

The goal of this section is to explain spectral sequences, restricted to bicomplexes of vector
spaces, in a simple and straightforward way. Most of this section has appeared in lectures to
graduate students by the first author, see for instance the informal lecture notes [13]. Similar
results also appeared in Stelzig [25]. We warn the reader that this elementary approach works
only for a bicomplex of vector spaces. Bicomplexes and filtered complexes that appear in spectral
sequences in algebraic topology carry an enormous amount of extra structure, such as an action of
the Steenrod algebra when working over Z/p, and cannot be easily understood in this elementary
way. The complexity and beauty of these structures are captured in the Fomenko and Fuchs
classic [6] and other books, see McCleary [18].

2.1 Cohomology

Let k be a field and M

· · · d
i−1

−→M i di−→M i+1 di+1

−→ · · ·

a complex of k-vector spaces. We allow unbounded complexes and infinite-dimensional vector
spaces. It is easy to see that M decomposes into the direct sum of length zero complexes

0−→Hi−→0,

with a vector space Hi in degree i, and length one complexes

0−→W i id−→W i−→0, (2.1)

with two copies of a vector space W i in degrees i and i+ 1. Thus,

M i ∼= Hi ⊕W i ⊕W i−1,

although this direct sum decomposition of the vector space M i is not canonical. The inclusion
of the direct sum Hi ⊕W i−1 ⊂ M i is canonical, being the inclusion ker(di) ⊂ M i. The i-th
cohomology group Hi(M) of M is canonically isomorphic to Hi. Direct summands (2.1) are
contractible (recall that a complex is called contractible if the identity endomorphism is null-
homotopic).

Example 2.1. Let X be a smooth compact manifold and (Ω(X), d) the de Rham complex of
smooth forms on X. In this case Hi(X,R) are finite-dimensional vector spaces, while the vector
spaces Ωi(X) and hence W i are infinite-dimensional. The bulk of the complex Ω(X) is occupied
by contractible “junk”, while the “valuable part” (cohomology) has small size. If we equip X
with a Riemannian metric g, the operator d∗ = ± ∗ d∗ adjoint to d gives rise to the Laplace
operator

∆: Ωi(X)−→Ωi(X), ∆ = dd∗ + d∗d.

The Laplace operator provides a canonical embedding of each complex 0−→Hi(X,R)−→0 into
the complex (Ω(X), d), via the isomorphism H(X,R) ∼= ker(∆).

A complex of k-vector spaces is the same as a graded module over the exterior k-algebra Λ1

on one generator d of degree 1:

Λ1 := k[d]/
(
d2
)
.
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The i-th homogeneous piece of a graded Λ1-module M is a vector space M i, and the action of d
is exactly the differential d : M i−→M i+1.

The categoryM1 of graded modules over Λ1 is Krull–Schmidt, and any module (even infinite-
dimensional) decomposes into a direct sum of indecomposable modules Si and P i. Here Si is the
one-dimensional k-vector space placed in degree i, and corresponds to the complex 0−→k−→0.
The differential acts by 0 and the module Si is simple. The module P i = Λ1{i} is free and
corresponds to the complex

0−→k 1−→ k−→0.

Thus,

M ∼= ⊕
i∈Z

(
Hi ⊗ Si

)
⊕
(
W i ⊗ P i

)
,

and the cohomology of M only catches the first terms in the sum. Recall that an object M of
an additive category is called indecomposable if M is not isomorphic to a direct sum N1 ⊕ N2

with both N1, N2 nontrivial.

2.2 Bicomplexes

Let us now move on to bicomplexes. A bicomplex M over a field k is a family
{
M i,j

}
of vector

spaces, for i, j ∈ Z, and maps

∂1 : M i,j−→M i+1,j , ∂2 : M i,j−→M i,j+1

subject to the equations

∂2
1 = 0, ∂2

2 = 0, ∂1∂2 + ∂2∂1 = 0,

...
...

∂1 //M i,j+1 ∂1 //

∂2

OO

M i+1,j+1 ∂1 //

∂2

OO

∂1 //M i,j ∂1 //

∂2

OO

M i,j+1 ∂1 //

∂2

OO

∂2

OO

∂2

OO

Let Λ2 be the exterior k-algebra on two generators ∂1, ∂2, so that the above equations are
the defining relations for the generators. Λ2 has a natural bigrading by

deg(∂1) = (1, 0), deg(∂2) = (0, 1).

A bicomplex M is the same as a bigraded left Λ2-module. We denote the category of bicomplexes
by M2.

We say that a bicomplex M is bounded if only finitely many M i,j are not 0.

Example 2.2. Let us describe some bounded indecomposable bicomplexes.
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(1) The bicomplex Si,j is one-dimensional with a copy of k sitting in the (i, j)-th bidegree:

Si,j :

0

0 // k //

OO

0.

0

OO

In other words, Si,j is the simple Λ2-module sitting in bidegree (i, j).

(2) The indecomposable bicomplex P i,j ∼= Λ2{i, j} is a free rank one module (looking like
a square on a planar lattice), a copy of Λ2 with bigrading shifted, so that the nonzero term
in the southwest corner sits in (i, j)-th degree:

P i,j :

0 0

0 // k //

OO

k //

OO

0

0 // k //

OO

k //

OO

0.

0

OO

0

OO

(3) The bicomplex Zi,j→,l has the top leftmost term in bidegree (i, j) and goes zigzag to the
right and down. The number l ∈ N denotes the number of nonzero arrows, l + 1 is the
dimension of the vector space underlying this bicomplex

Zi,j→,l :

k // k

k

OO

// k

. . . //

OO

k

k.

OO

(4) Likewise, the bicomplex Zi,j↑,l starts from the bidegree (i, j) and goes zigzag down and to
the right.

Zi,j↑,l :

k

k

OO

// k

. . . //

OO

k

k

OO

// k.
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Theorem 2.3. Any bounded bicomplex M ∈ M2 (possibly with infinite-dimensional vector
spaces M i,j) breaks up into a direct sum of indecomposable bicomplexes Si,j, P i,j, Zi,j←,l, Z

i,j
↑,l

described above.

We will postpone the proof of the theorem until Section 2.4.
Let Tot(M) be the total complex of the bicomplex M , with the differential d = ∂1 + ∂2 and

the terms given by direct sums over M i,j for i+ j fixed,

· · · d−→ Totk(M)
d−→ Totk+1(M)

d−→ · · · ,

where Totk(M) = ⊕
i+j=k

M i,j .

A common situation is that we want to compute the homology of Tot(M) with respect to
the differential d and already know the homology of M with respect to, say, differential ∂2 (the
upward differential in our conventions). These homology groups H(M,∂2) are bigraded,

H(M,∂2) = ⊕
i,j∈Z

Hi,j(M,∂2),

and we would like to understand the relation between them and H(Tot(M), d). If we write M as
a (possibly infinite) direct sum of indecomposable bicomplexes Mα, for α in some index set A,
then both H(M,∂2) and H(Tot(M), d) decompose as direct sums of cohomology groups of Mα:

H(M,∂2) ∼= ⊕
α∈A

H(Mα, ∂2),

H(Tot(M), d) ∼= ⊕
α∈A

H(Tot(Mα), d).

Hence, we will compare H(M,∂2) and H(Tot(M), d) for all types of indecomposable summands
of M , case by case.

Case 1. Si,j contributes a copy of k to Hi,j(M,∂2) and a copy of k to Hi+j(Tot(M), d).
Case 2. H(P i,j , ∂2) = 0 and H(Tot(P i,j), d) = 0. Thus, the “square” indecomposable

bicomplex P i,j contributes nothing to both H(M,∂2) and H(Tot(M), d).
For the module Zi,j↑,l , there are two sub-cases.

Case 3.a. Firstly, let l, the number of nonzero arrows in the zigzag, be odd in Zi,j↑,l ,

Zi,j↑,l :

k

k

OO

// k

. . . //

OO

k

k.

OO

Cohomology of Zi,j↑,l with respect to the vertical differential ∂2 is zero. The total complex of this
zigzag has the form

0−→kr d−→ kr−→0,

where d is an isomorphism and 2r = l + 1. Hence, cohomology of the total complex is zero as
well.
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Case 3.b. Suppose now that l in Zi,j↑,l is even, l = 2r,

Zi,j↑,l :

k

k

OO

// k

. . . //

OO

k

k

OO

// k.

Cohomology with respect to ∂2 produce a single k in bidegree (i+ r, j − r). The total complex
has the form

0−→kr d−→ kr+1−→0

with d injective. Cohomology of the total complex is k in degree i+ j and zero elsewhere.
Case 4.a. For the module Zi,j→,l, there are two sub-cases as well. We start with even l = 2r,

Zi,j→,l (l = 2r) :

k // k

k

OO

// k

. . . //

OO

k

k.

OO

Cohomology with respect to ∂2 give a single k in bidegree (i, j). The total complex is

0−→kr+1 d−→ kr−→0

with a surjective d, and it has cohomology k in degree i+ j and zero elsewhere.
Before we treat the last case, observe that in each of the above cases cohomology of the total

complex is given by simply collapsing the bigrading of H(M,∂2) into a single grading by adding i
and j. Thus, if M does not contain any direct summands isomorphic to Zi,j→,l with odd l,

Hk(Tot(M), d) =
⊕

i+j=k

Hi,j(M,∂2).

Case 4.b. Lastly, consider Zi,j→,l with odd l = 2r + 1,

Zi,j→,l (l = 2r + 1):

k // k

k

OO

// k

. . . //

OO

k

k

OO

// k.
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Taking cohomology with respect to ∂2 produces two copies of k, in bigradings that differ by
(r, 1− r):

H(Zi,j→,l, ∂2) =

k // 0

0

OO

// 0

. . . //

OO

0

0

OO

// k.

Collapsing the bigrading in cohomology gives us two copies of k in adjacent degrees i + j and
i+ j + 1.

The total complex has the form

0−→kr+1 d−→ kr+1−→0

with d an isomorphism, and the cohomology of the total complex is zero. Thus, for a general
bounded bicomplex M , the cohomology H(M,∂2), after the bigrading collapsed into a single
grading, is isomorphic to the cohomology of the total complex of M , plus pairs of copies of the
ground field in adjacent degrees (i + j, i + j + 1), for each direct summand of M isomorphic
to Zi,j→,l with odd l.

Since we want to know the cohomology of the total complex, the extraneous terms need to be
eliminated. Ideally, we would locate all direct summands Zi,j→,2r+1 and kill off pairs of k, one for
each summand, in the relative bigrading position (r, 1−r). For a general r, we need to eliminate
pairs in the relative positions (i, j) and (i+ r, j − r + 1) by a map di,jr :

k

di,jr =1

""

0

0 0

. . . 0

0 k

on the square lattice. This is exactly what the spectral sequence does. The E1-term of the
spectral sequence of the bicomplex (M,∂1, ∂2) is the cohomology of M with respect to ∂2:

Ei,j1 = Hi,j(M,∂2).

To pass to the E2-term, we remove contributions to H(M,∂2) from the direct summands Zi,j→,1,

which are k 1→ k. Notice that the E2-term is simply the cohomology of H(M,∂2) with respect to
the differential ∂1 (more accurately, differential ∂1 on M descends to a differential on H(M,∂2),
which we also call ∂1):

E2 = H(H(M,∂2), ∂1).
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Going from E2 to the E3-term, we remove pairs of one-dimensional vector spaces k which come
from summands Zi,j→,3 and differ by (2,−1)-bigrading. In general, in the Er-term there are no

contributions from summands Zi,j→,l for all odd l ≤ 2r − 1.

The reader can find an accurate definition of spaces Ei,jr and differentials di,jr in almost
any textbook on homological algebra, often done in a slightly different framework of a filtered
complex rather than a bicomplex. However, we find the above approach via indecomposable
bicomplexes more clarifying and intuitive than the standard textbook definition of the pages Er
and differentials di,jr of a spectral sequence.

2.3 Bicomplexes and Hodge theory

The Hodge bicomplex [4, 8, 27]. Let X be a closed almost complex manifold. This means X is
a smooth closed manifold equipped with an endomorphism J of its real tangent bundle TR(X)
such that J2 = −1. The complexified tangent bundle T (X) = TR(X) ⊗R C of X decomposes
into the direct sum of i and −i eigenspaces of J ,

T (X) = T 1,0(X)⊕ T 0,1(X).

This induces a direct sum decomposition of all exterior powers ∧kT ∗ of the complexified cotan-
gent bundle T ∗(X)c:

∧kT ∗ =
⊕

i+j=k

∧i,jT ∗.

Let Ωk
C

(X) be the space of smooth sections of ∧kT ∗ and (ΩC(X), d) the complex with d the
complexified de Rham differential:

· · · d−→ Ωk
C(X)

d−→ Ωk+1
C

(X)
d−→ · · · .

Let Ωi,j(X) be the vector space of smooth sections of ∧i,jT ∗. In general, d shows no respect for
the direct sum decomposition

Ωk
C(X) = ⊕

i+j=k
Ωi,j(X).

However, Newlander and Nirenberg proved [19] that d takes Ωi,j(X) to Ωi+1,j(X) ⊕ Ωi,j+1(X)
for all i, j if and only if the almost complex structure J of X comes from a complex structure
on X. In this case d = ∂ + ∂̄, where

∂ : Ωi,j(X)−→Ωi+1,j(X)

is the composition of d with the projection onto the (i+ 1, j)-component, and

∂̄ : Ωi,j(X)−→Ωi,j+1(X)

is the composition of d with the projection onto the (i, j + 1)-component. The relation d2 = 0
splits into the relations

∂2 = 0, ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0.

Thus, to a complex manifold X there is assigned the Hodge bicomplex
(
ΩC(X), ∂, ∂̄

)
. Its

cohomology groups with respect to ∂̄ is known as the Dolbeault cohomology, while the cohomology
with respect to d = ∂ + ∂̄ is the de Rham cohomology of X with coefficients in C. The spectral
sequence of this bicomplex, called the Hodge to de Rham spectral sequence, has the Dolbeault
cohomology as the E1-term and converges to the de Rham cohomology of X.

Assume now that X is a Kähler manifold. Then the ∂∂̄-lemma holds.
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Lemma 2.4. If ω ∈ ΩC(X) is a d-closed form and either ∂-exact or ∂̄-exact, then

ω = ∂∂̄α

for some α ∈ ΩC(X).

Since the lemma is true for ΩC(X), it also holds for each indecomposable summand of X.
A simple examination shows that the lemma fails for any zigzag Zi,j→,l and Zi,j↑,l for l > 0 (when

l = 0, the zigzag degenerates to the simple bicomplex Si,j). We obtain immediately the following.

Proposition 2.5. For a compact Kähler manifold X, every indecomposable summand of the
bicomplex ΩC(X) is isomorphic to either Si,j or P i,j for some i, j.

Equivalently, ΩC(X) has no zigzags (including no zigzags of length 1, that is k 1−→ k and its
vertical conterpart).

Thus, the bicomplex ΩC(X) decomposes into the direct sum

ΩC(X) ∼= Ωs(X)⊕ Ωp(X),

where Ωs(X) is a finite-dimensional semisimple bicomplex (a direct sum of one-dimensional
simple bicomplexes Si,j), while Ωp(X) is an infinite-dimensional free bicomplex (a direct sum
of free bicomplexes P i,j). The first summand is finite-dimensional since ΩC(X) has finite-
dimensional cohomology groups, and

Ωs(X) ∼= H(ΩC(X), ∂) ∼= H(ΩC(X), ∂̄) ∼= H(ΩC(X), d) ∼= H(X,C).

The first three terms are bigraded vector spaces, and the second isomorphism says that, after
collapsing the bigrading to a single grading, the groups become the usual de Rham cohomology
groups of X.

We see that the cohomology groups of a compact Kähler manifold X with respect to ∂, ∂̄,
and d are isomorphic; they are also isomorphic to the largest semisimple summand of ΩC(X).
The Hodge to de Rham spectral sequence for X degenerates at E1 (E1 = E∞). Likewise, the ∂
counterpart of the Hodge to de Rham spectral sequence degenerates at E1 = H(ΩC(X), ∂).

2.4 Proof of Theorem 2.3

Let M be a graded module over Λ2. Suppose m ∈M is a homogeneous vector of bidegree (i, j)
such that ∂1∂2(m) 6= 0. Then, it is clear that the submodule generated by m and spanned by
vectors in the diagram below

∂2(m)
∂1 // ∂2∂1(m) = −∂1∂2(m)

m
∂1 //

∂2

OO

∂1(m)

∂2

OO

is isomorphic to Λ2, up to a grading shift, and thus is a projective submodule inside M .

Recall that over a Frobenius algebra, any projective module is injective and vice versa [17,
Theorem 15.9]. The same proof shows that over a graded Frobenius algebra, in the category of
graded modules, projective objects coincide with injective objects. Since Λ2 is graded Frobenius,
the submodule above is also graded injective, and therefore must be a direct summand of M .
We can decompose M ∼= P ⊕N , where P is a graded direct sum of projective-injectives of the
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form P i,j (case (2) of Example 2.2), and N is annihilated by the element ∂1∂2 = −∂2∂1 ∈ Λ2.
Further, we may regard N as a module over the bigraded quotient algebra

Λ̂2 :=
Λ2

(∂1∂2)
∼= k[∂1, ∂2](

∂2
1 , ∂

2
2 , ∂1∂2

) .

Now assume N is a bounded bigraded Λ2-module which does not contain any projective-
injective summands. By the above discussion, N is a bigraded module over Λ̂′2. Write for each
term

N i,j ∼= Di,j ⊕ Ci,j ,
where

Di,j = Ker(∂1) ∩Ker(∂2) ∩N i,j

is the subspace annihilated by both ∂1 and ∂2, and Ci,j is an arbitrary complementary vector
subspace to Di,j inside N i,j . Necessarily,

∂1

(
Ci,j

)
⊂ Di+1,j , ∂2

(
Ci,j

)
⊂ Di,j+1

since ∂1∂2|N ≡ 0. Thus, there are two direct summands of N containing the subspaces Ci,j

and Di,j :



. . .

Ci−1,j+1

∂2

OO

∂1 // Di,j+1

Ci,j
∂1 //

∂2

OO

Di+1,j

Ci+1,j−1

∂2

OO

∂1 // . . .




,




. . .
∂1 // Di−1,j+1

Ci,j−1 ∂1 //

∂2

OO

Di,j

Ci,j−1

∂2

OO

∂1 // Di+1,j−1

. . .

∂2

OO




.

In particular, if we further assume that N as above is indecomposable, then there must
be (i, j) ∈ Z2 such that N is isomorphic to one of the above “zig-zag” modules, and either
Ci,j = N i,j or Di,j = N i,j . Flattening out the zig-zag, say, the first one, we may identify N
with an indecomposable finite-dimensional representation of the A quiver with the alternating
orientation

· · · Ci−1,j+1∂2oo ∂1 // Di,j+1 Ci,j
∂2oo ∂1 // Di+1,j Ci+1,j−1∂2oo ∂1 // · · · .

By the classical result of Gabriel (see, for instance, [24]), such an indecomposable module must
be of the form

· · · k=oo = // k k=oo = // k k=oo = // · · · .
Such an indecomposable module translates back into either the simple module or a zig-zag
module listed in Example 2.2 (cases (1), (3) and (4)). The theorem follows.
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Remark 2.6 (unbounded complexes). As the proof reveals above, one may extend Theorem 2.3
to the case of unbounded bicomplexes as well.

Case 5. Initially vertical and bounded from “below” or “above”; the bounded corner sitting
in bidegree (i, j):

Zi,j↑,+ :

. . . // k

. . . //

OO

k

k

OO

// k

k

OO

Zi,j↑,− :

k

k

OO

// k

. . . //

OO

k

k

OO

// . . .

Cohomology spaces of Zi,j↑,± with respect to the vertical differential ∂2 are both zero. But the
collapsed total complexes, which both have the form

0−→k∞ d−→ k∞−→0,

have different total cohomologies. It is readily seen that, for Zi,j↑,+, the total differential is both

injective and surjective. However, for Zi,j↑,−, the total differential is injective, but not surjective.
The cokernel of d is given by k sitting in the bidegree (i, j).

Case 6. The module Zi,j→,±, which starts horizontally and is bounded from below or above,
whose bounded corner lies in bidegree (i, j):

Zi,j→,+ :

. . . // k

k

OO

// k

. . . //

OO

k

k

OO

// k

Zi,j→,− :

k // k

k

OO

// k

. . . //

OO

k

k

OO

// . . .

Cohomology spaces with respect to ∂2 give a single k in bidegree (i, j). However, the total
cohomology of the collapsed complexes

0−→k∞ d−→ k∞−→0

behaves differently. For Zi,j→,+, the total differential is clearly injective, but not surjective. The
cohomology classes represented by the vectors 1 sitting in bidegrees (i − r, j + r), r ∈ N, are
all cohomologous, and their images in the total complex represent the same cohomology class
in degree i + j. On the other hand, the total differential of Zi,j→,− is an isomorphism, and thus
there is no total cohomology.

Case 7. The module Zi,j± , which is unbounded in both directions. The underlined copy of k
sits in bidegree (i, j). The modules are taken to be the same up to shifting (i, j) to (i+ r, j− r),
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where r ∈ Z, and identifying Zi,j+ with Zi+1,j
− :

Zi,j+ :

. . . // k

k

OO

// k

. . .

OO
Zi,j− :

. . .

k

OO

// k

k //

OO

. . .

Again, the vertical cohomology with respect to ∂2 of Zi,j± are both zero. The total cohomology
for the collapsed complexes both have one-dimensional cohomology sitting in the cokernel of d.
In this case, the spectral sequences will not converge.

Let us call a bicomplex M = ⊕i,j∈ZM i,j bounded from Southeast when M i,j = 0 if i� 0 and
j � 0. A bicomplex M is called bounded from Northwest when M i,j = 0 if i � 0 and j � 0.
Combining with the observations in Section 2.2, we see that if a bicomplex M is bounded
from Southeast, then, together with finite-dimensional summands, M may contain additional
summands of the form Zi,j↑,+ and Zi,j→,+. However, taking ∂2-cohomology first does not create
additional classes that need to be killed off in the total cohomology. Similarly, bicomplexes that
are bounded from Northwest may contain infinite-dimensional summands of type Zi,j↑,− and Zi,j→,−.
Taking ∂1 cohomology contributes nothing towards total cohomology.

Corollary 2.7. If M is a bicomplex bounded from Southeast, then there is a spectral sequence
whose E1 page equals (H(M,∂2), ∂1), converging to the total cohomology of M . Likewise, if M is
a bicomplex bounded from Northwest, then there is a spectral sequence starting at (H(M,∂1), ∂2)
converging to the total cohomology of M .

Let us call a complex semibounded if it bounded from either Northwest or Southeast. A semi-
bounded complex cannot contain summands Zi,j+ or Zi,j− that prevent either spectral sequence
from converging.

2.5 Connection to zig-zag algebras

Let us point out the connection between the category M2 of bicomplexes with the module
category over (an infinite version of) the zig-zag algebra considered in [16].

Let Q∞ be the following quiver whose vertices are labelled by r ∈ Z:

· · · r−2◦hh
)) r−1◦hh

)) r◦gg
%% r+1◦ee

)) r+2◦hh
))

· · ·hh
''

(2.2)

Set kQ∞ to be the path algebra associated to Q∞ over the ground field. We use, for instance,
notation (i|j|k), where i, j, k are vertices of the quiver Q∞, to denote the path which starts at
vertex i, then goes through j (necessarily j = i± 1) and ends at k. The composition of paths is
given by

(ii|i2| · · · |ir) · (j1|j2| · · · |js) =

{
(ii|i2| · · · |ir|j2| · · · |js), if ir = j1,

0, otherwise,

where i1, . . . , ir and j1, . . . , js are sequences of neighboring vertices in Q∞.
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Definition 2.8. The zig-zag algebra A = A∞ is the quotient of the path algebra kQ∞ by the
relations, for any r ∈ Z,

(r|r + 1|r + 2) = 0, (r|r − 1|r − 2) = 0, (r|r − 1|r) = (r|r + 1|r).
We make the zig-zag algebra graded by setting1

deg(r) = deg(r|r + 1) = 0, deg(r|r − 1) = 1,

for all r ∈ Z. It is a non-unital algebra with a system of mutually orthogonal idempotents
{(r)|r ∈ Z}. There is an obvious automorphism T on A, defined by

T (r) := (r + 1), T (r|r + 1) := (r + 1|r + 2), T (r|r − 1) := (r + 1|r).
For a fixed pair of integers (r, i) ∈ Z2, there is a graded projective module Pr〈i〉 which is

generated by the idempotent (r), whose degree is shifted up by i. More explicitly, Pr〈i〉 is the
four-dimensional vector space with the basis

{
(r)σi, (r + 1|r)σi, (r − 1|r)σi, (r|r + 1|r)σi

}
,

where σi stands for the module generator sitting in degree i.
We will consider the category of graded modules over A, which we denote by M(A), in

what follows. The automorphism T of A induces an autoequivalence T of M(A), defined
by T :=

(
T−1

)∗
. Clearly T (Pr〈i〉) = Pr+1〈i〉 holds for all r, i ∈ Z.

Given a module M = ⊕i,j∈ZM i,j in M2, we place the homogeneous bigraded component
of M i,j at (i, j) in the corresponding node of the two-dimensional lattice Z2. For each r ∈ Z, we
collect together M i,js on the line of slope one (depicted as the dashed line in the picture below):

Mr :=
⊕

i−j=r
M i,j .

Note that Mr is singly graded, with its homogeneous degree j part M j
r set to be M r+j,j .

Since ∂1 and ∂2 have bidegrees (1, 0) and (0, 1), respectively, they induce maps

D1 := ∂1 : M j
r−→M j

r+1, D2 := (−1)r∂2 : M j
r−→M j+1

r−1 ,

These maps satisfy D2
1 = 0, D2

2 = 0 and D1D2 = D2D1. We put the vector space Mr at
the rth vertex of A and declare the rightward (resp. leftward) going arrows to be the induced
map D1 (resp. D2). We have thus obtained a graded A-module by summing over the r-degrees
M∞ := ⊕r∈ZMr.

Schematically, we depict the correspondence as follows:

18 Spectral sequences via indecomposable bicomplexes

We will consider the category of graded modules over A, which we denote by M(A), in what
follows. The automorphism T of A induces an autoequivalence T of M(A), defined by T :=
(T−1)∗. Clearly T (Pr〈i〉) = Pr+1〈i〉 holds for all r, i ∈ Z.

Given a module M = ⊕i,j∈ZM i,j in M2, we place the homogeneous bigraded component of
M i,j at (i, j) in the corresponding node of the two-dimensional lattice Z2. For each r ∈ Z, we
collect togetherM i,js on the line of slope one (depicted as the dashed line in the picture below):

Mr :=
⊕

i−j=r

M i,j. (2.8)

Note that Mr is singly graded, with its homogeneous degree j part M j
r set to be M r+j,j.

Since ∂1 and ∂2 have bidegrees (1, 0) and (0, 1), respectively, they induce maps

D1 := ∂1 :M
j
r−→M j

r+1, D2 := (−1)r∂2 :M
j
r−→M j+1

r−1

These maps satisfy D2
1 = 0, D2

2 = 0 and D1D2 = D2D1. We put the vector space Mr at the rth
vertex of A and declare the rightward (resp. leftward) going arrows to be the induced map D1

(resp. D2). We have thus obtained a graded A-module by summing over the r-degrees M∞ :=
⊕r∈ZMr.

Schematically, we depict the correspondence as follows.

∂1

∂1

∂2

∂2

• •• •• ••

D1 D1

D2 D2

· · · · · ·

· · · · · ·

(2.9)

Furthermore, a morphism f :M−→N in M2 componentwise given by

f =
⊕

i,j∈Z
f i,j :

⊕

i,j∈Z
M i,j−→

⊕

i,j∈Z
N i,j,

satisfies ∂1f i,j = f i+1,j∂1, ∂2f i,j = f i,j+1∂2. One has the associated morphism of bigraded A-
modules, which is defined as

fr :=
⊕

i−j=r

f i,j :Mr−→Nr f∞ :=
⊕

r∈Z
fr.

1The grading is chosen to match with the convention of [16].
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Furthermore, a morphism f : M−→N in M2 componentwise given by

f =
⊕

i,j∈Z
f i,j :

⊕

i,j∈Z
M i,j−→

⊕

i,j∈Z
N i,j ,

satisfies

∂1f
i,j = f i+1,j∂1, ∂2f

i,j = f i,j+1∂2.

One has the associated morphism of bigraded A-modules, which is defined as

fr :=
⊕

i−j=r
f i,j : Mr−→Nr, f∞ :=

⊕

r∈Z
fr.

Clearly D1fr = fr+1D1 and D2fr = fr−1D2 holds for all r ∈ Z, so that f∞ is a morphism of
bigraded A-modules. This defines a functor F∞ : M2−→M(A).

As the above functorial assignment is clearly reversible, the functor F∞ is invertible.

Proposition 2.9. The functor F∞ : M2−→M(A) is an equivalence of abelian categories. Fur-
thermore, the functor satisfies

F∞(M{1, 0}) = T (F∞(M)),

F∞(M{0, 1}) = T −1(F∞(M))〈1〉.

3 Tricomplexes and braid group actions

3.1 The monoidal category of tricomplexes

We denote by i = (i1, i2, i3) an ordered triple of integers, and write i = i1e1 + i2e2 + i3e3 where

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

In particular, we write 0 := (0, 0, 0) as the additive unit element.

Let Λ3 be the exterior algebra over k with three generators ∂1, ∂2, ∂3:

∂2
j = 0, j = 1, 2, 3, ∂j∂k + ∂k∂j = 0, j 6= k.

We make Λ3 a triply-graded k-algebra, by assigning degree ej to ∂j . LetM3 be the category of
triply-graded left Λ3-modules with respect to tri-degree preserving maps. A module M consists
of a collection of k-vector spaces Mi,

M =
⊕

i∈Z3

Mi,

together with linear maps ∂j : Mi−→Mi+ej subject to the exterior algebra relations. It is useful
to visualize M as a 3-dimensional object: the vector space Mi sits in the i node of a 3-dimen-
sional lattice and the maps ∂j go along oriented edges of the lattice. Below is a portion of M
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depicted:

M(i,j,k+1)

��

//M(i,j+1,k+1)

��

//M(i,j+2,k+1)

��
M(i+1,j,k+1)

//M(i+1,j+1,k+1)
//M(i+1,j+2,k+1)

M(i,j,k)

∂3

OO

∂2 //

∂1

��

M(i,j+1,k)

OO

��

//M(i,j+2,k)

OO

��
M(i+1,j,k)

//

OO

M(i+1,j+1,k)

OO

//M(i+1,j+2,k)

OO

M(i,j,k−1)

OO

//

��

M(i,j+1,k−1)

OO

��

//M(i,j+2,k−1)

OO

��
M(i+1,j,k−1)

//

OO

M(i+1,j+1,k−1)

OO

//M(i+1,j+2,k−1)

OO

The grading shift by i, denoted {i}, is an automorphism of M3. Any simple object of M3

is isomorphic to Si := k{i} for a unique i. Here k is a one-dimensional k-vector space, in
tridegree 0, viewed as a Λ3-module with the trivial action of ∂1, ∂2, ∂3.

Any indecomposable projective in M3 is isomorphic to Pi := Λ3{i}, for a unique i. Any
projective in M3 is isomorphic to the direct sum of Pi’s, possibly with infinite multiplicities.
Since Λ3 is a trigraded Frobenius algebra, the Pi are also injective objects ofM3. A module M
contains Pi as a direct summand (and not just as a submodule) if and only if ∂1∂2∂3m 6= 0 for
some m ∈Mi.

Let Q = Λ3ω/Λ3∂3ω be the cyclic module with one generator ω in tri-degree 0 and relation
∂3ω = 0. We depict Q as a square

k∂2ω
∂1 // k∂2∂1ω

kω

∂2

OO

∂1 // k∂1ω.

∂2

OO

There is a graded isomorphism of modules Q ∼= Λ3/∂3Λ3.
The algebra Λ3 is a Hopf algebra in the category of trigraded (super) vector spaces, where

the (super) Z/2Z-grading is given by reducing i1 + i2 + i3 modulo 2, and ∆(∂r) = ∂r⊗1+1⊗∂r.
Consequently, the tensor product M ⊗ N of trigraded Λ3-modules is a trigraded Λ3-module,
with ∂r acting by

∂r(m⊗ n) = ∂r(m)⊗ n+ (−1)irm⊗ ∂r(n), r = 1, 2, 3,

where m is in degree (i1, i2, i3).
Similarly, there is a trigraded inner-hom on M3, defined by

HOMk(M,N) :=
⊕

i∈Z3

Homk(M,N{i}),
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where the right hand side is the direct sum of homogeneous linear maps from M to N{i}. The
inner hom space carries a natural Λ3 action defined by, for any f ∈ Homk(M,N{i1, i2, i3})

∂r(f)(m) = ∂r(f(m))− (−1)irf(∂r(m)), r = 1, 2, 3. (3.1)

The spaces of Λ3-invariants under this action consist of morphisms in M3 of all degrees:

HOMk(M,N)Λ3 =
⊕

i∈Z3

HomM3(M,N{i}).

It is useful to regard Λ2 and Λ1 as certain graded Hopf subalgebras in Λ3. To do this, we
break the apparent symmetry and define Λ2 to be the subalgebra generated by ∂1 and ∂2, while
setting Λ′1 to be the subalgebra generated by ∂3. The natural algebra inclusions

ι : Λ2 ↪→ Λ3,  : Λ′1 ⊂ Λ3

admit retractions

µ : Λ3−→Λ2, ν : Λ3−→Λ′1, (3.2)

which are respectively given by setting ∂3 or ∂1, ∂2 to be zero.
Using these subquotient algebras, we define a functor by taking “partial graded-hom” with

respect to Λ′1, as follows. Fix i and j degrees. Given any M ∈M3, set

Mi,j := ν∗
(⊕

k∈Z
Mi,j,k

)
,

where in the last term, we only keep the Λ′1-module structure on ⊕kMi,j,k. The functor extends
naturally to morphisms inM3, and has the effect, on objects, of taking the direct sum of Mi,j,k

over k ∈ Z. It remembers the ∂3-complex structure inherited from that of M , while making ∂1, ∂2

act by 0.

3.2 A braid group action

In this section, we exhibit a braid group action on the stable category of trigraded Λ3-modules.
The tensor product Q⊗Mi,j is an object ofM3, with ∂1, ∂2 acting only along Q (since their

actions on Mi,j are trivial) and ∂3 acting along Mi,j .
Consider the functor

Ur(M) :=
⊕

i−j=r
Q⊗Mi,j .

Geometrically, we take the plane Pr = {(i, j, k) | i − j = r} in Z3, with vector spaces Mi

sitting in the nodes, and form four copies of the plane (the tensor product with Q) related by
the differentials ∂1 and ∂2. The differential ∂3 acts along edges (i, i+e3) contained in the plane Pr.
We depict the summand Q⊗Mi,j in the next diagram. For a fixed e3-degree k, Q⊗Mi,j,k has four
copies of Mi,j,k sitting in degrees (i, j, k), (i+1, j, k), (i, j+1, k) and (i+1, j+1, k) respectively.
They correspond to

kω ⊗Mi,j,k, k∂1ω ⊗Mi,j,k, k∂2ω ⊗Mi,j,k, k∂2∂1ω ⊗Mi,j,k.

All maps except for

∂1 : Mi,j,k
∼= k∂2ω ⊗Mi,j,k−→k∂2∂1 ⊗Mi,j,k

∼= Mi,j,k

act as identity maps, which is the negative identity map.
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Now, summing over k and keeping track of the differential ∂3, we obtain the diagram

22 Tricomplexes and braid group actions

All maps except for

∂1 :Mi,j,k
∼= k∂2ω ⊗Mi,j,k−→k∂2∂1 ⊗Mi,j,k

∼=Mi,j,k

act as identity maps, which is the negative identity map.
Now, summing over k and keeping track of the differential ∂3, we obtain the diagram

∂1

∂1

∂2

∂2

Mi,j

Mi,jMi,j

Mi,j

⊙ ∂3

(3.9)

Here the differential ∂3 points perpendicularly out of the plane.

Proposition 3.1. The following isomorphisms between endofunctors of M3 hold:

U2
r
∼= Ur{1, 1, 0} ⊕ Ur, (3.10a)

UrUr±1Ur
∼= Ur{1, 1, 0}, (3.10b)

UrUs = 0 if |r − s| > 1. (3.10c)

Proof. We start with the first equation. We compute the left hand side as

U2
r (M) =

⊕

i−j=r

Ur(Q⊗Mi,j)

=
⊕

i−j=r

( ⊕

k−l=r

Q⊗ (Q⊗Mi,j)k,l

)

=
⊕

i−j=r

Q⊗ (kω ⊗Mi,j ⊕ k∂2∂1ω ⊗Mi,j)

∼=


⊕

i−j=r

Q⊗ kω ⊗Mi,j


⊕


⊕

i−j=r

Q⊗ k∂2∂1ω ⊗Mi,j




∼= Ur(M)⊕ Ur(M){1, 1, 0} (3.11)

(3.3)

Here the differential ∂3 points perpendicularly out of the plane.

Proposition 3.1. The following isomorphisms between endofunctors of M3 hold:

U2
r
∼= Ur{1, 1, 0} ⊕ Ur,

UrUr±1Ur ∼= Ur{1, 1, 0},
UrUs = 0 if |r − s| > 1.

Proof. We start with the first equation. We compute the left hand side as

U2
r (M) =

⊕

i−j=r
Ur(Q⊗Mi,j) =

⊕

i−j=r

( ⊕

k−l=r
Q⊗ (Q⊗Mi,j)k,l

)

=
⊕

i−j=r
Q⊗ (kω ⊗Mi,j ⊕ k∂2∂1ω ⊗Mi,j)

∼=


⊕

i−j=r
Q⊗ kω ⊗Mi,j


⊕


⊕

i−j=r
Q⊗ k∂2∂1ω ⊗Mi,j




∼= Ur(M)⊕ Ur(M){1, 1, 0}.

Here, in the third equality, we have used that Q⊗Mi,j has only two terms concentrated on the
line k − l = r (see the above picture (3.3)).

For the second isomorphism, we have (taking the r + 1 case)

UrUr+1Ur(M) =
⊕

i−j=r
UrUr+1(Q⊗Mi,j) =

⊕

i−j=r
Ur (Q⊗ (k∂1ω ⊗Mi,j))

=
⊕

i−j=r
Q⊗ k∂2ω ⊗ k∂1ω ⊗Mi,j =

⊕

i−j=r
Q⊗Mi,j{1, 1, 0}

= Ur(M){1, 1, 0}. (3.4)

The last isomorphism is easy, and we leave it as an exercise to the reader. �

Remark 3.2. Perhaps the cartoon below, in the scheme of equation (3.3), helps visualizing the
equalities in the above proof. We show this for equation (3.4) as an example. Depict a copy
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of Mi,j by a box in the lattices below. A black dot in a box indicates the term contributing to
the functor on the outward arrow:
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Here, in the third equality, we have used that Q ⊗Mi,j has only two terms concentrated on the
line k − l = r (see the above picture (3.9)).

For the second isomorphism, we have (taking the r + 1 case)

UrUr+1Ur(M) =
⊕

i−j=r

UrUr+1(Q⊗Mi,j)

=
⊕

i−j=r

Ur (Q⊗ (k∂1ω ⊗Mi,j))

=
⊕

i−j=r

Q⊗ k∂2ω ⊗ k∂1ω ⊗Mi,j

=
⊕

i−j=r

Q⊗Mi,j{1, 1, 0}

= Ur(M){1, 1, 0} (3.12)

The last isomorphism is easy, and we leave it as an exercise to the reader. �

Remark 3.2. Perhaps the cartoon below, in the scheme of equation (3.9), helps visualizing the
equalities in the above proof. We show this for equation (3.12) as an example. Depict a copy of
Mi,j by a box in the lattices below. A black dot in a box indicates the term contributing to the
functor on the outward arrow.

•
Ur−→

∂1

∂1

∂2

∂2
• Ur+1−−−→ ∂1

∂1

∂2

∂2
•

Ur−→
∂1

∂1

∂2

∂2

(3.13)

There exists a unique morphism in M3

Q⊗Mi,j−→M (3.14)

which takes ω ⊗m to m. This morphism takes ∂1ω ⊗m to ∂1m, etc.
Summing over i, j such that i−j = r, morphisms (3.14) combine into a module homomorphism

inr : Ur(M)−→M (3.15)

natural in M . Thus, inr : Ur =⇒ Id is a natural transformation of functors on M3.
Next, we construct a module homomorphism

M
outr−−→ Ur(M){−1,−1, 0}. (3.16)

Denote by Mν the underlying trigraded vector space of M , while only remembering the Λ′1-
module structure. Consider the map

out :M −→ Q⊗Mν{−1,−1, 0},
m 7→ (−1)i+j (ω ⊗ ∂1∂2(m) + ∂1ω ⊗ ∂2(m)− ∂2ω ⊗ ∂1(m) + ∂1∂2ω ⊗m) ,

(3.17)

where m ∈Mi,j,k is a homogeneous element.

There exists a unique morphism in M3

Q⊗Mi,j−→M, (3.5)

which takes ω ⊗m to m. This morphism takes ∂1ω ⊗m to ∂1m, etc.
Summing over i, j such that i−j = r, morphisms (3.5) combine into a module homomorphism

inr : Ur(M)−→M

natural in M . Thus, inr : Ur =⇒ Id is a natural transformation of functors on M3.
Next, we construct a module homomorphism

M
outr−−→ Ur(M){−1,−1, 0}.

Denote by Mν the underlying trigraded vector space of M , while only remembering the
Λ′1-module structure. Consider the map

out: M−→Q⊗Mν{−1,−1, 0},
m 7→ (−1)i+j(ω ⊗ ∂1∂2(m) + ∂1ω ⊗ ∂2(m)− ∂2ω ⊗ ∂1(m) + ∂1∂2ω ⊗m),

where m ∈Mi,j,k is a homogeneous element.

Lemma 3.3. The map out : M−→Q⊗Mν{−1,−1, 0} is a morphism of trigraded Λ3-modules.

Proof. The map clearly commutes with ∂3-actions on both sides, as ∂3 kills ω and anti-
commutes with ∂1 and ∂2. To verify that out also commutes with ∂1 and ∂2 requires a small
computation. We check, for instance, that it commutes with ∂1, and leave the ∂2-computation
to the reader.

On the one hand, if m ∈Mi,j,k, and using that ∂1 acts trivially on Mν , we have

∂1(out(m)) = (−1)i+j(∂1ω ⊗ ∂1∂2(m)− ∂1∂2ω ⊗ ∂1(m)).

On the other hand,

out(∂1(m)) = (−1)i+j+1 (∂1ω ⊗ ∂2(∂1(m)) + ∂1∂2ω ⊗ ∂1(m))

= (−1)i+j+1 (−∂1ω ⊗ ∂1∂2(m) + ∂1∂2ω ⊗ ∂1(m)) .

Comparing these expressions, the commutativity with the ∂1-actions follows. �

Since Q⊗Mν naturally decomposes into a direct sum of Λ3-modules

Q⊗Mν ∼=
⊕

i,j∈Z
Q⊗Mi,j ,
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for each r ∈ Z, we have a natural projection map of Λ3-modules

πr : Q⊗M−→
⊕

i−j=r
Q⊗Mi,j .

We can thus define the composition map

outr := πr ◦ out : M−→Ur(M){−1,−1, 0}.

Componentwise, outr has the effect, for a homogeneous m ∈Mi,j,k,

outr(m) :=





(−1)i+j(ω ⊗ ∂1∂2m+ ∂1∂2ω ⊗m), if i− j = r,

(−1)i+j∂1ω ⊗ ∂2(m), if i− j = r + 1,

(−1)i+j+1∂2ω ⊗ ∂1(m), if i− j = r − 1,

0, otherwise.

(3.6)

We have thus obtained outr as a tri-grading preserving homomorphism of Λ3-modules, functorial
in M . In other words, similarly as for inr, the map outr : Id ⇒ Ur{−1,−1, 0} is a natural
transformation of functors.

Let SM3 be the stable category of trigraded left Λ3-modules. It has the same objects asM3

and the morphisms are those inM3 modulo morphisms that factor through a projective object
ofM3. In particular, a projective trigraded Λ3-module is isomorphic to the zero object in SM3.
The stable category is triangulated, with the shift functor [1]SM taking M to the cokernel of
an inclusion M ⊂ P , where P is a projective module. For concreteness, we can choose P to be
Λ3 ⊗M{−1,−1,−1}, with the inclusion taking m to ∂1∂2∂3 ⊗ m. The shift by {−1,−1,−1}
makes the inclusion grading-preserving. Then M [1]SM = Λ̂⊗M where

Λ̂ = Λ3/(∂1∂2∂3){−1,−1,−1}.

The cone of a morphism f : M−→N is defined as the cokernel of the inclusion

M ⊂ N ⊕ (Λ3 ⊗M{−1,−1,−1}),

which takes m to (f(m), ∂1∂2∂3(m)). For more details, we refer the reader to Happel [9]. We will
need the following result computing morphism spaces in SM3, bearing in mind the Λ3 action
defined in equation (3.1).

Lemma 3.4. Given two objects M,N ∈ SM3, there is an isomorphism

HomSM3(M,N) =
HomM3(M,N)

∂1∂2∂3 Homk(M,N{−1,−1,−1}) .

Proof. See [21, Corollary 5.5]. �

We introduce another cone construction defined for morphisms in the abelian category M3.
Given a morphism f : M−→N in M3, the ∂3-cone C3(f), as a trigraded vector space, is the
object M{0, 0,−1} ⊕N , on which the Λ3-generators act by

∂3(m,n) = (−∂3m, f(m) + ∂3(n)), (3.7)

and ∂j(m,n) = (∂jm, ∂jn) for j = 1, 2.
Alternatively, regard Λ′1 = k[∂3]/(∂2

3) as a trigraded Λ3-module via the homomorphism ν (see
equation (3.2)), the ∂3-cone is defined as the push-out of f : M−→N and ∂3⊗IdM : M−→Λ′1⊗M .
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This is the top square of the following diagram, whose columns are short exact in the abelian
category because of the push-out property:

M
f //

∂3⊗IdM

��

N

��
Λ′1 ⊗M{0, 0,−1}

��

// C3(f)

��
M{0, 0,−1} M{0, 0,−1}.

(3.8)

Define Rr := C3(inr), i.e., it is the functor inM3 that takes a module M to the ∂3-cone of the
homomorphism inr : Ur(M)−→M . Let R′r := C3(outr){0, 0, 1}, which takes M to the ∂3-cone
of outr : M−→Ur(M){−1,−1, 0}, with the grading shifted by {0, 0, 1}, so that the vector spaces
in the nodes of M stay in their original tridegrees, and ∂3 changes sign in its action on Ur(M),
not M .

Lemma 3.5. The functors Rr, R′r descend to well-defined functors on the stable category SM3.

Proof. It suffices to show that, if M is a projective Λ3-module, then Rr(M) and R′r(M) are
both projective. Let us do this for Rr, and the R′r case is similar.

By (3.8), Rr(M) fits into a short exact sequence of Λ3-modules

0−→M−→Rr(M)−→Ur(M){0, 0,−1}−→0.

Since Λ3 is Frobenius, M is also injective and the above sequence splits. We are thus reduced to
showing that Ur(M){0, 0,−1} is graded projective. Without loss of generality, we may assume
that M ∼= Λ3{i, j, k} is indecomposable. As Λ′1-modules, there is a direct sum decompostion

Λ3
∼= Λ′1 ⊕ Λ′1{1, 0, 0} ⊕ Λ′1{0, 1, 0} ⊕ Λ′1{1, 1, 0}.

Using this decomposition and the fact that Q⊗ ν∗(Λ′1) ∼= Λ3, we have

Ur(Λ3{i, j, k}) =





Λ3{i, j, k} ⊕ Λ3{i+ 1, j + 1, k}, i− j = r,

Λ3{i+ 1, j, k}, i− j = r + 1,

Λ3{i, j + 1, k}, i− j = r − 1,

0, |i− j − r| > 1.

The result follows. �

Theorem 3.6.

(i) The functors Rr,R′r are invertible mutually-inverse endofunctors on the stable catego-
ry SM3.

(ii) The following functor isomorphisms hold:

RrRr+1Rr ∼= Rr+1RrRr+1, (3.9a)

RrRs ∼= RsRr if |r − s| > 1. (3.9b)

Consequently, the collection of functors {Rr | r ∈ Z} gives rise to an action of the infinite braid
group of infinitely many strands Br∞ on the triangulated category SM3.
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The proof of the theorem will occupy the next subsection.

Remark 3.7. In this section, we have interpreted the three differentials of Λ3 in two different
ways: the Λ2 ⊂ Λ3 plays the role of the algebra A (cf. Section 2.5), while ∂3 behaves more
like a “homological differential”. This apparent symmetry breaking allows one to construct
three equivalent braid group actions on SM3 as in Theorem 3.6, by the automorphism of Λ3

permuting the indices {1, 2, 3}.

3.3 Proof of Theorem 3.6

Invertibility of Rr. First we show R′rRr ∼= Id. We check the effect of the left hand side on a
trigraded Λ3-module M .

R′r(Rr(M)) ∼= R′r
(
Ur(M){0, 0,−1} inr−−→M

)

∼=




Ur(M){0, 0,−1} −inr //

outr
��

M

outr
��

U2
r (M){−1,−1, 0} inr // Ur(M){−1,−1, 1}


 . (3.10)

Here, in the diagram, the horizontal arrows are interpreted as the ∂3-differential arising from the
∂3-cone of inr, while the vertical arrows indicate that of outr. The differential action by ∂1, ∂2

preserves the position of the node, while the ∂3 acts both internally at the nodes and transfer
elements long the arrows (see equation (3.7)).

By Proposition 3.1, we may decompose

U2
r (M){−1,−1, 0} ∼= Ur(M)⊕ Ur(M){−1,−1, 0}. (3.11a)

As in the proof of the proposition, we further identify

Ur(M) ∼=
( ⊕

i−j=r
Q⊗ ∂1∂2ω ⊗Mi,j

)
{−1,−1, 0}, (3.11b)

Ur(M){−1,−1, 0} ∼=
( ⊕

i−j=r
Q⊗ ω ⊗Mi,j

)
{−1,−1, 0}. (3.11c)

By the definition of the ∂3-cone, the sum of terms on the lower horizontal line of (3.10) con-
situtes a Λ3-submodule of R′r(Rr(M)). The morphism inr on the lower horizontal line of (3.10)
maps the summand (3.11c) isomorphically onto Ur{−1,−1, 1}. Hence we have in R′r(Rr(M))
a Λ3-submodule

(
Ur(M){−1,−1, 0} inr−−→ Ur(M){−1,−1, 1}

)

∼= Ur(M)⊗ ν∗(Λ′1) ∼=
⊕

i−j=r
(Q⊗ ν∗(Λ′1))⊗Mi,j . (3.12)

As Q ⊗ Λ′1 ∼= Λ3 is a tri-graded free Λ3-module, it is a not only a submodule in R′r(Rr(M))
but also a direct summand, which is annihilated when passing to the stable category SM3. We
thus may safely identify R′r(Rr(M)) with the quotient of it by this submodule, which we denote
by M1.

Now M is clearly a Λ3-submodule in M1. We claim that M1/M is also a free Λ3-module, and
hence is a direct summand in M1 whose complement is isomorphic to M . It then follows that
the natural inclusion map M ↪→M1 is an isomorphism in SM3.



A Faithful Braid Group Action on the Stable Category of Tricomplexes 25

To prove the claim, note that

M1/M ∼=
(
Ur(M){0, 0,−1} outr−−→ Ur(M)

)
,

where the right hand side denotes a ∂3-cone. If m ∈ Mi,j is a homogeneous element, the map
outr has, by equation (3.6), the effect

outr(ω ⊗m) = (−1)i+j (ω ⊗ ∂1∂2ω ⊗m+ ∂1∂2ω ⊗ ω ⊗m) ,

outr(∂1ω ⊗m) = (−1)i+j+1∂1ω ⊗ ∂2∂1ω ⊗m,
outr(∂2ω ⊗m) = (−1)i+j+2∂2ω ⊗ ∂1∂2ω ⊗m,
outr(∂1∂2ω ⊗m) = (−1)i+j+2∂1∂2ω ⊗ ∂1∂2ω ⊗m.

The right hand side of the first equation contains elements in Ur(M){−1,−1, 0} (see equa-
tion (3.11c)), which has already been mod out in M1. The rest of the terms on the right hand
side of the equations have their middle term ∂1∂2ω. It follows that outr maps Ur(M){0, 0,−1}
isomorphically onto Ur(M). The claim follows.

It is not hard to find a summand in R′r(Rr(M)) isomorphic to M . Denote by

out13
r : M−→Q⊗Qν ⊗Mν , m 7→

∑

i

hi ⊗ ω ⊗mi,

where hi, mi are the components of outr(m) =
∑

i hi ⊗mi ∈ Q⊗Mν as in equation (3.6). The
submodule

{(
−out13

r (m),m
)
|m ∈M

}
⊂ U2

r (M){−1,−1, 0} ⊕M
constitutes, by the above discussion, a Λ3-summand isomorphic to M . The inclusion of this
summand realizes the functor isomorphism Id ∼= R′rRr.

The isomorphism RrR′r ∼= Id follows by a similar argument. Essentially, one just needs to
flip the last term of (3.10) along its northwest-southeast diagonal. We leave the details to the
reader as an exercise.

Braid relations. We next check the functor relations (3.9a) and (3.9b).
The commutation relation (3.9b) is easy to check, as one can readily see that both sides

are functorially isomorphic, when applied to a trigraded Λ3-module M , to the ∂3-cone of the
morphism inr ⊕ ins:

Ur(M){0, 0,−1}
inr

''
M.

Us(M){0, 0,−1}
ins

77

Here we have applied Proposition 3.1 so that UrUs(M) ∼= 0 ∼= UsUr(M).
To check the functor relation (3.9a), we first compute RrRr+1Rr applied to a Λ3-module M ,

which is equal to the total ∂3-complex

UrUr+1(M){0, 0,−2} −inr+1//

inr

))

Ur(M){0, 0,−1}
inr

))UrUr+1Ur(M){0, 0,−3}

inr

44

−inr+1 //

inr **

U2
r (M){0, 0,−2}

−inr

55

inr

))

Ur+1(M){0, 0,−1} inr+1 //M.

Ur+1Ur(M){0, 0,−2}
inr+1

//
−inr

55

Ur(M){0, 0,−1}
inr

55
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We will gradually strip off the projective-injective summands of this module, which, for brevity,
we will call M0 in what follows.

By Proposition 3.1, we identify

UrUr+1Ur(M){0, 0,−3} ∼= Ur(M){1, 1,−3} ∼=
⊕

i−j=r
Q⊗ ∂2ω ⊗ ∂1ω ⊗Mi.j{0, 0,−3}.

By the definition (3.5) of inr+1, the external ∂3-differential −inr+1 maps this term isomorphically
onto the summand Ur(M){1, 1,−2} of

U2
r (M){0, 0,−2} ∼= Ur(M){1, 1,−2} ⊕ Ur{0, 0,−2}. (3.13)

Indeed, componentwise, the morphism has the effect

Q⊗ ∂2ω ⊗ ∂1ω ⊗Mi.j{0, 0,−3}−→Q⊗ ∂1∂2ω ⊗Mi,j{0, 0,−3},
h⊗ ∂2ω ⊗ ∂1ω ⊗m 7→ −h⊗ ∂2∂1ω ⊗m.

Via these identifications, denote the direct sum of every term in M0 other than Ur(M){1, 1,−3}
and Ur(M){1, 1,−2} by M1. Clearly M1 is a Λ3-submodule, whose quotient is equal to the
∂3-cone

(
Ur(M){1, 1,−3} −IdUr(M){1,1,−2}−−−−−−−−−−−→ Ur(M){1, 1,−2}

)
.

This cone is a projective-injective object in M3 (cf. equation (3.12)). Hence M1 is isomorphic
to M0 in SM3.

Next, inside M1, the second summand of (3.13) maps onto the anti-diagonal in the direct
sum of two copies of Ur(M){0, 0,−1}. Therefore

(
Ur(M){0, 0,−2} −inr⊕inr−−−−−−→ Im(−inr ⊕ inr)

)
∼= C3(IdUr(M){0,0,−1})

is a projective Λ3-module, and thus is isomorphic to zero in SM3. Modulo these terms, and
equating the quotient as under the sum map

Ur(M){0, 0,−1} ⊕ Ur(M){0, 0,−1}/Im(−inr ⊕ inr) ∼= Ur(M){0, 0,−1},

we have that M1 is isomorphic to the following total ∂3-cone M2:

M2 =




UrUr+1(M){0, 0,−2} inr //

−inr+1

%%

Ur+1(M){0, 0,−1}
inr+1

''
M

Ur+1Ur(M){0, 0,−2} inr+1 //

−inr

99

Ur(M){0, 0,−1}
inr

77




. (3.14)

It follows by the above discussion that RrRr+1Rr(M) is isomorphic to M2 in SM3, and this
isomorphism is clearly functorial in M .

A similar computation for Rr+1RrRr+1(M) shows that it is functorially isomorphic to M2

of equation (3.14). The braid relation follows.
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3.4 Connection to homological algebra of zig-zag algebras

In view of Section 2.5, it is not surprising that trigraded Λ3-modules are closely related to the
homological algebra of the zig-zag algebra A. The main goal of this subsection is to utilize this
relationship to establish the faithfulness of the braid group Br∞ action on SM3 (Theorem 3.6),
building on the results of [16].

Let M be a complex of graded A-modules

M =
(
· · · −→Mk−1

dk−1−→ Mk
dk−→Mk+1−→· · ·

)
,

where each Mk = ⊕j∈ZM j
k is a graded A-module. Recall that a morphism f : M−→N is called

null-homotopic if there is a collection of homogeneous A-module maps hk : Mk−→Nk−1, k ∈ Z,
such that dk−1hk + hk+1dk = fk holds for all k. The homotopy category C(A) is the quotient of
the category of chain complexes of graded A-modules by the ideal of null-homotopic morphisms.
A complex M is called contractible if IdM is null-homotopic.

The homotopy category C(A) carries two commuting grading shifts denoted by 〈1〉 and [1]
respectively. They are defined by

(M〈1〉)jk := M j−1
k , (M [1])jk := M j

k+1.

In addition, the automorphism T of M(A) extends to an automorphism of C(A), denoted by
the same letter, defined by termwise applying T on complexes:

T (M) :=
(
· · · −→T (Mk−1)

T (dk−1)−−−−−→ T (Mk)
T (dk)−−−→ T (Mk+1)−→· · ·

)
.

In what follows, we will also use the notation C(A-pmod) to stand for the full subcategory
of C(A) consisting of complexes of graded projective A-modules up to homotopy.

We also re-interpret chain complexes of graded A-modules as differential graded modules
over the graded dg algebra (A, d), where A sits in homological degree zero, and the natural
grading of A is orthogonal to the homological grading. A chain complex of graded A-modules
is equivalent to the data of a differential graded (A, d)-module

M =
⊕

j,k∈Z
M j
k , d

(
M j
k

)
⊂M j

k+1.

Extending the (inverse) equivalence of Proposition 2.9, there is an auto-equivalence of abelian
categories

G∞ : (A, d)-mod−→M3,

where, on the object G∞(M) ∈ M3 for a given M ∈ (A, d)-mod, the generator ∂3 acts by the
differential (−1)kd : Mk−→Mk+1. It follows from Proposition 2.9 that G∞ commutes with the
translation by the various shift functors as follows:

G∞(M〈1〉) = G∞(M){1, 1, 0},
G∞(M [1]) = G∞(M){0, 0,−1},
G∞(T (M)) = G∞(M){1, 0, 0}. (3.15)

As a result, one can deduce that

G∞(Pr〈j〉[k]) ∼= Q{r + j, j,−k}. (3.16)
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Lemma 3.8. A morphism of chain complexes f : M−→N of graded A-modules is null-homotopic
if and only if it factors through the canonical embedding of graded dg modules over A

λM : M−→M ⊗ k[d]/
(
d2
)
[1], m 7→ m⊗ d.

Consequently, M is contractible if and only if M is a dg summand of M ⊗ k[d]/
(
d2
)
[1].

Proof. Suppose f = dh+ hd : M−→N is null-homotopic, with h : Mk−→Nk−1 the null-homo-
topy map. We define

ĥ : M ⊗ k[d]/
(
d2
)
[1]−→N

by, for any homogeneous m ∈Mk,

ĥ(m⊗ 1) := (−1)kh(m), ĥ(m⊗ d) := dh(m) + hd(m).

It is an easy exercise to check that ĥ is a map of dg A-modules. Then, we clearly have a fac-
torization f = ĥ ◦ λM .

Conversely, if there is a factorization of dg A-modules

M

λM ''

f // N

M ⊗ k[d]/
(
d2
)
[1],̂

h
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define h : M−→N by h(m) := (−1)kĥ(m⊗1) for any m ∈Mk. Another easy computation shows
that f = dh+ hd is indeed null-homotopic. �

For the next result, for any graded dg module M over A, denote by Mµ the corresponding dg
module with the same underlying bigraded A-module as M , but the differential acting by zero
instead. Under the equivalence G∞, this corresponds to the µ-pull-back (see equation (3.2)) of
a trigraded Λ3-module.

Lemma 3.9. Let M be a graded dg module over A. There is an isomorphism of dg modules

φM : M ⊗ k[d]/
(
d2
)
−→Mµ ⊗ k[d]/

(
d2
)
,

defined by

φM (m⊗ 1) := m⊗ 1, φM (m⊗ d) := (−1)k+1d(m)⊗ 1 +m⊗ d.

for any m ∈Mk.

Proof. It is an easy computation to verify that φM commutes with the respective differentials
on both sides. The inverse of φM is given by

ψM : Mµ ⊗ k[d]/
(
d2
)
−→M ⊗ k[d]/

(
d2
)
,

where, for m ∈Mk,

ψM (m⊗ 1) := m⊗ 1, ψM (m⊗ d) := (−1)kd(m)⊗ 1 +m⊗ d.

Clearly, both φM and ψM are homogeneous A-module maps. The lemma follows. �
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Corollary 3.10. The functor G∞ : (A, d)-mod−→M3 descends to an exact functor

G : C(A-pmod)−→SM3.

Proof. By Lemma 3.8, C(A-pmod) is the categorical quotient of the category of chain complexes
of graded projective A-modules by the ideal of morphisms factoring through objects of the form
M ⊗k[d]/

(
d2
)
, where M ranges over all chain-complexes of graded projective A-modules. For G

to be well-defined, it suffices to check that, under the functor G∞, such objects are sent to the
class of projective-injective objects in M3.

By Lemma 3.9, there is an isomorphism of graded dg modules

M ⊗ k[d]/
(
d2
) ∼= Mµ ⊗ k[d]/

(
d2
) ∼=

⊕

k

Mµ
k ⊗ k[d]/

(
d2
)
.

As each Mµ
k is a projective A-module, the result follows since, by Proposition 2.9,

G
(
Pr〈j〉 ⊗ k[d]/

(
d2
)
[−k]

) ∼= Q{r, r + j, k} ⊗ Λ′1 ∼= Λ3{r, r + j, k}

holds for any r, j, k ∈ Z.
It remains to show that G is exact, i.e., it commutes with homological shifts and takes

distinguished triangles to distinguished triangles.
Given a complex M of graded projective modules over A, there is a short exact sequence

0−→M λM−→M ⊗ k[d]/
(
d2
)
[1]−→M [1]−→0.

Applying G∞ to the short exact sequence, we obtain a short exact sequence of M3:

0−→G∞(M)
G∞(λM )−−−−−→ G∞

(
M ⊗ k[d]/

(
d2
)
[1]
)
−→G∞(M [1])−→0,

which, in turn, leads to a distinguished triangle in SM3:

G(M)
G(λM )−−−−→ G

(
M ⊗ k[d]/

(
d2
)
[1]
)
−→G(M [1])

[1]−→ G(M)[1]SM.

By the earlier discussion in this proof, the term G∞
(
M ⊗ k[d]/

(
d2
)
[1]
)

vanishes in SM3, and
thus there is an isomorphism

G(M [1]) ∼= G(M)[1]SM,

which is clearly functorial in M .
Lastly, notice that distinguished triangles in C(A-pmod), up to isomorphism, arise from short

exact sequences of chain-complexes of graded projective A-modules

0−→M1−→M−→M2−→0.

Applying G∞ to this sequence, we obtain a short exact sequence of trigraded Λ3-modules. This
sequence results in a distinguished triangle in SM3, being the image of the original triangle
in C(A-pmod). The exactness of G now follows. �

Denote by Cb(A-pmod), C+(A-pmod) and C−(A-pmod) the full triangulated subcategories of
C(A-pmod) consisting of, respectively, bounded, bounded-from-below and bounded-from-above
complexes of graded projective modules over A. The localization functor from C(A-pmod)
into D(A) restricts to equivalences of categories on these full-subcategories onto their respective
images in the (dg) derived category D(A).
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Theorem 3.11. The functor G : C(A-pmod)−→SM3 is fully-faithful.

Proof. The proof is divided into three steps.
As the first step, we claim that G, when restricted to the full-subcategories C±(A-pmod), is

fully-faithful. To do this, we identify these categories with their images in D(A) under localiza-
tion, and use the fact that the (dg) derived category of (A, d)-mod is compactly generated by
the collection of objects {Pr〈j〉[k]|r, j, k ∈ Z}. Then, in order to prove the claim, we just need
to compare the morphism spaces between the generating objects Pr〈j〉[k], r, j, k ∈ Z, and their
images G(Pr〈j〉[k]) = Q{r + j, j,−k} in SM3 [11, Lemma 4.2].

On the one hand, we have

HomC(A)(Pr1〈j1〉[k1], Pr2〈j2〉[k2]) =





k(r1), r1 = r2, j1 = j2, k1 = k2,

k(r1 | r1 + 1), r1 = r2 + 1, j1 = j2, k1 = k2,

k(r1 | r1 − 1), r1 = r2 − 1, j1 = j2 − 1, k1 = k2,

k(r1 | r1 + 1|r1), r1 = r2, j1 = j2 + 1, k1 = k2,

0, otherwise.

On the other hand, we can compute the morphism spaces of G(Pr〈j〉[k]) using Lemma 3.4

HomSM3 (G(Pr1〈j1〉[k1]),G(Pr2〈j2〉[k2]))
∼= HomΛ3(Q,Q{r2 + j2 − r1 − j1, j2 − j1, k1 − k2})
∼= HomΛ2(Q,Q{r2 + j2 − r1 − j1, j2 − j1, k1 − k2}).

The second isomorphism follows since ∂3 acts trivially on Q and its grading shifts. Note that
the last space is non-zero only if k1 = k2, since the Λ2 action preserves the k-grading. When
k1 = k2, we can compute

HomSM3(G(Pr1〈j1〉[k1])SM,G(Pr2〈j2〉[k2]SM)) ∼=





k, r1 = r2, j1 = j2,

k, r1 = r2 + 1, j1 = j2,

k, r1 = r2 − 1, j1 = j2 − 1,

k, r1 = r2, j1 = j2 + 1.

Comparing these computations, the claim follows.
In the second step, we show that

HomC(A) (M,N)
G−→ HomSM3(G(M),G(N))

is a bijection if one of M or N lies in C±(A-pmod). Assume, for instance, that M ∈ C+(A-pmod)
and N ∈ C(A-pmod). Without loss of generality, we may assume that Mk = 0 for all k < 0.
Then, N fits into a distinguished triangle

N≥−1−→N−→N≤−2
[1]−→ N≥−1[1],

where N≥−1 is the subcomplex of N of the form

N≥−1 =
(
· · · −→0−→N−1

d−1−→ N0
d0−→ N1

d1−→ · · ·
)
,

and N≤−2 is the quotient complex

N≤−2 =
(
· · · d−5−→ N−4

d−4−→ N−3
d−3−→ N−2−→0−→· · ·

)
.
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It is readily seen that, in the homotopy category, we have

HomC(A)(M,N<−1) = 0, HomC(A)(M,N<−1[−1]) = 0.

Likewise, as the k-degrees of the objects G(N<−1) and G(N<−1[−1]) are bounded above by −1,
we have that, by Lemma 3.4,

HomSM3(G(M),G(N≤−2)) = 0, HomSM3(G(M),G(N≤−2)[−1]SM) = 0.

Therefore, by the previous step, we have that

HomC(A)(M,N) = HomC(A)(M,N≥−1)
∼=−→ HomSM3(G(M),G(N)) = HomSM3(G(M),G(N≥−1)).

The other cases are similar, and we leave them as exercises to the reader.
Finally, assume both M and N are any objects of C(A-pmod). We can truncate N as

N≥0−→N−→N≤−1
[1]−→ N≥0[1],

Then, we have the commutative diagram

· · · // HomC(A)(M,N≥0) //

G
��

HomC(A)(M,N) //

G
��

HomC(A)(M,N≤−1) //

G
��

· · ·

· · · // HomSM3(G(M),G(N≥0)) // HomSM3(G(M),G(N)) // HomSM3(G(M),G(N≤−1)) // · · ·

The middle vertical arrow is then an isomorphism by the classical five lemma and the previous
case. This finishes the proof of the theorem. �

In [16], a braid group action on the homotopy category C(A) is introduced. The braid group
generator Rr acts, on a chain complex M of graded A-modules, by

Rr(M) := C
(
Pr ⊗ (r)M

f−→M
)
,

where f is the left A-module map determined by (r)⊗ (r)m 7→ (r)m.

Lemma 3.12. The functor G commutes with the braid group actions on C(A-pmod) and SM3.

Proof. It suffices to show that each Rr commutes with G. This follows from equation (3.16),
Proposition 2.9 and the fact that G sends the cone construction in C(A-pmod) to that of the
∂3-cone in SM3. �

Corollary 3.13. The action of Br∞ on the category SM3 is faithful.

Proof. In [16, Corollary 1.2], it is shown that the braid group Brm+1 on m + 1 strands acts
faithfully on Cb(Am-pmod). The Corollary then follows from Theorem 3.11, Lemma 3.12 and
taking the limit m→∞. �
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