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1 Introduction

We studied the Kobayashi-Hitchin correspondences for singular monopoles with periodicity in
one direction [4] or two directions [5]. In this paper, we study singular monopoles with periodicity
in three directions. In the analytic aspect, this case is much simpler than the other cases because
a 3-dimensional torus is compact. But, there still exist interesting correspondences with algebro-
geometric objects. Moreover, everything is generalized to the twisted case. (See Section 2 for the
twisted objects.) Though we also study a generalization to the twisted case, this introduction
is devoted to explain the results in the untwisted case.

1.1 Triply periodic monopoles with Dirac type singularity

Let Y be an oriented 3-dimensional R-vector space with an Euclidean metric gy. Let I' be
a lattice of Y. We set M := Y/I', which is equipped with the induced metric grq. Let Z be
a finite subset of M. Let E be a C*-vector bundle on M \ Z with a Hermitian metric h,
a unitary connection V and an anti-self-adjoint endomorphism ¢. A tuple (E, h,V, ¢) is called
a monopole on M \ Z if the Bogomolny equation

F(V)=xVo¢

is satisfied, where F'(V) denotes the curvature of V, and * denotes the Hodge star operator with
respect to gaq. A point of P € Z is called a Dirac type singularity of the monopole (E, h, V, ¢) if
logln = O(d(Q, Z2)71) for any Q € M\ Z, where ¢¢ denotes the element of the fiber End(E)|q
over Q induced by ¢, and d(Q, Z) denotes the distance between ) and Z. Note that the notion
of Dirac type singularity was originally introduced by Kronheimer [3]. The above condition is
equivalent to the original definition, according to [6].

This paper is a contribution to the Special Issue on Integrability, Geometry, Moduli in honor of Motohico Mu-
lase for his 65th birthday. The full collection is available at https://www.emis.de/journals/SIGMA /Mulase.html
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1.2 Mini-holomorphic bundles with Dirac type singularity

Let us explain a correspondence between monopoles with Dirac type singularity and polystable
mini-holomorphic bundles with Dirac type singularity on a 3-dimensional torus. (See Section 2
below for more details on the notions of mini-complex structures and mini-holomorphic bundles
with Dirac type singularity on 3-dimensional manifolds.) It was formulated by Kontsevich and
Soibelman [2].

1.2.1 Mini-complex structure

We take a linear coordinate system (x1,x2,x3) on Y compatible with the orientation such that
gy = Y. dx;dx;, and we set t := x; and w = zg + v/—1z3. The coordinate system induces
a mini-complex structure on M \ Z. A C*°-function f on an open subset of M is called mini-
holomorphic if d;f = Ozf = 0. Let Oxq 7 denote the sheaf of mini-holomorphic functions
on M\ Z.

1.2.2 Mini-holomorphic bundles with Dirac type singularity

Let V be a locally free Oy z-module. Let P be a point of Z. We take a lift (to,wo) € YV
of P. Let € and § denote small positive numbers. Set By, (0) := {w € C||w — wo| < §} and
By (0) :={weC | 0 < |w—wp| < d}. For any ¢ty — € < t <ty + €, the restriction Vl{t}XB;ZD(‘S) is
naturally a locally free O B;J()(g)-lnodule. If t # tg, they extend to locally free O Bug (s)-modules
Viityx Bug (6)- Because mini-holomorphic functions are constant in the t¢-direction, we obtain
an isomorphism of (’)B%((;)—modules V|{t0_61}xB%(5) ~ V|{t0+gl}xg%(5) for 0 < ¢ < e Ifit
is meromorphic at wg, then P is called a Dirac type singularity of V. If every point of Z is
Dirac type singularity, then V is called a mini-holomorphic bundle with Dirac type singularity
on (M; Z).

1.2.3 Stability condition

Kontsevich and Soibelman [2] introduced a sophisticated way to define a stability condition for
mini-holomorphic bundles with Dirac type singularity on (M; Z).

Let H’(M\ Z) denote the j-th cohomology group of M\ Z with R-coefficient. Let H;(M, Z)
denote the relative j-th homology group of (M, Z) with R-coefficient. Note that there exists
the natural isomorphism

by H* M\ Z)~ H (M, 2).

Let T denote the space of left invariant vector fields on M, and let TV denote the left invariant
1-forms on M. Let o denote the image of 1 via the canonical morphism R — T ®@ TV. It is
described as o = 21:1,2,3 Or; @ dx;.

For any mini-holomorphic bundle with Dirac type singularity V on (M; Z), we obtain ¢1(V) €
H?(M\ Z), and hence ®z(c1(V)) € H1(M, Z). Then, we obtain the following invariant vector

field
o= dx; 8@ IS
AZ(Cl(V)) 1'221;,3 (LZ(Q V) )

Kontsevich and Soibelman discovered that |, By(e1(V)) O is a scalar multiplication of 9, = 0, , and

1(V)
they define the degree deg®®(V) for V as follows

/ o = deg®5(V)0,.
®z(c1(V))
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They introduced the following stability condition.

Definition 1.1. A mini-holomorphic bundle with Dirac type singularity V on (M; Z) is called
stable (resp. semistable) if

deg®S(V')/ rank(V') < deg¥®(V)/ rank(V)
(vesp. deg®(V')/rank(V’) < deg™5(V)/rank(V))

for any locally free O z-submodule V' of V such that 0 < rank(V') < rank(V). It is called
polystable if it is semistable and a direct sum of stable submodules.

1.2.4 Kobayashi—Hitchin correspondence

Let (E,h,V,¢) be a monopole with Dirac type singularity on M \ Z. We set 0p := Vi and
Opo, = Vi — V—1¢. Let V be the sheaf of sections s of FE such that Opws = Ogs = 0. It
is a standard fact that V is a mini-holomorphic bundle with Dirac type singularity on (M; Z).
The following theorem was formulated by Kontsevich and Soibelman [2].

Theorem 1.2 (the untwisted case in Theorem 3.16, Proposition 4.2). The procedure induces
an equivalence between monopoles with Dirac type singularity on M\ Z and polystable mini-
holomorphic bundles with Dirac type singularity of degree 0 on (M;Z).

We shall relate the degree of Kontsevich and Soibelman with the analytic degree defined in
terms of Hermitian metrics (Proposition 4.2). Then, Theorem 1.2 follows from the fundamental
theorem due to Simpson [7] as we shall explain in the proof of Theorem 3.16, which is an analogue
of a result due to Charbonneau and Hurtubise [1] for singular monopoles on 3-dimensional
manifolds obtained as the product of S' and a compact Riemann surface. See also the work of
Yoshino [8] on the Kobayashi-Hitchin correspondence for monopoles with Dirac type singularity
on mini-complex 3-dimensional manifolds.

1.3 Parabolic difference modules on elliptic curves

Let us give a complement on correspondences between mini-holomorphic bundles with Dirac
type singularity on a 3-dimensional torus and parabolic difference modules on elliptic curves.

Remark 1.3. After completing the first version of this paper, the author was informed that [2]
also already contains the correspondence with difference modules on elliptic curves.

1.3.1 Parabolic difference modules on elliptic curves and a stability condition

Let Ty be a lattice of C. We set T := C/T'y. Let a € C. Let ®: T — T be the morphism
induced by ®(z) = z+a. Let D C T be a finite subset. Let Or(xD) denote the sheaf of
meromorphic functions on T which may have poles along D. For any Op-module F, we set
F(xD) := F ®0, Or(*D). A parabolic a-difference module on 7" consists of the following data

Vi = (V,(Tp,Lp)pecDn):

A locally free Op-module V.

e An isomorphism of Or(xD)-modules V (xD) ~ (®*)~1(V)(xD).
o Asequence 0 <7p; <7pp <--- < TPm(p) < 1 for each P € D.

Lattices Lp; (1 = 1,...,m(P) — 1) of the stalk V(xD)p at each P € D. We formally set
»CP,U := Vp and Ep’m(p) = ((I)*)_I(V)p at each P € D.

When we fix (T7p)pep, it is called a parabolic a-difference module on (7, (7p)pep).
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The degree of a parabolic a-difference module (V, (7p, Lp)pep) is defined as follows

m(P)

deg(V, (Tp, L:p)peD) = deg(V) + Z Z (1 — TPJ') deg(ﬁp’i,ﬁpﬂ',l). (1.1)
PeD i=1

Here, we set deg(ﬁp,i, ﬁp7i_1) = length(ﬁp,i/£p7i_1 N ﬁpﬂ‘) — length(ﬁp7i_1/£p7i_1 N ﬁpﬂ') . The
degree can be rewritten as

m(P)

deg(V, (Tp, Lp)pep) = deg(V) — Z Z Tpideg(Lp;, Lpi-1),
PeD i—1

because Y pcp 221(113) deg(Lp;, Lpi—1) = 0. The slope is defined in the standard way

w(V,(tp,Lp)pep) :=deg(V, (Ttp,Lp)pep)/rank V.

For any Op(xD)-submodule 0 # V' C V such that V'(xD) ~ (®*)~}(V')(*D), we obtain
lattices Lp; of V'(xD)p by setting L, := Lp;NV'(xD)p in V(xD)p, and we obtain a parabolic
a-difference module (V', (7p, L) pep). Such (V', (7p, L) pep) is called a parabolic a-difference
submodule of (V, (Tp,Lp)pep)-

Definition 1.4. (V, (7p, Lp)pep) is called stable (resp. semistable) if
u(V', (Tp, Lp)pen) < WV, (Tp, LP)PeD)
(resp. w(V', (TP, Lp)pep) < u(V, (TP, LP)peD))

for any parabolic a-difference submodules such that 0 < rank V/ < rank V. It is called polystable
if it is semistable and a direct sum of stable objects.

1.3.2 Equivalence

We return to the situation in Section 1.2. We take a generator e; = (a;,04) (i = 1,2,3) of
I' ¢ Ry x C, =Y, which is compatible with the orientation of Y. We also assume that oy
and a9 generate a lattice in C and compatible with the orientation of C. Let I'g denote the
lattice, and we set T := C/T'g. We set

o= —%, t:= a3 + 2Re(yag), a:=as.

It is easy to see that t > 0. We define the isomorphism F': R; x C,, ~ R, x C, by
s =1t + 2Re(yw), u=w.

Note that the induced action of I' on R, x C,, is expressed as follows:

ei(s,u) = (s,u+a;) (i=1,2), es(s,u) = (s +t,u+a).

We set [0,t] := {0 < s < t}. Let Zy be the pull back of Z by ¥ — M. Let D denote the
image of the composite of the following maps:

F(Zy) N ([0,¢{xCy) C Ry x Cy, — C,, —> T,

For any P € D, we take ug € C which is mapped to P. We obtain a sequence 0 < sp; <
spa <+ < Spp(p) < tby the condition:

{(spiruo) i =1,...,m(P)} = F(Zy) N ([0, {{x{uo}).

It is independent of the choice of uyg. We set 7p; := sp,;/t.
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Proposition 1.5 (the untwisted case in Propositions 3.13 and 3.14). There exists an equivalence
between parabolic difference modules on (T, (Tp)pep) and mini-holomorphic bundles with Dirac
type singularity on (M;Z). The equivalence preserves the degree up to the multiplication of
a positive constant. As a result, the equivalence preserves the (poly)stability condition.

See Section 3.2.2 for the explicit correspondence. As a consequence of Theorem 1.2 and
Proposition 1.5, we obtain the following theorem.

Theorem 1.6. We have the equivalence of the following objects:

e Monopoles with Dirac type singularity on M\ Z.
e Polystable mini-holomorphic bundles with Dirac type singularity of degree 0 on (M; Z).

e Polystable parabolic difference modules of degree 0 on (T, (Tp)pep).
Here, Z and (Tp)pep are related as above.

This study is partially motivated by the holomorphic Floer theory [2] of Kontsevich and
Soibelman. Among other things, they revisit the Riemann—Hilbert correspondence for D-
modules from the viewpoint of symplectic topology, and they extend it to the context of difference
modules of various types. Moreover, they propose an analogue of the non-abelian Hodge theory
in the context of difference modules, where the role of harmonic bundles should be played by
monopoles as in Theorem 1.6.

Though the untwisted case is explained in this introduction, we shall study the twisted case,
i.e., equivalences of twisted mini-holomorphic bundles, twisted difference modules, and twisted
monopoles. We should note that Kontsevich and Soibelman suggested that there should exist
a twisted version of of Theorem 1.6.

2 Preliminary

We introduce the notions of twisted mini-holomorphic bundles and twisted monopoles as ge-
neralizations of the notions of mini-holomorphic bundles [4] and monopoles. We are interested
only in the case where the base manifolds are 3-dimensional torus. We also introduce twisted
difference modules on elliptic curves.

2.1 Mini-complex structure on 3-dimensional manifolds

Let (t,w) denote the standard coordinate system on R x C. Let M be an oriented 3-dimensional
C*°-manifold. A mini-complex coordinate system on M is a family of open subsets Uy (A € A)
equipped with an oriented embedding ¢y : Uy — R x C satisfying the following conditions.

o M =\ep Un

o Let F ,: pu(UxNUy,) — @a(UxNU,) denote the induced diffeomorphism of open subsets
in R x C. Note that F), is expressed as ((F),):(t,w), (Fu)w(t,w)) in terms of the
coordinate systems. Then, it holds that 0;(F) ,)w = 0 and Ox(F) )w = 0.

Two mini-complex coordinate systems {(Ux, o) }rea and {(Vy,9¥,)}uer are called equivalent if
their union is also a mini-complex coordinate system. A mini-complex structure on M is an
equivalence class of mini-complex coordinate systems. We shall not distinguish a mini-complex
structure and a mini-complex coordinate system contained in the mini-complex structure.
Suppose that M is equipped with a mini-complex structure. On a mini-complex coordinate
neighbourhood (U;t,w), let TsU denote the subbundle of the tangent bundle TU generated
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by 0;. By patching T'sU for any mini-complex coordinate neighbourhoods (U;t,w) we obtain
the subbundle TsM C T'M.
Let T'¢ M denote the dual bundle of Ts M. Let T5M denote the kernel of the natural surjection

T*M — TEM. 1t is naturally equipped with a complex structure J. Let QgOM C TCBM ®C
(resp. Q%’lM ) denote the eigen subbundle with respect to J corresponding to /—1 (resp. —v/—1).
We set QWM = (T*M ® C)/QgOM and QUM = A"QY'M for i = 0,1,2. Similarly, we set
QLOM = (T*M & C)/Qg' M and QXOM = \'QOM for i = 0,1,2.

Let 0); denote the differential operator C*°(M,C) — C> (M, Q% M) induced by the exte-
rior derivative and the projection T*M ® C — QU1 M. The induced operator

C®(M, Q%' M) — C™(M, Q™M)
is also denoted by 9j. Similarly, we obtain the operator

O C(M, QM) — C°(M, Q1 O0M).

2.1.1 Riemannian case

Suppose that M is also equipped with a Riemannian metric gp;. Let T, § gMM denote the or-
thogonal complement of TéM . We shall naturally identify T§7 oM and T'¢M.

Because T*M and T, 6*2M are oriented, T ; gy M is also oriented. Let n be the unique section
of Tgi’gMM in the positive direction such that the norm of 7 is 1. By n, T oM is identified
with R x M. If there exists a mini-complex coordinate system (U;t,w) such that gyquy =
dt dt + dw dw, then ) = dt.

We obtain a decomposition

T*M&C=Q5’M & Q3'M o T, MoC. (2.1)
We also obtain the isomorphisms
O'M e T, MeC~0YM,  Qf'MeT;, MeC~a"M.

If the complex structure J on TéM is an isometry with respect to gy, the decomposition (2.1)
is orthogonal.

2.2 Twisted mini-holomorphic bundles

Let M be a mini-complex 3-dimensional manifold. Let E be a C°°-vector bundle on M. We
shall always assume that the rank of F is finite. Let o € C'* (M , Q020 )

Definition 2.1. A p-twisted mini-holomorphic structure of E is a differential operator O :
C*®(M,E) — C*= (M, QY1IM ® E) such that the following conditions are satisfied.
e Jp(fs) = fOp(s) + (O f) ® s holds for any f € C°(M,C) and s € C°(M, E).
e The induced operator C*° (M, QY ® E) — C* (M, 020 ® E) is also denoted by Of.
Then, 515 OEE = QidE holds.

Such (E,0g) is called a p-twisted mini-holomorphic vector bundle. If o = 0, we shall omit the
adjective “O-twisted”.
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Remark 2.2. A C*-function f on an open subset 4 C M is called mini-holomorphic if
Omf =0. Let Oy denote the sheaf of mini-holomorphic functions. In the case o = 0, mini-
holomorphic bundles are naturally identified with locally free Op-modules of finite rank. Let
(E,dg) be a mini-holomorphic bundle on M. A local section s of E is called mini-holomorphic if
5E(s)~: 0. Let E denote the sheaf of mini-holomorphic sections of E. Then, it is easy to observe

that F is a locally free Op-module of finite rank. This correspondence induces an equivalence
between mini-holomorphic bundles and locally free Op;-modules of finite rank.

2.2.1 Scattering map

Let (E,dg) be a g-twisted mini-holomorphic vector bundle on M. Let v: [0,1] — M be a C°°-
path such that T(7T[0,1]) C TsM. Then, v 1(E) is equipped with a connection induced by
the p-twisted mini-holomorphic structure dp, and hence we obtain the induced isomorphism
E. ) = Eyq)- It is called the scattering map in [1].

Let (U;t,w) be a mini-complex coordinate neighbourhood of M. Let 0g; (resp. Og ) denote
the differential operators of Ej;; induced by Op and 0; (resp. Oz). We have the expression
0 = podtdw. Then, the condition O o O = pidg on U is equivalent to [8E7t, 8E@] = 0oidg.
Assume that there exists v = v dt + vgdw € C®(U,Q%') such that v = ¢ on U. Note
that such v always exists locally. On U, we set 52 = 0 — v idg. Then, (E‘U,gl;;) is clearly
a mini-holomorphic bundle.

Suppose that U is isomorphic to {tg < t < t1} x Bs, where B; = {w € C||w| < §}. Take
to < b1 < bp < t1. We obtain the scattering map F': Ejf;—pyxBs ~ E|{1=to}xB;- Let Opwp,
denote the operators on E|;;—p1«p; by Opw.

Lemma 2.3. F*(Op55,) = 05w, + ([ 00 dt) id.

Proof. Take v = v dw such that Ov = p, i.e., Oy = 0. Then, F*(0% wp,) = Opmy, because
of [0F 4, 0 5] = 0. Then, the claim of the lemma follows. [

2.2.2 Twisted mini-holomorphic bundles with Dirac type singularity

Let Z C M be a discrete subset. Let (E,Jg) be a o-twisted mini-holomorphic bundle on M \ Z.
Let P be a point of Z. Let (U;t,w) be a mini-complex coordinate neighbourhood around P € Z.
We may assume (¢(P), w(P)) = (0,0). By shrinking U, we assume that U ~ {—2¢ < t < 2¢} x B;
by the mini-complex coordinate system for some € > 0 and § > 0. Set B} := Bs \ {0}. We
obtain the scattering map F': E\{—e}ng ~ E|{€}XB§.

Definition 2.4. P is a Dirac type singularity of (F,0g) if ' and F~! are O(|w|~") for some
N > 0 with respect to C*°-frames of Ej{4c1x By If each point of Z is Dirac type singularity of
(E,0g), we say that (E,0g) is a g-twisted mini-holomorphic bundle with Dirac type singularity
on (M;Z).

Take v = 1y dt + vgdw € C* (U, QO’I) such that Ov = p. We set 52 = EE\U — vid so that
(E|U,52) is mini-holomorphic. The scattering map F": E‘{_e}ng ~ E|{e}xB;; for EVE is holo-
morphic with respect to 0,”5@. Note that F¥ = exp ( ffe yt)F . The condition in Definition 2.4
is satisfied if and only if F'¥ extends to a meromorphic isomorphism (E\{—e}x Bs Ok - 6)(*0) ~
(El{eyxBs» OF w.0) (¥0), L.e., P is Dirac type singularity of (B, glfg) in the sense of [4, Section 2.2].

We regard U as an open subset of R x C by the coordinate system (¢,w). Let ¢: c? —
R x C be given by ¢(z1,22) = (|21|*> — |22|>,22122). Let U be the pull back of U by ¢. The

mini-holomorphic bundle (E,gg)w\ (P} induces an S'-equivariant holomorphic vector bundle
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(E’}D,gléjp) on U \ {(0,0)}, which uniquely extends to an S'-equivariant holomorphic vector
bundle (EIVD,EVE ) on U. (See [6, Section 2.2] for a more detailed explanation.)

Lemma 2.5. Suppose that v; = v dt + v;pdw € C"’O(U QOl) (i = 1,2) satisfy Ov; = o.

Then, the natural identification E;‘U\{(O 0 = E} = E1V92|U\{(0,0)} uniquely extends to a C™-

isomorphism Ep} ~ EJ.

Proof. Set vp = v dt + vow d@ =y — V1. We hawe?l/E2 = 51;;1 -1 idg. By the construction

(see [6, Section 2.2]), we have 8%2, =05 — (¢* (Vo) 0™ (t) + ¢©* (vom)0¢* (W)) id. Then, the
P P

claim of the lemma is clear. |

We set Ep = E}; for v € C*° (U, Qo’l) such that Ov = p, which is called the Kronheimer
resolution of (E 5}3) at P.

Definition 2.6. A Hermitian metric h of F is called adapted at P if the induced metric hp
of E/, b extends to a C'°°-metric of the Kronheimer resolution Ep. If b is adapted at any point
of Z, then h is called an adapted metric of (E 8E)

2.2.3 Chern connections and Higgs fields

Suppose that we are given a splitting TM/TsM — TM. It induces the following decomposi-
tions:

T*M & C~ Q5°’M @& Q3'M o T;M @ C, (2.2)
QM ~ Q' M e TEM ® C, (2.3)
QMM ~ QM e TEM ® C. (2.4)

Let (E,0g) be a p-twisted mini-holomorphic bundle on M. By (2.3), we obtain a decompo-
sition O = 5; @ 5(;2, where 5%(5) € C>(X,(TsM ®C)¥) and 5(;%(3) € C™(X, Q%IM).

Let h be a Hermitian metric of E. We obtain the differential operator dg : C*(X, E) —
C> (X, QM ® E) satisfying the condition dprh(u,v) = h(dpu,v) + h(u, g v) for any u,v €
C*>(X, E). We also obtain the decomposition J j, = 8g’h + 8%7,1 induced by (2.4). For a mini-
complex coordinate neighbourhood (U;t,w), we obtain the operators Og p, . (resp. Og ) on E
induced by O 5 and 0y (resp. Of).

Remark 2.7. In [4], Op n, is denoted as O, ;.

By using (2.2), we set

Vh —3E+8gh+ (8E+8Eh) ¢h = \/271(62—627}0
They are called the Chern connection and the Higgs field of (E,dg,h). Note that they depend
on the choice of a splitting TM/TsM — TM.

If M is also equipped with a Riemannian metric gys, we shall use the splitting TM/TsM —
T'M induced by gas. Moreover, by the section 7 in Section 2.1.1, T§ oM is identified with the
product bundle R x M. Hence, we regard ¢, as an anti-Hermitian endomorphism of F. In
particular, if gy = dtdt + dw dw on a mini-complex coordinate neighbourhood (U;t, w), the
following holds for any s € C*(U, E):

1
Vh( ) = (8]3 wS) dw + (aEth) dw+ = (8E tS—i-aEhtS) dt,

¢h<s) = \/2_71(815’,58 — 8E,h,t3)-
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2.3 Twisted monopoles in the locally Euclidean case
2.3.1 Twisted monopoles

Let (M, gar) be an oriented Riemannian 3-dimensional manifold. Let B be a real 2-form on M.
Let E be a vector bundle on M equipped with a Hermitian metric h, a unitary connection V,
and an anti-Hermitian endomorphism ¢.

Definition 2.8. Such a tuple (E, h,V,¢) is called a B-twisted monopole if the following B-
twisted Bogomolny equation is satisfied:

F(V)=%xV¢++V—1Bidg.
Here F(V) denotes the curvature of V, and * denotes the Hodge star operator.

Let A and f be a real 1-form and an R-valued C*°-function on M, respectively. We set
V:i=V++yv—14id, ¢ :== ¢+ /—1f id and B := B + dA — *(df). Then, the following is easy
to see.

Lemma 2.9. (E,h,V,¢) is a B-twisted monopole if and only if (E, h,%,gg) is a B-twisted
monopole.

Remark 2.10. If M is compact, any real 2-form B on M is expressed as B = dA — *df + By,
where A is a real 1-form, f is a R-valued C*°-function, and By is a harmonic 1-form. Indeed,
let G denote the Green operator for the Laplace-Beltrami operator on the space of 2-forms on M.
Then, B — (d*d + dd*)G(B) is a harmonic 2-form, and G(B) is C°°. We can also deduce that
for any point P € M, there exists a neighbourhood Mp of P such that By, = dAp — xdfp for
a real 1-form Ap and an R-valued C*°-function fp on Mp.

2.3.2 Twisted monopoles and twisted mini-holomorphic bundles
in the locally Euclidean case

Suppose that M is also equipped with a mini-complex structure. Moreover, we assume that M is
a locally Euclidean, i.e., for each P € M, there exists a mini-complex coordinate neighbourhood
(U;t,w) of P such that the Riemannian metric of M on U is dt dt + dw dw. Note that dn = 0 for
the global trivialization 7 of T gMM in Section 2.1.1. By (2.1), for any complex vector bundle
V on M, we obtain the decomposition

2
Ve N(I"MaC)= (Ve oy’ MAn) e (VeQf MAn e (Ves M), (2.5)

where leM = Qé’OM A Q%lM. For any section s of V ® /\2 (T*M ® (C), we obtain the
decomposition s = s(1:07 4 g(OD1 4 (LD according to (2.5). In particular, we obtain the
decomposition B = B0y g0y LY Because B is real, B(MY is also real, and B10)1 =
B(0.1).n holds.

We can check the following lemma by a direct computation.

Lemma 2.11. Let (E,h,V,¢) be a B-twisted monopole on M. We have the decomposition
V= Vgo + V%’l + Vg induced by (2.1). We set O := V%l +Vs—+/—1¢n. Then, (E,0E) is a
V=1BOYN _twisted mini-holomorphic bundle.

Conversely, let (E,dg) be a p-twisted mini-holomorphic bundle on M. Let h be a Hermitian
metric of E. We obtain the Chern connection Vj and the Higgs field ¢p,.

Lemma 2.12. We have (F(V},) — #V,¢n) """ = 0idg and (F(Vy) — +Vaen) """ = —pidg.
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E’roof. We have 0 = Vg:lQ + Vs —vV—1¢pn and O ), = v};,(c)g + Vs + V—1¢pn. Because
O 0o Op = pid, we obtain dgj 0o Ogp = —pid. Then, we obtain the claim of the lemma by
computations. [ ]

Corollary 2.13. There exists a real 2-form B such that (E,h,V}, ¢n) is a B-twisted monopole
if and only if the trace-free part of (F(Vh) — *thi)h)(l’l) 15 0, i.e., there exists a real 2-form w
such that (F(Vh) - *Vh¢h)(1’l) =+/—1lwid. In that case, B = —v/—1(0 — 0) + w.

Remark 2.14. If the condition in Corollary 2.13 is satisfied, (E ,0R, h) is also called a B-twisted
monopole.

2.3.3 Dirac type singularity

Let Z be a discrete subset of M. Let B be a real 2-form on M. Let (E,h,V,®) be a B-twisted
monopole on M \ Z. Let (E,0g) be the underlying /—1B(®"-twisted mini-holomorphic
bundle.

Definition 2.15. A point P € Z is called Dirac type singularity of (E, h, V, ¢) if the following
conditions are satisfied:

e P is Dirac type singularity of (E,EE).

e h is an adapted metric of (E,EE) in the sense of Definition 2.6.

We say that (E,h,V,¢) is a B-twisted monopole with Dirac type singularity on (M; Z) if
any point P € Z is Dirac type singularity of (E,h,V, ).

Lemma 2.16. P is Dirac type singularity of (E, h,V,®) if and only if there exists a neighbour-
hood Mp of P in M such that |¢q|, = O(d(P,Q)™") for @ € Mp\ {P}.

Proof. If Mp is sufficiently small, there exists a real 1-form Ap and an R-valued C*°-function fp
such that By, = dAp — xdfp. Then, (E,h) := (E,h)|pp\(py With V=V — /~1A4pidg and

¢ = ¢ —/—1fpidg is a monopole on Mp \ {P}. If P is Dirac type singularity of (£, h, V, ¢),
then P is Dirac type singularity of (E,h,V,¢). According to [6], it is equivalent to |¢g|y, =
O(d(P,Q)™') around any point P € Z, which is equivalent to |¢g|, = O(d(P,Q)™') around

any point P € Z. |

2.4 Twisted difference modules

Let I’y C C be a lattice. We put T := C/Ty. Take any a € T, and define the automorphism @
of T by ®(z) = z + a. Let £ be a holomorphic line bundle of degree 0 on T

A parabolic £-twisted difference module Vi, = (V, (7p, Lp)pep) on T consists of the following
data:

e A locally free Op-module V equipped with an isomorphism V ® Or(*D) ~ (&*)~}(V) ®
£ ® Op(xD), where D is a finite subset of T'.
o A sequence 0 <7p1 <7pp <--- < TPm(p) < 1 for each P € D.

e Lattices Lp; (i =1,...,m(P) — 1) of the stalk V(«D)p at each P € D. We formally set
Lpo:=Vpand Lp,,p) = ((2*) (V) ® &) , at each P € D.
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The degree of V, is defined by the formula (1.1), i.e.,
m(P)
deg(Vi) :=deg(V) + Y Y (1 —7p;)deg(Lpy, Lpi1).
PeD i=1
We set (Vi) := deg(Vi)/rank(V).

For any Op(xD)-submodule 0 # V' C V such that V'(xD) ~ (®*)~}(V')(*D), we obtain
lattices L, of V' (xD)p by setting Lp; := Lp;NV'(xD)p in V(D) p, and we obtain a parabolic
£-twisted a-difference module V, = (V', (1p, L) pep). Such V/ is called a parabolic a-difference
submodule of V..

Definition 2.17. V, is called stable (resp. semistable) if

u(V) <p(Ve)  (resp. u(VY) < (Vi)

for any parabolic a-difference submodules V' such that 0 < rankV’ < rankV. It is called
polystable if it is semistable and a direct sum of stable objects.

2.4.1 Example

It is easy to construct examples of parabolic difference modules.

Lemma 2.18. For any holomorphic line bundle £ of degree 0, and for any d € R, there exists
a parabolic £-difference module V. of rank one such that deg(Vy) = d.

Proof. There exist P;,...,P, € T and ¥¢; € Z such that S(Z?Zl ZiPi) = Op. Note that
>l =0. We take Py € T\ {P1,...,P,}. Weset D:={Py, P1,...,P,}. Weset V:=Op. By
our choice of D, there exists an isomorphism F': V (*D) ~ (®*)"}(V)®£(xD). We set m(P;) = 1
and 7p, 1 =0 fori=1,...,n. We set m(P) = 2, and we choose 0 < 7p,1 < 7p,2 < 1. We set
Lp,1 = Or({FPy)p, for an integer £. Then, we obtain a parabolic £-twisted difference module

%(Z’TPO‘“TPO‘2) for which deg (V*(Z’TPO’I’TPO’Q)) = (Tpy2 — TPy1)¢- Then, the claim is clear. [ |

3 Equivalences

We shall study equivalences of twisted mini-holomorphic bundles, twisted difference modules,
and twisted monopoles. First, in Section 3.1, we introduce analytically stability condition for
twisted mini-holomorphic bundles in terms of adapted metrics. We also prepare some formulas
for the curvature and the Higgs field of a twisted mini-holomorphic bundle with a Hermitian
metric which are standard in the context of mini-holomorphic bundles as in [4]. In Section 3.2, we
shall explain the equivalence between twisted mini-holomorphic bundles and twisted difference
modules, which preserves the stability conditions. In Section 3.3, we shall explain the equivalence
between polystable twisted mini-holomorphic bundles and twisted monopoles.

3.1 Analytic stability condition for twisted mini-holomorphic bundles
3.1.1 3-dimensional torus with mini-complex structure

We take an oriented base (a;, ;) (i = 1,2, 3) of the R-vector space R x C. Let Y := R x C with
the Riemannian metric dt dt + dw dw. It is equipped with the mini-complex structure induced
by the mini-complex coordinate system (t,w). We consider the action of I' := Ze; @ Zeg @ Zes
on Y given by

e;(t,w) = (t,w) + (a;, ay), 1=1,2,3.

Let M denote the quotient space of Y by the action of I'. It is equipped with a naturally induced
mini-complex structure.
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3.1.2 Contraction of the curvature

Let Z be a finite subset of M. Take o € C®(M,Q%2M). Let (E,Jg) be a p-twisted mini-
holomorphic bundle on M\ Z. Let h be a Hermitian metric of E. As in [4], we set

et
2

If we emphasize the dependence on Jg, we use the notation G(h,dg). Note that

G(h) = [Viw, Vaw| — Vht®n.

G(h) dw dw = (F(Vy) — +Vpep) " (3.1)

for the notation in Section 2.3.2.

Let U be an open subset of M\ Z with v = v dt + vgdw € COO(U, Qo’l). On U, we set
52 := 0 — vidg. Then, (E|U,5VE) isa (ou — Ov)-twisted mini-holomorphic bundle on U. We
obtain the Chern connection V} and the Higgs field ¢j.

Lemma 3.1. The following holds:
oy = o — V—1Re(1y) idg, Vi =V = V-12Im(vgdw) + Im(1; dt)) idg,
Vi(¢h) = Va(¢n) — V—=1dRe(1) idp,
F(V}) = F(Vh) — V=1d(2 Im(vgdw) + Im(r4)dt) idg,
G(h,05) = G(h,0g) — (2Re(Ouwrm) + 27 Re(0y1r)) idp .
We can check the formulas by direct computations. _
Let E' be any o-twisted mini-holomorphic subbundle of E, i.e., 9pC®(M\ Z, E') C C*>(M\
Z,0% M E ) We have the natural o-twisted mini-holomorphic structure g on E’. Let hg

be the induced metric of E’. Let pg be the orthogonal projection of E onto E’ with respect
to h.

Lemma 3.2. The following Chern—Weil formula holds:

TI‘G(hEl) = TI‘(G(hE) 'pE’) — ‘8E,EPE’ 2

1
= ) |0 P (3:2)

Proof. If p = 0, it is proved in [4, Section 2.8.2]. Let us study the general case. It is enough
to prove the equality locally around any point of @ € M \ Z. On a neighbourhood U of Q,
there exists v € C*°(U, Q%) such that dp is a mini-holomorphic structure of Ejy. Note that

8}{3@193/ = OB wpPE, 8E7tpE/ = Ogtpr’. Moreover, (E’ ,52/) is a mini-holomorphic subbundle of
(E,gyE), and G(hE/,EE/) = G(hg,0p) — (2Re(dyrw) + 271 Re(0414)) idgr. Then, we obtain
the desired formula. |

3.1.3 Analytic stability condition for mini-holomorphic bundles
with a Hermitian metric

Let (E,gE) be a p-twisted mini-holomorphic bundle on M \ Z with a Hermitian metric A.
Definition 3.3. If Tr G(h) is expressed as a sum of an L!-function and a non-positive - function,
then we set deg (E,@E,h) = fM\Z TrG(h)dvoly € RU {—o0}. We also set u(E,@E,h) =
deg (E, 0, h)/ rank(E).

Suppose that |G (k)| is L'. By (3.2), deg(E’, hg) is defined in R U {—occ} for any o-twisted
mini-holomorphic subbundle E’ of E.
Definition 3.4. Suppose that |G(h)|, is L'. Then, (E,dpg,h) is called analytically stable

if W(E',0p,hgr) < p(E,0p,h) for any o-twisted mini-holomorphic subbundle E/ C E with
0 < rank(E’) < rank(FE).
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3.1.4 Adapted metrics of twisted mini-holomorphic bundles
with Dirac type singularity

Let (E,EE) be a g-twisted mini-holomorphic bundle with Dirac type singularity on (M; Z).

Lemma 3.5. If h is an adapted metric at P, then G(h)g = O(d(P,Q)™') around P, where
d(P,Q) denotes the distance of P and Q. In particular, if h is an adapted metric of (E,EE),
then |G (h)|p, is L.

Proof. In the case o = 0, it is proved in [4, Lemma 2.35]. The general case follows from
Lemma 3.1. ]

Lemma 3.6. Let (E,EE) be a o-twisted mini-holomorphic bundle with Dirac type singularity
on (M; Z). Let E' # 0 be a o-twisted mini-holomorphic subbundle of E. Let h and b’ be adapted
Hermitian metrics of E and E', respectively. Let hp be the metric of E' induced by h. Then,
deg(E', hgr) = deg(E', 1).

Proof. It is enough to study the case rank £/ = 1. We may assume that there exist neighbour-
hoods Up of P € Z such that hg: = b/ on M\ UPeZ Up. Then, we have only to prove that
fz,{p GN) = fuP G(hg) for any P € Z. By Lemma 3.1, it is enough to study the case ¢ = 0.
It is proved in the proof of [4, Proposition 9.4] (See the argument to compare [ G(hg g,) and
[ G(hg,E,) in the proof of [4, Proposition 9.4].) [ |

Corollary 3.7. If h1 and ho are adapted metrics of (E,EE), deg (E,EE,hl) = deg (E,EE, hg)
holds.

Lemma 3.8. Take a small neighbourhood Up of P € Z. The following estimates hold for
QelUp \ {P}

6r0ln = O0(d(P,Q)"),  [(Von)Qlhgy = O(d(P,Q)7?),
IF(Vi)Qlhgn = O(d(P,Q)7?).

In particular, ‘Vhﬁf)h\h and ‘F(Vh)’h are L.

Proof. Suppose that ¢ = 0. The estimates |¢nqln = O(d(P, Q)*l) and |(Von)Qln,gn
O(d(P,Q)~?) directly follow from [6, Proposition 1]. Because of Lemma 2.12, Lemma 3.5
and (3.1), we obtain [F(V}3)q|hgy = O(d(P,Q)?). We can reduce the case o to the case o = 0
by using Lemma 3.1. |

3.1.5 Analytic stability condition for p-twisted mini-holomorphic bundles
with Dirac type singularity

Let (E , 5];) be a p-twisted mini-holomorphic bundle with Dirac type singularity on (M; Z). We
set

deg™ (E,0p) :=deg (E,0p, h), 1 (E,0p) = deg™ (E, 0g)/ rank(E)

for an adapted Hermitian metric h of E, which is independent of the choice of h. The numbers
are called the analytic degree and the analytic slope of (E ,0R, h), respectively.

Definition 3.9. We say that (E,gE) is analytically stable if 2" (E’,EE/) < p? (E,EE) holds
for any o-twisted mini-holomorphic subbundle £ C E with 0 < rank(E’) < rank(E). Tt is called
polystable if (E,@E) =6 (Ei,ﬁEi), where each (Ei,aEi) is stable such that p?" (Ei,aEi) =
10 (E, 3p).
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We obtain the following lemma from Lemma 3.6.

Lemma 3.10. A p-twisted mini-holomorphic bundle with Dirac type singularity (E,EE) on
(M; Z) is analytically stable if and only if (E,EE, h) 1s analytically stable for an adapted Her-
mitian metric h of E.

3.1.6 Complement on the choice of p

Let H'(M, O ) denote the i-th cohomology group of the complex (C°° (M, QO’iM),gM). For
any v € C® (M, Qo’l./\/l), o-twisted mini-holomorphic bundles are equivalent to (o — dv)-twisted
mini-holomorphic bundles. Hence, the essential ambiguity of the choice of g lives in H?(M, Opq).

Lemma 3.11. We have the following isomorphisms:
H(M,00) ~C, HY(M,0p) ~ Cdt @ Cdw, H*(M,0p) ~ Cdt A dw.

Hence, for the study of twisted mini-holomorphic bundles, it is essential to study the case o =
adtdw for some a € C.

Proof. We have the isomorphism Ry x (R; X Cy,) =~ C. x C,, given by (s,t,w) — (s++v/—1t,w).
We consider the action of Z x I" on R x (R x C) induced by the natural action of Z on R and
the I'-action on R x C. Let X denote the quotient space. We have the projection ¢p: X — M
induced by (s,t,w) — (t,w). We have the natural S' = R/Z-action on X, and the quotient
space is identified with M. Let ¢*: C°°(M, Q% M) — C*>°(X,Q%(X)) be the map induced
by ¢*(dw) = dw, ¢*(dt) = 0z(t)dz = \/ledz and the natural pull back ¢*: C*(M,C) —
C>(X,C). Then, it is easy to check that it is a morphism of complexes, and that it induces an
isomorphism between C*° (/\/l, QO"M) and the S'-invariant part of C> (X, QO"(X)). Therefore,
it induces the isomorphism of H*(M,Ox4) and the S'-invariant part of H(X,Ox). Then, the
claim of the lemma follows. |

Remark 3.12. Let M = [J,c, U be an open covering such that the following holds:

e There exist vy, € C° (UA, QOUAl) such that o, = Ovy.

e There exist ay , € C*°(UxNU,) such that vy —v, = 5(1)\,#. We assume that oy y = 0 and
QA = —Qpux-

Let £\ be the Oy, -module obtained as the sheaf of mini-holomorphic sections of (EUA ,O0p — y)\).
We obtain the isomorphism 8, .1 Exjvynu, =~ Eujvynu, by the multiplication of exp(—a, ). We
obtain the holomorphic functions ) , . on Uy, . such that £y, o 8, x 0 Bex = Oxuxid. Such
a tuple ({&x}, {Br}) is called a twisted sheaf. The cohomology class of [0 .| in H*(M, O%)
depends only on p, and it is equal to the image of ¢ via the natural map H?(M,On) —
H*(M, O0%).

3.2 Twisted difference modules and twisted mini-holomorphic bundles

We assume that (i) the tuple (a;, ;) (¢ = 1,2,3) is an oriented base of R x C, (ii) o; and «ay are
linearly independent over R, (iii) the tuple (a1, a2) is an oriented base of C. Let I'y C C be the
lattice generated by a; and as.

Let MV denote the quotient space of Y by the action of Ze; & Zes. We have the natural
isomorphism M /Zes ~ M. The projection ¥ — C induces a morphism MY — T :=
C/To.



Triply Periodic Monopoles and Difference Modules on Elliptic Curves 15

3.2.1 Another mini-complex coordinate system
We introduce another mini-complex coordinate system (s,u) on Y. We set

a1tig — a2Q

10 — (o] '

We introduce another mini-complex coordinate system (s,u) on the mini-complex manifold Y’
as follows:

s:=t+2Re(yw) =t +75w0 + yw, U= w.
Then, we obtain e;(s,u) = (s,u+ ;) for i = 1,2. We also obtain e3(s,u) = (s+t,u+ a), where
t:= a3z + 2Re(yas), a:= as.

Note that t > 0, which follows from that the tuple {(a;, ;) }i=1,23 is an oriented base of R x C,

and that {a1,as} is an oriented base of C. We have the following relations of complex vector
fields:

Or =0u+70s,  Ow=0u+70s, Oy =0s.

The product Ry x T' is equipped with the natural mini-complex structure. The mini-complex
coordinate system (s, u) induces an isomorphism of mini-complex manifolds MY ~ R x T'.

3.2.2 Twisted mini-holomorphic bundles and twisted difference modules

Let Z be a finite subset in M. Let Z°°V C MY ~ R; x T denote the pull back of Z. For any
a < b, we set [a,b[:= {a < s < b}. We take € > 0 such that ([—€,0[xT) N Z°" = @. Let D be
the image of Z°V N ([—e, t[xT') via the projection Ry x T' — T'. For each P € D, we obtain the
sequence 0 < sp3 < sp2 < -+ < Sppyp) <t by the condition:

{(sps, P)|i=1,...,m(P)} = ([0, {{x{P}) N Z°.

We set 7p; := sp,;/t.

We have the expression ¢ = g dt dw = go ds du. Let o5 be the function on MY =R, x T
obtained as the pull back of gy by M — M. We define v, = v,z dw € C®° (M, Q% M)
by setting

S
l/gﬂﬂ(s,u):/ 06" (o,u) do.
0

We set Jy := v,y x7- Let £, be the holomorphic line bundle on 7" given by the product bundle
C x T with O — ¥,.

Let (E , 5]3) be a p-twisted mini-holomorphic bundle with Dirac type singularity on (M; 7).
Let us observe that (F,Jg) induces a parabolic £,-twisted difference module Y(E,Jf) over

(T, (Tp)peD)- B
Let oV € C*° (M, QO’IM) be the pull back of p. Let (ECOV, 8Ecov) denote the ®V-twisted

mini-holomorphic bundle on MV obtained as the pull back of (E , 5}3) We set (ECOV, 5%0\,) =
(ECOV,EECOV — V@) which is a mini-holomorphic bundle on M.

Let V' be the locally free Op-module obtained as Effze}xT. It is independent of the choice
of € as above, up to canonical isomorphisms.
Let ®: T'— T be the morphism induced by ®(u) = u+a. We have the natural isomorphism

(I)*( \C{czcv—e}xT) = Elc{oze}xT'
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It induces the following isomorphism of holomorphic bundles on T":
o ((ECOV; aECOV) \{tfe}xT) = (ECOV’ 8ECOV)|{—5}><T ® 'SQ'
The scattering map induces an isomorphism

(Ecov’g (*D) ~ (EcovaEECOV)Ht—e}XT(*D)'

ECOV)|{—5}><T
Hence, V' is equipped with an isomorphism V (xD) ~ ((q)*)_l(V) ® SQ)(*D).

For each P € D and for i = 1,...,m(P) — 1, we take sp; < bp; < sp;t1. Let (ECCV )P

{—e}xT
denote the Or p-module obtained as the stalk of the sheaf of holomorphic sections of EF{OZE}X:F
at P. Similarly, (Ef{(;)vpi}XT) P denote the Or p-module obtained as the stalk of the sheaf of

holomorphic sections of Ef{%‘; xT at P. The scattering map induces isomorphisms of Op (xP) p-

modules:
(~|C‘E)ZE}><T)P(*P) = (~\C{%vp,i}><T)p(*P)‘

Hence, (E\C{obvp,i}xT)P (t=1,...,m(P)—1) induce a sequence of lattices Lp; (i =1,...,m(P)—1)
of V(xD)p. Thus, we obtain the following parabolic a-difference module on (7', (7p)pep):

T(E,3p) = (V, (rp. LP)pep).

The following proposition is clear by the construction.

Proposition 3.13. T induces an equivalence between p-twisted mini-holomorphic bundles with
Dirac type singularity on (M; Z) and parabolic £,-twisted a-difference modules on (T, (Tp)pep).
3.2.3 Comparison of stability conditions

Let (E,EE) be a g-mini-holomorphic bundle with Dirac type singularity on (M; Z).

Proposition 3.14. We have p®* (E,EE) = twu(T(E,gE)H—Q fM Re(v00). As a result, (E,EE)
is analytically (poly)stable if and only if T(E,EE) is (poly)stable.

Proof. We consider the real vector field v := 259,, + 270z — (2\7]2 — %)at on M. Let h be any
Hermitian metric of E. Let Ogy denote the operator on E induced by Op and Oy. Let OE.hu
denote the operator on F induced by 0g ; and 0.

Lemma 3.15. G(h) = [8E7h7u,8Eﬂ] —V=1Voén + 2Re(v00) idg holds.

Proof. Because 0g; = Vs —V/—1¢p and Og pt = Vit + v/ —1¢p, the following holds:
O = Vg —7 (Ve — V—-1¢4), OB = Viw =V (Vhe +V—164).

Hence, we obtain

(0B, 1 053] = [Vihw Viw| = [ Viw Vit +7V=1Vhwon
+9Vaw, Vi + W =1Vhw¢ — 2V =11 [*Vi6h.

According to Lemma 2.12, we have [Vh@, Vh,t] — V=1V 5o = —poidg and [vw,vh,t] +
V=1V ¢ = 00idg. Hence, we obtain

(0B 1083 = [Vihw Viw] +2V=17V4¢ + 2V =17Vge
—2V=1]7[*V¢ — 2Re(700) idp -

Then, we obtain the claim of the lemma. |
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Let h be an adapted metric of (E,dg). According to Lemmas 3.5 and 3.8, G(h) and V¢,
are L'. Hence, we obtain

deg™(E) = /M TrG(h) = /M Tr [0 hu, OFu)

_/ ﬁTrvhmqsthQrank(E)/ Re(v00)-
M M

Note that the volume form of M is equal to ¥ 1dt dw dw = Y51 ds du du. By the Stokes theorem

and the estimate in Lemma 3.8, we obtain that fM Tr (thd)h) @dt dwdw = 0. By the Fubini
theorem, we obtain that

t A/ —
/ Tr [0E7h,u, 8&@} = / ds/ Tr [GE,M, 8E,ﬁ} 71 du du
M 0 (s}xT 2

t
:/ ds/ 7701( ‘C{Og’}xT) = twdegT(E,aE).
0 {s}xT
Thus, we obtain the claim of Proposition 3.14. |

3.3 Twisted monopoles and twisted mini-holomorphic bundles
3.3.1 Statements

Let B be a real 2-form on M. We set g := \/—713(071)”7 and pup = —%fM B gt Let
(E,h,V,®) be a B-twisted monopole with Dirac type singularity on M\ Z. We have the associ-
ated pp-twisted mini-holomorphic bundle (E,dg). Note that G(h,dg) dw dw = v/—1BMV idp.
Hence, we obtain

= 1

w (B, Op) = rank(F) .

/Tr(G(h,aE))dtdwdE——l/ BYY dt = pup.
M 2 2 /m

We shall prove the following theorem in Sections 3.3.2-3.3.4, which is a variant of the corre-
spondence in [1] on the basis of [7].

Theorem 3.16. The above construction induces an equivalence between B-twisted monopoles
with Dirac type singularity on M\ Z and analytically polystable op-twisted mini-holomorphic
bundles with Dirac type singularity with slope up on (M;Z).

More precisely, Theorem 3.16 consists of Propositions 3.18, 3.19, and 3.21 below.

Remark 3.17. According to Lemma 2.9 and Remark 2.10, it is essential to study the case
where

V=1
B=c

dw A dw+ adt A dw +adt A dw
for (c,a) € R x C. We have gop = v/—ladt A dw and pp = —3 vol(M)c in this case.

3.3.2 Polystability

Let (E,EE, h) be a B-twisted monopole with Dirac type singularity on M \ Z.

Proposition 3.18. (E,EE) is analytically polystable with deg™ (E,EE) =rank(E)up.
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Proof. Let E’' be a pp-twisted mini-holomorphic subbundle of E. Let hg be the metric of £’
induced by h. By the Chern-Weil formula (3.2) and Lemma 3.6, we have

2

deg™ (B, 0pr) = / Tr G(hp) = rank(E')up — / |08 wpw

1
1 /{OE,tpE’

If uan(E’,gE/) = up, we obtain Ogwpr = Op:prr = 0. We obtain that the orthogonal
complement E'* is also a pp-twisted mini-holomorphic subbundle of E. Let hp. be the
metric of E't induced by h. Thus, we obtain a decomposition of monopoles (E,EE,h) =
(E’,gEx,hE/) &) (E’L,gEu,hEu). Hence, we obtain the polystability of (E,EE) by an easy
induction. |

’< rank(E)up.

3.3.3 Uniqueness

The uniqueness is also standard.

Proposition 3.19. Let (E,EE) be a pp-twisted mini-holomorphic bundle with Dirac type sin-
gularity on (M; Z). Let hy and hy be adapted Hermitian-metrics of E such that G(h;) dw dw =
V=1BMYidg. Then, there exists a decomposition (E,EE) = @(Ej,gEj) such that (i) it
is orthogonal with respect to both hy and hg, (i) there exist positive constants a; such that

hojm; = ajhnp;-
Proof. Let s be the automorphism of F determined by hg = his.
Lemma 3.20. The following inequality holds on M\ Z:

1 _ 2 1, _ 2
- <5ﬁ3w + 463) Tr(s) = =[5~ 2050 w(5)], = 7172 0mm(5)];, <0.

Proof. In the case op = 0, it follows from [4, Corollary 2.30]. (Note that Og p, . is denoted
by 8&7,11715 in [4, Corollary 2.30].) Let us study the general case. We have only to check the
inequality locally around any point P of M \ Z. We take a small neighbourhood U of P
and v = vy dt + vgdw € C°(U, Q%) such that g — v id is mini-holomorphic. We obtain
(%ﬂyh’w = Og,hw + Vwid and 8}37h7t = Ognt + 7id. Hence, we obtain 8E7h7w(s) = [agm, s] =
[OF hw, 8] = O, hw(s). Similarly, we obtain 8]’37h7t(s) = Op,nt(s). Hence, the general case can be
reduced to the case op = 0. |

By the assumption, Tr(s) > 0 is bounded. Then, the inequality holds on M in the sense of
distributions. (See the proof of [7, Proposition 2.2].) Hence, we obtain that Tr(s) is constant,
and Og p, w(s) = Opn,+(s) = 0. Because s is self-adjoint with respect to hj, we also obtain
that Opw(s) = Or(s) = 0. We obtain that the eigenvalues of s are constant, and the eigen
decomposition E = @ E; is compatible with the mini-holomorphic structure. Then, the claim
of the proposition follows. |

3.3.4 Construction of twisted monopoles
Let (E,EE) be a stable pop-twisted mini-holomorphic bundle with Dirac type singularity on
(M; Z) with p*(E,0g) = pp.

Proposition 3.21. There exists a Hermitian metric h of (E,EE) such that (E,EE, h) is a B-
twisted monopole with Dirac type singularity on M\ Z.
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Proof. As a preliminary, let us consider the rank one case. Note that the stability condition is
trivial in the rank one case.

Lemma 3.22. Assume rank E = 1. Then, there exists a Hermitian metric h of (E,EE) such
that (E,EE, h) is a B-twisted monopole with Dirac type singularity on M\ Z.
Proof. We take a Hermitian metric hg of £ such that the following holds:

e Each P € Z has a neighbourhood Up in M such that (i) G(hg) =0 on Up \ {P}, (ii) P is
Dirac type singularity of the monopole (E ,0R, ho)‘up\ (P}

Let f be any C*°-function on M. Note that G(hgef) — G(hp) = 47 'Af, where A denote the
Laplacian of M. (See [4, Section 2.8.4] for the untwisted case. The twisted case can be argued
similarly.) Because

/ G(ho)ﬁdtdwdw:MB:_l/ BOD g,
M 2 2 Jm

there exists an R-valued C°°-function f; such that (A fi)dw dw = —4(G(ho) dw dw—+/ —1B(1’1)).
Then, the claim of Lemma 3.22 follows. |

Let us study the case where op = 0, which implies B = B®D. On R* = R x R?, we
use the real coordinate system (s,¢,x,y) and the complex coordinate system (z,w) given by
z2=s5++/—1tand w =z ++/—1y.

Let T' denote the lattice of R* = R x (R x C) generated by (1,0,0) and (0, a;, ;) (i = 1,2, 3).
We consider the action of I' on R?* induced by the natural Z-action on R and the I'-action on
R x C. Let (X, gx) denote the Kiihler manifold obtained as the quotient of (C2, dz dz + dw dw)
by the [-action. Let p: X — M denote the naturally defined projection.

We set E = p~Y(E) on X\p~1(Z). It is equipped with the complex structure 9 7 determined
by

p ¢ u+ V—10gu)

DN |

6E,wp_1(“) = p_l(aE,EU), agzp_l(u) =

for sections u of E. For any adapted Hermitian metric hy of E, set Eo = p~1(ho).

Let F (7L0) denote the curvature of the Chern connection of (E,EE,%O). Let A denote the
contraction from (1, 1)-forms to (0, 0)-forms with respect to the Kéhler form of (X, gx). Then,
V—IAF (ho) = p~"(G(hg)) holds.

For any saturated coherent O y\,-1(z)-submodule E C E, we have a closed complex analytic
subset W C X \ p~!(Z) with complex codimension 2 such that E’ is a subbundle of E outside

of W. We have the induced metric ho,E' of E(X\(p_l(Z)UW)' We define

deg (E/,Eo) = \/—I/TrAF(EO E/) dvoly .

Because of the Chern—Weil formula, it is well defined in R U {—o0o} as explained in [7]. Then,
(E 0%, ho) is defined to be analytically stable with respect to the S'-action if

deg (E”JLQ) _ deg (E,TLQ)
rank £’ rank £

holds for any S'-invariant saturated subsheaf E' C E with 0 < rank E < rank E. The following
is clear.



20 T. Mochizuki

Lemma 3.23. (E,EE,EO) is analytically stable with respect to the S'-action if and only if
(E,gE,ho) 1s analytically stable.

According to Lemma 3.22, there exists a Hermitian metric hge () such that (E ,0R, hqet( E))
is a (rank F) B-twisted monopole. We take an adapted Hermitian metric h_; such that each
P € Z has a neighbourhood Up such that G(h—1)p\(py = 0. An R-valued C*°-function f is
determined by det(h_1) = hqet( E)ef . We set hg = h_je—//mk(E)  Then, h is an adapted metric
of E. By Lemma 3.23, (E,gé,ﬁo) is analytically stable with respect to the S'-action. We also
have ATrF(EO) = /—1rank(E)p~(B). According to a theorem of Simpson [7, Theorem 1],
there exists an S'-invariant metric & of E such that (i) det (E) = det (Eo), (ii) AF (ﬁ) =
V-1Ip~1(B)idg, (iii) h and hg are mutually bounded. We obtain the corresponding metric h
of E, for which G(h) = /—1Bidg holds. Because h and hy are mutually bounded, each P € Z
is a Dirac type singularity of (F,dg,h) which is implied by [6, Theorem 3]. Thus, we obtain
the claim of Proposition 3.21 in the case pg = 0.

Let us study the case where pp is not necessarily 0.

Lemma 3.24. There exist a finite subset Z C M and a op-twisted mini-holomorphic bundle
(El, 0}31) with Dirac type singularity of rank one on (M; Zy) such that deg™ (El, 8}31) = upB.

Proof. It follows from Lemma 2.18 and Proposition 3.13. |

We set (E’,EE/) = (E,EE) ® (El,gEl)_l. Then, (E’,EE/) is a stable mini-holomorphic
bundle with ,uan(E’ ,EE/) = 0. According to the claim in the case pp = 0, there exists an
adapted Hermitian metric 1’ of (E’,0p/) such that (E’,dp/,h’) is a monopole. According to
Lemma 3.22, there exists a Hermitian metric hy of Fq such that (El,gEl, hl) is a B-twisted
monopole with Dirac type singularity. Let h be the Hermitian metric of E induced by A’ and h;.
Then, h is adapted to (E,gE), and (E,gE,h) is a B-twisted monopole. Thus the proof of
Proposition 3.21 is completed. |

4 A more sophisticated formulation of the stability condition

We explain that the analytic stability condition (Definition 3.9) is equivalent to the stability
condition introduced by Kontsevich and Soibelman in the case ¢ = 0 (see Section 1.2). This
section is devoted to explain their idea of degree.

4.1 Preliminary
4.1.1 Closed 1-forms and 1-homology

Let A be a 3-dimensional manifold. Let Z} (A) denote the space of closed i-form 7 on A. Let B
be finite subset of A. Let H;(A, B) denote the relative j-th homology group with R-coefficient.

Let v be any element of H; (A, B). We take a representative of v by a smooth 1-chain 7. For
any w € lejR(A), the number fﬁw is independent of the choice of a representative 7. They are
denoted by fw w.

Let C*°(A, B) denote the space of C*-functions f on A such that f(P) =0 for any P € B.
Let Zr(A) denote the space of closed 1-forms on A. Let By (A, B) denote the image of
d: C*(A, B) — Z}hz(A). Because fv df =0 for any f € C°°(A, B), we obtain the well defined

map

/: Zpr(A)/Bhr(A, B) — R.
N
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4.1.2 Duality

Suppose that A is compact and oriented. Let H7(A\ B) denote the j-th de Rham cohomology
group of A\ B. Let H (A\ B) denote the j-th de Rham cohomology group with compact
support. We have the non-degenerate pairing between H?(A\ B) and H!(A\ B) induced by the
cup product and the integration. We also have the non-degenerate pairing between H!(A \ B)
and Hi(A, B) induced by the integration. Hence, we obtain the isomorphism

®ap: H*(A\B)~ Hi(A, B).

By definition, for any a € H?(A\ B) and b € H!(A\ B), the following holds:

/ b—/a/\b.
<I>,473((J,) A

Take any Riemannian metric g4 of A. For any j-form 7 on A\ B, let |7|,4, denote the function
on A\ B obtained as the norm of 7 with respect to g4.

Lemma 4.1. Let 7 € ZZR(A\ B) such that ||y, is an L'-function on A. Then, the following
holds for any p € Zhg(A):

/ p:/p/\T.
@,5([7]) A

Here, [1] € H3x(A\ B) denotes the cohomology class of T.

Proof. For any point P € Z, we take a small coordinate neighbourhood (Ap,zp1,zp2,2p3)
of P such that (i) P corresponds to (0,0,0), (ii) Ap ~ {(z1,22,23) € R*| Y a? < 1} by the

coordinate system. Set ||z p| := (x%l + x%;g + xl%’?)) 12 Then, there exists a C'*°-function fp
on Ap such that (i) dfp = p on {||zp|| < 1/2}, (i) fp(P) =0, (iii)) fp(Q) =0 for Q € {||zp| >
2/3}. We naturally regard fp as a C*°-function on A. Then, the following holds:

pz/ <p— dfp>
/1>A,B([T]) 4 5([1]) Z

PeB

:/A<p—dep)/\TZ/Ap/\T—;/Ad(fPT)'

PeB

For each P, we set S%(r) := {|l@p| = r} with the orientation as the boundary of {||zp|| < r}.
Then, we obtain the following

/ d(fpr) = —lim fpr. (4.1)
A

e—0 512: (€)

Note that the limit exists because d(fpT) = dfp A 7 is integrable. Because ||, is L', we have
Jdr 52y ITlga < 00, and hence there exists a sequence r; — 0 such that r; [g»  [7]g, — 0.
P plri

Because |fp| = O(||xp||), we obtain that (4.1) is 0. [

4.2 Relation between degrees of mini-holomorphic bundles

Let M be as in Section 3. We may naturally regard M as a 3-dimensional abelian Lie group.
Let ¥ denote the space of the invariant vector fields on M. Let TV denote the space of the
invariant 1-forms on M. We have the natural non-degenerate paring T ® TV — R. We have
the dual morphism R — TV ® . Let o denote the image of 1. If we take a base ¢; (i = 1,2, 3)
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of T and the dual frame e} (i = 1,2,3), then 0 = Y e/ ® ;. For the mini-complex coordinate
(t,w), we havea-dt@@t—l-dw@@ + dw ® O.

Let E be a vector bundle on M\ Z. Kontsevich and Soibelman [2] introduced the following
element:

/ €T
P pm,z(c1(E))

Proposition 4.2. Let p = gpdtdw be a 2-form on M. Let (E,EE) be a o-twisted mini-
holomorphic bundle with Dirac type singularity on (M;Z). Then,

1 k
/ 0 = —deg™(B) - 9, — — (E)<</ 9°>6“’+</ @)«‘%)
P p,z(c1(E)) ™ ™ M M

In particular, if o = 0, then the following holds:

/ o= ldegam(E) - O.
®pm,z(c1(E)) Q

Proof. Let h be an adapted metric of (E,EE). By Lemma 4.1, it is enough to prove the
following equality:

7,

TrF(h) o :/ Tr G(h) dvol g -0y
M

(Lo (L)

For k = t,w,w, we obtain the following by the Stokes formula and the estimate |¢pnq|n =

o(d(P,Q)™"):
/ Tr(Vheon) \/;Tdt dwdw = 0. (4.3)

Note that F(h)mw + vV—1Vwe = goidp and F(h)y — vV—1Vwep = —opidg, according to
Lemma 2.12. We obtain

F/TrF ) dw ® 0 :/Tr(F(h)tw+ﬁqus)\/jldtd@dw@aw

——

Tr F(h) dw ® O = rank(E)</ Qo)aﬁ.
M

Similarly, we obtain
Sy

We also obtain the following from (4.3):
v-1 v—1 v—1
/TrF wiw dw dw dt ® 0y = /Tr (F(h)ww — 2Vh7t<z5h) 5 dw dw dt @ 0%

- (/M TYG(h))@t.

Thus, we obtain (4.2), and the proof of Proposition 4.2 is completed. |

Remark 4.3. As explained in Section 1.2, Kontsevich and Soibelman [2] formulated the stability
condition for mini-holomorphic bundles in terms of the coefficient of d; in f<1>z(<:1( B) O
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