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Abstract. We present a systematic derivation of the abelianity conditions for the q-
deformed W -algebras constructed from the elliptic quantum algebra Aq,p

(
ĝl(N)c

)
. We

identify two sets of conditions on a given critical surface yielding abelianity lines in the
moduli space (p, q, c). Each line is identified as an intersection of a countable number of
critical surfaces obeying diophantine consistency conditions. The corresponding Poisson
brackets structures are then computed for which some universal features are described.
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1 Introduction

The construction of deformed WN algebras as subalgebras of the elliptic quantum algebra
Aq,p

(
ĝl(N)c

)
was proposed in [3]. The construction uses as generating functionals quadratic

and higher rank traces of the quantum Lax operators defining Aq,p
(
ĝl(N)c

)
. The existence of

such closed subalgebras of the enveloping algebra of Aq,p
(
ĝl(N)c

)
was conditioned by a so-called

“critical” relation between the elliptic modulus or nome p, the quantum deformation parame-
ter q and the central charge c. This critical relation is parametrized by two integers (m,n), and
defines surfaces Sm,n in the (p, q, c) moduli space. The structure functions were identified as
particular ratios of elliptic functions. Characterizing these structures as q-deformed W -algebras
was made possible by first finding a second constraint on p, q, c, yielding now structure functions
degenerating to 1. This second constraint may thus be consistently called “abelianity condition”
and defines a line on the surface Sm,n. The expansion of the structure functions around this con-
straint, by infinitesimally relaxing it, yields Poisson structures, which could then be compared
to, and in some cases identified with, the original ones in [6, 7]. The full quantum structures
could then be identified as natural quantizations of these Poisson structures. The derivation
of this second “abelianity constraint” however assumed a very specific pattern of cancellation
inside the elliptic structure functions. It was therefore a natural question whether more general
cancellation patterns occur which may then lead to new abelianity conditions (and as a conse-
quence new Poisson structures). We will address this issue here, and determine the most general
cancellation pattern of the structure functions, within a given “fundamental” scheme using the
particular form of the structure functions as ratios of products of a single elliptic function with
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shifted/modified arguments, and a remarkable periodicity property of this component function.
Quite remarkably, it turns out that:

1. All abelianity lines are identified as intersections of critical surfaces (generically a countable
set of such surfaces).

2. Intersections of critical surfaces yielding abelianity lines are characterized by a diophantine-
type condition of integrity of a certain ratio of combinations of their integer parameters.

We shall now detail this derivation, starting with a reminder of the general frame of [3] and
prepare some notations. The main result shall then be stated precisely, and its proof will be given
in a detailed way. We then compute explicit associated Poisson structures and compare them
along different surfaces converging onto the same line. These Poisson structures are realized by
linear combinations of a few fundamental elliptic functions, identified as logarithmic derivatives
of the short Jacobi theta function. The specific elliptic functions depend only on the abelianity
line itself, whichever realization by an intersection is achieved. Only the constant rational
coefficients and the span of the linear sums depend on the critical surface along which the PB
structure is expanded.

2 Quadratic subalgebras in Aq,p
(
ĝl(N)c

)
The central object of our study are quadratic subalgebrasW(m,n)

pqc (N) in the quantum elliptic al-

gebra Aq,p
(
ĝl(N)c

)
, parametrized by two integers m,n ∈ Z (in addition to the parameters p, q, c

of the quantum elliptic algebra). We refer to [1, 3] for the full construction, and summarize the
main points needed for our present study.

TheW(m,n)
pqc (N) subalgebras are defined on surfaces in the three-dimensional parameter space

spanned by (q, p, c)

Sm,n :
(
−p

1
2
)m(−p∗ 12 )n = q−N , (2.1)

where p∗ = pq−2c. We introduce the operators t
(k)
m,n(z), 1 ≤ k ≤ N , generating the subalgebra

W(m,n)
pqc (N), and L(z) the Lax operator of the Aq,p

(
ĝl(N)c

)
algebra. The W(m,n)

pqc (N) algebra is
defined by the following proposition, proved in [3]:

Proposition 2.1. On the surface Sm,n, one has:

a) The generators t
(k)
m,n(z) obey the following exchange relation with L(w):

t(k)
m,n(z)L(w) =

k∏
i=1

F−m(zi/w)

F∗n(zi/w)
L(w)t(k)

m,n(z). (2.2)

The function Fa(x) is expressed in terms of the function U(x) defined in (2.5) as

Fa(x) =



a−1∏
`=0

U
((
−p

1
2
)`
x
)

for a > 0,

1 for a = 0,
|a|∏
`=1

U
((
−p

1
2
)−`

x
)−1

for a < 0,

F∗a (x) = Fa(x)
∣∣
p→p∗ .



On Abelianity Lines in Elliptic W -Algebras 3

b) They realize quadratic subalgebras in Aq,p
(
ĝl(N)c

)
with quadratic exchange relations for

1 ≤ k, k′ ≤ N :

t(k)
m,n(z)t(k

′)
m,n(w) =

(k−1)/2∏
i=(1−k)/2

(k′−1)/2∏
j=(1−k′)/2

Ym,n
(
qi−jz/w

)
t(k
′)

m,n(w)t(k)
m,n(z), (2.3)

where the function Ym,n(x) is given by

Ym,n(x) =
F∗n(x)F∗−n(x)

Fm(x)F−m(x)
=

|m|∏
`=1

U
((
−p

1
2
)−`

x
) |n|−1∏
`=1

U
((
−p∗

1
2
)`
x
)

|m|−1∏
`=1

U
((
−p

1
2
)`
x
) |n|∏
`=1

U
((
−p∗

1
2
)−`

x
) . (2.4)

The function U(z) is defined using the short Jacobi θ function

U(z) = q
2
N
−2 θq2N

(
q2z2

)
θq2N

(
q2z−2

)
θq2N

(
z2
)
θq2N

(
z−2
) . (2.5)

We remind that the short Jacobi θ function is defined in terms of the infinite q-Pochhammer
symbols (z; a)∞ =

∏
n≥0

(1− zan) by

θa(z) = (z; a)∞
(
az−1; a

)
∞.

It enjoys the following properties

θa2
(
a2z
)

= θa2
(
z−1
)

= −θa2(z)

z
and θa2(az) = θa2

(
az−1

)
.

To ensure a proper definition of the elliptic quantum algebra Aq,p
(
ĝl(N)c

)
, and in particular the

convergence of the short Jacobi θ functions as infinite products, we have to suppose that |p| < 1
and |q| < 1.

Remark 2.2. At this point, we need to elaborate the exact meaning of the exchange rela-
tion (2.3). It is to be understood as an equality of formal series expansion after a suitable
Riemann–Hilbert splitting of the meromorphic function Ym,n(x). It will then acquire supple-
mentary terms (central extensions or higher spin operators) on poles or zeroes of this exchange
function. We do not achieve this procedure here since we are only interested in the abelianity
conditions, see below.

Line of abelianity. We are interested in characterizing the situations where the subalge-
bra (2.3) in Aq,p

(
ĝl(N)c

)
becomes abelian. Demanding an abelian exchange relation between

the generators t
(1)
m,n(z) imposes Ym,n(x) = 1. Once abelianity is obtained between these gener-

ators, the whole subalgebra (2.3) becomes abelian, because the exchange function in (2.3) for
generic k, k′ is a product of the Ym,n function with shifted arguments. The conditions allowing
Ym,n(x) = 1 will define a line of abelianity.

Since this strict abelian condition implies that Ym,n(x) has neither a pole nor a zero, the
extra terms mentioned in Remark 2.2 are not expected to appear and abelianity is indeed exact.
They will nevertheless contribute to the Poisson brackets computed in the neighborhood of the
abelianity line, see Section 6.
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In the following, it will be convenient to parametrize p and c (or equivalently p and p∗) on
the surface Sm,n through the relation

−p
1
2 = q−Nλ/m and − p∗

1
2 = q−Nλ

∗/n . (2.6)

The surface condition then reads λ+ λ∗ = 1, and the central charge is given by

c = −N
(
λ

m
− λ∗

n

)
. (2.7)

A first step in deriving abelianity conditions was performed in [1, 3], where the following
result was shown:

Proposition 2.3. On the surface Sm,n, the generators t
(k)
m,n(z) realize an abelian subalgebra in

Aq,p
(
ĝl(N)c

)
when λ, λ∗ take non-vanishing integer values.

Note that the notation λ∗ corresponds to λ′ in [1, 3] (it is not the complex conjugate of λ!).

3 Main results

In this section, we expose our main results concerning the classification of the lines of abelianity,
and their realization as intersections of critical surfaces.

3.1 Generic abelianity lines as intersections

Lemma 3.1. Two different surfaces Sm,n and Sm′,n′ have a non-empty intersection if and only
if m 6= m′, n 6= n′ and the determinant

∣∣m m′

n n′

∣∣ 6= 0. In that case, the parameters p, p∗ and c are
given by

−p
1
2 = q

N
n′−n

m′n−mn′ , −p∗
1
2 = q

N
m−m′

m′n−mn′ , (3.1)

and

c = N
m′ + n′ −m− n
m′n−mn′

. (3.2)

Proof. If two surfaces Sm,n and Sm′,n′ intersect, then p, q, c have to satisfy simultaneously

the two surface conditions
(
−p

1
2

)m(−p∗ 12 )n = q−N and
(
−p

1
2

)m′(−p∗ 12 )n′ = q−N . This implies(
−p

1
2

)m′−m
=
(
−p∗

1
2

)n−n′
. Thus n = n′ implies that m = m′ (and vice-versa). But then the

two surfaces coincide, which contradicts the hypothesis. Hence, we must have m 6= m′ and
n 6= n′. Given that p∗ = pq−2c, the surface conditions can be rewritten as

(
−p

1
2

)m+n
= qnc−N

and
(
−p

1
2

)m′+n′
= qn

′c−N , which leads to(
−p

1
2
)m′n−mn′

= qN(n′−n) and
(
−p

1
2
)m′+n′−m−n

= qc(n
′−n). (3.3)

Then, since q is not a root of unity, the first equation in (3.3) has a solution if and only if
n′m−m′n 6= 0. In that case, (3.1) and (3.2) follow immediately. Note that these relations are
invariant in the exchange (m,n)↔ (m′, n′). �

Remark 3.2. Recalling the parametrization (2.6), one sees that on the intersection of two
surfaces Sm,n and Sm′,n′ , one has the following values for the line viewed on Sm,n

λ =
m(n− n′)
m′n−mn′

and λ∗ =
n(m′ −m)

m′n−mn′
. (3.4)

Note that the surface condition λ+ λ∗ = 1 is then automatically satisfied.
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Lemma 3.3. Let Sm,n and Sm′,n′ be two surfaces with a non empty intersection, defining a line
in the moduli space. There are a countable number of surfaces Sm′′,n′′ intersecting on this line.
They are uniquely determined by the relation

m′ −m
n′ − n

=
m′′ −m′

n′′ − n′
. (3.5)

Proof. Suppose there is a third surface Sm′′,n′′ intersecting on Sm,n ∩ Sm′,n′ . Then equa-
tions (3.1) and (3.2) hold for any choice of two pairs in {(m,n), (m′, n′), (m′′, n′′)}:

n′ − n
m′n−mn′

=
n′′ − n′

m′′n′ −m′n′′
=

n′′ − n
m′′n−mn′′

, (3.6)

m′ + n′ −m− n
m′n−mn′

=
m′′ + n′′ −m′ − n′

m′′n′ −m′n′′
=
m′′ + n′′ −m− n
m′′n−mn′′

. (3.7)

Dividing term by term the second equation by the first one, one gets

m′ −m
n′ − n

=
m′′ −m′

n′′ − n′
=
m′′ −m
n′′ − n

. (3.8)

Thus, relation (3.5) is a necessary relation for the surface Sm′′,n′′ to exist. Note that this relation
implies the second equality in (3.8), i.e., assuming (3.5) implies all the equalities deduced by
circular permutation of the pairs (m,n), (m′, n′), (m′′, n′′).

Now writing (3.5) as (m′ −m)(n′′ − n′) − (m′′ −m′)(n′ − n) = 0 and multiplying it by n′,
one finds the first equality of (3.6). Multiplying instead by m′, one finds the first equality
of (3.7). The other two equalities are found by a circular permutation on the pairs (m,n),
(m′, n′), (m′′, n′′). Hence equation (3.5) is equivalent to (3.6)–(3.7). As such, it is a necessary
and sufficient condition for Sm′′,n′′ to exist.

Finally, choosing m′′ = m′ + u(m −m′) and n′′ = n′ + u(n − n′) with u ∈ Z, one shows at
the same time that (3.5) admits solutions, and that there are a countable number of them. �

Theorem 3.4. When non-empty, the intersection of two surfaces Sm,n and Sm′,n′ is a line of
abelianity of Sm,n if and only if one of the following conditions is satisfied:

(a)
m(n− n′)
m′n−mn′

∈ Z or equivalently
n(m′ −m)

m′n−mn′
∈ Z, (3.9)

(b)
m+ n−m′ − n′

m′n−mn′
∈ Z and (m+ n)(m′ + n′) 6= 0, (3.10)

(c) (m′, n′) = ±(1,−1) and m,n ∈ Z,
(c′) (m,n) = ±(1,−1) and m′, n′ ∈ Z.

In case (a), the intersection might not be a line of abelianity of Sm′,n′. In cases (b), (c) and (c′),
the intersection is also a line of abelianity of Sm′,n′.

Theorem 3.5. Any line of abelianity on a surface Sm,n can be identified with the intersection
of a countable number of suitable surfaces Sm′,n′.

The proof of these two theorems is postponed until Section 5.

3.2 Enhanced abelianities

Theorems 3.4 and 3.5 describe generic lines of abelianity on critical surfaces Sm,n, i.e., such

that the sole characterizing commutation property be
[
t
(k)
m,n(z), t

(k′)
m,n(w)

]
= 0, 1 ≤ k, k′ ≤ N .

We have identified several critical surfaces on which stronger commutation properties prevail,
which can be overall characterized as “enhanced abelianity”. They are described in the following
propositions.
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Proposition 3.6.

(i) The surface S1,−1 corresponds to the critical level c=−N , for which the generators t
(k)
1,−1(z)

lie in the extended center of Aq,p
(
ĝl(N)c

)
, without any further condition on q, p.

(ii) The intersection of S1,−1 with any surface Sm′,n′, when non-empty, provides an abelianity
line for Sm′,n′. The set of such lines is dense on the surface S1,−1.

Proposition 3.7.

(i) The generators t
(k)
0,n(z) satisfy an abelian algebra on the whole surface S0,n.

(ii) There are a countable number of surfaces Sm′,n′ such that the intersection of Sm′,n′ with
S0,n is an abelianity line for Sm′,n′. These lines of abelianity form a dense set of lines on
the surface S0,n.

(iii) There exist a countable number of surfaces Sm′,n′ such that the intersection of Sm′,n′

with S0,n is not an abelianity line for Sm′,n′.

Proposition 3.8.

(i) The generators t
(k)
m,−m(z) commute with the Lax operator L(w) of the elliptic quantum

algebra Aq,p
(
ĝl(N)c

)
on the surface Sm,−m (“localized extended center”) when the following

conditions hold, see (2.6):

1) m is odd;

2) m and λ are coprime integers;

3) m and β′0 + 1 are coprime integers, where β0 and β′0 are the Bézout coefficients such
that β0m− β′0λ = 1 with 1 ≤ β′0 ≤ m− 1.

Such a submanifold of the surface Sm,−m will be called a “super-abelianity line”.

(ii) The intersection Sm,−m ∩S1,1 with m odd is a super-abelianity line for Sm,−m but it is
never an abelianity line for S1,1.

The proof of these propositions is postponed to Section 5.

Remark 3.9. The construction can be extended to the case of the algebra Åq,p,c

(
ĝlN
)

defined
with the unitary elliptic R-matrix [1, 3]. However the fact that the R-matrix is normalized in
a different way modifies the analysis of the abelianity conditions. While it is easy to see that
condition (a) of Theorem 3.4 still applies, the analysis of the other conditions is much more
involved and remains to be done. It would be interesting since for Åq,p,c

(
ĝlN
)

the surface S2,−1

corresponds precisely to the original q-deformed W -algebras introduced in [6, 7].

4 Abelianity lines

We first introduce the following lemma which classifies the different lines of abelianity. This
lemma is essential in proving the results exposed in Section 3.

Lemma 4.1. On the surface Sm,n, the elliptic nomes p and p∗ being parametrized as in (2.6)

and the central charge given by (2.7), the generators t
(k)
m,n(z) realize an abelian subalgebra in

Aq,p
(
ĝl(N)c

)
if one of the following conditions is satisfied:

1. The parameters λ and λ∗ take integer values.

2. The parameters λ and λ∗ obey the relations λ
m −

λ∗

n ∈ Z and m+n
d ∈ Z, where d is the

denominator of the irreducible fraction of λ
m (or equivalently λ∗

n ).

When N > 2, these conditions are necessary and sufficient conditions.
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The proof of this lemma is given in Section 4.1. Remark that the first part of condition 2
amounts to say that the central charge is an integer proportional to the critical value −N , see
equation (2.7). For completeness, we solved the condition (2) of Lemma 4.1:

Lemma 4.2. Let ` and `′ be Bézout coefficients satisfying `m+ `′n = g, where g = gcd(m,n).
Then, the parameters λ and λ∗ solutions to the condition (2) of Lemma 4.1 are given by

λ

m
= γ′`+

γ

d
+
kn

g
and

λ∗

n
= γ′`′ +

γ

d
− km

g
, k ∈ Z,

where d is a divisor of m + n such that m+n
d is coprime with g, and (γ′, γ) are the Bézout

coefficients solution of γ′g + γm+n
d = 1. The integer γ has to be coprime with d and such that

0 < γ < d.

The proof of this lemma is given in Section 4.2.

4.1 Proof of Lemma 4.1

Before going into the details, let us stress that we restrict ourselves to a framework where
cancellations between the numerator and the denominator of the exchange function Ym,n are
done through the functions U as a whole. Indeed, due to the explicit form of U , it seems very hard
to obtain cancellation in a different way, even when dealing with some “magic” simplifications
among elliptic functions. Remark however that for N = 2, these ’magic’ simplifications may
occur, because the shift q2 in the definition of U , see (2.5), coincide with qN , the half-period of
the θ functions. Thus, the proof done here is only a sufficient condition when N = 2.

We start with the expression (2.4) of the function Ym,n with the parametrization (2.6),
where λ, λ∗ at this stage are complex numbers. The conditions for which Ym,n(x) = 1 are
determined by looking at the different ways the functions U entering in (2.4) may simplify each
other. The simplification of the U functions can be done essentially in two distinct ways:

(1) The functions U
((
−p

1
2

)`
x
)

in the numerator cancel the functions U
((
−p

1
2

)`′
x
)

in the

denominator, and similarly for the functions U
((
−p∗

1
2

)`
x
)
. In other words, one assumes

that no “cross-cancellations” occur between p and p∗ shifted-terms. This case corresponds
to the study done in [1, 3] and reminded in Proposition 2.3.

(2) There exist at least one pair (`, `′) of indices such that the function U
((
−p

1
2

)`
x
)

simplifies

with the function U
((
−p∗

1
2

)`′
x
)
. Taking into account the qN -periodicity of the func-

tion U(x), this leads to

λ`

m
− λ∗`′

n
∈ Z.

Since the surface condition reads λ+ λ∗ = 1, this last equation implies λ, λ∗ ∈ Q.

We focus here on case (2), since case (1) was dealt with in [1]. The parameters λ, λ∗ being then
rational numbers, one sets

λ

m
=
a

d
and

λ∗

n
=

b

d′
,

where (a, d) and (b, d′) are pairs of coprime numbers with d, d′ > 0.

Step 1: Writing |m| = ds+ µ and |n| = d′s′+ µ′ with 0 < µ < d and 0 < µ′ < d′, allows one
to obtain a first simplification of the function Ym,n(x) (note that the values µ = 0, µ′ = 0, lead
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to λ, λ∗ ∈ Z which returns to case 1). Using the qN -periodicity of the function U , one gets

|m|∏
`=1

U
((
−p

1
2
)−`

x
)

|m|−1∏
`=1

U
((
−p

1
2
)`
x
) =

µ∏
j=1

U
(
qNaj/dx

)
d−1∏

j′=d−µ+1

U
(
qNaj

′/dx
) .

Depending whether µ ≤ d − µ or µ ≥ d − µ, additional simplications may occur. In any case,
introducing µ̄ = inf(µ, d− µ) ≤ d/2, one checks that

µ∏
j=1

U
(
qNaj/dx

)
d−1∏

j′=d−µ+1

U
(
qNaj

′/dx
) =

µ̄∏
j=1

U
(
qNaj/dx

)
d−1∏

j′=d−µ̄+1

U
(
qNaj

′/dx
) . (4.1)

Noting that the maximal value of |j − j′| is d − 2 and the minimal value is 1 in the r.h.s. of
equation (4.1), a(j − j′)/d cannot be an integer, hence no further simplification occurs in the
r.h.s. of equation (4.1).

The product of the U
((
−p∗

1
2

)−`
x
)

functions is processed in a similar way. Therefore, one
obtains

Ym,n(x) =

µ̄∏
j=1

U
(
qNaj/dx

)
d−1∏

j=d−µ̄+1

U
(
qNaj/dx

)
d−1∏

j′=d−µ̄′+1

U
(
qNbj

′/d′x
)

µ̄′∏
j′=1

U
(
qNbj

′/d′x
) . (4.2)

No further simplification can occur “vertically”, hence it is necessary, for the function Ym,n(x)

to be equal to one, that the product
µ̄∏
j=1
U
(
qNaj/dx

)
simplifies the product

µ̄′∏
j′=1

U
(
qNbj

′/d′x
)
,

which implies µ̄ = µ̄′.

Let d = αδ, d′ = αδ′ where δ, δ′ are coprimes numbers. The term U
(
qNa/dx

)
has to simplify

some term U
(
qNbk/d

′
x
)
, one can write z = a/d − bk/d′ ∈ Z for a certain 1 ≤ k ≤ µ̄, hence

aδ′ = δ(bk+ αzδ′). This last equation implies δ = 1 since (a, δ) and (δ′, δ) are pairs of coprimes
numbers. Similarly, z′ = b/d′ − ak′/d ∈ Z for a certain 1 ≤ k′ ≤ µ̄, which leads to δ′ = 1. One
concludes that d = d′.

Step 2: We look now at the possible cross-simplifications in (4.2) (“matching condition”).
A simplification occurs whenever the argument of a U function in the upper left product matches
the argument of a U function in the lower right product up to a power of qN due to the qN -
periodicity of U . This amounts to determine the possible permutations σ ∈ Sµ such that

aj

d
− bσ(j)

d
∈ Z, ∀j = 1, . . . , µ̄. (4.3)

Imposing (4.3) for j = i and j = 1 implies (σ(i) − iσ(1)) bd ∈ Z. Hence, for all i = 2, . . . , µ̄,
d is a divisor of σ(i) − iσ(1) since b and d are coprime integers. Suppose that, for some i,
σ(i) − iσ(1) = 0. One has 1 ≤ σ(j) ≤ µ̄ for all j, hence one gets |σ(i + 1) − (i + 1)σ(1)| =
|σ(i + 1) − σ(i) − σ(1)| < 2µ̄ ≤ d. Therefore d cannot divide σ(i + 1) − (i + 1)σ(1) unless
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σ(i + 1) − (i + 1)σ(1) = 0. Considering now the case i = 2, one has |σ(2) − 2σ(1)| < 2µ̄ ≤ d,
hence d cannot divide σ(2)−2σ(1) unless σ(2)−2σ(1) = 0. Finally, taking i = µ̄, the recurrence
leads to σ(µ̄) − µ̄σ(1) = 0. Since σ(µ̄) ≤ µ̄, one has σ(1) = 1. It follows that the only possible
choice of σ is σ(j) = j for all j = 1, . . . , µ̄, i.e., the identity.

The only consistent matching condition is thus simply a−b
d ∈ Z, complementing the relations

d = d′ and µ̄ = µ̄′ found at step 1.

Let us now further our analysis of these abelianity conditions. The results obtained in step 1
show that one has to deal with two cases, depending on the relative positions of µ and d − µ
and of µ′ and d−µ′ on the one hand, and on the signs of the two integers m and n on the other
hand, namely:

case (I) m = ds̄± µ̄ and n = ds̄′ ∓ µ̄(s̄, s̄′ ∈ Z) ⇒ m+ n

d
∈ Z, (4.4)

case (II) m = ds̄± µ̄ and n = ds̄′ ± µ̄(s̄, s̄′ ∈ Z) ⇒ m− n
d
∈ Z. (4.5)

From the matching condition, one can set a = ād+ γ and b = b̄d+ γ where ā, b̄ ∈ Z, 0 < γ < d
and (γ, d) are coprime integers (the last two conditions ensure that (a, d) and (b, d) are pairs of
coprime integers). The surface condition λ+ λ∗ = 1 then takes the form

λ+ λ∗ = ām+ b̄n+
γ

d
(m+ n) = 1. (4.6)

When m+n = 0, equation (4.6) reads (ā− b̄)m = 1, which cannot be satisfied except in the very
particular cases m = −n = ±1. These cases are dealt with by Proposition 3.6 and correspond
to an extended centrality condition.

We now consider m + n 6= 0. The above hypotheses imply that d is a divisor of m + n,
irrespective to case (I) or (II).

In case (II), d is a divisor of both m + n and m − n, it is therefore a divisor of 2m, hence
2µ̄/d is an integer. The upper bound µ̄ ≤ d then implies µ̄ = d/2, which shows that d should be
even in that case. Then, n = ds̄′± d/2 can be rewritten as n = d(s̄′± 1)∓ d/2, and the case (II)
appears as a subcase of case (I).

Thus, we have proved that when λ, λ∗ are not integers, the abelianity property is equivalent
to condition 2. This ends the proof of Lemma 4.1.

4.2 Proof of Lemma 4.2

Let us now work out the condition (2) given in Lemma 4.1.

Let g = gcd(m,n), m = m̄g, n = n̄g, where m̄, n̄ are coprime numbers, and similarly, set
u = gcd(g, d), d = d̄u with g = ḡu. Equation (4.6) then writes

λ+ λ∗ = ḡ
(
uām̄+ ub̄n̄+

γ

d̄
(m̄+ n̄)

)
= 1, (4.7)

which implies ḡ = 1 (note that d̄ is a divisor of m̄+ n̄ since d is a divisor of m+ n and d̄, ḡ are
coprime numbers). Hence, recalling (4.4), equation (4.7) takes the form g(ām̄+ b̄n̄) + γ(s̄+ s̄′)
= 1, showing that g and s̄+ s̄′ shall be coprime numbers with Bézout coefficients γ′ = ām̄+ b̄n̄
and γ.

The equation γ′g+γ(s̄+ s̄′) = 1 is therefore a constraint equation. Different cases may arise:

i) The integers g = gcd(m,n) and s̄+ s̄′ = (m+ n)/d are not coprime numbers. There is no
solution, in other words no “cross-cancellation” can occur.

ii) The integers g = gcd(m,n) and s̄+ s̄′ = (m+ n)/d are coprime numbers.
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In that case, note that one can write in general

m+ n = g
∏
i

di
∏
j

d′j ,

where the di’s and d′j ’s are prime integers, the di’s are divisors of g, and the d′j ’s are coprimes
with g. Then the admissible divisors of m+ n, i.e., the divisors d such that g = gcd(m,n) and
(m+ n)/d are coprime numbers, are of the form

d = g
∏
i

di
∏
j′

d′j′ ,

where the set of indices j′ is some subset of the set of indices j.
The conditions on γ and d given above must now be examined on a case-by-case basis:

– Either there does not exist Bézout coefficients γ satisfying 0 < γ < d with γ,d coprime
numbers. The same negative conclusion holds.

– Or such Bézout coefficients exist, and some “cross-cancellations” occur.

Consider some γ with the required properties and denote by γ′ the other Bézout coefficient. If
(`, `′) are the Bézout coefficients of m̄ and n̄, `m̄+ `′n̄ = 1, the solution of γ′ = ām̄+ b̄n̄ is then
given by

ā = γ′`+ kn̄ and b̄ = γ′`′ − km̄,

with k ∈ Z. Finally, one obtains

λ

m
= γ′`+

γ

d
+ k

n

g
and

λ∗

n
= γ′`′ +

γ

d
− km

g
.

This ends the proof of Lemma 4.2.
Remark that when m and n are coprimes (g = 1), the relation γ′g + γ(s̄ + s̄′) = 1 always

admits a solution. In fact, it allows to eliminate γ′ and simplifies the expression of λ.

5 Technical proofs

Having characterized the abelianity lines, we are now in a position to prove the results presented
in Section 3.

5.1 Proof of Theorem 3.4

We first consider the abelianity lines of type (a) in Theorem 3.4 and the condition (1) of
Lemma 4.1. If equation (3.9) holds, this is equivalent to impose λ ∈ Z. Hence, thanks to
Proposition 2.3, the intersection again defines a line of abelianity.

To show that in case (a) a line of abelianity of Sm,n is not necessarily a line of abelianity
of Sm′,n′ , it is sufficient to exhibit an example. Indeed, if one considers the intersection of the
critical surfaces S3,6 and S2,5, we don’t get a line of abelianity of type (b). However, it defines
a line of abelianity of type (a) on S3,6, but not on S2,5.

It remains to analyse the case (b) in Theorem 3.4. Recalling the expressions (3.4), one sees
that (3.10) is exactly the condition a−b

d ∈ Z of Lemma 4.1, with in addition the condition
(m + n)(m′ + n′) 6= 0. We set δ = gcd(m + n,m′ + n′), m + n = δu, and m′ + n′ = δv.
Equation (3.10) leads to u(1 + αn′) = v(1 + αn), hence 1 + αn′ = ξv, 1 + αn = ξu where
ξ ∈ Z, since u, v are coprime integers. Similarly, u(1− αm′) = v(1− αm), hence 1− αm′ = ξ′v,
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1 − αm = ξ′u where ξ′ ∈ Z. It follows that m′−m
m′n−mn′ = ξ′

δ and n−n′
m′n−mn′ = ξ

δ . Therefore,
d is necessarily a divisor of δ, hence a divisor of m + n and m′ + n′. This implies that the
second abelianity condition µ̄ = µ̄′ is realized, see (4.4). Then, type (b) in Theorem 3.4 implies
condition (2) of Lemma 4.1.

To consider the reciprocal implication, one has to deal with the specific situations where
m+n = 0 or m′+n′ = 0. But it has been shown (see after equation (4.6)) that it can occur only
when m = −n = ±1 or m′ = −n′ = ±1. This leads to the types (c) and (c′) in Theorem 3.4.
Then, we conclude that condition (2) of Lemma 4.1 is equivalent to cases (b), (c) and (c′) of
Theorem 3.4.

Obviously, since the condition corresponding to case (b) is symmetric in the exchange (m,n)
↔ (m′, n′), the line of abelianity for Sm,n is also a line of abelianity for Sm′,n′ . Abelianity for
the surface S1,−1 is automatic, see Proposition 3.6.

5.2 Proof of Theorem 3.5

We first show that any line of abelianity can be constructed as an intersection. A line of
abelianity is characterized by a rational value of λ given the surface Sm,n. But any rational
λ can be parametrized by formula (3.4) for suitable values of m′ and n′. Indeed, if we choose
m′ = (a+ 1)m+ d and n′ = (a+ 1)n, we get a/d for the irreducible fraction of λ/m. It follows
that an abelianity line can be identified with the intersection of two surfaces Sm,n and Sm′,n′ .

Let Sm,n and Sm′,n′ be two intersecting surfaces, hence the parameters p and p∗ are given
by (3.1). We recall that this equation leads to (3.4) through the parametrization (2.6).

Case (a) of Theorem 3.4 corresponds to λ ∈ Z. Equation (3.4) implies that m′nλ+ n′mλ∗ =
mn. But λ and λ∗ = 1 − λ are coprime integers. Let `0 and `′0 be their Bézout coefficients
such that `0λ + `′0λ

∗ = 1. A solution for (m′, n′) is then m′ = `0m and n′ = `′0n. The general
expression for the Bézout coefficients of (λ, λ∗) being ` = `0 +kλ∗ and `′ = `′0−kλ, where k ∈ Z,
we obtain a countable number of possible pairs given by m′ = m(`0 + kλ∗) and n′ = n(`′0− kλ).

Case (b) of Theorem 3.4 corresponds to the condition λ/m−λ∗/n ∈ Z. One sets λ/m = a/d
and λ∗/n = b/d, where a/d and b/d are irreducible fractions (see proof of Lemma 4.1), and one
looks for pairs (m′, n′) such that (3.10) holds. Thanks to the change of variables m′ = m+m0,
n′ = n + n0, the expression λ/m = a/d and λ∗/n = b/d lead to dm0 = b(m0n − n0m) and
dn0 = −a(m0n−n0m), hence am0 + bn0 = 0, i.e., m0 = −bu and n0 = au where u ∈ Q. We get
a countable number of possible pairs (m′, n′). They are given by m′ = m− bu and n′ = n+ au
where u ∈ Z/ gcd(a, b) since we are looking for integer solutions.

Cases (c) or (c′) of Theorem 3.4 correspond here to the same discussion. The intersection
of S1,−1 with Sm,n leads to the following values

−p
1
2 = q−Nλ with λ =

n+ 1

m+ n
and c = −N.

We consider the intersection of the surface Sm,n with the surface Sm′,n′ , where we choose
m′ = m− u(m− 1) and n′ = n− u(n+ 1), u ∈ Z. It leads to the values

−p
1
2 = q−Nλ/m with

λ

m
=

n+ 1

m+ n
and c = −N.

Thus, it defines the same line of abelianity on Sm,n. When u varies in Z, we get a countable
number of surfaces that intersect on this line. Note that u = 0 corresponds to Sm,n, while u = 1
leads to S1,−1.
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5.3 Proof of Propositions 3.6, 3.7 and 3.8

Proof of Proposition 3.6. The part (i) has already been proved in [3]. It is thus enough to
prove (ii). The intersection of S1,−1 with a generic surface Sm′,n′ leads to

λ =
m′(n′ + 1)

m′ + n′
and λ∗ =

n′(1−m′)
m′ + n′

for (λ, λ∗) associated to the surface Sm′,n′ .

It is easy to check that λ
m′ −

λ∗

n′ = 1, so that the first part of condition (2) in Lemma 4.1 is
satisfied for all values of m′ and n′. It implies also that the irreducible fractions corresponding
to λ

m′ and λ∗

n′ have the same denominator d. Then, it remains to show that this denominator d

divides m′ + n′. Since λ
m′ = n′+1

m′+n′ , it is immediate.

Now, choosing n′ = a− 1 and m′ = d− a+ 1, we get that λ
m′ = a

d with m′ + n′ = d. In that

case, ln p
2N ln q = a

d : varying a and d in Z, we get any rational number, so that the abelianity lines
constructed in this way form a dense subset of the surface S1,−1. �

Proof of Proposition 3.7. The parametrization (3.1) shows obviously that the surfaces S0,n

have to be studied specifically. Indeed, from the surface condition (2.1), that reads now(
−p∗

1
2

)n
= q−N , one obtains immediately

Y0,n(x) =

|n|−1∏
`=0

U
((
−p∗

1
2
)`
x
)

|n|∏
`=1

U
((
−p∗

1
2
)−`

x
) = 1.

Hence, the generators t
(k)
0,n(z) satisfy an abelian algebra on the surface S0,n. This proves the

part (i) of the proposition.

Let us now examine the intersection of the surface S0,n with a generic surface Sm′,n′ . The
equations (3.1) imply the following expressions for λ and λ∗ relative to the surface Sm′,n′ , i.e.,

−p
1
2 = q−Nλ/m

′
and −p∗

1
2 = q−Nλ

∗/n′ :

λ = 1− n′

n
and λ∗ =

n′

n
.

If n′ ∈ nZ, then λ is an integer and one gets an abelianity line of type (a) in Theorem 3.4 for
any value of m′. Setting n′ = kn (k ∈ Z), one gets ln p

2N ln q = k−1
m′ : when k and m′ run over Z,

one obtains any rational number. Hence, the abelianity lines of Sm′,n′ identified as intersections
with S0,n form a dense set in the surface S0,n. This proves the part (ii).

Finally, choosing n′ = kn + 1 and m′ = (1 − k)n with k ∈ Z shows that λ = 1 − k − 1
n /∈ Z

while λ
m′ −

λ∗

n′ = 1
(1−k)n2 /∈ Z: the intersection is not a line of abelianity for the surface Sm′,n′ .

Running k over Z, we get a countable number of such surfaces. �

Proof of Proposition 3.8. We recall that, due to the surface condition, the central charge
is fixed to the value c = −N/m, the other parameters q and p remaining unconstrained. By
contrast to the critical case, since m 6= 1, the generator tm,−m(z) does not commute with the

generators of Aq,p
(
ĝl(N)c

)
, hence there is no extended center.

However, under certain supplementary conditions on p, one finds a “localized” extended
center, i.e.m the generator tm,−m(z) commutes with those of Aq,p

(
ĝl(N)c

)
on a certain sub-

manifold of the surface Sm,−m, see Corollary 3.2 in [1]. Such a submanifold will be called
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“super-abelianity line” for obvious reasons. In particular, it is also an abelianity line. Let us
now propose a characterization of these special lines. Consider the exchange function (2.2) for
m+ n = 0:

m∏
k=1

U
((
−p∗

1
2

)−k
x
)

U
((
−p

1
2

)−k
x
) for m > 0 and

n−1∏
k=0

U
((
−p

1
2

)k
x
)

U
((
−p∗

1
2

)k
x
) for n > 0. (5.1)

The ratio (5.1) is equal to 1 if each term indexed by k in the numerator simplifies with the term
indexed by σ(k) in the denominator where σ ∈ Sm, up to a power of qN since the function U is
qN -periodic. We stick to the case m > 0 (the case m < 0 runs along similar lines), and we set
Im = {1, . . . ,m}. Using the parametrization (2.6), one gets

λ
(
k − σ(k)

)
= k −m`(k) where `(k) ∈ Z.

One can deduce

m
(
`(k + 1)− `(k)

)
+ λ
(
1− σ(k + 1) + σ(k)

)
= 1 (5.2)

with the boundary equation

m`(1) + λ
(
1− σ(1)

)
= 1. (5.3)

Since no abelianity line of type (b) exists on Sm,−m, one can restrict to λ ∈ Z. Equation (5.3)
implies that m and λ have to be coprime integers. Let (βm, βλ) be the corresponding Bézout
coefficients, i.e., βmm − βλλ = 1. Their general expression is given by βm = β0 + αλ and
βλ = β′0 + αm where α ∈ Z and (β0, β

′
0) is the representative such that 1 ≤ β′0 ≤ m − 1. It

follows then from (5.2) and (5.3):

σ(k + 1)− σ(k)− 1 = βλ(k + 1) = β′0 + αk+1m

and

σ(1)− 1 = βλ(1) = β′0 + α1m.

Hence, one gets

σ(k) = k(1 + β′0) +m

k∑
i=1

αi. (5.4)

When m is even, βλ has to be odd, hence β′0 has to be odd: one generates only even values
of σ(k). This leaves us only with odd values for m. Now, if gcd(m,β′0 +1) 6= 1, all values of σ(k)
are multiple of the gcd and one does not span the whole set Im. Therefore, m and β′0 + 1 have
to be coprime integers. Finally, the condition 1 ≤ β′0 ≤ m− 1 implies that the αk’s can always
be chosen such that σ(k) ∈ Im for all k. Taking now k, k′ ∈ Im with k 6= k′, one gets from (5.4)

σ(k′)− σ(k) = (k′ − k)(1 + β′0) +m

k′∑
i=k+1

αi. (5.5)

Since 1 ≤ |k′ − k| ≤ m − 1 and m, β′0 + 1 are coprime integers, the ratio (k′ − k)(1 + β′0)/m
is never an integer and the r.h.s. of (5.5) cannot vanish for any pair (k, k′). It follows that the
σ(k)’s span the set Im when k runs over Im.

It follows that super-abelianity lines are necessarily abelianity lines such as characterized
by condition (a) of Theorem 3.4, together with the further algorithmic conditions of primality
established in the previous discussion.
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Consider now the particular case of the intersection Sm,−m ∩ S1,1 with m odd. For the
parameters of Sm,−m, one obtains λ = m+1

2 ∈ Z, which is coprime with m, since 2λ −m = 1.
The corresponding Bézout coefficients β0 and β′0 in ]0,m[ are given by β0 = m−1

2 and β′0 = m−2,
hence β′0 + 1 and m are coprime integers. Therefore, this abelianity line of Sm,−m is a super-
abelianity line.

Now as an intersection on S1,1, we get λ = m+1
2m which is not an integer, so that the (possible)

abelianity may only match condition (2) of Lemma 4.1. But λ/1− λ∗/1 = 1
m is not an integer,

so that the condition 2 is not fulfilled, and we don’t have an abelianity line for S1,1. �

Inspired by this observation, one may now look for general values of m, m′, n′ such that the
intersection Sm,−m ∩Sm′,n′ leads to a super-abelianity line. However, given the expression of λ
above, this is clearly a purely algorithmic problem which goes beyond the scope of this paper.

Note that two surfaces Sm,−m and Sn,−n never intersect when m 6= n (see Lemma 3.1).

6 Poisson structures

Having explicited the conditions under which the quadratic exchange structures in Aq,p
(
ĝl(N)c

)
lead to abelian subalgebras, one can define Poisson structures on them. The explicit construction
of these Poisson structures follows the standard scheme (see, e.g., [1, 3]). More precisely, on the

surface Sm,n, setting p1−ε = q−
2Nλ
m when one of the conditions on λ of Lemma 4.1 is satisfied,

one defines a Poisson structure by{
t(k)
m,n(z), t(k

′)
m,n(w)

}
= lim

ε→0

1

ε

(
t(k)
m,n(z)t(k

′)
m,n(w)− t(k′)m,n(w)t(k)

m,n(z)
)
.

We recall that we are eluding in (2.3) the subleading terms coming from the singularities in the
Riemann–Hilbert splitting. Hence the Poisson bracket we obtain is a purely quadratic one. It
corresponds to the leading term of the full Poisson structure that would be obtained from the
complete achievement of the Riemann–Hilbert procedure.

Proposition 6.1. On the line of abelianity, the Poisson structure is given by{
t(k)
m,n(z), t(k

′)
m,n(w)

}
= f (k,k′)(z/w)t(k)

m,n(z)t(k
′)

m,n(w),

where

f (k,k′)(x) =

(k−1)/2∑
i=(1−k)/2

(k′−1)/2∑
j=(1−k′)/2

f
(
qi−jx

)
.

The explicit form of the function f(x) depends on the type of line of abelianity (see classification
Theorem 3.4 and notation (2.6)).

For the type (a) lines, we get

f(x) = −Nλ(ln q)x
d

dx

[m
`

lnUq2N/`(x) +
n

`∗
lnUq2N/`∗ (x)

]
, (6.1)

where ` = m/w, `∗ = n/w∗, and w = gcd(λ,m), w∗ = gcd(λ∗, n), choosing for w and w∗ the
signs of m and n respectively.

For lines of type (b), the function reads

f(x) = −Nλ(ln q)
m+ n

d
x

d

dx

[ (
1 +

µ2

mn

)
lnUq2N/d(x)− dµ

mn
lnUq2N

(
x
)
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+
d

mn

µ−1∑
k=1

(k − µ) ln
(
Uq2N

((
−p

1
2
)k
x
)
Uq2N

((
−p

1
2
)−k

x
))]

, (6.2)

where d > 0 is the divisor of m + n characterizing the abelianity line, defined in Lemma 4.1,
condition (2), and µ is the remainder of the Euclidean division of m by d such that 0 < µ < d.

Here, we have introduced the function

Ua(x) = q
2
N
−2 θa

(
q2z2

)
θa
(
q2z−2

)
θa
(
z2
)
θa
(
z−2
) . (6.3)

Proof. It follows from the results of [3] that the Poisson structure is generically given by
the function f(x) itself corresponding to the Poisson structure related to the abelian DVA-like

subalgebra in Aq,p
(
ĝl(N)c

)
generated by t

(1)
m,n(z). Hence, it is sufficient to study this latter case,

according to the discussion on the exchange structure function Ym,n(x), see end of Section 2.
Given the expression of the exchange function Ym,n(x), see (2.4), the general structure of f(x)

reads

f(x) =
d

dε

− |m|−1∑
k=1

ln yk(x) +

|n|−1∑
k=1

ln y∗k(x)− ln yb(x)

 ,

where

yk(x) =
U
((
−p

1
2

)−k
x
)

U
((
−p

1
2

)k
x
) , y∗k(x) = yk(x)|p→p∗ , yb(x) =

U
((
−p

1
2

)−|m|
x
)

U
((
−p∗

1
2

)−|n|
x
) .

In each case, the explicit form of the Poisson structure is given by a direct (but lengthy) calcula-
tion of the derivative, using the definition of the short Jacobi θ function as absolute convergent
products for |q| < 1.

Case (a): λ ∈ Z. The function f(x) is given by

f(x) = −2Nλ(ln q)
(
2I(x)− I(qx)− I

(
q−1x

))
,

where

I(x) =
m

`

( ∞∑
s=0

x2q2Ns/`

1− x2q2Ns/`
−
∞∑
s=1

x−2q2Ns/`

1− x−2q2Ns/`

)

+
n

`∗

( ∞∑
s=0

x2q2Ns/`∗

1− x2q2Ns/`∗
−
∞∑
s=1

x−2q2Ns/`∗

1− x−2q2Ns/`∗

)
. (6.4)

From the definition of w and w∗, ` and `∗ are identified with the denominators of the reduced
form of the rationals λ/m (resp. λ∗/n), themselves identified up to 2N with the ratio ln p/ ln q
and ln p∗/ ln q.

Case (b): λ/m− λ∗/n ∈ Z. The function f(x) is given by

f(x) = −2Nλ(ln q)
m+ n

d

(
2I(x)− I(qx)− I

(
q−1x

))
,

where

I(x) =

(
1 +

µ2

mn

)( ∞∑
s=0

x2q2Ns/d

1− x2q2Ns/d
−
∞∑
s=1

x−2q2Ns/d

1− x−2q2Ns/d

)
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+
dµ

mn

( ∞∑
s=0

x2q2Ns

1− x2q2Ns
−
∞∑
s=1

x−2q2Ns

1− x−2q2Ns

)
+

d

mn

µ−1∑
k=0

(k − µ)

( ∞∑
s=0

x2pkq2Ns

1− x2pkq2Ns

+
∞∑
s=1

x2p−kq2Ns

1− x2p−kq2Ns
−
∞∑
s=0

x−2pkq2Ns

1− x−2pkq2Ns
−
∞∑
s=1

x−2p−kq2Ns

1− x−2p−kq2Ns

)
. (6.5)

It can be verified that the formulae (6.4) and (6.5) remain valid when |m| = 1 or |n| = 1.
Case (b) then only occurs if n or m are such that µ = 1 or µ = d − 1. In case (a), note that
w = m when |m| = 1 and w∗ = n when |n| = 1.

Finally, the function f(x) can be rewritten in a more compact form as the logarithmic deriva-
tive with respect to x of the function Ua with parameters a = q2N/d, a = q2N/` or a = q2N/`∗ .
Indeed, considering the short Jacobi θ function with elliptic nome a, one has

−x d

dx
ln θa(x) =

∞∑
s=0

xas

1− xas
−
∞∑
s=1

x−1as

1− x−1as
.

Introducing the function Ua(x) defined in (6.3), one gets the expressions (6.2) and (6.1). �

It is important to point out the overlap of the abelianity conditions between the two cases.
It occurs when the rest µ becomes zero in case (b), and when the reduced denominators of λ/m
and λ∗/n coincide in case (a), i.e., ` = `∗ = d. The structure functions given in both formulae
coincide as it should be.

7 Conclusion

The results we have obtained on abelianity lines, their characterization as intersection of critical
surfaces, and their associated Poisson structures, suggest some further lines of investigation. Let
us propose a few such directions.

First, since we are dealing with intersections of critical surfaces, we have several types of

W(m,n)
pqc (N) algebras defined simultaneously on these lines. Since the abelianity condition is not

always symmetric, it is clear that these algebras cannot be always identical. However, we have
proved that each intersection corresponds to a countable number of surfaces, and thus a countable

number ofW(m,n)
pqc (N) algebras. Then, it is likely that some of them may coincide, and an analysis

on the number of truly different algebras on each line is certainly worth completing. In the same
way, when the intersection defines an abelianity line for both surfaces, the corresponding algebras
are obviously isomorphic, but it would be interesting to look at the realizations in Aq,p

(
ĝl(N)c

)
,

and see if the generators are indeed identical.
We have derived several sets of Poisson bracket structures, characterized as surface-dependent

linear combinations of solely line-dependent elliptic functions. As is always the case [1, 3], this
abstract derivation provides only the leading spin terms of the q-WN Poisson algebra, and their
consistent quantizations along the critical surfaces. Only an explicit realization, e.g., by vertex
operators will provide the lower spin and central extension terms (see also [4] for a systematic
resolution of coboundary conditions). It must be emphasized indeed that a number of realizations
of DVA by q-bosonized vertex operators, derived from Uq(sl(2)) generators, have been proposed.
The earliest ones were constructed as soon as the DVA algebra itself [16]. Very recently some
new constructions were achieved [5]. The question here is to find the suitable deformation of
free boson algebra yielding as leading order of the exchange structure our abstract DVA and
more generally q-WN algebras. It is amusing to note that a realization of a distinct DVA
algebra, conjectured in [9] was given directly [15] in terms of VO of the elliptic quantum algebra
Aq,p

(
ĝl(2)c

)
for some particular values of ln p/ ln q. A curious connection thus arises again

between elliptic quantum algebras and DVA.
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The meaning of the integer conditions in Theorem 3.4 remains to be investigated. The
equation of the critical surface is identified, in terms of coordinates ln p, ln p∗, 2N ln q, with
a condition of linearity with the directing vector (m,n, 1) defining the orthogonal direction to
the critical plane. This vector must be in fact understood as a projective object with suitable
integer conditions; in particular it belongs to the subspace (or “manifold chart” if we were
not dealing with integers) characterized by a non zero third component x3. The conditions in
Lemma 3.1 mean that two surfaces intersect iff the vector product of their respective directing
vectors has three non-zero components. In particular, it belongs to the consistent chart x3 6= 0
of the projective 3d vector space. It remains to see whether a geometric interpretation along
these lines may then exist for the abelianity conditions.

Still in the light of Theorem 3.4, it would be interesting to understand the algebraic structure
occurring on intersection of surfaces, when the abelianity conditions are not fulfilled. Obviously,
the Poisson structure introduced in the abelian case cannot be reproduced outside abelianity.
However, a more general structure may arise that would generalize the notion of symplectic
structure. One could think for instance of a trace brackets structure, or a Poisson vertex algebra.

Finally, other deformations of W -algebras have been considered in the literature. One such
example was proposed in [13] in relation to the algebra Uq,p(ŝlN ). We addressed in [2] the related

question of extended center1 at the critical value of the central charge in the algebra Bq,λ
(
ĝl(2)c

)
.

The former algebra can be viewed as the tensor product of the latter by an Heisenberg alge-
bra [12]. In both cases, the resulting algebra was not dynamical. It was then argued in [2] that
the W -algebras build in the Aq,p

(
ĝl(2)c

)
and Bq,λ

(
ĝl(2)c

)
cases should be related through the

vertex-IRF correspondence.

Another example consists of double deformation of W -algebras. The underlying algebraic
structures are based on quiver algebras [10] or toroidal algebras [14] and have been shown [11]
to generalize the construction proposed in [8]. It would be interesting to investigate how critical
surfaces and abelianity conditions arise in the context of double deformation.
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ŝl2
)
,

arXiv:2003.12472.

[6] Feigin B., Frenkel E., Quantum W-algebras and elliptic algebras, Comm. Math. Phys. 178 (1996), 653–678,
arXiv:q-alg/9508009,.

[7] Frenkel E., Reshetikhin N., Quantum affine algebras and deformations of the Virasoro and W-algebras,
Comm. Math. Phys. 178 (1996), 237–264, arXiv:q-alg/9505025.

1Remind that the existence of such an extended center was at the core of the original approach to q-deformed
W -algebras [7].

https://doi.org/10.1007/s00220-017-2909-7
https://doi.org/10.1007/s00220-017-2909-7
https://arxiv.org/abs/1607.05050
https://doi.org/10.1088/1751-8121/aa85b2
https://doi.org/10.1088/1751-8121/aa85b2
https://arxiv.org/abs/1703.05223
https://doi.org/10.21468/SciPostPhys.6.5.054
https://arxiv.org/abs/1810.11410
https://doi.org/10.1016/S0375-9601(98)00864-0
https://arxiv.org/abs/math.QA/9806065
https://arxiv.org/abs/2003.12472
https://doi.org/10.1007/BF02108819
https://arxiv.org/abs/q-alg/9508009
https://doi.org/10.1007/BF02104917
https://arxiv.org/abs/q-alg/9505025


18 J. Avan, L. Frappat and E. Ragoucy

[8] Frenkel E., Reshetikhin N., Deformations of W-algebras associated to simple Lie algebras, Comm. Math.
Phys. 197 (1998), 1–32, arXiv:q-alg/9708006.

[9] Jimbo M., Shiraishi J., A coset-type construction for the deformed Virasoro algebra, Lett. Math. Phys. 43
(1998), 173–185, arXiv:q-alg/9709037.

[10] Kimura T., Pestun V., Quiver elliptic W-algebras, Lett. Math. Phys. 108 (2018), 1383–1405,
arXiv:1608.04651.

[11] Kimura T., Pestun V., Quiver W-algebras, Lett. Math. Phys. 108 (2018), 1351–1381, arXiv:1512.08533.

[12] Kojima T., Konno H., The elliptic algebra Up,q
(
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