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Abstract. The fact that every compact oriented 4-manifold admits spinc structures was
proved long ago by Hirzebruch and Hopf. However, the usual proof is neither direct nor
transparent. This article gives a new proof using twistor spaces that is simpler and more
geometric. After using these ideas to clarify various aspects of four-dimensional geometry,
we then explain how related ideas can be used to understand both spin and spinc structures
in any dimension.
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1 Twistor spaces and spinc structures

Every compact oriented 4-manifold admits spinc structures. The standard proof of this fact is due
to Hirzebruch and Hopf [3], although the result had previously been hinted at byWhitney [9]. For
readable modernized English-language versions of the Hirzebruch–Hopf proof, see Killingback
and Rees [5] or Gompf and Stipsicz [2, Section 5.7].

However, the Hirzebruch–Hopf proof is so indirect that it does not really involve the notion
of a spinc structure at all, and it proceeds by so completely isolating the topological issues
from the geometric motivation as to make it seem rather formal and unenlightening. The main
purpose of this article is to give a self-contained proof of this important fact that is based on
ideas from twistor theory. In the process, we will also see how this result is inextricably related
to other fundamental aspects of 4-dimensional geometry. The article then concludes by putting
this 4-dimensional story in the context of a twistor approach to spin and spinc structures in
other dimensions.

Let us begin by recalling that dimension four is profoundly exceptional for both differential
topology and differential geometry. This idiosyncrasy is largely attributable to a fluke of Lie-
group theory: the rotation group SO(4) is not a simple Lie group. Instead, its Lie algebra splits
as a direct sum

so(4) ∼= so(3)⊕ so(3),

as a consequence of the fact that left- and right-multiplication by the unit quaternions Sp(1)
belong to different subgroups of the rotation group. On an oriented Riemannian 4-manifold(
M4, g

)
, this gives rise to an invariant direct-sum decomposition

Λ2 = Λ+ ⊕ Λ−

of the bundle of 2-forms, because the action of SO(4) on 2-forms is isomorphic, via index raising,
to its adjoint representation on the Lie algebra so(4) of skew 4×4 matrices. This decomposition
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in fact coincides with the decomposition of the 2-forms into the (±)-eigenspaces of the Hodge
star operator

⋆ : Λ2 → Λ2.

We will now emphasize our choice of an orientation by focusing on the bundle Λ+ of self-dual
2-forms φ, which are characterized by the condition ⋆φ = φ.

While the rank-3 oriented vector bundle Λ+ → M depends on the conformal class [g] of
the Riemannian metric g, the bundles Λ+

g and Λ+
g′ associated with two different metrics are

nonetheless canonically bundle-isomorphic via the natural identification Λ+
g = Λ2/Λ−

g , because

we always have Λ+
g′ ∩ Λ−

g = 0. This algorithm for producing an isomorphism suffers from
some defects, though. First of all, interchanging g and g′ does not produce the inverse iso-
morphism. Second, the isomorphism produced by this algorithm does not preserve the relevant
inner products. Fortunately, however, the latter can be corrected by applying a unique positive,
self-adjoint endomorphism to Λ+, and this then allows us to identify the oriented bundles-with-
inner-product Λ+ for two different metrics in a manner that is unique up to isotopy. This
will suffice to give a metric-independent meaning to the notions that are the main focus of our
discussion.

We now fix a Riemannian metric g on our oriented 4-manifold M , and notice that, since
SO(4)/Z2

∼= SO(3) × SO(3), the 4-dimensional rotation group acts transitively on the unit
sphere in Λ+. For this reason, any ω ∈ Λ+

x , x ∈M , with |ω| =
√
2 can be expressed as

ω = e1 ∧ e2 + e3 ∧ e4

in some oriented orthonormal basis for TxM , and hence corresponds, via index raising, to the
endomorphism ȷ : TxM → TxM represented by the matrix

−1
1

−1
1

 .

In other words, any such ω defines an almost-complex structure ȷ at x that is compatible with the
metric g and determines the given orientation. Conversely, if ȷ : TxM → TxM satisfies ȷ2 = −I
and ȷ∗g = g, and also determines the given orientation of M , then ȷ arises, via index raising,
from a unique ω ∈ Λ+

x with |ω| =
√
2.

We now define the twistor space of our oriented Riemannian 4-manifold (M, g) to be the total
space

Z := S√
2

(
Λ+

)
=

{
ω ∈ Λ+ | |ω| =

√
2
}

of the 2-sphere bundle ℘ : Z → M associated with the oriented rank-3 vector bundle Λ+ → M
of self-dual 2-forms. We may then give Z an almost-complex structure J : TZ → TZ, J2 = −I,
by the following construction, which is essentially due to Atiyah–Hitchin–Singer [1], and which
provides a general Riemannian context for Penrose’s non-linear graviton construction [7]. We
begin by decomposing TZ into vertical and horizontal components,

TZ = V ⊕ H, (1.1)

where V := ker d℘ and H is induced by parallel transport in Λ2 with respect to the Riemannian
connection of g. Now notice that index raising gives us an alternative, conformally invariant
description

Z =
{
ȷ : TxM → TxM, x ∈M | ȷ2 = −I, ȷ∗g = g, ȷ > 0

}
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of the twistor space. Since the derivative d℘ : TZ → TM of the bundle projection ℘ induces
a tautological isomorphism H ∼= ℘∗TM , we may therefore define an endomorphism JH : H → H
whose action at ȷ ∈ ℘−1(x) is the horizontal lift of ȷ : TxM → TxM . Meanwhile, since each
fiber ℘−1(x) of ℘ : Z → M is a round 2-sphere in an oriented 3-dimensional inner-product
space Λ+

x , we can therefore declare JV : V→ V to be +90◦ rotation in the tangent space of each
fiber 2-sphere with respect to the outward-pointing orientation. Since these recipes guarantee
that J2

H = −IH and J2
V = −IV, setting

J := JH ⊕ JV

now produces an almost-complex structure J on Z, as illustrated by Figure 1.

Figure 1. The twistor space Z of an oriented Riemannian 4-manifold (M, g) is the sphere bundle of

the oriented rank-3 bundle Λ+ → M of self-dual 2-forms. This 6-manifold can be given a canonical

almost-complex structure J that is compatible with the decomposition of TZ into vertical and horizontal

subspaces.

The almost-complex structure J is actually conformally invariant, even though the decom-
position (1.1) is not; however, J is only integrable [1, 7] if the Weyl curvature of (M, g) is
anti-self-dual. Nonetheless, some useful remnants of integrability persist, even in the general
case; in particular, each fiber ℘−1(x) ∼= CP1 is a J-holomorphic curve, and the normal bundle
ν = T 1,0Z/V1,0 of each fiber is a holomorphic bundle ν ∼= O(1)⊕O(1) over this CP1.

Since this emphasizes the fact that ℘ : Z →M may be thought of as a CP1-bundle, it seems
natural to ask whether this CP1-bundle can always be expressed as the projectivization P(V+)
of a rank-2 complex vector bundle V+ → M . As we will see, the answer always turns out to
be, “Yes!” This assertion exactly amounts to the fact that any oriented 4-manifold admits spinc

structures. The road that will bring us to this realization begins with the following definition:

Geometric Definition. A spinc structure on a connected oriented Riemannian 4-manifold
(M, g) is a complex line bundle L → Z on the twistor space that has degree 1 on any S2 fiber
of Z →M .

Here, two isomorphic complex line bundles on Z are considered to define the same spinc

structure. However, the first Chern class c1 defines a bijection between equivalence classes of
complex line bundles on Z and H2(Z,Z), in a manner that converts the tensor-product of line
bundles into the addition of cohomology classes. This means that the above definition can be
reformulated as saying that a spinc structure on M is a cohomology class a ∈ H2(Z,Z) with
⟨a, F ⟩ = 1, where F ∈ H2(Z,Z) is the homology class of a fiber ℘−1(x) ≈ S2.

The above should be compared and contrasted with the following:

Standard Definition. A spinc structure on an oriented Riemannian 4-manifold (M, g) is a circle
bundle F̂→ F over the oriented orthonormal frame bundle that is also compatibly endowed with
the structure of a principal Spinc(4)-bundle, where

Spinc(4) := [Sp(1)× Sp(1)×U(1)]/⟨(−1,−1,−1)⟩.
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Fortunately, these competing definitions are exactly equivalent. For example, one can pass
from the geometric definition to the standard definition by first expressing Z as F/U(2). Thus,
if L → Z is a complex line bundle of fiber degree 1, we can pull the circle bundle S(L ) back to
obtain a circle bundle over F, and this pull-back can then be made into principal Spinc(4)-bundle
over M using the fact that H1(SO(4), E×) = H1(SO(4),C×) = H2(SO(4),Z) = Z2.

In the opposite direction, given a principal Spinc(4)-bundle over M that is also a circle
bundle F̂ → F, we first construct a vector bundle V+ → M by applying the associated bundle
construction to the representation Spinc(4) → U(2) ∼= [Sp(1) × U(1)]/⟨(−1,−1)⟩ obtained by
dropping the second Sp(1). The map F̂ → F then allows us to identify Z with P(V+), and the
O(1)-bundle dual to the tautological line bundle of P(V+) then provides the fiber-degree-1 line
bundle featured in the geometric definition.

While every oriented 4-manifold will turn out to admit spinc structures, the situation is
entirely different for spin structures, which are much more restrictive:

Geometric Definition. A spin structure on an oriented Riemannian 4-manifold (M, g) is
a square-root V 1/2 of the vertical complex line bundle V := V1,0 of the twistor space Z →M .

Here, a square-root V 1/2 of V means a line-bundle L → Z that is equipped with a specific
isomorphism Φ: L ⊗ L → V . Two such square-roots (L ,Φ) and (L ′,Φ′) are considered
to be the same if there is an isomorphism Ψ: L → L ′ of complex line bundles that induces
a commutative diagram

L ⊗L

L ′ ⊗L ′

V

Φ

Φ′

Ψ⊗Ψ

PPPPPPq

�����1
?

Standard Definition. A spin structure on an oriented Riemannian 4-manifold (M, g) is a dou-
ble cover F̃ → F of the principal SO(4)-bundle of oriented orthonormal frames by a principal
Spin(4)-bundle, where

Spin(4) = Sp(1)× Sp(1).

Once again, these competing definitions are exactly equivalent. Indeed, the SO(3)-bundle
F = F/Sp(1) may be viewed as the circle bundle S(V ) over Z = F/SO(2), so a square-root
of V amounts to a double-cover of F. On the other hand, the quotient map F → F induces an
isomorphism of fundamental groups, so double covers of F are in bijective correspondence with
double covers of F.

2 Oriented rank-3 vector bundles

We now focus on the case where our smooth oriented 4-manifold is compact. The Euler class
e(Λ+) will then play the starring role in our proofs. However, our approach will be clarified
by initially working in a more general context. Let us therefore first consider the Euler class
e(E) ∈ H3(M,Z) of any oriented rank-3 bundle E→M .

Now, since the rank of E is odd, multiplication by −1 induces an orientation-reversing self-
isomorphism E → E. Hence the Euler class e = e(E) ∈ H3(M,Z) satisfies e = −e, and so is
a 2-torsion element. This Euler class is Poincaré dual to the homology class ∈ H1(M,Z) of
the oriented curve cut out by the zero set of any section of E → M that is transverse to the
zero section 0M ⊂ E. Of course, if E had a nowhere-zero section, its Euler class e(E) would
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consequently vanish. However, since rankE < dimM , the converse is definitely false! This
common mistake seems to arise from over-familiarity with the Poincaré–Hopf theorem, which
concerns the case where the rank of the bundle equals the dimension of the base; in that context,
generic zeroes are just isolated points, and generic zeroes of opposite sign can then be eliminated
in pairs. In our case, the zero locus of a generic section is instead a union of oriented circles,
and the vanishing of the Euler class just means that this curve bounds an oriented surface.

Example. Since H3
(
S4,Z

)
= 0, the oriented rank-3 bundle Λ+ → S4 certainly must have

e(Λ+) = 0. However, non-zero global sections of this bundle certainly do not exist. Otherwise,
the twistor projection Z → S4 would admit a smooth global section, and we could then inter-
pret this as an orientation-compatible almost complex structure J on S4. However, S4 does
not admit an almost-complex structure! For example, if it did, the index of the spinc Dirac
operator generalizing ∂̄ + ∂̄∗ would be Td

(
S4

)
= χ+τ

4

(
S4

)
= 1

2 ̸∈ Z; for further discussion, see
the commentary following (4.1) below. This contradiction shows that every smooth section of
Λ+ → S4 must have non-empty zero locus, even through e(Λ+) = 0.

We will show in Section 3 that e(Λ+) = 0 on any smooth oriented 4-manifold M , even if
H3(M,Z) ̸= 0. In order to do this, however, it will help to first put the question into the
broader context of rank-3 oriented vector bundles on compact oriented 4-manifolds. Here, our
approach will crucially depend on the following technical result:

Proposition 2.1. Let M be a smooth connected compact oriented 4-manifold, let E → M be
a real oriented rank-3 vector bundle, let ϖ : Z →M be the unit 2-sphere bundle Z = S(E) with
respect to some positive-definite inner product, and let F ∈ H2((Z),Z) denote the homology class
of an S2-fiber of ϖ. Then the following conditions are all equivalent:

(i) The Euler class e(E) ∈ H3(M,Z) vanishes;
(ii) There is a cohomology class a ∈ H2(Z,Z) with ⟨a, F ⟩ = 1;

(iii) H2(Z,Z) ∼= H2(M,Z)⊕ Z; and
(iv) |T2(Z)| = |T2(M)|, where Tk is the torsion subgroup of Hk( ,Z).

Proof. Let us first recall that the cohomology of Z is related to that of M by the Gysin exact
sequence [6, Section 12]

· · ·Hk−3(M)
∪e→ Hk(M)

ϖ∗
→ Hk(Z) ϖ∗→ Hk−2(M)

∪e→ Hk+1(M) · · · , (2.1)

where e = e(E) is the Euler class of the oriented rank-3 bundle E. This is really just a disguised
form of the long exact sequence

· · · → Hk(E,E−M)→Hk(E)→Hk(E−M)→Hk+1(E,E−M)→ · · ·

of the pair (E,E−M), because the zero section M ↪→ E is a deformation retract of E, and Z is
a deformation retract of E −M ; the Thom isomorphism Hk−3(M) → Hk(E,E −M), given by
cupping with the Thom class, therefore converts one exact sequence into the other. While this
works perfectly well with coefficients in any ring, we will actually only use it for Z, Z2, and R
coefficients in this article.

First observe that the exactness of the Gysin sequence

· · · → H2(Z,Z) ϖ∗→ H0(M,Z) e·→ H3(M,Z)→ · · ·

implies that (i) =⇒ (ii), because the vanishing of e = e(E) implies the surjectivity of the map
ϖ∗ : H

2(Z,Z)→ H0(M,Z) = Z given by a 7→ ⟨a, F ⟩.
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Next, since H4(M,Z) = Z is free, while e(E) is a torsion class, observe that the terminal
segment of the Gysin sequence (2.1) breaks off as the short exact sequence

0→ H4(M,Z) ϖ∗
→ H4(Z,Z) ϖ∗→ H2(M,Z)→ 0,

where the image of H4(M,Z) in H4(Z,Z) is generated by the Poincaré dual of the fiber class F .
Applying Poincaré duality in both Z and M therefore converts this into an exact sequence

0→ Z ·F→ H2(Z,Z)→H2(M,Z)→ 0. (2.2)

If statement (ii) holds, then there is an a ∈ H2(Z,Z) with ⟨a, F ⟩ = 1, and pairing with a then
provides a left inverse of Z ↪→ H2(Z,Z). Thus (ii) implies that the exact sequence (2.2) splits,
and so yields an isomorphism

H2(Z,Z) ∼= Z⊕H2(M,Z). (2.3)

This shows that (ii) =⇒ (iii).

Next, observe that whenever (2.3) holds, one also has

T2(Z) ∼= T2(M),

where Tk denotes the torsion subgroup of the integer homology Hk. Since this in particular
implies that these torsion subgroups have the same order, it follows that (iii) =⇒ (iv).

On the other hand, the universal coefficients theorem tells us that

T3(Z) ∼= T2(Z) and T3(M) ∼= T2(M), (2.4)

where Tk = Ext(Tk−1,Z) ∼= Tk−1 denotes the torsion subgroup of the integer cohomology Hk.
Thus, if |T2(Z)| = |T2(M)|, it then follows that

∣∣T3(Z)
∣∣ =

∣∣T3(M)
∣∣. However, the central

portion of the Gysin sequence reads

· · · → H0(M,Z) e·→ H3(M,Z)→ H3(Z,Z)→ H1(M,Z)→ · · · ,

where e = e(E) ∈ H3(M,Z) is a 2-torsion class. Since H1(M,Z) is torsion-free, this means, in
particular, that

T3(Z) ∼=

{
T3(M) if e(E) = 0,

T3(M)/Z2 otherwise.
(2.5)

Thus,
∣∣T3(Z)

∣∣ = ∣∣T3(M)
∣∣ only when e(E) = 0. This proves that (iv) =⇒ (i). We have thus

shown that

(i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i),

and our proof of the proposition is therefore complete. ■

3 Existence of spinc structures

Proposition 2.1 and some twistor geometry now imply the following:

Theorem 3.1. Any smooth compact oriented 4-manifold admits spinc structures.
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Proof. For any Riemannian metric g onM , our geometric definition of a spinc structure restates
the claim as asserting the existence of a cohomology class a ∈ H2(Z,Z) with ⟨a, F ⟩ = 1, where
Z = S(Λ+) is the twistor space, and F =

[
S2

]
is the fiber homology class. The equivalence

(ii) ⇐⇒ (iv) in Proposition 2.1 therefore says that it suffices to show that |T2(Z)| = |T2(M)|,
where T2 denotes the torsion subgroup of the integer homology H2. Since (2.4) and (2.5)
also guarantee that |T2(Z)| ≤ |T2(M)|, it therefore suffices to show that the homomorphism
℘∗ : T2(Z)→ T2(M) is surjective.

To see this, we begin by recalling that any element of H2(M,Z) can be represented by
a smooth compact connected embedded oriented surface Σ2 ⊂M4. Indeed, any homology class
[Σ] ∈ H2(M,Z) is Poincaré dual to an element of H2(M,Z), which can then be realized as the
first Chern class of a complex line bundle onM . A generic smooth section of this line bundle then
provides a smooth compact oriented embedded surface Σ0 representing [Σ]. This representative
might still not be connected, but we can then correct this by connecting the various components
of Σ0 by narrow tubes I×S1 that approximate a collection of disjoint arcs between the different
connected components.

Now suppose that Σ ⊂ M is a smooth compact connected oriented surface representing
a torsion class [Σ] ∈ T2(M) ⊂ H2(M,Z). Since the homological self-intersection [Σ] • [Σ] of
a torsion class must vanish, it therefore follows that the normal bundle N of Σ ⊂M has trivial
Euler class, and is therefore trivial. We now define an orientation- and g-compatible almost-
complex structure ȷ on TM |Σ = N⊕ TΣ by declaring it to be given by 90◦ rotation in both N
and TΣ. Since this ȷ defines a section of Z|Σ, its image defines an embedded surface Σ̂ ⊂ Z that
projects diffeomorphically to Σ via the twistor projection. However, the twistor almost-complex
structure JH on the horizontal bundle H ⊂ TZ then restricts to Σ̂ as an exact copy of the action
of ȷ on TM |Σ. Since the normal bundle N of Σ is trivial, we thus have〈

c1(H ), [Σ̂]
〉
=

〈
c1(C⊕ T 1,0Σ), [Σ]

〉
= χ(Σ) = 2(1− g),

where g denotes the genus of Σ and where, once again, H = H1,0.
Now consider the homology class A = [Σ̂]+(g−1)F ∈ H2(Z,Z), where F once again denotes

the homology class of a fiber of the twistor projection ℘ : Z → M . Since ℘ induces an oriented
diffeomorphism Σ̂→ Σ, and since ℘ collapses F to a point, ℘∗ : H2(Z,Z)→ H2(M,Z) therefore
sends A 7→ [Σ]. We will now prove that A is a torsion class. To show this, it suffices to check that
⟨a, A⟩ = 0 for every a ∈ H2(Z,R). However, the R-coefficient version of the Gysin sequence (2.1)
implies that H2(Z,R) = ℘∗H2(M,R)⊕Rc1(H ), since ⟨c1(H ), F ⟩ = 2 ̸= 0. But pairing A with
an element of ℘∗H2(M,R) amounts to pairing ℘∗(A) = [Σ] with an element of H2(M,R), which
yields zero because [Σ] is a torsion class by hypothesis. But because the restriction of H to
an S2 fiber has degree +2, we also have

⟨c1(H ), A⟩ =
〈
c1(H ), [Σ̂]

〉
+ (g− 1)⟨c1(H ), F ⟩ = 2(1− g) + (g− 1)2 = 0.

This shows that A is a torsion class in H2(Z,Z) with ℘∗(A) = [Σ], and therefore proves that
℘∗ : T2(Z)→ T2(M) is surjective, as claimed. ■

Applying Proposition 2.1 to the Gysin sequence, we thus have:

Corollary 3.2. Any compact oriented Riemannian 4-manifold (M, g) satisfies e(Λ+) = 0. Con-
sequently, with either Z or Z2 coefficients,

0→ Hk(M)
℘∗
→ Hk(Z)

℘∗→ Hk−2(M)→ 0

is exact for every k, where ℘ : Z →M is the twistor projection.

As an application, we therefore have the following:
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Proposition 3.3. One has w2(TM) = w2(Λ
+) for every compact oriented Riemannian four-

manifold (M, g). Moreover, w2(TM) ∈ H2(M,Z2) is the mod-2 reduction of some integer
cohomology class c ∈ H2(M,Z).

Proof. We have ℘∗w2(TM) = w2(℘
∗TM) = w2(H ) = ρ[c1(H )] = ρ

[
c1
(
∧2H

)]
= w2

(
∧2H

)
= w2

(
R⊕ ∧2H ∗) = w2(℘

∗Λ+) = ℘∗w2(Λ
+). Since ℘∗ : H2(M,Z2)→ H2(Z,Z2) is injective by

Corollary 3.2, this implies that w2(TM) = w2(Λ
+).

Now consider the third integer Stiefel–Whitney class defined by W3 := β(w2), where β is the
Bockstein homomorphism of the long exact sequence

· · · → H2( ,Z) 2·→ H2( ,Z) ρ→ H2( ,Z2)
β→ H3( ,Z)→ · · · (3.1)

induced by

0→ Z 2·→ Z ρ→ Z2 → 0,

with ρ denoting reduction mod 2. Since w2(℘
∗TM) = ρ[c1(H )], it follows that ℘∗W3(TM) =

W3(℘
∗TM) = β[w2(℘

∗TM)] = 0. The injectivity of ℘∗ : H3(M,Z) → H3(Z,Z) guaranteed by
Corollary 3.2 thus implies that W3(TM) = β[w2(TM)] vanishes, and the exactness of (3.1) then
tells us that w2(TM) belongs to the image of ρ : H2(M,Z)→H2(M,Z2). ■

It is now easy to deduce an analogous result for the simplest non-compact 4-manifolds:

Corollary 3.4. Let M be the interior of a smooth compact oriented 4-manifold-with-boundary.
Then M admits spinc structures.

Proof. If M is displayed as the interior of a compact oriented 4-manifold-with-boundary X,
we first construct the double N = X ∪∂X X of X, where X denotes X equipped with the
opposite orientation. Each component of N then admits a spinc structure by Theorem 3.1, so
taking a union over components gives us a complex line bundle L → S(Λ+), where Λ+ → N
is defined with respect to some Riemannian metric on N . Since M is an open subset of N , the
twistor space of M is an open subset of the twistor space of N , and restricting L → S(Λ+)
to this subset now gives us a spinc structure on M . Of course, this construction is carried out
with respect to a Riemannian metric on M that happens to arises by restriction from N , but
the conclusion does not depend on a choice of metric, since the bundle-isomorphism class of
Λ+ →M is actually metric-independent. ■

There seems to be a widespread consensus [2, 5] that this result should also hold for general
non-compact 4-manifolds, including those that are not homotopy-equivalent to finite cell com-
plexes. Unfortunately, however, a watertight proof of this assertion is currently lacking. For
example, it does not suffice to exhaust M by precompact regions M1 ⊂ M2 ⊂ · · · ⊂ Mj ⊂ · · ·
with smooth boundary, and then observe that e(Λ+) = 0 vanishes on each Mj by Corollary 3.4,
because H∗(M,Z) ̸= lim←−H∗(Mj ,Z) in general; cf. [6, p. 109].

4 Spin and spinc geometry

While every compact oriented 4-manifold admits spinc structures, such structures are typically
far from unique:

Theorem 4.1. On any smooth compact oriented 4-manifold M , the cohomology group H2(M,Z)
acts freely and transitively on the set of spinc structures on M .
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Proof. Assuming, for simplicity, that M is connected, Corollary 3.2 tells us that there is an
exact sequence

0→ H2(M,Z) ℘∗
→ H2(Z,Z) ℘∗→ Z→ 0,

while our geometric definition tells us that {spinc structures on M} is exactly ℘−1
∗ (1)⊂H2(Z,Z).

This corresponds to tensoring L → Z with pull-backs of line bundles on M . ■

By contrast, many 4-manifolds do not admit spin structures:

Theorem 4.2. A smooth oriented 4-manifold M admits a spin structure iff w2(TM) = 0. When
this happens, H1(M,Z2) acts freely and transitively on the spin structures of M .

Proof. By our geometric definition, a spin structure exists iff the vertical line bundle V → Z
has a square root. However, as pointed out by Hitchin [4], there is a canonical isomorphism
V ∼= ∧2H , because these two bundles have tautological identifications with the very same line
sub-bundle of C⊗ ℘∗(Λ+). Thus, M admits a spin structure iff c1(H ) = c1

(
∧2H

)
= c1(V ) is

divisible by 2 in H2(Z,Z). But because

· · · → H2(Z,Z) 2·→ H2(Z,Z) ρ→ H2(Z,Z2)→ · · ·

is exact, this happens iff ρ[c1(H )] = w2(H ) = ℘∗w2(TM) vanishes. Since ℘∗ : H2(M,Z2) →
H2(Z,Z2) is injective by Corollary 3.2, it therefore follows that M admits a spin structure iff
w2(TM) = 0.

When w2(TM) = 0, the spin structures are exactly those double covers of the principal
C×-bundle V × = V − 0Z that also doubly cover the fiber; equivalently, they correspond to
elements of H1(S(V ),Z2) that are non-zero on the fiber circle. Since w2(TM) = 0 implies that
w2(V ) = 0, the Gysin sequence of V → Z then simplifies to yield

0→ H1(Z,Z2)→ H1(S(V ),Z2)→ H0(Z,Z2)→ 0

and it follows that H1(Z,Z2) acts freely and transitively on such elements of H1(S(V ),Z2).
Since we also have H1(M,Z2) = H1(Z,Z2) by Corollary 3.2, H1(M,Z2) therefore acts freely
and transitively on spin structures by tensoring V 1/2 with pull-backs of real line bundles. ■

We now give a direct twistorial construction of the spinor bundles of a spin structure, and
twisted-spinor bundles of a spinc structure. This provides yet another way of seeing that our
geometric definitions of such structures are equivalent to the standard definitions.

Given a square-root V 1/2 of the vertical line bundle V → Z on the twistor space, we begin
by noticing that V is canonically isomorphic to the tangent bundle T 1,0CP1(x) on any twistor
fiber CP1(x) := ℘−1(x), x. This gives V 1/2 a natural fiber-wise holomorphic structure, and we
may therefore define two 2-dimensional vector spaces at each x ∈M by

S+x = H0
(
CP1(x),O

(
V 1/2

))
, S−x = H0

(
CP1(x),O

(
ν ⊗ V −1/2

))
,

where the normal bundle ν = H |CP1(x) of CP1(x) ⊂ Z is thought of as a holomorphic bundle
∼= O(1) ⊕ O(1). These naturally define smooth vector bundles S±, because we may define the
smooth sections of S+ → M (respectively, S− → M) to be the smooth sections of V 1/2 → Z
(respectively, ν⊗V −1/2 → Z) that are holomorphic on each fiber of ℘. These bundles naturally
reduce to the structure group SU(2) = Sp(1), and the principal Spin(4)-bundle F̃ → M then
arises as a bundle of adapted frames for S+ ⊕ S−.

If we instead start with a degree-1 complex line-bundle L → Z, the Gysin sequence allows us
to choose an isomorphism L 2 = V ⊗ ℘∗L for a unique complex line-bundle L→ M . Since ℘∗L
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has a natural flat connection on each twistor fiber CP1(x), this gives L = (V ⊗℘∗L)1/2 a natural
fiber-wise holomorphic structure. We thus obtain a pair of vector bundles V± →M by setting

V+x = H0
(
CP1(x),O(L )

)
, V−x = H0

(
CP1(x),O(ν ⊗L ⊗ V ∗)

)
.

On any spin subset of M , these bundles can then be re-expressed as V± = S±⊗L1/2. Moreover,
∧2V+ = ∧2V− = L, and the principal Spinc(4)-bundle F̂ → M arises as a bundle of adapted
frames for V+ ⊕ V−.

In particular, any spinc structure gives us a rank-2 complex vector bundle V+ →M such that
P(V+) = Z = S(Λ+). However, because rankRV+ = 4 = dimM , the Poincaré–Hopf paradigm
applies, and can be used to predict the existence of non-zero sections of V+. If M is compact,
we can always choose a generic section of V+ that vanishes at only a finite number of points; by
following a suitable self-isotopy of V+ → M , we can then arrange for all of these zeroes to be
contained in an arbitrarily small ball Bε(p) ⊂ M , and then use a local trivialization over this
ball to alter this section so that it only vanishes at the center p of the ball (albeit typically with
high multiplicity). Applying the projection V+ − 0M → P(V+) = Z, we thus obtain a section
of ℘ : Z − ℘−1(p) → M − {p}, and we may then interpret this section as an almost-complex
structure J onM−{p}. Moreover, the image of this J is a closed codimension-2 submanifold that
is Poincaré dual to c1(L ) for the given spinc structure, and so completely determines the spinc

structure on M − {p}. On the other hand, removing a point from M does not change H2(Z),
and Corollary 3.2 therefore tells us that spinc structures on M are completely determined by
their restrictions to M − {p}. In summary, we have proved:

Theorem 4.3. Let (M, g) be a compact connected oriented Riemannian 4-manifold, and let
p ∈M be an arbitrary base-point. Then

� M − {p} admits almost-complex structures J compatible with the given metric and orien-
tation;

� any such J determines a spinc structure on M ; and

� every spinc structure on M arises this way.

Similarly, on the interior of any compact oriented 4-manifold-with-nonempty-boundary, there
always exist almost-complex structures compatible with the given orientation. Every such
almost-complex structure moreover determines a spinc structure, and every spinc structure arises
in this way.

However, in the compact case, the count of zeroes with multiplicity for a section of V+ is
given by the Euler number∫

M
c2(V+) =

c21(L)− (2χ+ 3τ)(M)

4
, (4.1)

where χ(M) and τ(M) respectively denote Euler characteristic and signature of M . One can
therefore find a global almost-complex structure on M if and only if c1(L) ∈ H2(M,Z) can be
chosen to make the right-hand side of (4.1) vanish. This therefore happens [3] if and only if
there is some c ∈ H2(M,Z) with ρ(c) = w2(TM) and c2 = (2χ+ 3τ)(M).

5 Other dimensions

Our discussion has shown that a twistorial perspective can shed new light on spinc geometry in
dimension four. We now conclude by pointing out some partial generalizations of these ideas to
other dimension.
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If (M, g) is any oriented Riemannian 2m-manifold, its twistor space Z is the fiber bundle
Z = F/U(m), where F → M is the principal SO(2m)-bundle of oriented orthonormal frames
for TM . Each fiber 𭟋 of Z is thus a copy of the homogeneous space SO(2m)/U(m) of real
dimension m(m − 1). However, 𭟋 is actually a compact Hermitian symmetric space, and so is
naturally a compact complex Fano manifold of complex dimension d =

(
m
2

)
. The twistor fiber 𭟋x

over x ∈M thus parameterizes the complex structures on TxM ∼= R2m that are compatible with
the given metric and orientation; equivalently, 𭟋 is just the space of α-planes [8, Appendix] in
C⊗TxM ∼= C2m. Consequently, the twistor space Z again admits a tautological almost-complex
structure J = JH⊕JV, allowing us to view the horizontal and vertical subspaces of TZ as complex
vector bundles H = H1,0 and V = V1,0. Because there is a natural isomorphism V = ∧2H ,

the vertical anti-canonical line-bundle K−1
℘ = ∧dV has a natural (m−1)st root K

−1/(m−1)
℘ given

by ∧mH . On the other hand, c1
(
K

−1/(m−1)
℘

)
restricts to any fiber as twice the generator of

H2(𭟋,Z) = Z. A spin structure on M is just a square root K
−1/2(m−1)
℘ of K

−1/(m−1)
℘ , while

a spinc structure on M is simply a line bundle on Z whose Chern class restricts to a fiber 𭟋
as the generator of H2(𭟋,Z) = Z. The corresponding spinor and twisted-spinor vector bundles
can then be manufactured by a straightforward generalization of the constructions described in
Section 4.

The odd-dimensional case is similar. If (M, g) is an oriented Riemannian (2m− 1)-manifold,
with oriented orthonormal frame bundle F→M , its twistor space is defined to be F/U(m− 1),
and its fibers 𭟋 = SO(2m − 1)/U(m − 1) ∼= SO(2m)/U(m) are thus identical to the fibers dis-

cussed above. The vertical anti-canonical line bundle still has a natural (m−1)st rootK−1/(m−1)
℘ ,

and a spin structure on M is again just a square-root K
−1/2(m−1)
℘ of this line-bundle. A spinc

structure is once again just a line-bundle on Z of fiber-degree 1.
However, our Gysin-sequence approach to the 4-dimensional case does not generalize to higher

dimensions. This makes the use of the Leray–Serre spectral sequence absolutely essential for
a full understanding of the topological issues that arise in this broader context.
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